TargetLowering.cpp revision 5411a3937f4303f9c3fc50be92f985a4532d95e6
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Target/TargetMachine.h"
17#include "llvm/Target/MRegisterInfo.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/MathExtras.h"
22using namespace llvm;
23
24/// InitLibcallNames - Set default libcall names.
25///
26static void InitLibcallNames(const char **Names) {
27  Names[RTLIB::SHL_I32] = "__ashlsi3";
28  Names[RTLIB::SHL_I64] = "__ashldi3";
29  Names[RTLIB::SRL_I32] = "__lshrsi3";
30  Names[RTLIB::SRL_I64] = "__lshrdi3";
31  Names[RTLIB::SRA_I32] = "__ashrsi3";
32  Names[RTLIB::SRA_I64] = "__ashrdi3";
33  Names[RTLIB::MUL_I32] = "__mulsi3";
34  Names[RTLIB::MUL_I64] = "__muldi3";
35  Names[RTLIB::SDIV_I32] = "__divsi3";
36  Names[RTLIB::SDIV_I64] = "__divdi3";
37  Names[RTLIB::UDIV_I32] = "__udivsi3";
38  Names[RTLIB::UDIV_I64] = "__udivdi3";
39  Names[RTLIB::SREM_I32] = "__modsi3";
40  Names[RTLIB::SREM_I64] = "__moddi3";
41  Names[RTLIB::UREM_I32] = "__umodsi3";
42  Names[RTLIB::UREM_I64] = "__umoddi3";
43  Names[RTLIB::NEG_I32] = "__negsi2";
44  Names[RTLIB::NEG_I64] = "__negdi2";
45  Names[RTLIB::ADD_F32] = "__addsf3";
46  Names[RTLIB::ADD_F64] = "__adddf3";
47  Names[RTLIB::SUB_F32] = "__subsf3";
48  Names[RTLIB::SUB_F64] = "__subdf3";
49  Names[RTLIB::MUL_F32] = "__mulsf3";
50  Names[RTLIB::MUL_F64] = "__muldf3";
51  Names[RTLIB::DIV_F32] = "__divsf3";
52  Names[RTLIB::DIV_F64] = "__divdf3";
53  Names[RTLIB::REM_F32] = "fmodf";
54  Names[RTLIB::REM_F64] = "fmod";
55  Names[RTLIB::NEG_F32] = "__negsf2";
56  Names[RTLIB::NEG_F64] = "__negdf2";
57  Names[RTLIB::POWI_F32] = "__powisf2";
58  Names[RTLIB::POWI_F64] = "__powidf2";
59  Names[RTLIB::SQRT_F32] = "sqrtf";
60  Names[RTLIB::SQRT_F64] = "sqrt";
61  Names[RTLIB::SIN_F32] = "sinf";
62  Names[RTLIB::SIN_F64] = "sin";
63  Names[RTLIB::COS_F32] = "cosf";
64  Names[RTLIB::COS_F64] = "cos";
65  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83  Names[RTLIB::OEQ_F32] = "__eqsf2";
84  Names[RTLIB::OEQ_F64] = "__eqdf2";
85  Names[RTLIB::UNE_F32] = "__nesf2";
86  Names[RTLIB::UNE_F64] = "__nedf2";
87  Names[RTLIB::OGE_F32] = "__gesf2";
88  Names[RTLIB::OGE_F64] = "__gedf2";
89  Names[RTLIB::OLT_F32] = "__ltsf2";
90  Names[RTLIB::OLT_F64] = "__ltdf2";
91  Names[RTLIB::OLE_F32] = "__lesf2";
92  Names[RTLIB::OLE_F64] = "__ledf2";
93  Names[RTLIB::OGT_F32] = "__gtsf2";
94  Names[RTLIB::OGT_F64] = "__gtdf2";
95  Names[RTLIB::UO_F32] = "__unordsf2";
96  Names[RTLIB::UO_F64] = "__unorddf2";
97  Names[RTLIB::O_F32] = "__unordsf2";
98  Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107  CCs[RTLIB::UNE_F32] = ISD::SETNE;
108  CCs[RTLIB::UNE_F64] = ISD::SETNE;
109  CCs[RTLIB::OGE_F32] = ISD::SETGE;
110  CCs[RTLIB::OGE_F64] = ISD::SETGE;
111  CCs[RTLIB::OLT_F32] = ISD::SETLT;
112  CCs[RTLIB::OLT_F64] = ISD::SETLT;
113  CCs[RTLIB::OLE_F32] = ISD::SETLE;
114  CCs[RTLIB::OLE_F64] = ISD::SETLE;
115  CCs[RTLIB::OGT_F32] = ISD::SETGT;
116  CCs[RTLIB::OGT_F64] = ISD::SETGT;
117  CCs[RTLIB::UO_F32] = ISD::SETNE;
118  CCs[RTLIB::UO_F64] = ISD::SETNE;
119  CCs[RTLIB::O_F32] = ISD::SETEQ;
120  CCs[RTLIB::O_F64] = ISD::SETEQ;
121}
122
123TargetLowering::TargetLowering(TargetMachine &tm)
124  : TM(tm), TD(TM.getTargetData()) {
125  assert(ISD::BUILTIN_OP_END <= 156 &&
126         "Fixed size array in TargetLowering is not large enough!");
127  // All operations default to being supported.
128  memset(OpActions, 0, sizeof(OpActions));
129  memset(LoadXActions, 0, sizeof(LoadXActions));
130  memset(&StoreXActions, 0, sizeof(StoreXActions));
131  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
132  memset(&ConvertActions, 0, sizeof(ConvertActions));
133
134  // Set all indexed load / store to expand.
135  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
136    for (unsigned IM = (unsigned)ISD::PRE_INC;
137         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
138      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
139      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
140    }
141  }
142
143  IsLittleEndian = TD->isLittleEndian();
144  UsesGlobalOffsetTable = false;
145  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
146  ShiftAmtHandling = Undefined;
147  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
148  memset(TargetDAGCombineArray, 0,
149         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
150  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
151  allowUnalignedMemoryAccesses = false;
152  UseUnderscoreSetJmp = false;
153  UseUnderscoreLongJmp = false;
154  SelectIsExpensive = false;
155  IntDivIsCheap = false;
156  Pow2DivIsCheap = false;
157  StackPointerRegisterToSaveRestore = 0;
158  ExceptionPointerRegister = 0;
159  ExceptionSelectorRegister = 0;
160  SchedPreferenceInfo = SchedulingForLatency;
161  JumpBufSize = 0;
162  JumpBufAlignment = 0;
163  IfCvtBlockSizeLimit = 2;
164
165  InitLibcallNames(LibcallRoutineNames);
166  InitCmpLibcallCCs(CmpLibcallCCs);
167}
168
169TargetLowering::~TargetLowering() {}
170
171/// computeRegisterProperties - Once all of the register classes are added,
172/// this allows us to compute derived properties we expose.
