TargetLowering.cpp revision 5c80760fdf71659c5bdf45cd85d173df454dfb41
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
94  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
95  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
96  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
97  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
98  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
99  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
100  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
101  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
102  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
103  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
104  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
105  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
106  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
107  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
108  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
109  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
110  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
111  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
112  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
113  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
114  Names[RTLIB::OEQ_F32] = "__eqsf2";
115  Names[RTLIB::OEQ_F64] = "__eqdf2";
116  Names[RTLIB::UNE_F32] = "__nesf2";
117  Names[RTLIB::UNE_F64] = "__nedf2";
118  Names[RTLIB::OGE_F32] = "__gesf2";
119  Names[RTLIB::OGE_F64] = "__gedf2";
120  Names[RTLIB::OLT_F32] = "__ltsf2";
121  Names[RTLIB::OLT_F64] = "__ltdf2";
122  Names[RTLIB::OLE_F32] = "__lesf2";
123  Names[RTLIB::OLE_F64] = "__ledf2";
124  Names[RTLIB::OGT_F32] = "__gtsf2";
125  Names[RTLIB::OGT_F64] = "__gtdf2";
126  Names[RTLIB::UO_F32] = "__unordsf2";
127  Names[RTLIB::UO_F64] = "__unorddf2";
128  Names[RTLIB::O_F32] = "__unordsf2";
129  Names[RTLIB::O_F64] = "__unorddf2";
130}
131
132/// InitCmpLibcallCCs - Set default comparison libcall CC.
133///
134static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
135  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
136  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
137  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
138  CCs[RTLIB::UNE_F32] = ISD::SETNE;
139  CCs[RTLIB::UNE_F64] = ISD::SETNE;
140  CCs[RTLIB::OGE_F32] = ISD::SETGE;
141  CCs[RTLIB::OGE_F64] = ISD::SETGE;
142  CCs[RTLIB::OLT_F32] = ISD::SETLT;
143  CCs[RTLIB::OLT_F64] = ISD::SETLT;
144  CCs[RTLIB::OLE_F32] = ISD::SETLE;
145  CCs[RTLIB::OLE_F64] = ISD::SETLE;
146  CCs[RTLIB::OGT_F32] = ISD::SETGT;
147  CCs[RTLIB::OGT_F64] = ISD::SETGT;
148  CCs[RTLIB::UO_F32] = ISD::SETNE;
149  CCs[RTLIB::UO_F64] = ISD::SETNE;
150  CCs[RTLIB::O_F32] = ISD::SETEQ;
151  CCs[RTLIB::O_F64] = ISD::SETEQ;
152}
153
154TargetLowering::TargetLowering(TargetMachine &tm)
155  : TM(tm), TD(TM.getTargetData()) {
156  assert(ISD::BUILTIN_OP_END <= 156 &&
157         "Fixed size array in TargetLowering is not large enough!");
158  // All operations default to being supported.
159  memset(OpActions, 0, sizeof(OpActions));
160  memset(LoadXActions, 0, sizeof(LoadXActions));
161  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
162  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
163  memset(ConvertActions, 0, sizeof(ConvertActions));
164
165  // Set default actions for various operations.
166  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
167    // Default all indexed load / store to expand.
168    for (unsigned IM = (unsigned)ISD::PRE_INC;
169         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
170      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
171      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
172    }
173
174    // These operations default to expand.
175    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
176  }
177
178  // ConstantFP nodes default to expand.  Targets can either change this to
179  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
180  // to optimize expansions for certain constants.
181  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
182  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
183  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
184
185  // Default ISD::TRAP to expand (which turns it into abort).
186  setOperationAction(ISD::TRAP, MVT::Other, Expand);
187
188  IsLittleEndian = TD->isLittleEndian();
189  UsesGlobalOffsetTable = false;
190  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
191  ShiftAmtHandling = Undefined;
192  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
193  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
194  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
195  allowUnalignedMemoryAccesses = false;
196  UseUnderscoreSetJmp = false;
197  UseUnderscoreLongJmp = false;
198  SelectIsExpensive = false;
199  IntDivIsCheap = false;
200  Pow2DivIsCheap = false;
201  StackPointerRegisterToSaveRestore = 0;
202  ExceptionPointerRegister = 0;
203  ExceptionSelectorRegister = 0;
204  SetCCResultContents = UndefinedSetCCResult;
205  SchedPreferenceInfo = SchedulingForLatency;
206  JumpBufSize = 0;
207  JumpBufAlignment = 0;
208  IfCvtBlockSizeLimit = 2;
209
210  InitLibcallNames(LibcallRoutineNames);
211  InitCmpLibcallCCs(CmpLibcallCCs);
212
213  // Tell Legalize whether the assembler supports DEBUG_LOC.
