TargetLowering.cpp revision 4f6b4674be5473319ac5e70c76fd5cb964da2128
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245  Names[RTLIB::OEQ_F32] = "__eqsf2";
246  Names[RTLIB::OEQ_F64] = "__eqdf2";
247  Names[RTLIB::UNE_F32] = "__nesf2";
248  Names[RTLIB::UNE_F64] = "__nedf2";
249  Names[RTLIB::OGE_F32] = "__gesf2";
250  Names[RTLIB::OGE_F64] = "__gedf2";
251  Names[RTLIB::OLT_F32] = "__ltsf2";
252  Names[RTLIB::OLT_F64] = "__ltdf2";
253  Names[RTLIB::OLE_F32] = "__lesf2";
254  Names[RTLIB::OLE_F64] = "__ledf2";
255  Names[RTLIB::OGT_F32] = "__gtsf2";
256  Names[RTLIB::OGT_F64] = "__gtdf2";
257  Names[RTLIB::UO_F32] = "__unordsf2";
258  Names[RTLIB::UO_F64] = "__unorddf2";
259  Names[RTLIB::O_F32] = "__unordsf2";
260  Names[RTLIB::O_F64] = "__unorddf2";
261  Names[RTLIB::MEMCPY] = "memcpy";
262  Names[RTLIB::MEMMOVE] = "memmove";
263  Names[RTLIB::MEMSET] = "memset";
264  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
281  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
282  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
283  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
284  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
285  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
286  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
287  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
288  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
297}
298
299/// InitLibcallCallingConvs - Set default libcall CallingConvs.
300///
301static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
302  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
303    CCs[i] = CallingConv::C;
304  }
305}
306
307/// getFPEXT - Return the FPEXT_*_* value for the given types, or
308/// UNKNOWN_LIBCALL if there is none.
309RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
310  if (OpVT == MVT::f32) {
311    if (RetVT == MVT::f64)
312      return FPEXT_F32_F64;
313  }
314
315  return UNKNOWN_LIBCALL;
316}
317
318/// getFPROUND - Return the FPROUND_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
320RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321  if (RetVT == MVT::f32) {
322    if (OpVT == MVT::f64)
323      return FPROUND_F64_F32;
324    if (OpVT == MVT::f80)
325      return FPROUND_F80_F32;
326    if (OpVT == MVT::ppcf128)
327      return FPROUND_PPCF128_F32;
328  } else if (RetVT == MVT::f64) {
329    if (OpVT == MVT::f80)
330      return FPROUND_F80_F64;
331    if (OpVT == MVT::ppcf128)
332      return FPROUND_PPCF128_F64;
333  }
334
335  return UNKNOWN_LIBCALL;
336}
337
338/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339/// UNKNOWN_LIBCALL if there is none.
340RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
341  if (OpVT == MVT::f32) {
342    if (RetVT == MVT::i8)
343      return FPTOSINT_F32_I8;
344    if (RetVT == MVT::i16)
345      return FPTOSINT_F32_I16;
346    if (RetVT == MVT::i32)
347      return FPTOSINT_F32_I32;
348    if (RetVT == MVT::i64)
349      return FPTOSINT_F32_I64;
350    if (RetVT == MVT::i128)
351      return FPTOSINT_F32_I128;
352  } else if (OpVT == MVT::f64) {
353    if (RetVT == MVT::i8)
354      return FPTOSINT_F64_I8;
355    if (RetVT == MVT::i16)
356      return FPTOSINT_F64_I16;
357    if (RetVT == MVT::i32)
358      return FPTOSINT_F64_I32;
359    if (RetVT == MVT::i64)
360      return FPTOSINT_F64_I64;
361    if (RetVT == MVT::i128)
362      return FPTOSINT_F64_I128;
363  } else if (OpVT == MVT::f80) {
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F80_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F80_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F80_I128;
370  } else if (OpVT == MVT::ppcf128) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_PPCF128_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_PPCF128_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_PPCF128_I128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382/// UNKNOWN_LIBCALL if there is none.
383RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
384  if (OpVT == MVT::f32) {
385    if (RetVT == MVT::i8)
386      return FPTOUINT_F32_I8;
387    if (RetVT == MVT::i16)
388      return FPTOUINT_F32_I16;
389    if (RetVT == MVT::i32)
390      return FPTOUINT_F32_I32;
391    if (RetVT == MVT::i64)
392      return FPTOUINT_F32_I64;
393    if (RetVT == MVT::i128)
394      return FPTOUINT_F32_I128;
395  } else if (OpVT == MVT::f64) {
396    if (RetVT == MVT::i8)
397      return FPTOUINT_F64_I8;
398    if (RetVT == MVT::i16)
399      return FPTOUINT_F64_I16;
400    if (RetVT == MVT::i32)
401      return FPTOUINT_F64_I32;
402    if (RetVT == MVT::i64)
403      return FPTOUINT_F64_I64;
404    if (RetVT == MVT::i128)
405      return FPTOUINT_F64_I128;
406  } else if (OpVT == MVT::f80) {
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F80_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F80_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F80_I128;
413  } else if (OpVT == MVT::ppcf128) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_PPCF128_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_PPCF128_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_PPCF128_I128;
420  }
421  return UNKNOWN_LIBCALL;
422}
423
424/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425/// UNKNOWN_LIBCALL if there is none.
426RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
427  if (OpVT == MVT::i32) {
428    if (RetVT == MVT::f32)
429      return SINTTOFP_I32_F32;
430    else if (RetVT == MVT::f64)
431      return SINTTOFP_I32_F64;
432    else if (RetVT == MVT::f80)
433      return SINTTOFP_I32_F80;
434    else if (RetVT == MVT::ppcf128)
435      return SINTTOFP_I32_PPCF128;
436  } else if (OpVT == MVT::i64) {
437    if (RetVT == MVT::f32)
438      return SINTTOFP_I64_F32;
439    else if (RetVT == MVT::f64)
440      return SINTTOFP_I64_F64;
441    else if (RetVT == MVT::f80)
442      return SINTTOFP_I64_F80;
443    else if (RetVT == MVT::ppcf128)
444      return SINTTOFP_I64_PPCF128;
445  } else if (OpVT == MVT::i128) {
446    if (RetVT == MVT::f32)
447      return SINTTOFP_I128_F32;
448    else if (RetVT == MVT::f64)
449      return SINTTOFP_I128_F64;
450    else if (RetVT == MVT::f80)
451      return SINTTOFP_I128_F80;
452    else if (RetVT == MVT::ppcf128)
453      return SINTTOFP_I128_PPCF128;
454  }
455  return UNKNOWN_LIBCALL;
456}
457
458/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459/// UNKNOWN_LIBCALL if there is none.
460RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
461  if (OpVT == MVT::i32) {
462    if (RetVT == MVT::f32)
463      return UINTTOFP_I32_F32;
464    else if (RetVT == MVT::f64)
465      return UINTTOFP_I32_F64;
466    else if (RetVT == MVT::f80)
467      return UINTTOFP_I32_F80;
468    else if (RetVT == MVT::ppcf128)
469      return UINTTOFP_I32_PPCF128;
470  } else if (OpVT == MVT::i64) {
471    if (RetVT == MVT::f32)
472      return UINTTOFP_I64_F32;
473    else if (RetVT == MVT::f64)
474      return UINTTOFP_I64_F64;
475    else if (RetVT == MVT::f80)
476      return UINTTOFP_I64_F80;
477    else if (RetVT == MVT::ppcf128)
478      return UINTTOFP_I64_PPCF128;
479  } else if (OpVT == MVT::i128) {
480    if (RetVT == MVT::f32)
481      return UINTTOFP_I128_F32;
482    else if (RetVT == MVT::f64)
483      return UINTTOFP_I128_F64;
484    else if (RetVT == MVT::f80)
485      return UINTTOFP_I128_F80;
486    else if (RetVT == MVT::ppcf128)
487      return UINTTOFP_I128_PPCF128;
488  }
489  return UNKNOWN_LIBCALL;
490}
491
492/// InitCmpLibcallCCs - Set default comparison libcall CC.
493///
494static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
495  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
496  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
497  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
498  CCs[RTLIB::UNE_F32] = ISD::SETNE;
499  CCs[RTLIB::UNE_F64] = ISD::SETNE;
500  CCs[RTLIB::OGE_F32] = ISD::SETGE;
501  CCs[RTLIB::OGE_F64] = ISD::SETGE;
502  CCs[RTLIB::OLT_F32] = ISD::SETLT;
503  CCs[RTLIB::OLT_F64] = ISD::SETLT;
504  CCs[RTLIB::OLE_F32] = ISD::SETLE;
505  CCs[RTLIB::OLE_F64] = ISD::SETLE;
506  CCs[RTLIB::OGT_F32] = ISD::SETGT;
507  CCs[RTLIB::OGT_F64] = ISD::SETGT;
508  CCs[RTLIB::UO_F32] = ISD::SETNE;
509  CCs[RTLIB::UO_F64] = ISD::SETNE;
510  CCs[RTLIB::O_F32] = ISD::SETEQ;
511  CCs[RTLIB::O_F64] = ISD::SETEQ;
512}
513
514/// NOTE: The constructor takes ownership of TLOF.
515TargetLowering::TargetLowering(const TargetMachine &tm,
516                               const TargetLoweringObjectFile *tlof)
517  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
518  // All operations default to being supported.
519  memset(OpActions, 0, sizeof(OpActions));
520  memset(LoadExtActions, 0, sizeof(LoadExtActions));
521  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
522  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
523  memset(CondCodeActions, 0, sizeof(CondCodeActions));
524
525  // Set default actions for various operations.
526  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
527    // Default all indexed load / store to expand.
528    for (unsigned IM = (unsigned)ISD::PRE_INC;
529         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
530      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
531      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
532    }
533
534    // These operations default to expand.
535    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
537  }
538
539  // Most targets ignore the @llvm.prefetch intrinsic.
540  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
541
542  // ConstantFP nodes default to expand.  Targets can either change this to
543  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544  // to optimize expansions for certain constants.
545  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
548
549  // These library functions default to expand.
550  setOperationAction(ISD::FLOG , MVT::f64, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
552  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
553  setOperationAction(ISD::FEXP , MVT::f64, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
555  setOperationAction(ISD::FLOG , MVT::f32, Expand);
556  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
557  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
558  setOperationAction(ISD::FEXP , MVT::f32, Expand);
559  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
560
561  // Default ISD::TRAP to expand (which turns it into abort).