173void TargetLowering::computeRegisterProperties() {
174  assert(MVT::LAST_VALUETYPE <= 32 &&
175         "Too many value types for ValueTypeActions to hold!");
176
177  // Everything defaults to needing one register.
178  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
179    NumRegistersForVT[i] = 1;
180    RegisterTypeForVT[i] = TransformToType[i] = i;
181  }
182  // ...except isVoid, which doesn't need any registers.
183  NumRegistersForVT[MVT::isVoid] = 0;
184
185  // Find the largest integer register class.
186  unsigned LargestIntReg = MVT::i128;
187  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
188    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
189
190  // Every integer value type larger than this largest register takes twice as
191  // many registers to represent as the previous ValueType.
192  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
193       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
194    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
195    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
196    TransformToType[ExpandedReg] = ExpandedReg - 1;
197    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
198  }
199
200  // Inspect all of the ValueType's smaller than the largest integer
201  // register to see which ones need promotion.
202  MVT::ValueType LegalIntReg = LargestIntReg;
203  for (MVT::ValueType IntReg = LargestIntReg - 1;
204       IntReg >= MVT::i1; --IntReg) {
205    if (isTypeLegal(IntReg)) {
206      LegalIntReg = IntReg;
207    } else {
208      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
209      ValueTypeActions.setTypeAction(IntReg, Promote);
210    }
211  }
212
213  // Decide how to handle f64. If the target does not have native f64 support,
214  // expand it to i64 and we will be generating soft float library calls.
215  if (!isTypeLegal(MVT::f64)) {
216    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
217    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
218    TransformToType[MVT::f64] = MVT::i64;
219    ValueTypeActions.setTypeAction(MVT::f64, Expand);
220  }
221
222  // Decide how to handle f32. If the target does not have native support for
223  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
224  if (!isTypeLegal(MVT::f32)) {
225    if (isTypeLegal(MVT::f64)) {
226      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
227      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
228      TransformToType[MVT::f32] = MVT::f64;
229      ValueTypeActions.setTypeAction(MVT::f32, Promote);
230    } else {
231      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
232      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
233      TransformToType[MVT::f32] = MVT::i32;
234      ValueTypeActions.setTypeAction(MVT::f32, Expand);
235    }
236  }
237
238  // Loop over all of the vector value types to see which need transformations.
239  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
240       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
241    if (!isTypeLegal(i)) {
242      MVT::ValueType IntermediateVT, RegisterVT;
243      unsigned NumIntermediates;
244      NumRegistersForVT[i] =
245        getVectorTypeBreakdown(i,
246                               IntermediateVT, NumIntermediates,
247                               RegisterVT);
248      RegisterTypeForVT[i] = RegisterVT;
249      TransformToType[i] = MVT::Other; // this isn't actually used
250      ValueTypeActions.setTypeAction(i, Expand);
251    }
252  }
253}
254
255const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
256  return NULL;
257}
258
259/// getVectorTypeBreakdown - Vector types are broken down into some number of
260/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
261/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
262/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
263///
264/// This method returns the number of registers needed, and the VT for each
265/// register.  It also returns the VT and quantity of the intermediate values
266/// before they are promoted/expanded.
267///
268unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
269                                                MVT::ValueType &IntermediateVT,
270                                                unsigned &NumIntermediates,
271                                      MVT::ValueType &RegisterVT) const {
272  // Figure out the right, legal destination reg to copy into.
273  unsigned NumElts = MVT::getVectorNumElements(VT);
274  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
275
276  unsigned NumVectorRegs = 1;
277
278  // Divide the input until we get to a supported size.  This will always
279  // end with a scalar if the target doesn't support vectors.
280  while (NumElts > 1 &&
281         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
282    NumElts >>= 1;
283    NumVectorRegs <<= 1;
284  }
285
286  NumIntermediates = NumVectorRegs;
287
288  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
289  if (!isTypeLegal(NewVT))
290    NewVT = EltTy;
291  IntermediateVT = NewVT;
292
293  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
294  RegisterVT = DestVT;
295  if (DestVT < NewVT) {
296    // Value is expanded, e.g. i64 -> i16.
297    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
298  } else {
299    // Otherwise, promotion or legal types use the same number of registers as
300    // the vector decimated to the appropriate level.
301    return NumVectorRegs;
302  }
303
304  return 1;
305}
306
307//===----------------------------------------------------------------------===//
308//  Optimization Methods
309//===----------------------------------------------------------------------===//
310
311/// ShrinkDemandedConstant - Check to see if the specified operand of the
312/// specified instruction is a constant integer.  If so, check to see if there
313/// are any bits set in the constant that are not demanded.  If so, shrink the
314/// constant and return true.
315bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
316                                                            uint64_t Demanded) {
317  // FIXME: ISD::SELECT, ISD::SELECT_CC
318  switch(Op.getOpcode()) {
319  default: break;
320  case ISD::AND:
321  case ISD::OR:
322  case ISD::XOR:
323    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
324      if ((~Demanded & C->getValue()) != 0) {
325        MVT::ValueType VT = Op.getValueType();
326        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
327                                    DAG.getConstant(Demanded & C->getValue(),
328                                                    VT));
329        return CombineTo(Op, New);
330      }
331    break;
332  }
333  return false;
334}
335
336/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
337/// DemandedMask bits of the result of Op are ever used downstream.  If we can
338/// use this information to simplify Op, create a new simplified DAG node and
339/// return true, returning the original and new nodes in Old and New. Otherwise,
340/// analyze the expression and return a mask of KnownOne and KnownZero bits for
341/// the expression (used to simplify the caller).  The KnownZero/One bits may
342/// only be accurate for those bits in the DemandedMask.
343bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
344                                          uint64_t &KnownZero,
345                                          uint64_t &KnownOne,
346                                          TargetLoweringOpt &TLO,
347                                          unsigned Depth) const {
348  KnownZero = KnownOne = 0;   // Don't know anything.
349
350  // The masks are not wide enough to represent this type!  Should use APInt.
351  if (Op.getValueType() == MVT::i128)
352    return false;
353
354  // Other users may use these bits.
355  if (!Op.Val->hasOneUse()) {
356    if (Depth != 0) {
357      // If not at the root, Just compute the KnownZero/KnownOne bits to
358      // simplify things downstream.
359      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
360      return false;
361    }
362    // If this is the root being simplified, allow it to have multiple uses,
363    // just set the DemandedMask to all bits.
364    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
365  } else if (DemandedMask == 0) {
366    // Not demanding any bits from Op.
367    if (Op.getOpcode() != ISD::UNDEF)
368      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
369    return false;
370  } else if (Depth == 6) {        // Limit search depth.
371    return false;
372  }
373
374  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
375  switch (Op.getOpcode()) {
376  case ISD::Constant:
377    // We know all of the bits for a constant!
378    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
379    KnownZero = ~KnownOne & DemandedMask;
380    return false;   // Don't fall through, will infinitely loop.
381  case ISD::AND:
382    // If the RHS is a constant, check to see if the LHS would be zero without
383    // using the bits from the RHS.  Below, we use knowledge about the RHS to
384    // simplify the LHS, here we're using information from the LHS to simplify
385    // the RHS.