214  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
215    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
216}
217
218TargetLowering::~TargetLowering() {}
219
220
221SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
222  assert(getSubtarget() && "Subtarget not defined");
223  SDOperand ChainOp = Op.getOperand(0);
224  SDOperand DestOp = Op.getOperand(1);
225  SDOperand SourceOp = Op.getOperand(2);
226  SDOperand CountOp = Op.getOperand(3);
227  SDOperand AlignOp = Op.getOperand(4);
228  SDOperand AlwaysInlineOp = Op.getOperand(5);
229
230  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
231  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
232  if (Align == 0) Align = 1;
233
234  // If size is unknown, call memcpy.
235  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
236  if (!I) {
237    assert(!AlwaysInline && "Cannot inline copy of unknown size");
238    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
239  }
240
241  // If not DWORD aligned or if size is more than threshold, then call memcpy.
242  // The libc version is likely to be faster for the following cases. It can
243  // use the address value and run time information about the CPU.
244  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
245  unsigned Size = I->getValue();
246  if (AlwaysInline ||
247      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
248       (Align & 3) == 0))
249    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
250  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
251}
252
253
254SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
255                                          SDOperand Dest,
256                                          SDOperand Source,
257                                          SDOperand Count,
258                                          SelectionDAG &DAG) {
259  MVT::ValueType IntPtr = getPointerTy();
260  TargetLowering::ArgListTy Args;
261  TargetLowering::ArgListEntry Entry;
262  Entry.Ty = getTargetData()->getIntPtrType();
263  Entry.Node = Dest; Args.push_back(Entry);
264  Entry.Node = Source; Args.push_back(Entry);
265  Entry.Node = Count; Args.push_back(Entry);
266  std::pair<SDOperand,SDOperand> CallResult =
267      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
268                  false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
269  return CallResult.second;
270}
271
272
273/// computeRegisterProperties - Once all of the register classes are added,
274/// this allows us to compute derived properties we expose.
275void TargetLowering::computeRegisterProperties() {
276  assert(MVT::LAST_VALUETYPE <= 32 &&
277         "Too many value types for ValueTypeActions to hold!");
278
279  // Everything defaults to needing one register.
280  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
281    NumRegistersForVT[i] = 1;
282    RegisterTypeForVT[i] = TransformToType[i] = i;
283  }
284  // ...except isVoid, which doesn't need any registers.
285  NumRegistersForVT[MVT::isVoid] = 0;
286
287  // Find the largest integer register class.
288  unsigned LargestIntReg = MVT::i128;
289  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
290    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
291
292  // Every integer value type larger than this largest register takes twice as
293  // many registers to represent as the previous ValueType.
294  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
295       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
296    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
297    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
298    TransformToType[ExpandedReg] = ExpandedReg - 1;
299    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
300  }
301
302  // Inspect all of the ValueType's smaller than the largest integer
303  // register to see which ones need promotion.
304  MVT::ValueType LegalIntReg = LargestIntReg;
305  for (MVT::ValueType IntReg = LargestIntReg - 1;
306       IntReg >= MVT::i1; --IntReg) {
307    if (isTypeLegal(IntReg)) {
308      LegalIntReg = IntReg;
309    } else {
310      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
311      ValueTypeActions.setTypeAction(IntReg, Promote);
312    }
313  }
314
315  // ppcf128 type is really two f64's.
316  if (!isTypeLegal(MVT::ppcf128)) {
317    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
318    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
319    TransformToType[MVT::ppcf128] = MVT::f64;
320    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
321  }
322
323  // Decide how to handle f64. If the target does not have native f64 support,
324  // expand it to i64 and we will be generating soft float library calls.
325  if (!isTypeLegal(MVT::f64)) {
326    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
327    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
328    TransformToType[MVT::f64] = MVT::i64;
329    ValueTypeActions.setTypeAction(MVT::f64, Expand);
330  }
331
332  // Decide how to handle f32. If the target does not have native support for
333  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
334  if (!isTypeLegal(MVT::f32)) {
335    if (isTypeLegal(MVT::f64)) {
336      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
337      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
338      TransformToType[MVT::f32] = MVT::f64;
339      ValueTypeActions.setTypeAction(MVT::f32, Promote);
340    } else {
341      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
342      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
343      TransformToType[MVT::f32] = MVT::i32;
344      ValueTypeActions.setTypeAction(MVT::f32, Expand);
345    }
346  }
347
348  // Loop over all of the vector value types to see which need transformations.