562  setOperationAction(ISD::TRAP, MVT::Other, Expand);
563
564  IsLittleEndian = TD->isLittleEndian();
565  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
566  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
567  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
568  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
569  benefitFromCodePlacementOpt = false;
570  UseUnderscoreSetJmp = false;
571  UseUnderscoreLongJmp = false;
572  SelectIsExpensive = false;
573  IntDivIsCheap = false;
574  Pow2DivIsCheap = false;
575  StackPointerRegisterToSaveRestore = 0;
576  ExceptionPointerRegister = 0;
577  ExceptionSelectorRegister = 0;
578  BooleanContents = UndefinedBooleanContent;
579  SchedPreferenceInfo = Sched::Latency;
580  JumpBufSize = 0;
581  JumpBufAlignment = 0;
582  PrefLoopAlignment = 0;
583  MinStackArgumentAlignment = 1;
584  ShouldFoldAtomicFences = false;
585
586  InitLibcallNames(LibcallRoutineNames);
587  InitCmpLibcallCCs(CmpLibcallCCs);
588  InitLibcallCallingConvs(LibcallCallingConvs);
589}
590
591TargetLowering::~TargetLowering() {
592  delete &TLOF;
593}
594
595/// canOpTrap - Returns true if the operation can trap for the value type.
596/// VT must be a legal type.
597bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
598  assert(isTypeLegal(VT));
599  switch (Op) {
600  default:
601    return false;
602  case ISD::FDIV:
603  case ISD::FREM:
604  case ISD::SDIV:
605  case ISD::UDIV:
606  case ISD::SREM:
607  case ISD::UREM:
608    return true;
609  }
610}
611
612
613static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
614                                          unsigned &NumIntermediates,
615                                          EVT &RegisterVT,
616                                          TargetLowering *TLI) {
617  // Figure out the right, legal destination reg to copy into.
618  unsigned NumElts = VT.getVectorNumElements();
619  MVT EltTy = VT.getVectorElementType();
620
621  unsigned NumVectorRegs = 1;
622
623  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
624  // could break down into LHS/RHS like LegalizeDAG does.
625  if (!isPowerOf2_32(NumElts)) {
626    NumVectorRegs = NumElts;
627    NumElts = 1;
628  }
629
630  // Divide the input until we get to a supported size.  This will always
631  // end with a scalar if the target doesn't support vectors.
632  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
633    NumElts >>= 1;
634    NumVectorRegs <<= 1;
635  }
636
637  NumIntermediates = NumVectorRegs;
638
639  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
640  if (!TLI->isTypeLegal(NewVT))
641    NewVT = EltTy;
642  IntermediateVT = NewVT;
643
644  EVT DestVT = TLI->getRegisterType(NewVT);
645  RegisterVT = DestVT;
646  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
647    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
648
649  // Otherwise, promotion or legal types use the same number of registers as
650  // the vector decimated to the appropriate level.
651  return NumVectorRegs;
652}
653
654/// isLegalRC - Return true if the value types that can be represented by the
655/// specified register class are all legal.
656bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
657  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
658       I != E; ++I) {
659    if (isTypeLegal(*I))
660      return true;
661  }
662  return false;
663}
664
665/// hasLegalSuperRegRegClasses - Return true if the specified register class
666/// has one or more super-reg register classes that are legal.
667bool
668TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
669  if (*RC->superregclasses_begin() == 0)
670    return false;
671  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
672         E = RC->superregclasses_end(); I != E; ++I) {
673    const TargetRegisterClass *RRC = *I;
674    if (isLegalRC(RRC))
675      return true;
676  }
677  return false;
678}
679
680/// findRepresentativeClass - Return the largest legal super-reg register class
681/// of the register class for the specified type and its associated "cost".
682std::pair<const TargetRegisterClass*, uint8_t>
683TargetLowering::findRepresentativeClass(EVT VT) const {
684  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
685  if (!RC)
686    return std::make_pair(RC, 0);
687  const TargetRegisterClass *BestRC = RC;
688  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
689         E = RC->superregclasses_end(); I != E; ++I) {
690    const TargetRegisterClass *RRC = *I;
691    if (RRC->isASubClass() || !isLegalRC(RRC))
692      continue;
693    if (!hasLegalSuperRegRegClasses(RRC))
694      return std::make_pair(RRC, 1);
695    BestRC = RRC;
696  }
697  return std::make_pair(BestRC, 1);
698}
699
700/// computeRegisterProperties - Once all of the register classes are added,
701/// this allows us to compute derived properties we expose.
702void TargetLowering::computeRegisterProperties() {
703  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
704         "Too many value types for ValueTypeActions to hold!");
705
706  // Everything defaults to needing one register.
707  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
708    NumRegistersForVT[i] = 1;
709    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
710  }
711  // ...except isVoid, which doesn't need any registers.
712  NumRegistersForVT[MVT::isVoid] = 0;
713
714  // Find the largest integer register class.
715  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
716  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
717    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
718
719  // Every integer value type larger than this largest register takes twice as
720  // many registers to represent as the previous ValueType.
721  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
722    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
723    if (!ExpandedVT.isInteger())
724      break;
725    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
726    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
727    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
728    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
729  }
730
731  // Inspect all of the ValueType's smaller than the largest integer
732  // register to see which ones need promotion.
733  unsigned LegalIntReg = LargestIntReg;
734  for (unsigned IntReg = LargestIntReg - 1;
735       IntReg >= (unsigned)MVT::i1; --IntReg) {
736    EVT IVT = (MVT::SimpleValueType)IntReg;
737    if (isTypeLegal(IVT)) {
738      LegalIntReg = IntReg;
739    } else {
740      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
741        (MVT::SimpleValueType)LegalIntReg;
742      ValueTypeActions.setTypeAction(IVT, Promote);
743    }
744  }
745
746  // ppcf128 type is really two f64's.
747  if (!isTypeLegal(MVT::ppcf128)) {
748    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
749    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
750    TransformToType[MVT::ppcf128] = MVT::f64;
751    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
752  }
753
754  // Decide how to handle f64. If the target does not have native f64 support,
755  // expand it to i64 and we will be generating soft float library calls.
756  if (!isTypeLegal(MVT::f64)) {
757    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
758    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
759    TransformToType[MVT::f64] = MVT::i64;
760    ValueTypeActions.setTypeAction(MVT::f64, Expand);
761  }
762
763  // Decide how to handle f32. If the target does not have native support for
764  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
765  if (!isTypeLegal(MVT::f32)) {
766    if (isTypeLegal(MVT::f64)) {
767      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
768      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
769      TransformToType[MVT::f32] = MVT::f64;
770      ValueTypeActions.setTypeAction(MVT::f32, Promote);
771    } else {
772      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
773      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
774      TransformToType[MVT::f32] = MVT::i32;
775      ValueTypeActions.setTypeAction(MVT::f32, Expand);
776    }
777  }
778
779  // Loop over all of the vector value types to see which need transformations.
780  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
781       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
782    MVT VT = (MVT::SimpleValueType)i;
783    if (isTypeLegal(VT)) continue;
784
785    MVT IntermediateVT;
786    EVT RegisterVT;
787    unsigned NumIntermediates;
788    NumRegistersForVT[i] =
789      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
790                                RegisterVT, this);
791    RegisterTypeForVT[i] = RegisterVT;
792
793    // Determine if there is a legal wider type.
794    bool IsLegalWiderType = false;
795    EVT EltVT = VT.getVectorElementType();
796    unsigned NElts = VT.getVectorNumElements();
797    for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
798      EVT SVT = (MVT::SimpleValueType)nVT;
799      if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
800          SVT.getVectorNumElements() > NElts && NElts != 1) {
801        TransformToType[i] = SVT;
802        ValueTypeActions.setTypeAction(VT, Promote);
803        IsLegalWiderType = true;
804        break;
805      }
806    }
807    if (!IsLegalWiderType) {
808      EVT NVT = VT.getPow2VectorType();
809      if (NVT == VT) {
810        // Type is already a power of 2.  The default action is to split.
811        TransformToType[i] = MVT::Other;
812        ValueTypeActions.setTypeAction(VT, Expand);
813      } else {
814        TransformToType[i] = NVT;
815        ValueTypeActions.setTypeAction(VT, Promote);
816      }
817    }
818  }
819
820  // Determine the 'representative' register class for each value type.
821  // An representative register class is the largest (meaning one which is
822  // not a sub-register class / subreg register class) legal register class for
823  // a group of value types. For example, on i386, i8, i16, and i32
824  // representative would be GR32; while on x86_64 it's GR64.
825  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
826    const TargetRegisterClass* RRC;
827    uint8_t Cost;
828    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
829    RepRegClassForVT[i] = RRC;
830    RepRegClassCostForVT[i] = Cost;
831  }
832}
833
834const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
835  return NULL;
836}
837
838
839MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
840  return PointerTy.SimpleTy;
841}
842
843MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
844  return MVT::i32; // return the default value
845}
846
847/// getVectorTypeBreakdown - Vector types are broken down into some number of
848/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
849/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
850/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
851///
852/// This method returns the number of registers needed, and the VT for each
853/// register.  It also returns the VT and quantity of the intermediate values
854/// before they are promoted/expanded.
855///
856unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
857                                                EVT &IntermediateVT,
858                                                unsigned &NumIntermediates,
859                                                EVT &RegisterVT) const {
860  // Figure out the right, legal destination reg to copy into.
861  unsigned NumElts = VT.getVectorNumElements();
862  EVT EltTy = VT.getVectorElementType();
863
864  unsigned NumVectorRegs = 1;
865
866  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
867  // could break down into LHS/RHS like LegalizeDAG does.
868  if (!isPowerOf2_32(NumElts)) {
869    NumVectorRegs = NumElts;
870    NumElts = 1;
871  }
872
873  // Divide the input until we get to a supported size.  This will always
874  // end with a scalar if the target doesn't support vectors.
875  while (NumElts > 1 && !isTypeLegal(
876                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
877    NumElts >>= 1;
878    NumVectorRegs <<= 1;
879  }
880
881  NumIntermediates = NumVectorRegs;
882
883  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
884  if (!isTypeLegal(NewVT))
885    NewVT = EltTy;
886  IntermediateVT = NewVT;
887
888  EVT DestVT = getRegisterType(Context, NewVT);
889  RegisterVT = DestVT;
890  if (DestVT.bitsLT(NewVT)) {
891    // Value is expanded, e.g. i64 -> i16.
892    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
893  } else {
894    // Otherwise, promotion or legal types use the same number of registers as
895    // the vector decimated to the appropriate level.