386    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
387      uint64_t LHSZero, LHSOne;
388      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
389                                LHSZero, LHSOne, Depth+1);
390      // If the LHS already has zeros where RHSC does, this and is dead.
391      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
392        return TLO.CombineTo(Op, Op.getOperand(0));
393      // If any of the set bits in the RHS are known zero on the LHS, shrink
394      // the constant.
395      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
396        return true;
397    }
398
399    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
400                             KnownOne, TLO, Depth+1))
401      return true;
402    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
403    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
404                             KnownZero2, KnownOne2, TLO, Depth+1))
405      return true;
406    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
407
408    // If all of the demanded bits are known one on one side, return the other.
409    // These bits cannot contribute to the result of the 'and'.
410    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
411      return TLO.CombineTo(Op, Op.getOperand(0));
412    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
413      return TLO.CombineTo(Op, Op.getOperand(1));
414    // If all of the demanded bits in the inputs are known zeros, return zero.
415    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
416      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
417    // If the RHS is a constant, see if we can simplify it.
418    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
419      return true;
420
421    // Output known-1 bits are only known if set in both the LHS & RHS.
422    KnownOne &= KnownOne2;
423    // Output known-0 are known to be clear if zero in either the LHS | RHS.
424    KnownZero |= KnownZero2;
425    break;
426  case ISD::OR:
427    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
428                             KnownOne, TLO, Depth+1))
429      return true;
430    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
431    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
432                             KnownZero2, KnownOne2, TLO, Depth+1))
433      return true;
434    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
435
436    // If all of the demanded bits are known zero on one side, return the other.
437    // These bits cannot contribute to the result of the 'or'.
438    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
439      return TLO.CombineTo(Op, Op.getOperand(0));
440    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
441      return TLO.CombineTo(Op, Op.getOperand(1));
442    // If all of the potentially set bits on one side are known to be set on
443    // the other side, just use the 'other' side.
444    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
445        (DemandedMask & (~KnownZero)))
446      return TLO.CombineTo(Op, Op.getOperand(0));
447    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
448        (DemandedMask & (~KnownZero2)))
449      return TLO.CombineTo(Op, Op.getOperand(1));
450    // If the RHS is a constant, see if we can simplify it.
451    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
452      return true;
453
454    // Output known-0 bits are only known if clear in both the LHS & RHS.
455    KnownZero &= KnownZero2;
456    // Output known-1 are known to be set if set in either the LHS | RHS.
457    KnownOne |= KnownOne2;
458    break;
459  case ISD::XOR:
460    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
461                             KnownOne, TLO, Depth+1))
462      return true;
463    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
464    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
465                             KnownOne2, TLO, Depth+1))
466      return true;
467    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
468
469    // If all of the demanded bits are known zero on one side, return the other.
470    // These bits cannot contribute to the result of the 'xor'.
471    if ((DemandedMask & KnownZero) == DemandedMask)
472      return TLO.CombineTo(Op, Op.getOperand(0));
473    if ((DemandedMask & KnownZero2) == DemandedMask)
474      return TLO.CombineTo(Op, Op.getOperand(1));
475
476    // If all of the unknown bits are known to be zero on one side or the other
477    // (but not both) turn this into an *inclusive* or.
478    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
479    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
480      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
481                                               Op.getOperand(0),
482                                               Op.getOperand(1)));
483
484    // Output known-0 bits are known if clear or set in both the LHS & RHS.
485    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
486    // Output known-1 are known to be set if set in only one of the LHS, RHS.
487    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
488
489    // If all of the demanded bits on one side are known, and all of the set
490    // bits on that side are also known to be set on the other side, turn this
491    // into an AND, as we know the bits will be cleared.
492    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
493    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
494      if ((KnownOne & KnownOne2) == KnownOne) {
495        MVT::ValueType VT = Op.getValueType();
496        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
497        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
498                                                 ANDC));
499      }
500    }
501
502    // If the RHS is a constant, see if we can simplify it.
503    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
504    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
505      return true;
506
507    KnownZero = KnownZeroOut;
508    KnownOne  = KnownOneOut;
509    break;
510  case ISD::SETCC:
511    // If we know the result of a setcc has the top bits zero, use this info.
512    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
513      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
514    break;
515  case ISD::SELECT:
516    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
517                             KnownOne, TLO, Depth+1))
518      return true;
519    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
520                             KnownOne2, TLO, Depth+1))
521      return true;
522    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
523    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
524
525    // If the operands are constants, see if we can simplify them.
526    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
527      return true;
528
529    // Only known if known in both the LHS and RHS.
530    KnownOne &= KnownOne2;
531    KnownZero &= KnownZero2;
532    break;
533  case ISD::SELECT_CC:
534    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
535                             KnownOne, TLO, Depth+1))
536      return true;
537    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
538                             KnownOne2, TLO, Depth+1))
539      return true;
540    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
541    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
542
543    // If the operands are constants, see if we can simplify them.
544    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
545      return true;
546
547    // Only known if known in both the LHS and RHS.
548    KnownOne &= KnownOne2;
549    KnownZero &= KnownZero2;
550    break;
551  case ISD::SHL:
552    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
553      unsigned ShAmt = SA->getValue();
554      SDOperand InOp = Op.getOperand(0);
555
556      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
557      // single shift.  We can do this if the bottom bits (which are shifted
558      // out) are never demanded.
559      if (InOp.getOpcode() == ISD::SRL &&
560          isa<ConstantSDNode>(InOp.getOperand(1))) {
561        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
562          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
563          unsigned Opc = ISD::SHL;
564          int Diff = ShAmt-C1;
565          if (Diff < 0) {
566            Diff = -Diff;
567            Opc = ISD::SRL;
568          }
569
570          SDOperand NewSA =
571            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
572          MVT::ValueType VT = Op.getValueType();
573          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
574                                                   InOp.getOperand(0), NewSA));
575        }
576      }
577
578      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
579                               KnownZero, KnownOne, TLO, Depth+1))
580        return true;
581      KnownZero <<= SA->getValue();
582      KnownOne  <<= SA->getValue();
583      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
584    }
585    break;
586  case ISD::SRL:
587    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
588      MVT::ValueType VT = Op.getValueType();
589      unsigned ShAmt = SA->getValue();
590      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
591      unsigned VTSize = MVT::getSizeInBits(VT);
592      SDOperand InOp = Op.getOperand(0);
593
594      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
595      // single shift.  We can do this if the top bits (which are shifted out)
596      // are never demanded.
597      if (InOp.getOpcode() == ISD::SHL &&
598          isa<ConstantSDNode>(InOp.getOperand(1))) {
599        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
600          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
601          unsigned Opc = ISD::SRL;
602          int Diff = ShAmt-C1;
603          if (Diff < 0) {
604            Diff = -Diff;
605            Opc = ISD::SHL;
606          }
607
608          SDOperand NewSA =
609            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
610          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
611                                                   InOp.getOperand(0), NewSA));
612        }
613      }
614
615      // Compute the new bits that are at the top now.