349  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
350       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
351    if (!isTypeLegal(i)) {
352      MVT::ValueType IntermediateVT, RegisterVT;
353      unsigned NumIntermediates;
354      NumRegistersForVT[i] =
355        getVectorTypeBreakdown(i,
356                               IntermediateVT, NumIntermediates,
357                               RegisterVT);
358      RegisterTypeForVT[i] = RegisterVT;
359      TransformToType[i] = MVT::Other; // this isn't actually used
360      ValueTypeActions.setTypeAction(i, Expand);
361    }
362  }
363}
364
365const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
366  return NULL;
367}
368
369/// getVectorTypeBreakdown - Vector types are broken down into some number of
370/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
371/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
372/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
373///
374/// This method returns the number of registers needed, and the VT for each
375/// register.  It also returns the VT and quantity of the intermediate values
376/// before they are promoted/expanded.
377///
378unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
379                                                MVT::ValueType &IntermediateVT,
380                                                unsigned &NumIntermediates,
381                                      MVT::ValueType &RegisterVT) const {
382  // Figure out the right, legal destination reg to copy into.
383  unsigned NumElts = MVT::getVectorNumElements(VT);
384  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
385
386  unsigned NumVectorRegs = 1;
387
388  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
389  // could break down into LHS/RHS like LegalizeDAG does.
390  if (!isPowerOf2_32(NumElts)) {
391    NumVectorRegs = NumElts;
392    NumElts = 1;
393  }
394
395  // Divide the input until we get to a supported size.  This will always
396  // end with a scalar if the target doesn't support vectors.
397  while (NumElts > 1 &&
398         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
399    NumElts >>= 1;
400    NumVectorRegs <<= 1;
401  }
402
403  NumIntermediates = NumVectorRegs;
404
405  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
406  if (!isTypeLegal(NewVT))
407    NewVT = EltTy;
408  IntermediateVT = NewVT;
409
410  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
411  RegisterVT = DestVT;
412  if (DestVT < NewVT) {
413    // Value is expanded, e.g. i64 -> i16.
414    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
415  } else {
416    // Otherwise, promotion or legal types use the same number of registers as
417    // the vector decimated to the appropriate level.
418    return NumVectorRegs;
419  }
420
421  return 1;
422}
423
424/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
425/// function arguments in the caller parameter area.
426unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
427  return Log2_32(TD->getCallFrameTypeAlignment(Ty));
428}
429
430SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
431                                                   SelectionDAG &DAG) const {
432  if (usesGlobalOffsetTable())
433    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
434  return Table;
435}
436
437//===----------------------------------------------------------------------===//
438//  Optimization Methods
439//===----------------------------------------------------------------------===//
440
441/// ShrinkDemandedConstant - Check to see if the specified operand of the
442/// specified instruction is a constant integer.  If so, check to see if there
443/// are any bits set in the constant that are not demanded.  If so, shrink the
444/// constant and return true.
445bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
446                                                            uint64_t Demanded) {
447  // FIXME: ISD::SELECT, ISD::SELECT_CC
448  switch(Op.getOpcode()) {
449  default: break;
450  case ISD::AND:
451  case ISD::OR:
452  case ISD::XOR:
453    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
454      if ((~Demanded & C->getValue()) != 0) {
455        MVT::ValueType VT = Op.getValueType();
456        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
457                                    DAG.getConstant(Demanded & C->getValue(),
458                                                    VT));
459        return CombineTo(Op, New);
460      }
461    break;
462  }
463  return false;
464}
465
466/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
467/// DemandedMask bits of the result of Op are ever used downstream.  If we can
468/// use this information to simplify Op, create a new simplified DAG node and
469/// return true, returning the original and new nodes in Old and New. Otherwise,
470/// analyze the expression and return a mask of KnownOne and KnownZero bits for
471/// the expression (used to simplify the caller).  The KnownZero/One bits may
472/// only be accurate for those bits in the DemandedMask.
473bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
474                                          uint64_t &KnownZero,
475                                          uint64_t &KnownOne,
476                                          TargetLoweringOpt &TLO,
477                                          unsigned Depth) const {
478  KnownZero = KnownOne = 0;   // Don't know anything.
479
480  // The masks are not wide enough to represent this type!  Should use APInt.