896    return NumVectorRegs;
897  }
898
899  return 1;
900}
901
902/// Get the EVTs and ArgFlags collections that represent the legalized return
903/// type of the given function.  This does not require a DAG or a return value,
904/// and is suitable for use before any DAGs for the function are constructed.
905/// TODO: Move this out of TargetLowering.cpp.
906void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
907                         SmallVectorImpl<ISD::OutputArg> &Outs,
908                         const TargetLowering &TLI,
909                         SmallVectorImpl<uint64_t> *Offsets) {
910  SmallVector<EVT, 4> ValueVTs;
911  ComputeValueVTs(TLI, ReturnType, ValueVTs);
912  unsigned NumValues = ValueVTs.size();
913  if (NumValues == 0) return;
914  unsigned Offset = 0;
915
916  for (unsigned j = 0, f = NumValues; j != f; ++j) {
917    EVT VT = ValueVTs[j];
918    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
919
920    if (attr & Attribute::SExt)
921      ExtendKind = ISD::SIGN_EXTEND;
922    else if (attr & Attribute::ZExt)
923      ExtendKind = ISD::ZERO_EXTEND;
924
925    // FIXME: C calling convention requires the return type to be promoted to
926    // at least 32-bit. But this is not necessary for non-C calling
927    // conventions. The frontend should mark functions whose return values
928    // require promoting with signext or zeroext attributes.
929    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
930      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
931      if (VT.bitsLT(MinVT))
932        VT = MinVT;
933    }
934
935    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
936    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
937    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
938                        PartVT.getTypeForEVT(ReturnType->getContext()));
939
940    // 'inreg' on function refers to return value
941    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
942    if (attr & Attribute::InReg)
943      Flags.setInReg();
944
945    // Propagate extension type if any
946    if (attr & Attribute::SExt)
947      Flags.setSExt();
948    else if (attr & Attribute::ZExt)
949      Flags.setZExt();
950
951    for (unsigned i = 0; i < NumParts; ++i) {
952      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
953      if (Offsets) {
954        Offsets->push_back(Offset);
955        Offset += PartSize;
956      }
957    }
958  }
959}
960
961/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
962/// function arguments in the caller parameter area.  This is the actual
963/// alignment, not its logarithm.
964unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
965  return TD->getCallFrameTypeAlignment(Ty);
966}
967
968/// getJumpTableEncoding - Return the entry encoding for a jump table in the
969/// current function.  The returned value is a member of the
970/// MachineJumpTableInfo::JTEntryKind enum.
971unsigned TargetLowering::getJumpTableEncoding() const {
972  // In non-pic modes, just use the address of a block.
973  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
974    return MachineJumpTableInfo::EK_BlockAddress;
975
976  // In PIC mode, if the target supports a GPRel32 directive, use it.
977  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
978    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
979
980  // Otherwise, use a label difference.
981  return MachineJumpTableInfo::EK_LabelDifference32;
982}
983
984SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
985                                                 SelectionDAG &DAG) const {
986  // If our PIC model is GP relative, use the global offset table as the base.
987  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
988    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
989  return Table;
990}
991
992/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
993/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
994/// MCExpr.
995const MCExpr *
996TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
997                                             unsigned JTI,MCContext &Ctx) const{
998  // The normal PIC reloc base is the label at the start of the jump table.
999  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1000}
1001
1002bool
1003TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1004  // Assume that everything is safe in static mode.
1005  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1006    return true;
1007
1008  // In dynamic-no-pic mode, assume that known defined values are safe.
1009  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1010      GA &&
1011      !GA->getGlobal()->isDeclaration() &&
1012      !GA->getGlobal()->isWeakForLinker())
1013    return true;
1014
1015  // Otherwise assume nothing is safe.
1016  return false;
1017}
1018
1019//===----------------------------------------------------------------------===//
1020//  Optimization Methods
1021//===----------------------------------------------------------------------===//
1022
1023/// ShrinkDemandedConstant - Check to see if the specified operand of the
1024/// specified instruction is a constant integer.  If so, check to see if there
1025/// are any bits set in the constant that are not demanded.  If so, shrink the
1026/// constant and return true.
1027bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1028                                                        const APInt &Demanded) {
1029  DebugLoc dl = Op.getDebugLoc();
1030
1031  // FIXME: ISD::SELECT, ISD::SELECT_CC
1032  switch (Op.getOpcode()) {
1033  default: break;
1034  case ISD::XOR:
1035  case ISD::AND:
1036  case ISD::OR: {
1037    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1038    if (!C) return false;
1039
1040    if (Op.getOpcode() == ISD::XOR &&
1041        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1042      return false;
1043
1044    // if we can expand it to have all bits set, do it
1045    if (C->getAPIntValue().intersects(~Demanded)) {
1046      EVT VT = Op.getValueType();
1047      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1048                                DAG.getConstant(Demanded &
1049                                                C->getAPIntValue(),
1050                                                VT));
1051      return CombineTo(Op, New);
1052    }
1053
1054    break;
1055  }
1056  }
1057
1058  return false;
1059}
1060
1061/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1062/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1063/// cast, but it could be generalized for targets with other types of
1064/// implicit widening casts.
1065bool
1066TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1067                                                    unsigned BitWidth,
1068                                                    const APInt &Demanded,
1069                                                    DebugLoc dl) {
1070  assert(Op.getNumOperands() == 2 &&
1071         "ShrinkDemandedOp only supports binary operators!");
1072  assert(Op.getNode()->getNumValues() == 1 &&
1073         "ShrinkDemandedOp only supports nodes with one result!");
1074
1075  // Don't do this if the node has another user, which may require the
1076  // full value.
1077  if (!Op.getNode()->hasOneUse())
1078    return false;
1079
1080  // Search for the smallest integer type with free casts to and from
1081  // Op's type. For expedience, just check power-of-2 integer types.
1082  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1083  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1084  if (!isPowerOf2_32(SmallVTBits))
1085    SmallVTBits = NextPowerOf2(SmallVTBits);
1086  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1087    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1088    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1089        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1090      // We found a type with free casts.
1091      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1092                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1093                                          Op.getNode()->getOperand(0)),
1094                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1095                                          Op.getNode()->getOperand(1)));
1096      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1097      return CombineTo(Op, Z);
1098    }
1099  }
1100  return false;
1101}
1102
1103/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1104/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1105/// use this information to simplify Op, create a new simplified DAG node and
1106/// return true, returning the original and new nodes in Old and New. Otherwise,
1107/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1108/// the expression (used to simplify the caller).  The KnownZero/One bits may
1109/// only be accurate for those bits in the DemandedMask.
1110bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1111                                          const APInt &DemandedMask,
1112                                          APInt &KnownZero,
1113                                          APInt &KnownOne,
1114                                          TargetLoweringOpt &TLO,
1115                                          unsigned Depth) const {
1116  unsigned BitWidth = DemandedMask.getBitWidth();
1117  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1118         "Mask size mismatches value type size!");
1119  APInt NewMask = DemandedMask;
1120  DebugLoc dl = Op.getDebugLoc();
1121
1122  // Don't know anything.
1123  KnownZero = KnownOne = APInt(BitWidth, 0);
1124
1125  // Other users may use these bits.
1126  if (!Op.getNode()->hasOneUse()) {
1127    if (Depth != 0) {
1128      // If not at the root, Just compute the KnownZero/KnownOne bits to
1129      // simplify things downstream.
1130      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1131      return false;
1132    }
1133    // If this is the root being simplified, allow it to have multiple uses,
1134    // just set the NewMask to all bits.
1135    NewMask = APInt::getAllOnesValue(BitWidth);
1136  } else if (DemandedMask == 0) {
1137    // Not demanding any bits from Op.
1138    if (Op.getOpcode() != ISD::UNDEF)
1139      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1140    return false;
1141  } else if (Depth == 6) {        // Limit search depth.
1142    return false;
1143  }
1144
1145  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1146  switch (Op.getOpcode()) {
1147  case ISD::Constant:
1148    // We know all of the bits for a constant!
1149    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1150    KnownZero = ~KnownOne & NewMask;
1151    return false;   // Don't fall through, will infinitely loop.
1152  case ISD::AND:
1153    // If the RHS is a constant, check to see if the LHS would be zero without
1154    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1155    // simplify the LHS, here we're using information from the LHS to simplify
1156    // the RHS.
1157    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1158      APInt LHSZero, LHSOne;
1159      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1160                                LHSZero, LHSOne, Depth+1);
1161      // If the LHS already has zeros where RHSC does, this and is dead.
1162      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1163        return TLO.CombineTo(Op, Op.getOperand(0));
1164      // If any of the set bits in the RHS are known zero on the LHS, shrink
1165      // the constant.
1166      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1167        return true;
1168    }
1169
1170    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1171                             KnownOne, TLO, Depth+1))
1172      return true;
1173    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1174    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1175                             KnownZero2, KnownOne2, TLO, Depth+1))
1176      return true;
1177    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1178
1179    // If all of the demanded bits are known one on one side, return the other.
1180    // These bits cannot contribute to the result of the 'and'.
1181    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1182      return TLO.CombineTo(Op, Op.getOperand(0));
1183    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1184      return TLO.CombineTo(Op, Op.getOperand(1));
1185    // If all of the demanded bits in the inputs are known zeros, return zero.
1186    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1187      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1188    // If the RHS is a constant, see if we can simplify it.
1189    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1190      return true;
1191    // If the operation can be done in a smaller type, do so.
1192    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1193      return true;
1194
1195    // Output known-1 bits are only known if set in both the LHS & RHS.
1196    KnownOne &= KnownOne2;
1197    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1198    KnownZero |= KnownZero2;
1199    break;
1200  case ISD::OR:
1201    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1202                             KnownOne, TLO, Depth+1))
1203      return true;
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1206                             KnownZero2, KnownOne2, TLO, Depth+1))
1207      return true;
1208    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1209
1210    // If all of the demanded bits are known zero on one side, return the other.
1211    // These bits cannot contribute to the result of the 'or'.
1212    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1213      return TLO.CombineTo(Op, Op.getOperand(0));
1214    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1215      return TLO.CombineTo(Op, Op.getOperand(1));
1216    // If all of the potentially set bits on one side are known to be set on
1217    // the other side, just use the 'other' side.
1218    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1219      return TLO.CombineTo(Op, Op.getOperand(0));
1220    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1221      return TLO.CombineTo(Op, Op.getOperand(1));
1222    // If the RHS is a constant, see if we can simplify it.
1223    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1224      return true;
1225    // If the operation can be done in a smaller type, do so.