616      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
617                               KnownZero, KnownOne, TLO, Depth+1))
618        return true;
619      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
620      KnownZero &= TypeMask;
621      KnownOne  &= TypeMask;
622      KnownZero >>= ShAmt;
623      KnownOne  >>= ShAmt;
624
625      uint64_t HighBits = (1ULL << ShAmt)-1;
626      HighBits <<= VTSize - ShAmt;
627      KnownZero |= HighBits;  // High bits known zero.
628    }
629    break;
630  case ISD::SRA:
631    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
632      MVT::ValueType VT = Op.getValueType();
633      unsigned ShAmt = SA->getValue();
634
635      // Compute the new bits that are at the top now.
636      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
637
638      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
639
640      // If any of the demanded bits are produced by the sign extension, we also
641      // demand the input sign bit.
642      uint64_t HighBits = (1ULL << ShAmt)-1;
643      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
644      if (HighBits & DemandedMask)
645        InDemandedMask |= MVT::getIntVTSignBit(VT);
646
647      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
648                               KnownZero, KnownOne, TLO, Depth+1))
649        return true;
650      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
651      KnownZero &= TypeMask;
652      KnownOne  &= TypeMask;
653      KnownZero >>= ShAmt;
654      KnownOne  >>= ShAmt;
655
656      // Handle the sign bits.
657      uint64_t SignBit = MVT::getIntVTSignBit(VT);
658      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
659
660      // If the input sign bit is known to be zero, or if none of the top bits
661      // are demanded, turn this into an unsigned shift right.
662      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
663        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
664                                                 Op.getOperand(1)));
665      } else if (KnownOne & SignBit) { // New bits are known one.
666        KnownOne |= HighBits;
667      }
668    }
669    break;
670  case ISD::SIGN_EXTEND_INREG: {
671    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
672
673    // Sign extension.  Compute the demanded bits in the result that are not
674    // present in the input.
675    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
676
677    // If none of the extended bits are demanded, eliminate the sextinreg.
678    if (NewBits == 0)
679      return TLO.CombineTo(Op, Op.getOperand(0));
680
681    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
682    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
683
684    // Since the sign extended bits are demanded, we know that the sign
685    // bit is demanded.
686    InputDemandedBits |= InSignBit;
687
688    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
689                             KnownZero, KnownOne, TLO, Depth+1))
690      return true;
691    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
692
693    // If the sign bit of the input is known set or clear, then we know the
694    // top bits of the result.
695
696    // If the input sign bit is known zero, convert this into a zero extension.
697    if (KnownZero & InSignBit)
698      return TLO.CombineTo(Op,
699                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
700
701    if (KnownOne & InSignBit) {    // Input sign bit known set
702      KnownOne |= NewBits;
703      KnownZero &= ~NewBits;
704    } else {                       // Input sign bit unknown
705      KnownZero &= ~NewBits;
706      KnownOne &= ~NewBits;
707    }
708    break;
709  }
710  case ISD::CTTZ:
711  case ISD::CTLZ:
712  case ISD::CTPOP: {
713    MVT::ValueType VT = Op.getValueType();
714    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
715    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
716    KnownOne  = 0;
717    break;
718  }
719  case ISD::LOAD: {
720    if (ISD::isZEXTLoad(Op.Val)) {
721      LoadSDNode *LD = cast<LoadSDNode>(Op);
722      MVT::ValueType VT = LD->getLoadedVT();
723      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
724    }
725    break;
726  }
727  case ISD::ZERO_EXTEND: {
728    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
729
730    // If none of the top bits are demanded, convert this into an any_extend.
731    uint64_t NewBits = (~InMask) & DemandedMask;
732    if (NewBits == 0)
733      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
734                                               Op.getValueType(),
735                                               Op.getOperand(0)));
736
737    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
738                             KnownZero, KnownOne, TLO, Depth+1))
739      return true;
740    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
741    KnownZero |= NewBits;
742    break;
743  }
744  case ISD::SIGN_EXTEND: {
745    MVT::ValueType InVT = Op.getOperand(0).getValueType();
746    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
747    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
748    uint64_t NewBits   = (~InMask) & DemandedMask;
749
750    // If none of the top bits are demanded, convert this into an any_extend.
751    if (NewBits == 0)
752      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
753                                           Op.getOperand(0)));
754
755    // Since some of the sign extended bits are demanded, we know that the sign
756    // bit is demanded.
757    uint64_t InDemandedBits = DemandedMask & InMask;
758    InDemandedBits |= InSignBit;
759
760    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
761                             KnownOne, TLO, Depth+1))
762      return true;
763
764    // If the sign bit is known zero, convert this to a zero extend.
765    if (KnownZero & InSignBit)
766      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
767                                               Op.getValueType(),
768                                               Op.getOperand(0)));
769
770    // If the sign bit is known one, the top bits match.
771    if (KnownOne & InSignBit) {
772      KnownOne  |= NewBits;
773      KnownZero &= ~NewBits;
774    } else {   // Otherwise, top bits aren't known.
775      KnownOne  &= ~NewBits;
776      KnownZero &= ~NewBits;
777    }
778    break;
779  }
780  case ISD::ANY_EXTEND: {
781    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
782    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
783                             KnownZero, KnownOne, TLO, Depth+1))
784      return true;
785    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
786    break;
787  }
788  case ISD::TRUNCATE: {
789    // Simplify the input, using demanded bit information, and compute the known
790    // zero/one bits live out.
791    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
792                             KnownZero, KnownOne, TLO, Depth+1))
793      return true;
794
795    // If the input is only used by this truncate, see if we can shrink it based
796    // on the known demanded bits.
797    if (Op.getOperand(0).Val->hasOneUse()) {
798      SDOperand In = Op.getOperand(0);
799      switch (In.getOpcode()) {
800      default: break;
801      case ISD::SRL:
802        // Shrink SRL by a constant if none of the high bits shifted in are
803        // demanded.
804        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
805          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
806          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
807          HighBits >>= ShAmt->getValue();
808
809          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
810              (DemandedMask & HighBits) == 0) {
811            // None of the shifted in bits are needed.  Add a truncate of the
812            // shift input, then shift it.
813            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
814                                                 Op.getValueType(),
815                                                 In.getOperand(0));
816            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
817                                                   NewTrunc, In.getOperand(1)));
818          }
819        }
820        break;
821      }
822    }
823
824    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
825    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
826    KnownZero &= OutMask;
827    KnownOne &= OutMask;
828    break;
829  }
830  case ISD::AssertZext: {
831    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
832    uint64_t InMask = MVT::getIntVTBitMask(VT);
833    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
834                             KnownZero, KnownOne, TLO, Depth+1))
835      return true;
836    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
837    KnownZero |= ~InMask & DemandedMask;
838    break;
839  }
840  case ISD::ADD:
841  case ISD::SUB:
842  case ISD::INTRINSIC_WO_CHAIN:
843  case ISD::INTRINSIC_W_CHAIN:
844  case ISD::INTRINSIC_VOID:
845    // Just use ComputeMaskedBits to compute output bits.