481  if (Op.getValueType() == MVT::i128)
482    return false;
483
484  // Other users may use these bits.
485  if (!Op.Val->hasOneUse()) {
486    if (Depth != 0) {
487      // If not at the root, Just compute the KnownZero/KnownOne bits to
488      // simplify things downstream.
489      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
490      return false;
491    }
492    // If this is the root being simplified, allow it to have multiple uses,
493    // just set the DemandedMask to all bits.
494    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
495  } else if (DemandedMask == 0) {
496    // Not demanding any bits from Op.
497    if (Op.getOpcode() != ISD::UNDEF)
498      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
499    return false;
500  } else if (Depth == 6) {        // Limit search depth.
501    return false;
502  }
503
504  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
505  switch (Op.getOpcode()) {
506  case ISD::Constant:
507    // We know all of the bits for a constant!
508    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
509    KnownZero = ~KnownOne & DemandedMask;
510    return false;   // Don't fall through, will infinitely loop.
511  case ISD::AND:
512    // If the RHS is a constant, check to see if the LHS would be zero without
513    // using the bits from the RHS.  Below, we use knowledge about the RHS to
514    // simplify the LHS, here we're using information from the LHS to simplify
515    // the RHS.
516    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
517      uint64_t LHSZero, LHSOne;
518      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
519                                LHSZero, LHSOne, Depth+1);
520      // If the LHS already has zeros where RHSC does, this and is dead.
521      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
522        return TLO.CombineTo(Op, Op.getOperand(0));
523      // If any of the set bits in the RHS are known zero on the LHS, shrink
524      // the constant.
525      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
526        return true;
527    }
528
529    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
530                             KnownOne, TLO, Depth+1))
531      return true;
532    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
533    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
534                             KnownZero2, KnownOne2, TLO, Depth+1))
535      return true;
536    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
537
538    // If all of the demanded bits are known one on one side, return the other.
539    // These bits cannot contribute to the result of the 'and'.
540    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
541      return TLO.CombineTo(Op, Op.getOperand(0));
542    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
543      return TLO.CombineTo(Op, Op.getOperand(1));
544    // If all of the demanded bits in the inputs are known zeros, return zero.
545    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
546      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
547    // If the RHS is a constant, see if we can simplify it.
548    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
549      return true;
550
551    // Output known-1 bits are only known if set in both the LHS & RHS.
552    KnownOne &= KnownOne2;
553    // Output known-0 are known to be clear if zero in either the LHS | RHS.
554    KnownZero |= KnownZero2;
555    break;
556  case ISD::OR:
557    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
558                             KnownOne, TLO, Depth+1))
559      return true;
560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
561    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
562                             KnownZero2, KnownOne2, TLO, Depth+1))
563      return true;
564    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
565
566    // If all of the demanded bits are known zero on one side, return the other.
567    // These bits cannot contribute to the result of the 'or'.
568    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
569      return TLO.CombineTo(Op, Op.getOperand(0));
570    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
571      return TLO.CombineTo(Op, Op.getOperand(1));
572    // If all of the potentially set bits on one side are known to be set on
573    // the other side, just use the 'other' side.
574    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
575        (DemandedMask & (~KnownZero)))
576      return TLO.CombineTo(Op, Op.getOperand(0));
577    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
578        (DemandedMask & (~KnownZero2)))
579      return TLO.CombineTo(Op, Op.getOperand(1));
580    // If the RHS is a constant, see if we can simplify it.
581    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
582      return true;
583
584    // Output known-0 bits are only known if clear in both the LHS & RHS.
585    KnownZero &= KnownZero2;
586    // Output known-1 are known to be set if set in either the LHS | RHS.
587    KnownOne |= KnownOne2;
588    break;
589  case ISD::XOR:
590    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
591                             KnownOne, TLO, Depth+1))
592      return true;
593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
594    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
595                             KnownOne2, TLO, Depth+1))
596      return true;
597    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
598
599    // If all of the demanded bits are known zero on one side, return the other.
600    // These bits cannot contribute to the result of the 'xor'.
601    if ((DemandedMask & KnownZero) == DemandedMask)
602      return TLO.CombineTo(Op, Op.getOperand(0));
603    if ((DemandedMask & KnownZero2) == DemandedMask)
604      return TLO.CombineTo(Op, Op.getOperand(1));
605
606    // If all of the unknown bits are known to be zero on one side or the other
607    // (but not both) turn this into an *inclusive* or.