1226    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1227      return true;
1228
1229    // Output known-0 bits are only known if clear in both the LHS & RHS.
1230    KnownZero &= KnownZero2;
1231    // Output known-1 are known to be set if set in either the LHS | RHS.
1232    KnownOne |= KnownOne2;
1233    break;
1234  case ISD::XOR:
1235    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1236                             KnownOne, TLO, Depth+1))
1237      return true;
1238    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1239    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1240                             KnownOne2, TLO, Depth+1))
1241      return true;
1242    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1243
1244    // If all of the demanded bits are known zero on one side, return the other.
1245    // These bits cannot contribute to the result of the 'xor'.
1246    if ((KnownZero & NewMask) == NewMask)
1247      return TLO.CombineTo(Op, Op.getOperand(0));
1248    if ((KnownZero2 & NewMask) == NewMask)
1249      return TLO.CombineTo(Op, Op.getOperand(1));
1250    // If the operation can be done in a smaller type, do so.
1251    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1252      return true;
1253
1254    // If all of the unknown bits are known to be zero on one side or the other
1255    // (but not both) turn this into an *inclusive* or.
1256    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1257    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1258      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1259                                               Op.getOperand(0),
1260                                               Op.getOperand(1)));
1261
1262    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1263    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1264    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1265    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1266
1267    // If all of the demanded bits on one side are known, and all of the set
1268    // bits on that side are also known to be set on the other side, turn this
1269    // into an AND, as we know the bits will be cleared.
1270    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1271    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1272      if ((KnownOne & KnownOne2) == KnownOne) {
1273        EVT VT = Op.getValueType();
1274        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1275        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1276                                                 Op.getOperand(0), ANDC));
1277      }
1278    }
1279
1280    // If the RHS is a constant, see if we can simplify it.
1281    // for XOR, we prefer to force bits to 1 if they will make a -1.
1282    // if we can't force bits, try to shrink constant
1283    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1284      APInt Expanded = C->getAPIntValue() | (~NewMask);
1285      // if we can expand it to have all bits set, do it
1286      if (Expanded.isAllOnesValue()) {
1287        if (Expanded != C->getAPIntValue()) {
1288          EVT VT = Op.getValueType();
1289          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1290                                          TLO.DAG.getConstant(Expanded, VT));
1291          return TLO.CombineTo(Op, New);
1292        }
1293        // if it already has all the bits set, nothing to change
1294        // but don't shrink either!
1295      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1296        return true;
1297      }
1298    }
1299
1300    KnownZero = KnownZeroOut;
1301    KnownOne  = KnownOneOut;
1302    break;
1303  case ISD::SELECT:
1304    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1305                             KnownOne, TLO, Depth+1))
1306      return true;
1307    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1308                             KnownOne2, TLO, Depth+1))
1309      return true;
1310    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1312
1313    // If the operands are constants, see if we can simplify them.
1314    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1315      return true;
1316
1317    // Only known if known in both the LHS and RHS.
1318    KnownOne &= KnownOne2;
1319    KnownZero &= KnownZero2;
1320    break;
1321  case ISD::SELECT_CC:
1322    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1323                             KnownOne, TLO, Depth+1))
1324      return true;
1325    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1326                             KnownOne2, TLO, Depth+1))
1327      return true;
1328    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1329    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1330
1331    // If the operands are constants, see if we can simplify them.
1332    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1333      return true;
1334
1335    // Only known if known in both the LHS and RHS.
1336    KnownOne &= KnownOne2;
1337    KnownZero &= KnownZero2;
1338    break;
1339  case ISD::SHL:
1340    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341      unsigned ShAmt = SA->getZExtValue();
1342      SDValue InOp = Op.getOperand(0);
1343
1344      // If the shift count is an invalid immediate, don't do anything.
1345      if (ShAmt >= BitWidth)
1346        break;
1347
1348      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1349      // single shift.  We can do this if the bottom bits (which are shifted
1350      // out) are never demanded.
1351      if (InOp.getOpcode() == ISD::SRL &&
1352          isa<ConstantSDNode>(InOp.getOperand(1))) {
1353        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1354          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1355          unsigned Opc = ISD::SHL;
1356          int Diff = ShAmt-C1;
1357          if (Diff < 0) {
1358            Diff = -Diff;
1359            Opc = ISD::SRL;
1360          }
1361
1362          SDValue NewSA =
1363            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1364          EVT VT = Op.getValueType();
1365          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1366                                                   InOp.getOperand(0), NewSA));
1367        }
1368      }
1369
1370      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1371                               KnownZero, KnownOne, TLO, Depth+1))
1372        return true;
1373      KnownZero <<= SA->getZExtValue();
1374      KnownOne  <<= SA->getZExtValue();
1375      // low bits known zero.
1376      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1377    }
1378    break;
1379  case ISD::SRL:
1380    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1381      EVT VT = Op.getValueType();
1382      unsigned ShAmt = SA->getZExtValue();
1383      unsigned VTSize = VT.getSizeInBits();
1384      SDValue InOp = Op.getOperand(0);
1385
1386      // If the shift count is an invalid immediate, don't do anything.
1387      if (ShAmt >= BitWidth)
1388        break;
1389
1390      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1391      // single shift.  We can do this if the top bits (which are shifted out)
1392      // are never demanded.
1393      if (InOp.getOpcode() == ISD::SHL &&
1394          isa<ConstantSDNode>(InOp.getOperand(1))) {
1395        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1396          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1397          unsigned Opc = ISD::SRL;
1398          int Diff = ShAmt-C1;
1399          if (Diff < 0) {
1400            Diff = -Diff;
1401            Opc = ISD::SHL;
1402          }
1403
1404          SDValue NewSA =
1405            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1406          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1407                                                   InOp.getOperand(0), NewSA));
1408        }
1409      }
1410
1411      // Compute the new bits that are at the top now.
1412      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1413                               KnownZero, KnownOne, TLO, Depth+1))
1414        return true;
1415      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416      KnownZero = KnownZero.lshr(ShAmt);
1417      KnownOne  = KnownOne.lshr(ShAmt);
1418
1419      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1420      KnownZero |= HighBits;  // High bits known zero.
1421    }
1422    break;
1423  case ISD::SRA:
1424    // If this is an arithmetic shift right and only the low-bit is set, we can
1425    // always convert this into a logical shr, even if the shift amount is
1426    // variable.  The low bit of the shift cannot be an input sign bit unless
1427    // the shift amount is >= the size of the datatype, which is undefined.
1428    if (DemandedMask == 1)
1429      return TLO.CombineTo(Op,
1430                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1431                                           Op.getOperand(0), Op.getOperand(1)));
1432
1433    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1434      EVT VT = Op.getValueType();
1435      unsigned ShAmt = SA->getZExtValue();
1436
1437      // If the shift count is an invalid immediate, don't do anything.
1438      if (ShAmt >= BitWidth)
1439        break;
1440
1441      APInt InDemandedMask = (NewMask << ShAmt);
1442
1443      // If any of the demanded bits are produced by the sign extension, we also
1444      // demand the input sign bit.
1445      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1446      if (HighBits.intersects(NewMask))
1447        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1448
1449      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1450                               KnownZero, KnownOne, TLO, Depth+1))
1451        return true;
1452      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1453      KnownZero = KnownZero.lshr(ShAmt);
1454      KnownOne  = KnownOne.lshr(ShAmt);
1455
1456      // Handle the sign bit, adjusted to where it is now in the mask.
1457      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1458
1459      // If the input sign bit is known to be zero, or if none of the top bits
1460      // are demanded, turn this into an unsigned shift right.
1461      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1462        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1463                                                 Op.getOperand(0),
1464                                                 Op.getOperand(1)));
1465      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1466        KnownOne |= HighBits;
1467      }
1468    }
1469    break;
1470  case ISD::SIGN_EXTEND_INREG: {
1471    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1472
1473    // Sign extension.  Compute the demanded bits in the result that are not
1474    // present in the input.
1475    APInt NewBits =
1476      APInt::getHighBitsSet(BitWidth,
1477                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1478      NewMask;
1479
1480    // If none of the extended bits are demanded, eliminate the sextinreg.
1481    if (NewBits == 0)
1482      return TLO.CombineTo(Op, Op.getOperand(0));
1483
1484    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1485    InSignBit.zext(BitWidth);
1486    APInt InputDemandedBits =
1487      APInt::getLowBitsSet(BitWidth,
1488                           EVT.getScalarType().getSizeInBits()) &
1489      NewMask;
1490
1491    // Since the sign extended bits are demanded, we know that the sign
1492    // bit is demanded.
1493    InputDemandedBits |= InSignBit;
1494
1495    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1496                             KnownZero, KnownOne, TLO, Depth+1))
1497      return true;
1498    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1499
1500    // If the sign bit of the input is known set or clear, then we know the
1501    // top bits of the result.
1502
1503    // If the input sign bit is known zero, convert this into a zero extension.
1504    if (KnownZero.intersects(InSignBit))
1505      return TLO.CombineTo(Op,
1506                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1507
1508    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1509      KnownOne |= NewBits;
1510      KnownZero &= ~NewBits;
1511    } else {                       // Input sign bit unknown
1512      KnownZero &= ~NewBits;
1513      KnownOne &= ~NewBits;
1514    }
1515    break;
1516  }
1517  case ISD::ZERO_EXTEND: {
1518    unsigned OperandBitWidth =
1519      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1520    APInt InMask = NewMask;
1521    InMask.trunc(OperandBitWidth);
1522
1523    // If none of the top bits are demanded, convert this into an any_extend.
1524    APInt NewBits =
1525      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1526    if (!NewBits.intersects(NewMask))
1527      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1528                                               Op.getValueType(),
1529                                               Op.getOperand(0)));
1530
1531    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1532                             KnownZero, KnownOne, TLO, Depth+1))
1533      return true;
1534    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535    KnownZero.zext(BitWidth);
1536    KnownOne.zext(BitWidth);
1537    KnownZero |= NewBits;
1538    break;
1539  }
1540  case ISD::SIGN_EXTEND: {
1541    EVT InVT = Op.getOperand(0).getValueType();
1542    unsigned InBits = InVT.getScalarType().getSizeInBits();
1543    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1544    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1545    APInt NewBits   = ~InMask & NewMask;
1546
1547    // If none of the top bits are demanded, convert this into an any_extend.
1548    if (NewBits == 0)
1549      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1550                                              Op.getValueType(),
1551                                              Op.getOperand(0)));
1552
1553    // Since some of the sign extended bits are demanded, we know that the sign
1554    // bit is demanded.