846    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
847    break;
848  }
849
850  // If we know the value of all of the demanded bits, return this as a
851  // constant.
852  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
853    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
854
855  return false;
856}
857
858/// computeMaskedBitsForTargetNode - Determine which of the bits specified
859/// in Mask are known to be either zero or one and return them in the
860/// KnownZero/KnownOne bitsets.
861void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
862                                                    uint64_t Mask,
863                                                    uint64_t &KnownZero,
864                                                    uint64_t &KnownOne,
865                                                    const SelectionDAG &DAG,
866                                                    unsigned Depth) const {
867  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
868          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
869          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
870          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
871         "Should use MaskedValueIsZero if you don't know whether Op"
872         " is a target node!");
873  KnownZero = 0;
874  KnownOne = 0;
875}
876
877/// ComputeNumSignBitsForTargetNode - This method can be implemented by
878/// targets that want to expose additional information about sign bits to the
879/// DAG Combiner.
880unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
881                                                         unsigned Depth) const {
882  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
883          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
884          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
885          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
886         "Should use ComputeNumSignBits if you don't know whether Op"
887         " is a target node!");
888  return 1;
889}
890
891
892/// SimplifySetCC - Try to simplify a setcc built with the specified operands
893/// and cc. If it is unable to simplify it, return a null SDOperand.
894SDOperand
895TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
896                              ISD::CondCode Cond, bool foldBooleans,
897                              DAGCombinerInfo &DCI) const {
898  SelectionDAG &DAG = DCI.DAG;
899
900  // These setcc operations always fold.
901  switch (Cond) {
902  default: break;
903  case ISD::SETFALSE:
904  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
905  case ISD::SETTRUE:
906  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
907  }
908
909  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
910    uint64_t C1 = N1C->getValue();
911    if (isa<ConstantSDNode>(N0.Val)) {
912      return DAG.FoldSetCC(VT, N0, N1, Cond);
913    } else {
914      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
915      // equality comparison, then we're just comparing whether X itself is
916      // zero.
917      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
918          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
919          N0.getOperand(1).getOpcode() == ISD::Constant) {
920        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
921        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
922            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
923          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
924            // (srl (ctlz x), 5) == 0  -> X != 0
925            // (srl (ctlz x), 5) != 1  -> X != 0
926            Cond = ISD::SETNE;
927          } else {
928            // (srl (ctlz x), 5) != 0  -> X == 0
929            // (srl (ctlz x), 5) == 1  -> X == 0
930            Cond = ISD::SETEQ;
931          }
932          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
933          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
934                              Zero, Cond);
935        }
936      }
937
938      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
939      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
940        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
941
942        // If the comparison constant has bits in the upper part, the
943        // zero-extended value could never match.
944        if (C1 & (~0ULL << InSize)) {
945          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
946          switch (Cond) {
947          case ISD::SETUGT:
948          case ISD::SETUGE:
949          case ISD::SETEQ: return DAG.getConstant(0, VT);
950          case ISD::SETULT:
951          case ISD::SETULE:
952          case ISD::SETNE: return DAG.getConstant(1, VT);
953          case ISD::SETGT:
954          case ISD::SETGE:
955            // True if the sign bit of C1 is set.
956            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
957          case ISD::SETLT:
958          case ISD::SETLE:
959            // True if the sign bit of C1 isn't set.
960            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
961          default:
962            break;
963          }
964        }
965
966        // Otherwise, we can perform the comparison with the low bits.
967        switch (Cond) {
968        case ISD::SETEQ:
969        case ISD::SETNE:
970        case ISD::SETUGT:
971        case ISD::SETUGE:
972        case ISD::SETULT:
973        case ISD::SETULE:
974          return DAG.getSetCC(VT, N0.getOperand(0),
975                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
976                          Cond);
977        default:
978          break;   // todo, be more careful with signed comparisons
979        }
980      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
981                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
982        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
983        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
984        MVT::ValueType ExtDstTy = N0.getValueType();
985        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
986
987        // If the extended part has any inconsistent bits, it cannot ever
988        // compare equal.  In other words, they have to be all ones or all
989        // zeros.
990        uint64_t ExtBits =
991          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
992        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
993          return DAG.getConstant(Cond == ISD::SETNE, VT);
994
995        SDOperand ZextOp;
996        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
997        if (Op0Ty == ExtSrcTy) {
998          ZextOp = N0.getOperand(0);
999        } else {
1000          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1001          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1002                               DAG.getConstant(Imm, Op0Ty));
1003        }
1004        if (!DCI.isCalledByLegalizer())
1005          DCI.AddToWorklist(ZextOp.Val);
1006        // Otherwise, make this a use of a zext.
1007        return DAG.getSetCC(VT, ZextOp,
1008                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1009                                            ExtDstTy),
1010                            Cond);
1011      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1012                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1013
1014        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1015        if (N0.getOpcode() == ISD::SETCC) {
1016          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1017          if (TrueWhenTrue)
1018            return N0;
1019
1020          // Invert the condition.
1021          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1022          CC = ISD::getSetCCInverse(CC,
1023                               MVT::isInteger(N0.getOperand(0).getValueType()));
1024          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1025        }
1026
1027        if ((N0.getOpcode() == ISD::XOR ||
1028             (N0.getOpcode() == ISD::AND &&
1029              N0.getOperand(0).getOpcode() == ISD::XOR &&
1030              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1031            isa<ConstantSDNode>(N0.getOperand(1)) &&
1032            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1033          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1034          // can only do this if the top bits are known zero.
1035          if (DAG.MaskedValueIsZero(N0,
1036                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1037            // Okay, get the un-inverted input value.
1038            SDOperand Val;
1039            if (N0.getOpcode() == ISD::XOR)
1040              Val = N0.getOperand(0);
1041            else {
1042              assert(N0.getOpcode() == ISD::AND &&
1043                     N0.getOperand(0).getOpcode() == ISD::XOR);
1044              // ((X^1)&1)^1 -> X & 1
1045              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1046                                N0.getOperand(0).getOperand(0),
1047                                N0.getOperand(1));
1048            }
1049            return DAG.getSetCC(VT, Val, N1,
1050                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1051          }
1052        }
1053      }
1054
1055      uint64_t MinVal, MaxVal;
1056      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1057      if (ISD::isSignedIntSetCC(Cond)) {
1058        MinVal = 1ULL << (OperandBitSize-1);
1059        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1060          MaxVal = ~0ULL >> (65-OperandBitSize);
1061        else
1062          MaxVal = 0;
1063      } else {
1064        MinVal = 0;
1065        MaxVal = ~0ULL >> (64-OperandBitSize);
1066      }
1067
1068      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1069      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1070        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1071        --C1;                                          // X >= C0 --> X > (C0-1)
1072        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1073                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1074      }
1075
1076      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1077        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1078        ++C1;                                          // X <= C0 --> X < (C0+1)
1079        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1080                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1081      }
1082
1083      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1084        return DAG.getConstant(0, VT);      // X < MIN --> false
1085      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1086        return DAG.getConstant(1, VT);      // X >= MIN --> true
1087      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1088        return DAG.getConstant(0, VT);      // X > MAX --> false
1089      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1090        return DAG.getConstant(1, VT);      // X <= MAX --> true
1091
1092      // Canonicalize setgt X, Min --> setne X, Min
1093      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1094        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1095      // Canonicalize setlt X, Max --> setne X, Max
1096      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1097        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1098
1099      // If we have setult X, 1, turn it into seteq X, 0
1100      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1101        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1102                        ISD::SETEQ);
1103      // If we have setugt X, Max-1, turn it into seteq X, Max
1104      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1105        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1106                        ISD::SETEQ);
1107
1108      // If we have "setcc X, C0", check to see if we can shrink the immediate
1109      // by changing cc.