608    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
609    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
610      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
611                                               Op.getOperand(0),
612                                               Op.getOperand(1)));
613
614    // Output known-0 bits are known if clear or set in both the LHS & RHS.
615    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
616    // Output known-1 are known to be set if set in only one of the LHS, RHS.
617    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
618
619    // If all of the demanded bits on one side are known, and all of the set
620    // bits on that side are also known to be set on the other side, turn this
621    // into an AND, as we know the bits will be cleared.
622    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
623    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
624      if ((KnownOne & KnownOne2) == KnownOne) {
625        MVT::ValueType VT = Op.getValueType();
626        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
627        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
628                                                 ANDC));
629      }
630    }
631
632    // If the RHS is a constant, see if we can simplify it.
633    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
634    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
635      return true;
636
637    KnownZero = KnownZeroOut;
638    KnownOne  = KnownOneOut;
639    break;
640  case ISD::SETCC:
641    // If we know the result of a setcc has the top bits zero, use this info.
642    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
643      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
644    break;
645  case ISD::SELECT:
646    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
647                             KnownOne, TLO, Depth+1))
648      return true;
649    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
650                             KnownOne2, TLO, Depth+1))
651      return true;
652    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
654
655    // If the operands are constants, see if we can simplify them.
656    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
657      return true;
658
659    // Only known if known in both the LHS and RHS.
660    KnownOne &= KnownOne2;
661    KnownZero &= KnownZero2;
662    break;
663  case ISD::SELECT_CC:
664    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
665                             KnownOne, TLO, Depth+1))
666      return true;
667    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
668                             KnownOne2, TLO, Depth+1))
669      return true;
670    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
671    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
672
673    // If the operands are constants, see if we can simplify them.
674    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
675      return true;
676
677    // Only known if known in both the LHS and RHS.
678    KnownOne &= KnownOne2;
679    KnownZero &= KnownZero2;
680    break;
681  case ISD::SHL:
682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
683      unsigned ShAmt = SA->getValue();
684      SDOperand InOp = Op.getOperand(0);
685
686      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
687      // single shift.  We can do this if the bottom bits (which are shifted
688      // out) are never demanded.
689      if (InOp.getOpcode() == ISD::SRL &&
690          isa<ConstantSDNode>(InOp.getOperand(1))) {
691        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
692          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
693          unsigned Opc = ISD::SHL;
694          int Diff = ShAmt-C1;
695          if (Diff < 0) {
696            Diff = -Diff;
697            Opc = ISD::SRL;
698          }
699
700          SDOperand NewSA =
701            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
702          MVT::ValueType VT = Op.getValueType();
703          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
704                                                   InOp.getOperand(0), NewSA));
705        }
706      }
707
708      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
709                               KnownZero, KnownOne, TLO, Depth+1))
710        return true;
711      KnownZero <<= SA->getValue();
712      KnownOne  <<= SA->getValue();
713      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
714    }
715    break;
716  case ISD::SRL:
717    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
718      MVT::ValueType VT = Op.getValueType();
719      unsigned ShAmt = SA->getValue();
720      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
721      unsigned VTSize = MVT::getSizeInBits(VT);
722      SDOperand InOp = Op.getOperand(0);
723
724      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
725      // single shift.  We can do this if the top bits (which are shifted out)
726      // are never demanded.
727      if (InOp.getOpcode() == ISD::SHL &&
728          isa<ConstantSDNode>(InOp.getOperand(1))) {
729        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
730          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
731          unsigned Opc = ISD::SRL;
732          int Diff = ShAmt-C1;
733          if (Diff < 0) {
734            Diff = -Diff;
735            Opc = ISD::SHL;
736          }
737
738          SDOperand NewSA =
739            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
740          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
741                                                   InOp.getOperand(0), NewSA));
742        }
743      }
744
745      // Compute the new bits that are at the top now.
746      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
747                               KnownZero, KnownOne, TLO, Depth+1))
748        return true;
749      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
750      KnownZero &= TypeMask;
751      KnownOne  &= TypeMask;
752      KnownZero >>= ShAmt;
753      KnownOne  >>= ShAmt;
754
755      uint64_t HighBits = (1ULL << ShAmt)-1;
756      HighBits <<= VTSize - ShAmt;
757      KnownZero |= HighBits;  // High bits known zero.
758    }
759    break;
760  case ISD::SRA:
761    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
762      MVT::ValueType VT = Op.getValueType();
763      unsigned ShAmt = SA->getValue();
764
765      // Compute the new bits that are at the top now.