1555    APInt InDemandedBits = InMask & NewMask;
1556    InDemandedBits |= InSignBit;
1557    InDemandedBits.trunc(InBits);
1558
1559    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1560                             KnownOne, TLO, Depth+1))
1561      return true;
1562    KnownZero.zext(BitWidth);
1563    KnownOne.zext(BitWidth);
1564
1565    // If the sign bit is known zero, convert this to a zero extend.
1566    if (KnownZero.intersects(InSignBit))
1567      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1568                                               Op.getValueType(),
1569                                               Op.getOperand(0)));
1570
1571    // If the sign bit is known one, the top bits match.
1572    if (KnownOne.intersects(InSignBit)) {
1573      KnownOne  |= NewBits;
1574      KnownZero &= ~NewBits;
1575    } else {   // Otherwise, top bits aren't known.
1576      KnownOne  &= ~NewBits;
1577      KnownZero &= ~NewBits;
1578    }
1579    break;
1580  }
1581  case ISD::ANY_EXTEND: {
1582    unsigned OperandBitWidth =
1583      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1584    APInt InMask = NewMask;
1585    InMask.trunc(OperandBitWidth);
1586    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1587                             KnownZero, KnownOne, TLO, Depth+1))
1588      return true;
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    KnownZero.zext(BitWidth);
1591    KnownOne.zext(BitWidth);
1592    break;
1593  }
1594  case ISD::TRUNCATE: {
1595    // Simplify the input, using demanded bit information, and compute the known
1596    // zero/one bits live out.
1597    unsigned OperandBitWidth =
1598      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1599    APInt TruncMask = NewMask;
1600    TruncMask.zext(OperandBitWidth);
1601    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1602                             KnownZero, KnownOne, TLO, Depth+1))
1603      return true;
1604    KnownZero.trunc(BitWidth);
1605    KnownOne.trunc(BitWidth);
1606
1607    // If the input is only used by this truncate, see if we can shrink it based
1608    // on the known demanded bits.
1609    if (Op.getOperand(0).getNode()->hasOneUse()) {
1610      SDValue In = Op.getOperand(0);
1611      switch (In.getOpcode()) {
1612      default: break;
1613      case ISD::SRL:
1614        // Shrink SRL by a constant if none of the high bits shifted in are
1615        // demanded.
1616        if (TLO.LegalTypes() &&
1617            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1618          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1619          // undesirable.
1620          break;
1621        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1622        if (!ShAmt)
1623          break;
1624        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1625                                               OperandBitWidth - BitWidth);
1626        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1627        HighBits.trunc(BitWidth);
1628
1629        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1630          // None of the shifted in bits are needed.  Add a truncate of the
1631          // shift input, then shift it.
1632          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1633                                             Op.getValueType(),
1634                                             In.getOperand(0));
1635          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1636                                                   Op.getValueType(),
1637                                                   NewTrunc,
1638                                                   In.getOperand(1)));
1639        }
1640        break;
1641      }
1642    }
1643
1644    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1645    break;
1646  }
1647  case ISD::AssertZext: {
1648    // Demand all the bits of the input that are demanded in the output.
1649    // The low bits are obvious; the high bits are demanded because we're
1650    // asserting that they're zero here.
1651    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1652                             KnownZero, KnownOne, TLO, Depth+1))
1653      return true;
1654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655
1656    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1657    APInt InMask = APInt::getLowBitsSet(BitWidth,
1658                                        VT.getSizeInBits());
1659    KnownZero |= ~InMask & NewMask;
1660    break;
1661  }
1662  case ISD::BIT_CONVERT:
1663#if 0
1664    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1665    // is demanded, turn this into a FGETSIGN.
1666    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1667        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1668        !MVT::isVector(Op.getOperand(0).getValueType())) {
1669      // Only do this xform if FGETSIGN is valid or if before legalize.
1670      if (!TLO.AfterLegalize ||
1671          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1672        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1673        // place.  We expect the SHL to be eliminated by other optimizations.
1674        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1675                                         Op.getOperand(0));
1676        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1677        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1678        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1679                                                 Sign, ShAmt));
1680      }
1681    }
1682#endif
1683    break;
1684  case ISD::ADD:
1685  case ISD::MUL:
1686  case ISD::SUB: {
1687    // Add, Sub, and Mul don't demand any bits in positions beyond that
1688    // of the highest bit demanded of them.
1689    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1690                                        BitWidth - NewMask.countLeadingZeros());
1691    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1692                             KnownOne2, TLO, Depth+1))
1693      return true;
1694    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1695                             KnownOne2, TLO, Depth+1))
1696      return true;
1697    // See if the operation should be performed at a smaller bit width.
1698    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1699      return true;
1700  }
1701  // FALL THROUGH
1702  default:
1703    // Just use ComputeMaskedBits to compute output bits.
1704    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1705    break;
1706  }
1707
1708  // If we know the value of all of the demanded bits, return this as a
1709  // constant.
1710  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1711    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1712
1713  return false;
1714}
1715
1716/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1717/// in Mask are known to be either zero or one and return them in the
1718/// KnownZero/KnownOne bitsets.
1719void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1720                                                    const APInt &Mask,
1721                                                    APInt &KnownZero,
1722                                                    APInt &KnownOne,
1723                                                    const SelectionDAG &DAG,
1724                                                    unsigned Depth) const {
1725  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1726          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1727          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1728          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1729         "Should use MaskedValueIsZero if you don't know whether Op"
1730         " is a target node!");
1731  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1732}
1733
1734/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1735/// targets that want to expose additional information about sign bits to the
1736/// DAG Combiner.
1737unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1738                                                         unsigned Depth) const {
1739  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1740          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1741          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1742          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1743         "Should use ComputeNumSignBits if you don't know whether Op"
1744         " is a target node!");
1745  return 1;
1746}
1747
1748/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1749/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1750/// determine which bit is set.
1751///
1752static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1753  // A left-shift of a constant one will have exactly one bit set, because
1754  // shifting the bit off the end is undefined.
1755  if (Val.getOpcode() == ISD::SHL)
1756    if (ConstantSDNode *C =
1757         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1758      if (C->getAPIntValue() == 1)
1759        return true;
1760
1761  // Similarly, a right-shift of a constant sign-bit will have exactly
1762  // one bit set.
1763  if (Val.getOpcode() == ISD::SRL)
1764    if (ConstantSDNode *C =
1765         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1766      if (C->getAPIntValue().isSignBit())
1767        return true;
1768
1769  // More could be done here, though the above checks are enough
1770  // to handle some common cases.
1771
1772  // Fall back to ComputeMaskedBits to catch other known cases.
1773  EVT OpVT = Val.getValueType();
1774  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1775  APInt Mask = APInt::getAllOnesValue(BitWidth);
1776  APInt KnownZero, KnownOne;
1777  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1778  return (KnownZero.countPopulation() == BitWidth - 1) &&
1779         (KnownOne.countPopulation() == 1);
1780}
1781
1782/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1783/// and cc. If it is unable to simplify it, return a null SDValue.
1784SDValue
1785TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1786                              ISD::CondCode Cond, bool foldBooleans,
1787                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1788  SelectionDAG &DAG = DCI.DAG;
1789  LLVMContext &Context = *DAG.getContext();
1790
1791  // These setcc operations always fold.
1792  switch (Cond) {
1793  default: break;
1794  case ISD::SETFALSE:
1795  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1796  case ISD::SETTRUE:
1797  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1798  }
1799
1800  if (isa<ConstantSDNode>(N0.getNode())) {
1801    // Ensure that the constant occurs on the RHS, and fold constant
1802    // comparisons.
1803    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1804  }
1805
1806  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1807    const APInt &C1 = N1C->getAPIntValue();
1808
1809    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1810    // equality comparison, then we're just comparing whether X itself is
1811    // zero.
1812    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1813        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1814        N0.getOperand(1).getOpcode() == ISD::Constant) {
1815      const APInt &ShAmt
1816        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1817      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1818          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1819        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1820          // (srl (ctlz x), 5) == 0  -> X != 0
1821          // (srl (ctlz x), 5) != 1  -> X != 0
1822          Cond = ISD::SETNE;
1823        } else {
1824          // (srl (ctlz x), 5) != 0  -> X == 0
1825          // (srl (ctlz x), 5) == 1  -> X == 0
1826          Cond = ISD::SETEQ;
1827        }
1828        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1829        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1830                            Zero, Cond);
1831      }
1832    }
1833
1834    // If the LHS is '(and load, const)', the RHS is 0,
1835    // the test is for equality or unsigned, and all 1 bits of the const are
1836    // in the same partial word, see if we can shorten the load.
1837    if (DCI.isBeforeLegalize() &&
1838        N0.getOpcode() == ISD::AND && C1 == 0 &&
1839        N0.getNode()->hasOneUse() &&
1840        isa<LoadSDNode>(N0.getOperand(0)) &&
1841        N0.getOperand(0).getNode()->hasOneUse() &&
1842        isa<ConstantSDNode>(N0.getOperand(1))) {
1843      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1844      APInt bestMask;
1845      unsigned bestWidth = 0, bestOffset = 0;
1846      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1847        unsigned origWidth = N0.getValueType().getSizeInBits();
1848        unsigned maskWidth = origWidth;
1849        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1850        // 8 bits, but have to be careful...
1851        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1852          origWidth = Lod->getMemoryVT().getSizeInBits();
1853        const APInt &Mask =
1854          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1855        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1856          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1857          for (unsigned offset=0; offset<origWidth/width; offset++) {
1858            if ((newMask & Mask) == Mask) {
1859              if (!TD->isLittleEndian())
1860                bestOffset = (origWidth/width - offset - 1) * (width/8);
1861              else
1862                bestOffset = (uint64_t)offset * (width/8);
1863              bestMask = Mask.lshr(offset * (width/8) * 8);
1864              bestWidth = width;
1865              break;
1866            }
1867            newMask = newMask << width;
1868          }
1869        }
1870      }
1871      if (bestWidth) {
1872        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1873        if (newVT.isRound()) {
1874          EVT PtrType = Lod->getOperand(1).getValueType();
1875          SDValue Ptr = Lod->getBasePtr();
1876          if (bestOffset != 0)
1877            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1878                              DAG.getConstant(bestOffset, PtrType));
1879          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1880          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1881                                        Lod->getSrcValue(),
1882                                        Lod->getSrcValueOffset() + bestOffset,
1883                                        false, false, NewAlign);
1884          return DAG.getSetCC(dl, VT,
1885                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1886                                      DAG.getConstant(bestMask.trunc(bestWidth),
1887                                                      newVT)),
1888                              DAG.getConstant(0LL, newVT), Cond);
1889        }
1890      }
1891    }
1892
1893    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1894    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1895      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1896
1897      // If the comparison constant has bits in the upper part, the
1898      // zero-extended value could never match.