1110
1111      // SETUGT X, SINTMAX  -> SETLT X, 0
1112      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1113          C1 == (~0ULL >> (65-OperandBitSize)))
1114        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1115                            ISD::SETLT);
1116
1117      // FIXME: Implement the rest of these.
1118
1119      // Fold bit comparisons when we can.
1120      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1121          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1122        if (ConstantSDNode *AndRHS =
1123                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1124          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1125            // Perform the xform if the AND RHS is a single bit.
1126            if (isPowerOf2_64(AndRHS->getValue())) {
1127              return DAG.getNode(ISD::SRL, VT, N0,
1128                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1129                                             getShiftAmountTy()));
1130            }
1131          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1132            // (X & 8) == 8  -->  (X & 8) >> 3
1133            // Perform the xform if C1 is a single bit.
1134            if (isPowerOf2_64(C1)) {
1135              return DAG.getNode(ISD::SRL, VT, N0,
1136                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1137            }
1138          }
1139        }
1140    }
1141  } else if (isa<ConstantSDNode>(N0.Val)) {
1142      // Ensure that the constant occurs on the RHS.
1143    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1144  }
1145
1146  if (isa<ConstantFPSDNode>(N0.Val)) {
1147    // Constant fold or commute setcc.
1148    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1149    if (O.Val) return O;
1150  }
1151
1152  if (N0 == N1) {
1153    // We can always fold X == X for integer setcc's.
1154    if (MVT::isInteger(N0.getValueType()))
1155      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1156    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1157    if (UOF == 2)   // FP operators that are undefined on NaNs.
1158      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1159    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1160      return DAG.getConstant(UOF, VT);
1161    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1162    // if it is not already.
1163    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1164    if (NewCond != Cond)
1165      return DAG.getSetCC(VT, N0, N1, NewCond);
1166  }
1167
1168  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1169      MVT::isInteger(N0.getValueType())) {
1170    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1171        N0.getOpcode() == ISD::XOR) {
1172      // Simplify (X+Y) == (X+Z) -->  Y == Z
1173      if (N0.getOpcode() == N1.getOpcode()) {
1174        if (N0.getOperand(0) == N1.getOperand(0))
1175          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1176        if (N0.getOperand(1) == N1.getOperand(1))
1177          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1178        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1179          // If X op Y == Y op X, try other combinations.
1180          if (N0.getOperand(0) == N1.getOperand(1))
1181            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1182          if (N0.getOperand(1) == N1.getOperand(0))
1183            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1184        }
1185      }
1186
1187      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1188        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1189          // Turn (X+C1) == C2 --> X == C2-C1
1190          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1191            return DAG.getSetCC(VT, N0.getOperand(0),
1192                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1193                                N0.getValueType()), Cond);
1194          }
1195
1196          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1197          if (N0.getOpcode() == ISD::XOR)
1198            // If we know that all of the inverted bits are zero, don't bother
1199            // performing the inversion.
1200            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1201              return DAG.getSetCC(VT, N0.getOperand(0),
1202                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1203                                              N0.getValueType()), Cond);
1204        }
1205
1206        // Turn (C1-X) == C2 --> X == C1-C2
1207        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1208          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1209            return DAG.getSetCC(VT, N0.getOperand(1),
1210                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1211                                             N0.getValueType()), Cond);
1212          }
1213        }
1214      }
1215
1216      // Simplify (X+Z) == X -->  Z == 0
1217      if (N0.getOperand(0) == N1)
1218        return DAG.getSetCC(VT, N0.getOperand(1),
1219                        DAG.getConstant(0, N0.getValueType()), Cond);
1220      if (N0.getOperand(1) == N1) {
1221        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1222          return DAG.getSetCC(VT, N0.getOperand(0),
1223                          DAG.getConstant(0, N0.getValueType()), Cond);
1224        else if (N0.Val->hasOneUse()) {
1225          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1226          // (Z-X) == X  --> Z == X<<1
1227          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1228                                     N1,
1229                                     DAG.getConstant(1, getShiftAmountTy()));
1230          if (!DCI.isCalledByLegalizer())
1231            DCI.AddToWorklist(SH.Val);
1232          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1233        }
1234      }
1235    }
1236
1237    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1238        N1.getOpcode() == ISD::XOR) {
1239      // Simplify  X == (X+Z) -->  Z == 0
1240      if (N1.getOperand(0) == N0) {
1241        return DAG.getSetCC(VT, N1.getOperand(1),
1242                        DAG.getConstant(0, N1.getValueType()), Cond);
1243      } else if (N1.getOperand(1) == N0) {
1244        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1245          return DAG.getSetCC(VT, N1.getOperand(0),
1246                          DAG.getConstant(0, N1.getValueType()), Cond);
1247        } else if (N1.Val->hasOneUse()) {
1248          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1249          // X == (Z-X)  --> X<<1 == Z
1250          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1251                                     DAG.getConstant(1, getShiftAmountTy()));
1252          if (!DCI.isCalledByLegalizer())
1253            DCI.AddToWorklist(SH.Val);
1254          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1255        }
1256      }
1257    }
1258  }
1259
1260  // Fold away ALL boolean setcc's.
1261  SDOperand Temp;
1262  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1263    switch (Cond) {
1264    default: assert(0 && "Unknown integer setcc!");
1265    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1266      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1267      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1268      if (!DCI.isCalledByLegalizer())
1269        DCI.AddToWorklist(Temp.Val);
1270      break;
1271    case ISD::SETNE:  // X != Y   -->  (X^Y)
1272      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1273      break;
1274    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1275    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1276      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1277      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1278      if (!DCI.isCalledByLegalizer())
1279        DCI.AddToWorklist(Temp.Val);
1280      break;
1281    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1282    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1283      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1284      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1285      if (!DCI.isCalledByLegalizer())
1286        DCI.AddToWorklist(Temp.Val);
1287      break;
1288    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1289    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1290      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1291      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1292      if (!DCI.isCalledByLegalizer())
1293        DCI.AddToWorklist(Temp.Val);
1294      break;
1295    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1296    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1297      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1298      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1299      break;
1300    }
1301    if (VT != MVT::i1) {
1302      if (!DCI.isCalledByLegalizer())
1303        DCI.AddToWorklist(N0.Val);
1304      // FIXME: If running after legalize, we probably can't do this.