1899      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1900                                              C1.getBitWidth() - InSize))) {
1901        switch (Cond) {
1902        case ISD::SETUGT:
1903        case ISD::SETUGE:
1904        case ISD::SETEQ: return DAG.getConstant(0, VT);
1905        case ISD::SETULT:
1906        case ISD::SETULE:
1907        case ISD::SETNE: return DAG.getConstant(1, VT);
1908        case ISD::SETGT:
1909        case ISD::SETGE:
1910          // True if the sign bit of C1 is set.
1911          return DAG.getConstant(C1.isNegative(), VT);
1912        case ISD::SETLT:
1913        case ISD::SETLE:
1914          // True if the sign bit of C1 isn't set.
1915          return DAG.getConstant(C1.isNonNegative(), VT);
1916        default:
1917          break;
1918        }
1919      }
1920
1921      // Otherwise, we can perform the comparison with the low bits.
1922      switch (Cond) {
1923      case ISD::SETEQ:
1924      case ISD::SETNE:
1925      case ISD::SETUGT:
1926      case ISD::SETUGE:
1927      case ISD::SETULT:
1928      case ISD::SETULE: {
1929        EVT newVT = N0.getOperand(0).getValueType();
1930        if (DCI.isBeforeLegalizeOps() ||
1931            (isOperationLegal(ISD::SETCC, newVT) &&
1932              getCondCodeAction(Cond, newVT)==Legal))
1933          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1934                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1935                              Cond);
1936        break;
1937      }
1938      default:
1939        break;   // todo, be more careful with signed comparisons
1940      }
1941    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1942               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1943      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1944      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1945      EVT ExtDstTy = N0.getValueType();
1946      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1947
1948      // If the extended part has any inconsistent bits, it cannot ever
1949      // compare equal.  In other words, they have to be all ones or all
1950      // zeros.
1951      APInt ExtBits =
1952        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1953      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1954        return DAG.getConstant(Cond == ISD::SETNE, VT);
1955
1956      SDValue ZextOp;
1957      EVT Op0Ty = N0.getOperand(0).getValueType();
1958      if (Op0Ty == ExtSrcTy) {
1959        ZextOp = N0.getOperand(0);
1960      } else {
1961        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1962        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1963                              DAG.getConstant(Imm, Op0Ty));
1964      }
1965      if (!DCI.isCalledByLegalizer())
1966        DCI.AddToWorklist(ZextOp.getNode());
1967      // Otherwise, make this a use of a zext.
1968      return DAG.getSetCC(dl, VT, ZextOp,
1969                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1970                                                              ExtDstTyBits,
1971                                                              ExtSrcTyBits),
1972                                          ExtDstTy),
1973                          Cond);
1974    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1975                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1976      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1977      if (N0.getOpcode() == ISD::SETCC &&
1978          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1979        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1980        if (TrueWhenTrue)
1981          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1982        // Invert the condition.
1983        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1984        CC = ISD::getSetCCInverse(CC,
1985                                  N0.getOperand(0).getValueType().isInteger());
1986        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1987      }
1988
1989      if ((N0.getOpcode() == ISD::XOR ||
1990           (N0.getOpcode() == ISD::AND &&
1991            N0.getOperand(0).getOpcode() == ISD::XOR &&
1992            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1993          isa<ConstantSDNode>(N0.getOperand(1)) &&
1994          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1995        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1996        // can only do this if the top bits are known zero.
1997        unsigned BitWidth = N0.getValueSizeInBits();
1998        if (DAG.MaskedValueIsZero(N0,
1999                                  APInt::getHighBitsSet(BitWidth,
2000                                                        BitWidth-1))) {
2001          // Okay, get the un-inverted input value.
2002          SDValue Val;
2003          if (N0.getOpcode() == ISD::XOR)
2004            Val = N0.getOperand(0);
2005          else {
2006            assert(N0.getOpcode() == ISD::AND &&
2007                    N0.getOperand(0).getOpcode() == ISD::XOR);
2008            // ((X^1)&1)^1 -> X & 1
2009            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2010                              N0.getOperand(0).getOperand(0),
2011                              N0.getOperand(1));
2012          }
2013
2014          return DAG.getSetCC(dl, VT, Val, N1,
2015                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2016        }
2017      } else if (N1C->getAPIntValue() == 1 &&
2018                 (VT == MVT::i1 ||
2019                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2020        SDValue Op0 = N0;
2021        if (Op0.getOpcode() == ISD::TRUNCATE)
2022          Op0 = Op0.getOperand(0);
2023
2024        if ((Op0.getOpcode() == ISD::XOR) &&
2025            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2026            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2027          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2028          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2029          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2030                              Cond);
2031        } else if (Op0.getOpcode() == ISD::AND &&
2032                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2033                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2034          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2035          if (Op0.getValueType().bitsGT(VT))
2036            Op0 = DAG.getNode(ISD::AND, dl, VT,
2037                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2038                          DAG.getConstant(1, VT));
2039          else if (Op0.getValueType().bitsLT(VT))
2040            Op0 = DAG.getNode(ISD::AND, dl, VT,
2041                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2042                        DAG.getConstant(1, VT));
2043
2044          return DAG.getSetCC(dl, VT, Op0,
2045                              DAG.getConstant(0, Op0.getValueType()),
2046                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2047        }
2048      }
2049    }
2050
2051    APInt MinVal, MaxVal;
2052    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2053    if (ISD::isSignedIntSetCC(Cond)) {
2054      MinVal = APInt::getSignedMinValue(OperandBitSize);
2055      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2056    } else {
2057      MinVal = APInt::getMinValue(OperandBitSize);
2058      MaxVal = APInt::getMaxValue(OperandBitSize);
2059    }
2060
2061    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2062    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2063      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2064      // X >= C0 --> X > (C0-1)
2065      return DAG.getSetCC(dl, VT, N0,
2066                          DAG.getConstant(C1-1, N1.getValueType()),
2067                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2068    }
2069
2070    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2071      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2072      // X <= C0 --> X < (C0+1)
2073      return DAG.getSetCC(dl, VT, N0,
2074                          DAG.getConstant(C1+1, N1.getValueType()),
2075                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2076    }
2077
2078    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2079      return DAG.getConstant(0, VT);      // X < MIN --> false
2080    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2081      return DAG.getConstant(1, VT);      // X >= MIN --> true
2082    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2083      return DAG.getConstant(0, VT);      // X > MAX --> false
2084    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2085      return DAG.getConstant(1, VT);      // X <= MAX --> true
2086
2087    // Canonicalize setgt X, Min --> setne X, Min
2088    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2089      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2090    // Canonicalize setlt X, Max --> setne X, Max
2091    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2092      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2093
2094    // If we have setult X, 1, turn it into seteq X, 0
2095    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2096      return DAG.getSetCC(dl, VT, N0,
2097                          DAG.getConstant(MinVal, N0.getValueType()),
2098                          ISD::SETEQ);
2099    // If we have setugt X, Max-1, turn it into seteq X, Max
2100    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2101      return DAG.getSetCC(dl, VT, N0,
2102                          DAG.getConstant(MaxVal, N0.getValueType()),
2103                          ISD::SETEQ);
2104
2105    // If we have "setcc X, C0", check to see if we can shrink the immediate
2106    // by changing cc.
2107
2108    // SETUGT X, SINTMAX  -> SETLT X, 0
2109    if (Cond == ISD::SETUGT &&
2110        C1 == APInt::getSignedMaxValue(OperandBitSize))
2111      return DAG.getSetCC(dl, VT, N0,
2112                          DAG.getConstant(0, N1.getValueType()),
2113                          ISD::SETLT);
2114
2115    // SETULT X, SINTMIN  -> SETGT X, -1
2116    if (Cond == ISD::SETULT &&
2117        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2118      SDValue ConstMinusOne =
2119          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2120                          N1.getValueType());
2121      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2122    }
2123
2124    // Fold bit comparisons when we can.
2125    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2126        (VT == N0.getValueType() ||
2127         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2128        N0.getOpcode() == ISD::AND)
2129      if (ConstantSDNode *AndRHS =
2130                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2131        EVT ShiftTy = DCI.isBeforeLegalize() ?
2132          getPointerTy() : getShiftAmountTy();
2133        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2134          // Perform the xform if the AND RHS is a single bit.
2135          if (AndRHS->getAPIntValue().isPowerOf2()) {
2136            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2137                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2138                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2139          }
2140        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2141          // (X & 8) == 8  -->  (X & 8) >> 3
2142          // Perform the xform if C1 is a single bit.
2143          if (C1.isPowerOf2()) {
2144            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2145                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2146                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2147          }
2148        }
2149      }
2150  }
2151
2152  if (isa<ConstantFPSDNode>(N0.getNode())) {
2153    // Constant fold or commute setcc.
2154    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2155    if (O.getNode()) return O;
2156  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2157    // If the RHS of an FP comparison is a constant, simplify it away in
2158    // some cases.
2159    if (CFP->getValueAPF().isNaN()) {
2160      // If an operand is known to be a nan, we can fold it.
2161      switch (ISD::getUnorderedFlavor(Cond)) {
2162      default: llvm_unreachable("Unknown flavor!");
2163      case 0:  // Known false.
2164        return DAG.getConstant(0, VT);
2165      case 1:  // Known true.
2166        return DAG.getConstant(1, VT);
2167      case 2:  // Undefined.
2168        return DAG.getUNDEF(VT);
2169      }
2170    }
2171
2172    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2173    // constant if knowing that the operand is non-nan is enough.  We prefer to
2174    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2175    // materialize 0.0.
2176    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2177      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2178
2179    // If the condition is not legal, see if we can find an equivalent one
2180    // which is legal.
2181    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2182      // If the comparison was an awkward floating-point == or != and one of
2183      // the comparison operands is infinity or negative infinity, convert the
2184      // condition to a less-awkward <= or >=.
2185      if (CFP->getValueAPF().isInfinity()) {
2186        if (CFP->getValueAPF().isNegative()) {
2187          if (Cond == ISD::SETOEQ &&
2188              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2189            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2190          if (Cond == ISD::SETUEQ &&
2191              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2192            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2193          if (Cond == ISD::SETUNE &&
2194              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2195            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2196          if (Cond == ISD::SETONE &&
2197              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2198            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2199        } else {
2200          if (Cond == ISD::SETOEQ &&
2201              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2202            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2203          if (Cond == ISD::SETUEQ &&
2204              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2205            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2206          if (Cond == ISD::SETUNE &&
2207              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2208            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2209          if (Cond == ISD::SETONE &&
2210              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2211            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2212        }
2213      }
2214    }
2215  }
2216
2217  if (N0 == N1) {
2218    // We can always fold X == X for integer setcc's.
2219    if (N0.getValueType().isInteger())
2220      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2221    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2222    if (UOF == 2)   // FP operators that are undefined on NaNs.
2223      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2224    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2225      return DAG.getConstant(UOF, VT);
2226    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2227    // if it is not already.
2228    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2229    if (NewCond != Cond)
2230      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2231  }
2232
2233  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2234      N0.getValueType().isInteger()) {
2235    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2236        N0.getOpcode() == ISD::XOR) {
2237      // Simplify (X+Y) == (X+Z) -->  Y == Z
2238      if (N0.getOpcode() == N1.getOpcode()) {
2239        if (N0.getOperand(0) == N1.getOperand(0))
2240          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2241        if (N0.getOperand(1) == N1.getOperand(1))
2242          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2243        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2244          // If X op Y == Y op X, try other combinations.
2245          if (N0.getOperand(0) == N1.getOperand(1))
2246            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2247                                Cond);
2248          if (N0.getOperand(1) == N1.getOperand(0))
2249            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2250                                Cond);
2251        }
2252      }
2253
2254      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2255        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2256          // Turn (X+C1) == C2 --> X == C2-C1
2257          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2258            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2259                                DAG.getConstant(RHSC->getAPIntValue()-
2260                                                LHSR->getAPIntValue(),
2261                                N0.getValueType()), Cond);
2262          }
2263
2264          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2265          if (N0.getOpcode() == ISD::XOR)
2266            // If we know that all of the inverted bits are zero, don't bother
2267            // performing the inversion.
2268            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2269              return
2270                DAG.getSetCC(dl, VT, N0.getOperand(0),
2271                             DAG.getConstant(LHSR->getAPIntValue() ^
2272                                               RHSC->getAPIntValue(),
2273                                             N0.getValueType()),
2274                             Cond);
2275        }
2276
2277        // Turn (C1-X) == C2 --> X == C1-C2
2278        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2279          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2280            return
2281              DAG.getSetCC(dl, VT, N0.getOperand(1),
2282                           DAG.getConstant(SUBC->getAPIntValue() -
2283                                             RHSC->getAPIntValue(),
2284                                           N0.getValueType()),
2285                           Cond);
2286          }
2287        }
2288      }
2289
2290      // Simplify (X+Z) == X -->  Z == 0
2291      if (N0.getOperand(0) == N1)
2292        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2293                        DAG.getConstant(0, N0.getValueType()), Cond);
2294      if (N0.getOperand(1) == N1) {
2295        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2296          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2297                          DAG.getConstant(0, N0.getValueType()), Cond);
2298        else if (N0.getNode()->hasOneUse()) {
2299          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2300          // (Z-X) == X  --> Z == X<<1
2301          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2302                                     N1,
2303                                     DAG.getConstant(1, getShiftAmountTy()));
2304          if (!DCI.isCalledByLegalizer())
2305            DCI.AddToWorklist(SH.getNode());
2306          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2307        }
2308      }
2309    }
2310
2311    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2312        N1.getOpcode() == ISD::XOR) {
2313      // Simplify  X == (X+Z) -->  Z == 0
2314      if (N1.getOperand(0) == N0) {
2315        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2316                        DAG.getConstant(0, N1.getValueType()), Cond);
2317      } else if (N1.getOperand(1) == N0) {
2318        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2319          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2320                          DAG.getConstant(0, N1.getValueType()), Cond);
2321        } else if (N1.getNode()->hasOneUse()) {
2322          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2323          // X == (Z-X)  --> X<<1 == Z
2324          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2325                                     DAG.getConstant(1, getShiftAmountTy()));
2326          if (!DCI.isCalledByLegalizer())
2327            DCI.AddToWorklist(SH.getNode());
2328          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2329        }
2330      }
2331    }
2332
2333    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2334    // Note that where y is variable and is known to have at most
2335    // one bit set (for example, if it is z&1) we cannot do this;
2336    // the expressions are not equivalent when y==0.
2337    if (N0.getOpcode() == ISD::AND)
2338      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2339        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2340          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2341          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2342          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2343        }
2344      }
2345    if (N1.getOpcode() == ISD::AND)
2346      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2347        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2348          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2349          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2350          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2351        }
2352      }
2353  }
2354
2355  // Fold away ALL boolean setcc's.
2356  SDValue Temp;
2357  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2358    switch (Cond) {
2359    default: llvm_unreachable("Unknown integer setcc!");
2360    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2361      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2362      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2363      if (!DCI.isCalledByLegalizer())
2364        DCI.AddToWorklist(Temp.getNode());
2365      break;
2366    case ISD::SETNE:  // X != Y   -->  (X^Y)
2367      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2368      break;
2369    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2370    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2371      Temp = DAG.getNOT(dl, N0, MVT::i1);
2372      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2373      if (!DCI.isCalledByLegalizer())
2374        DCI.AddToWorklist(Temp.getNode());
2375      break;
2376    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2377    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2378      Temp = DAG.getNOT(dl, N1, MVT::i1);
2379      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2380      if (!DCI.isCalledByLegalizer())
2381        DCI.AddToWorklist(Temp.getNode());
2382      break;
2383    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2384    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2385      Temp = DAG.getNOT(dl, N0, MVT::i1);
2386      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2387      if (!DCI.isCalledByLegalizer())
2388        DCI.AddToWorklist(Temp.getNode());
2389      break;
2390    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2391    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2392      Temp = DAG.getNOT(dl, N1, MVT::i1);
2393      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2394      break;
2395    }
2396    if (VT != MVT::i1) {
2397      if (!DCI.isCalledByLegalizer())
2398        DCI.AddToWorklist(N0.getNode());
2399      // FIXME: If running after legalize, we probably can't do this.
2400      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2401    }
2402    return N0;
2403  }
2404
2405  // Could not fold it.
2406  return SDValue();
2407}
2408
2409/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2410/// node is a GlobalAddress + offset.
2411bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2412                                    int64_t &Offset) const {
2413  if (isa<GlobalAddressSDNode>(N)) {
2414    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2415    GA = GASD->getGlobal();
2416    Offset += GASD->getOffset();
2417    return true;
2418  }
2419
2420  if (N->getOpcode() == ISD::ADD) {
2421    SDValue N1 = N->getOperand(0);
2422    SDValue N2 = N->getOperand(1);
2423    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2424      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2425      if (V) {
2426        Offset += V->getSExtValue();
2427        return true;
2428      }
2429    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2430      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2431      if (V) {
2432        Offset += V->getSExtValue();
2433        return true;
2434      }
2435    }
2436  }
2437  return false;
2438}
2439
2440
2441SDValue TargetLowering::
2442PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2443  // Default implementation: no optimization.
2444  return SDValue();
2445}
2446
2447//===----------------------------------------------------------------------===//
2448//  Inline Assembler Implementation Methods
2449//===----------------------------------------------------------------------===//
2450
2451
2452TargetLowering::ConstraintType
2453TargetLowering::getConstraintType(const std::string &Constraint) const {
2454  // FIXME: lots more standard ones to handle.
2455  if (Constraint.size() == 1) {
2456    switch (Constraint[0]) {
2457    default: break;
2458    case 'r': return C_RegisterClass;
2459    case 'm':    // memory
2460    case 'o':    // offsetable
2461    case 'V':    // not offsetable
2462      return C_Memory;
2463    case 'i':    // Simple Integer or Relocatable Constant
2464    case 'n':    // Simple Integer
2465    case 's':    // Relocatable Constant
2466    case 'X':    // Allow ANY value.
2467    case 'I':    // Target registers.
2468    case 'J':
2469    case 'K':
2470    case 'L':
2471    case 'M':
2472    case 'N':
2473    case 'O':
2474    case 'P':
2475      return C_Other;
2476    }
2477  }
2478
2479  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2480      Constraint[Constraint.size()-1] == '}')
2481    return C_Register;
2482  return C_Unknown;
2483}
2484
2485/// LowerXConstraint - try to replace an X constraint, which matches anything,
2486/// with another that has more specific requirements based on the type of the
2487/// corresponding operand.
2488const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2489  if (ConstraintVT.isInteger())
2490    return "r";
2491  if (ConstraintVT.isFloatingPoint())
2492    return "f";      // works for many targets
2493  return 0;
2494}
2495
2496/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2497/// vector.  If it is invalid, don't add anything to Ops.
2498void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2499                                                  char ConstraintLetter,
2500                                                  std::vector<SDValue> &Ops,
2501                                                  SelectionDAG &DAG) const {
2502  switch (ConstraintLetter) {
2503  default: break;
2504  case 'X':     // Allows any operand; labels (basic block) use this.
2505    if (Op.getOpcode() == ISD::BasicBlock) {
2506      Ops.push_back(Op);
2507      return;
2508    }
2509    // fall through
2510  case 'i':    // Simple Integer or Relocatable Constant
2511  case 'n':    // Simple Integer
2512  case 's': {  // Relocatable Constant
2513    // These operands are interested in values of the form (GV+C), where C may
2514    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2515    // is possible and fine if either GV or C are missing.
2516    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2517    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2518
2519    // If we have "(add GV, C)", pull out GV/C
2520    if (Op.getOpcode() == ISD::ADD) {
2521      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2522      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2523      if (C == 0 || GA == 0) {
2524        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2525        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2526      }
2527      if (C == 0 || GA == 0)
2528        C = 0, GA = 0;
2529    }
2530
2531    // If we find a valid operand, map to the TargetXXX version so that the
2532    // value itself doesn't get selected.
2533    if (GA) {   // Either &GV   or   &GV+C
2534      if (ConstraintLetter != 'n') {
2535        int64_t Offs = GA->getOffset();
2536        if (C) Offs += C->getZExtValue();
2537        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2538                                                 C ? C->getDebugLoc() : DebugLoc(),
2539                                                 Op.getValueType(), Offs));
2540        return;
2541      }
2542    }
2543    if (C) {   // just C, no GV.
2544      // Simple constants are not allowed for 's'.