1305      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1306    }
1307    return N0;
1308  }
1309
1310  // Could not fold it.
1311  return SDOperand();
1312}
1313
1314SDOperand TargetLowering::
1315PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1316  // Default implementation: no optimization.
1317  return SDOperand();
1318}
1319
1320//===----------------------------------------------------------------------===//
1321//  Inline Assembler Implementation Methods
1322//===----------------------------------------------------------------------===//
1323
1324TargetLowering::ConstraintType
1325TargetLowering::getConstraintType(const std::string &Constraint) const {
1326  // FIXME: lots more standard ones to handle.
1327  if (Constraint.size() == 1) {
1328    switch (Constraint[0]) {
1329    default: break;
1330    case 'r': return C_RegisterClass;
1331    case 'm':    // memory
1332    case 'o':    // offsetable
1333    case 'V':    // not offsetable
1334      return C_Memory;
1335    case 'i':    // Simple Integer or Relocatable Constant
1336    case 'n':    // Simple Integer
1337    case 's':    // Relocatable Constant
1338    case 'X':    // Allow ANY value.
1339    case 'I':    // Target registers.
1340    case 'J':
1341    case 'K':
1342    case 'L':
1343    case 'M':
1344    case 'N':
1345    case 'O':
1346    case 'P':
1347      return C_Other;
1348    }
1349  }
1350
1351  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1352      Constraint[Constraint.size()-1] == '}')
1353    return C_Register;
1354  return C_Unknown;
1355}
1356
1357/// isOperandValidForConstraint - Return the specified operand (possibly
1358/// modified) if the specified SDOperand is valid for the specified target
1359/// constraint letter, otherwise return null.
1360SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
1361                                                      char ConstraintLetter,
1362                                                      SelectionDAG &DAG) {
1363  switch (ConstraintLetter) {
1364  default: break;
1365  case 'i':    // Simple Integer or Relocatable Constant
1366  case 'n':    // Simple Integer
1367  case 's':    // Relocatable Constant
1368  case 'X': {  // Allows any operand.
1369    // These operands are interested in values of the form (GV+C), where C may
1370    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1371    // is possible and fine if either GV or C are missing.
1372    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1373    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1374
1375    // If we have "(add GV, C)", pull out GV/C
1376    if (Op.getOpcode() == ISD::ADD) {
1377      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1378      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1379      if (C == 0 || GA == 0) {
1380        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1381        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1382      }
1383      if (C == 0 || GA == 0)
1384        C = 0, GA = 0;
1385    }
1386
1387    // If we find a valid operand, map to the TargetXXX version so that the
1388    // value itself doesn't get selected.
1389    if (GA) {   // Either &GV   or   &GV+C
1390      if (ConstraintLetter != 'n') {
1391        int64_t Offs = GA->getOffset();
1392        if (C) Offs += C->getValue();
1393        return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
1394                                          Offs);
1395      }
1396    }
1397    if (C) {   // just C, no GV.
1398      // Simple constants are not allowed for 's'.
1399      if (ConstraintLetter != 's')
1400        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
1401    }
1402    break;
1403  }
1404  }
1405  return SDOperand(0,0);
1406}
1407
1408std::vector<unsigned> TargetLowering::
1409getRegClassForInlineAsmConstraint(const std::string &Constraint,
1410                                  MVT::ValueType VT) const {
1411  return std::vector<unsigned>();
1412}
1413
1414
1415std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1416getRegForInlineAsmConstraint(const std::string &Constraint,
1417                             MVT::ValueType VT) const {
1418  if (Constraint[0] != '{')
1419    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1420  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1421
1422  // Remove the braces from around the name.
1423  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1424
1425  // Figure out which register class contains this reg.
1426  const MRegisterInfo *RI = TM.getRegisterInfo();
1427  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1428       E = RI->regclass_end(); RCI != E; ++RCI) {
1429    const TargetRegisterClass *RC = *RCI;
1430
1431    // If none of the the value types for this register class are valid, we
1432    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1433    bool isLegal = false;
1434    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1435         I != E; ++I) {
1436      if (isTypeLegal(*I)) {
1437        isLegal = true;
1438        break;
1439      }
1440    }
1441
1442    if (!isLegal) continue;
1443
1444    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1445         I != E; ++I) {
1446      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1447        return std::make_pair(*I, RC);
1448    }
1449  }
1450
1451  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1452}
1453
1454//===----------------------------------------------------------------------===//
1455//  Loop Strength Reduction hooks
1456//===----------------------------------------------------------------------===//
1457
1458/// isLegalAddressingMode - Return true if the addressing mode represented
1459/// by AM is legal for this target, for a load/store of the specified type.
1460bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1461                                           const Type *Ty) const {
1462  // The default implementation of this implements a conservative RISCy, r+r and
1463  // r+i addr mode.
1464
1465  // Allows a sign-extended 16-bit immediate field.
1466  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1467    return false;
1468
1469  // No global is ever allowed as a base.
1470  if (AM.BaseGV)
1471    return false;
1472
1473  // Only support r+r,
1474  switch (AM.Scale) {
1475  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1476    break;
1477  case 1:
1478    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1479      return false;
1480    // Otherwise we have r+r or r+i.
1481    break;
1482  case 2:
1483    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1484      return false;
1485    // Allow 2*r as r+r.
1486    break;
1487  }
1488
1489  return true;
1490}
1491
1492// Magic for divide replacement
1493
1494struct ms {
1495  int64_t m;  // magic number
1496  int64_t s;  // shift amount
1497};
1498
1499struct mu {
1500  uint64_t m; // magic number
1501  int64_t a;  // add indicator
1502  int64_t s;  // shift amount
1503};
1504
1505/// magic - calculate the magic numbers required to codegen an integer sdiv as
1506/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1507/// or -1.