2545      if (ConstraintLetter != 's') {
2546        // gcc prints these as sign extended.  Sign extend value to 64 bits
2547        // now; without this it would get ZExt'd later in
2548        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2549        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2550                                            MVT::i64));
2551        return;
2552      }
2553    }
2554    break;
2555  }
2556  }
2557}
2558
2559std::vector<unsigned> TargetLowering::
2560getRegClassForInlineAsmConstraint(const std::string &Constraint,
2561                                  EVT VT) const {
2562  return std::vector<unsigned>();
2563}
2564
2565
2566std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2567getRegForInlineAsmConstraint(const std::string &Constraint,
2568                             EVT VT) const {
2569  if (Constraint[0] != '{')
2570    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2571  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2572
2573  // Remove the braces from around the name.
2574  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2575
2576  // Figure out which register class contains this reg.
2577  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2578  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2579       E = RI->regclass_end(); RCI != E; ++RCI) {
2580    const TargetRegisterClass *RC = *RCI;
2581
2582    // If none of the value types for this register class are valid, we
2583    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2584    bool isLegal = false;
2585    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2586         I != E; ++I) {
2587      if (isTypeLegal(*I)) {
2588        isLegal = true;
2589        break;
2590      }
2591    }
2592
2593    if (!isLegal) continue;
2594
2595    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2596         I != E; ++I) {
2597      if (RegName.equals_lower(RI->getName(*I)))
2598        return std::make_pair(*I, RC);
2599    }
2600  }
2601
2602  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2603}
2604
2605//===----------------------------------------------------------------------===//
2606// Constraint Selection.
2607
2608/// isMatchingInputConstraint - Return true of this is an input operand that is
2609/// a matching constraint like "4".
2610bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2611  assert(!ConstraintCode.empty() && "No known constraint!");
2612  return isdigit(ConstraintCode[0]);
2613}
2614
2615/// getMatchedOperand - If this is an input matching constraint, this method
2616/// returns the output operand it matches.
2617unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2618  assert(!ConstraintCode.empty() && "No known constraint!");
2619  return atoi(ConstraintCode.c_str());
2620}
2621
2622
2623/// getConstraintGenerality - Return an integer indicating how general CT
2624/// is.
2625static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2626  switch (CT) {
2627  default: llvm_unreachable("Unknown constraint type!");
2628  case TargetLowering::C_Other:
2629  case TargetLowering::C_Unknown:
2630    return 0;
2631  case TargetLowering::C_Register:
2632    return 1;
2633  case TargetLowering::C_RegisterClass:
2634    return 2;
2635  case TargetLowering::C_Memory:
2636    return 3;
2637  }
2638}
2639
2640/// ChooseConstraint - If there are multiple different constraints that we
2641/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2642/// This is somewhat tricky: constraints fall into four classes:
2643///    Other         -> immediates and magic values
2644///    Register      -> one specific register
2645///    RegisterClass -> a group of regs
2646///    Memory        -> memory
2647/// Ideally, we would pick the most specific constraint possible: if we have
2648/// something that fits into a register, we would pick it.  The problem here
2649/// is that if we have something that could either be in a register or in
2650/// memory that use of the register could cause selection of *other*
2651/// operands to fail: they might only succeed if we pick memory.  Because of
2652/// this the heuristic we use is:
2653///
2654///  1) If there is an 'other' constraint, and if the operand is valid for
2655///     that constraint, use it.  This makes us take advantage of 'i'
2656///     constraints when available.
2657///  2) Otherwise, pick the most general constraint present.  This prefers
2658///     'm' over 'r', for example.
2659///
2660static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2661                             const TargetLowering &TLI,
2662                             SDValue Op, SelectionDAG *DAG) {
2663  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2664  unsigned BestIdx = 0;
2665  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2666  int BestGenerality = -1;
2667
2668  // Loop over the options, keeping track of the most general one.
2669  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2670    TargetLowering::ConstraintType CType =
2671      TLI.getConstraintType(OpInfo.Codes[i]);
2672
2673    // If this is an 'other' constraint, see if the operand is valid for it.
2674    // For example, on X86 we might have an 'rI' constraint.  If the operand
2675    // is an integer in the range [0..31] we want to use I (saving a load
2676    // of a register), otherwise we must use 'r'.
2677    if (CType == TargetLowering::C_Other && Op.getNode()) {
2678      assert(OpInfo.Codes[i].size() == 1 &&
2679             "Unhandled multi-letter 'other' constraint");
2680      std::vector<SDValue> ResultOps;
2681      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2682                                       ResultOps, *DAG);
2683      if (!ResultOps.empty()) {
2684        BestType = CType;
2685        BestIdx = i;
2686        break;
2687      }
2688    }
2689
2690    // Things with matching constraints can only be registers, per gcc
2691    // documentation.  This mainly affects "g" constraints.
2692    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2693      continue;
2694
2695    // This constraint letter is more general than the previous one, use it.
2696    int Generality = getConstraintGenerality(CType);
2697    if (Generality > BestGenerality) {
2698      BestType = CType;
2699      BestIdx = i;
2700      BestGenerality = Generality;
2701    }
2702  }
2703
2704  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2705  OpInfo.ConstraintType = BestType;
2706}
2707
2708/// ComputeConstraintToUse - Determines the constraint code and constraint
2709/// type to use for the specific AsmOperandInfo, setting
2710/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2711void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2712                                            SDValue Op,
2713                                            SelectionDAG *DAG) const {
2714  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2715
2716  // Single-letter constraints ('r') are very common.
2717  if (OpInfo.Codes.size() == 1) {
2718    OpInfo.ConstraintCode = OpInfo.Codes[0];
2719    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2720  } else {
2721    ChooseConstraint(OpInfo, *this, Op, DAG);
2722  }
2723
2724  // 'X' matches anything.
2725  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2726    // Labels and constants are handled elsewhere ('X' is the only thing
2727    // that matches labels).  For Functions, the type here is the type of
2728    // the result, which is not what we want to look at; leave them alone.
2729    Value *v = OpInfo.CallOperandVal;
2730    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2731      OpInfo.CallOperandVal = v;
2732      return;
2733    }
2734
2735    // Otherwise, try to resolve it to something we know about by looking at
2736    // the actual operand type.
2737    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2738      OpInfo.ConstraintCode = Repl;
2739      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2740    }
2741  }
2742}
2743
2744//===----------------------------------------------------------------------===//
2745//  Loop Strength Reduction hooks
2746//===----------------------------------------------------------------------===//
2747
2748/// isLegalAddressingMode - Return true if the addressing mode represented
2749/// by AM is legal for this target, for a load/store of the specified type.
2750bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2751                                           const Type *Ty) const {
2752  // The default implementation of this implements a conservative RISCy, r+r and
2753  // r+i addr mode.
2754
2755  // Allows a sign-extended 16-bit immediate field.
2756  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2757    return false;
2758
2759  // No global is ever allowed as a base.
2760  if (AM.BaseGV)
2761    return false;
2762
2763  // Only support r+r,
2764  switch (AM.Scale) {
2765  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2766    break;
2767  case 1:
2768    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2769      return false;
2770    // Otherwise we have r+r or r+i.
2771    break;
2772  case 2:
2773    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2774      return false;
2775    // Allow 2*r as r+r.
2776    break;
2777  }
2778
2779  return true;
2780}
2781
2782/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2783/// return a DAG expression to select that will generate the same value by
2784/// multiplying by a magic number.  See:
2785/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2786SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2787                                  std::vector<SDNode*>* Created) const {
2788  EVT VT = N->getValueType(0);
2789  DebugLoc dl= N->getDebugLoc();
2790
2791  // Check to see if we can do this.
2792  // FIXME: We should be more aggressive here.
2793  if (!isTypeLegal(VT))
2794    return SDValue();
2795
2796  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2797  APInt::ms magics = d.magic();
2798
2799  // Multiply the numerator (operand 0) by the magic value
2800  // FIXME: We should support doing a MUL in a wider type
2801  SDValue Q;
2802  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2803    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2804                    DAG.getConstant(magics.m, VT));
2805  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2806    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2807                              N->getOperand(0),
2808                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2809  else
2810    return SDValue();       // No mulhs or equvialent
2811  // If d > 0 and m < 0, add the numerator
2812  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2813    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2814    if (Created)
2815      Created->push_back(Q.getNode());
2816  }
2817  // If d < 0 and m > 0, subtract the numerator.
2818  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2819    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2820    if (Created)
2821      Created->push_back(Q.getNode());
2822  }
2823  // Shift right algebraic if shift value is nonzero
2824  if (magics.s > 0) {
2825    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2826                    DAG.getConstant(magics.s, getShiftAmountTy()));
2827    if (Created)
2828      Created->push_back(Q.getNode());
2829  }
2830  // Extract the sign bit and add it to the quotient
2831  SDValue T =
2832    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2833                                                 getShiftAmountTy()));
2834  if (Created)
2835    Created->push_back(T.getNode());
2836  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2837}
2838
2839/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2840/// return a DAG expression to select that will generate the same value by
2841/// multiplying by a magic number.  See:
2842/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2843SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2844                                  std::vector<SDNode*>* Created) const {
2845  EVT VT = N->getValueType(0);
2846  DebugLoc dl = N->getDebugLoc();
2847
2848  // Check to see if we can do this.
2849  // FIXME: We should be more aggressive here.
2850  if (!isTypeLegal(VT))
2851    return SDValue();
2852
2853  // FIXME: We should use a narrower constant when the upper
2854  // bits are known to be zero.
2855  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2856  APInt::mu magics = N1C->getAPIntValue().magicu();
2857
2858  // Multiply the numerator (operand 0) by the magic value
2859  // FIXME: We should support doing a MUL in a wider type
2860  SDValue Q;
2861  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2862    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2863                    DAG.getConstant(magics.m, VT));
2864  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2865    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2866                              N->getOperand(0),
2867                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2868  else
2869    return SDValue();       // No mulhu or equvialent
2870  if (Created)
2871    Created->push_back(Q.getNode());
2872
2873  if (magics.a == 0) {
2874    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2875           "We shouldn't generate an undefined shift!");
2876    return DAG.getNode(ISD::SRL, dl, VT, Q,
2877                       DAG.getConstant(magics.s, getShiftAmountTy()));
2878  } else {
2879    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2880    if (Created)
2881      Created->push_back(NPQ.getNode());
2882    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2883                      DAG.getConstant(1, getShiftAmountTy()));
2884    if (Created)
2885      Created->push_back(NPQ.getNode());
2886    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2887    if (Created)
2888      Created->push_back(NPQ.getNode());
2889    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2890                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2891  }
2892}
2893