1508static ms magic32(int32_t d) {
1509  int32_t p;
1510  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1511  const uint32_t two31 = 0x80000000U;
1512  struct ms mag;
1513
1514  ad = abs(d);
1515  t = two31 + ((uint32_t)d >> 31);
1516  anc = t - 1 - t%ad;   // absolute value of nc
1517  p = 31;               // initialize p
1518  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1519  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1520  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1521  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1522  do {
1523    p = p + 1;
1524    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1525    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1526    if (r1 >= anc) {  // must be unsigned comparison
1527      q1 = q1 + 1;
1528      r1 = r1 - anc;
1529    }
1530    q2 = 2*q2;        // update q2 = 2p/abs(d)
1531    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1532    if (r2 >= ad) {   // must be unsigned comparison
1533      q2 = q2 + 1;
1534      r2 = r2 - ad;
1535    }
1536    delta = ad - r2;
1537  } while (q1 < delta || (q1 == delta && r1 == 0));
1538
1539  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1540  if (d < 0) mag.m = -mag.m; // resulting magic number
1541  mag.s = p - 32;            // resulting shift
1542  return mag;
1543}
1544
1545/// magicu - calculate the magic numbers required to codegen an integer udiv as
1546/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1547static mu magicu32(uint32_t d) {
1548  int32_t p;
1549  uint32_t nc, delta, q1, r1, q2, r2;
1550  struct mu magu;
1551  magu.a = 0;               // initialize "add" indicator
1552  nc = - 1 - (-d)%d;
1553  p = 31;                   // initialize p
1554  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1555  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1556  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1557  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1558  do {
1559    p = p + 1;
1560    if (r1 >= nc - r1 ) {
1561      q1 = 2*q1 + 1;  // update q1
1562      r1 = 2*r1 - nc; // update r1
1563    }
1564    else {
1565      q1 = 2*q1; // update q1
1566      r1 = 2*r1; // update r1
1567    }
1568    if (r2 + 1 >= d - r2) {
1569      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1570      q2 = 2*q2 + 1;     // update q2
1571      r2 = 2*r2 + 1 - d; // update r2
1572    }
1573    else {
1574      if (q2 >= 0x80000000) magu.a = 1;
1575      q2 = 2*q2;     // update q2
1576      r2 = 2*r2 + 1; // update r2
1577    }
1578    delta = d - 1 - r2;
1579  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1580  magu.m = q2 + 1; // resulting magic number
1581  magu.s = p - 32;  // resulting shift
1582  return magu;
1583}
1584
1585/// magic - calculate the magic numbers required to codegen an integer sdiv as
1586/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1587/// or -1.
1588static ms magic64(int64_t d) {
1589  int64_t p;
1590  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1591  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1592  struct ms mag;
1593
1594  ad = d >= 0 ? d : -d;
1595  t = two63 + ((uint64_t)d >> 63);
1596  anc = t - 1 - t%ad;   // absolute value of nc
1597  p = 63;               // initialize p
1598  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1599  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1600  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1601  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1602  do {
1603    p = p + 1;
1604    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1605    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1606    if (r1 >= anc) {  // must be unsigned comparison
1607      q1 = q1 + 1;
1608      r1 = r1 - anc;
1609    }
1610    q2 = 2*q2;        // update q2 = 2p/abs(d)
1611    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1612    if (r2 >= ad) {   // must be unsigned comparison
1613      q2 = q2 + 1;
1614      r2 = r2 - ad;
1615    }
1616    delta = ad - r2;
1617  } while (q1 < delta || (q1 == delta && r1 == 0));
1618
1619  mag.m = q2 + 1;
1620  if (d < 0) mag.m = -mag.m; // resulting magic number
1621  mag.s = p - 64;            // resulting shift
1622  return mag;
1623}
1624
1625/// magicu - calculate the magic numbers required to codegen an integer udiv as
1626/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1627static mu magicu64(uint64_t d)
1628{
1629  int64_t p;
1630  uint64_t nc, delta, q1, r1, q2, r2;
1631  struct mu magu;
1632  magu.a = 0;               // initialize "add" indicator
1633  nc = - 1 - (-d)%d;
1634  p = 63;                   // initialize p
1635  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1636  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1637  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1638  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1639  do {
1640    p = p + 1;
1641    if (r1 >= nc - r1 ) {
1642      q1 = 2*q1 + 1;  // update q1
1643      r1 = 2*r1 - nc; // update r1
1644    }
1645    else {
1646      q1 = 2*q1; // update q1
1647      r1 = 2*r1; // update r1
1648    }
1649    if (r2 + 1 >= d - r2) {
1650      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1651      q2 = 2*q2 + 1;     // update q2
1652      r2 = 2*r2 + 1 - d; // update r2
1653    }
1654    else {
1655      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1656      q2 = 2*q2;     // update q2
1657      r2 = 2*r2 + 1; // update r2
1658    }
1659    delta = d - 1 - r2;
1660  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1661  magu.m = q2 + 1; // resulting magic number
1662  magu.s = p - 64;  // resulting shift
1663  return magu;
1664}
1665
1666/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1667/// return a DAG expression to select that will generate the same value by
1668/// multiplying by a magic number.  See:
1669/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1670SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1671                                    std::vector<SDNode*>* Created) const {
1672  MVT::ValueType VT = N->getValueType(0);
1673
1674  // Check to see if we can do this.
1675  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1676    return SDOperand();       // BuildSDIV only operates on i32 or i64
1677  if (!isOperationLegal(ISD::MULHS, VT))
1678    return SDOperand();       // Make sure the target supports MULHS.
1679
1680  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1681  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1682
1683  // Multiply the numerator (operand 0) by the magic value
1684  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1685                            DAG.getConstant(magics.m, VT));
1686  // If d > 0 and m < 0, add the numerator
1687  if (d > 0 && magics.m < 0) {
1688    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1689    if (Created)
1690      Created->push_back(Q.Val);
1691  }
1692  // If d < 0 and m > 0, subtract the numerator.
1693  if (d < 0 && magics.m > 0) {
1694    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1695    if (Created)
1696      Created->push_back(Q.Val);
1697  }
1698  // Shift right algebraic if shift value is nonzero
1699  if (magics.s > 0) {
1700    Q = DAG.getNode(ISD::SRA, VT, Q,
1701                    DAG.getConstant(magics.s, getShiftAmountTy()));
1702    if (Created)
1703      Created->push_back(Q.Val);
1704  }
1705  // Extract the sign bit and add it to the quotient
1706  SDOperand T =
1707    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1708                                                 getShiftAmountTy()));
1709  if (Created)
1710    Created->push_back(T.Val);
1711  return DAG.getNode(ISD::ADD, VT, Q, T);
1712}
1713
1714/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1715/// return a DAG expression to select that will generate the same value by
1716/// multiplying by a magic number.  See:
1717/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1718SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1719                                    std::vector<SDNode*>* Created) const {
1720  MVT::ValueType VT = N->getValueType(0);
1721
1722  // Check to see if we can do this.
1723  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1724    return SDOperand();       // BuildUDIV only operates on i32 or i64
1725  if (!isOperationLegal(ISD::MULHU, VT))
1726    return SDOperand();       // Make sure the target supports MULHU.
1727
1728  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1729  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1730
1731  // Multiply the numerator (operand 0) by the magic value
1732  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1733                            DAG.getConstant(magics.m, VT));
1734  if (Created)
1735    Created->push_back(Q.Val);
1736
1737  if (magics.a == 0) {
1738    return DAG.getNode(ISD::SRL, VT, Q,
1739                       DAG.getConstant(magics.s, getShiftAmountTy()));
1740  } else {
1741    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1742    if (Created)
1743      Created->push_back(NPQ.Val);
1744    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1745                      DAG.getConstant(1, getShiftAmountTy()));
1746    if (Created)
1747      Created->push_back(NPQ.Val);
1748    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1749    if (Created)
1750      Created->push_back(NPQ.Val);
1751    return DAG.getNode(ISD::SRL, VT, NPQ,
1752                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1753  }
1754}
1755