766      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
767
768      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
769
770      // If any of the demanded bits are produced by the sign extension, we also
771      // demand the input sign bit.
772      uint64_t HighBits = (1ULL << ShAmt)-1;
773      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
774      if (HighBits & DemandedMask)
775        InDemandedMask |= MVT::getIntVTSignBit(VT);
776
777      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
778                               KnownZero, KnownOne, TLO, Depth+1))
779        return true;
780      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
781      KnownZero &= TypeMask;
782      KnownOne  &= TypeMask;
783      KnownZero >>= ShAmt;
784      KnownOne  >>= ShAmt;
785
786      // Handle the sign bits.
787      uint64_t SignBit = MVT::getIntVTSignBit(VT);
788      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
789
790      // If the input sign bit is known to be zero, or if none of the top bits
791      // are demanded, turn this into an unsigned shift right.
792      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
793        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
794                                                 Op.getOperand(1)));
795      } else if (KnownOne & SignBit) { // New bits are known one.
796        KnownOne |= HighBits;
797      }
798    }
799    break;
800  case ISD::SIGN_EXTEND_INREG: {
801    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
802
803    // Sign extension.  Compute the demanded bits in the result that are not
804    // present in the input.
805    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
806
807    // If none of the extended bits are demanded, eliminate the sextinreg.
808    if (NewBits == 0)
809      return TLO.CombineTo(Op, Op.getOperand(0));
810
811    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
812    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
813
814    // Since the sign extended bits are demanded, we know that the sign
815    // bit is demanded.
816    InputDemandedBits |= InSignBit;
817
818    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
819                             KnownZero, KnownOne, TLO, Depth+1))
820      return true;
821    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
822
823    // If the sign bit of the input is known set or clear, then we know the
824    // top bits of the result.
825
826    // If the input sign bit is known zero, convert this into a zero extension.
827    if (KnownZero & InSignBit)
828      return TLO.CombineTo(Op,
829                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
830
831    if (KnownOne & InSignBit) {    // Input sign bit known set
832      KnownOne |= NewBits;
833      KnownZero &= ~NewBits;
834    } else {                       // Input sign bit unknown
835      KnownZero &= ~NewBits;
836      KnownOne &= ~NewBits;
837    }
838    break;
839  }
840  case ISD::CTTZ:
841  case ISD::CTLZ:
842  case ISD::CTPOP: {
843    MVT::ValueType VT = Op.getValueType();
844    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
845    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
846    KnownOne  = 0;
847    break;
848  }
849  case ISD::LOAD: {
850    if (ISD::isZEXTLoad(Op.Val)) {
851      LoadSDNode *LD = cast<LoadSDNode>(Op);
852      MVT::ValueType VT = LD->getMemoryVT();
853      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
854    }
855    break;
856  }
857  case ISD::ZERO_EXTEND: {
858    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
859
860    // If none of the top bits are demanded, convert this into an any_extend.
861    uint64_t NewBits = (~InMask) & DemandedMask;
862    if (NewBits == 0)
863      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
864                                               Op.getValueType(),
865                                               Op.getOperand(0)));
866
867    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
868                             KnownZero, KnownOne, TLO, Depth+1))
869      return true;
870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
871    KnownZero |= NewBits;
872    break;
873  }
874  case ISD::SIGN_EXTEND: {
875    MVT::ValueType InVT = Op.getOperand(0).getValueType();
876    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
877    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
878    uint64_t NewBits   = (~InMask) & DemandedMask;
879
880    // If none of the top bits are demanded, convert this into an any_extend.
881    if (NewBits == 0)
882      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
883                                           Op.getOperand(0)));
884
885    // Since some of the sign extended bits are demanded, we know that the sign
886    // bit is demanded.
887    uint64_t InDemandedBits = DemandedMask & InMask;
888    InDemandedBits |= InSignBit;
889
890    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
891                             KnownOne, TLO, Depth+1))
892      return true;
893
894    // If the sign bit is known zero, convert this to a zero extend.
895    if (KnownZero & InSignBit)
896      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
897                                               Op.getValueType(),
898                                               Op.getOperand(0)));
899
900    // If the sign bit is known one, the top bits match.
901    if (KnownOne & InSignBit) {
902      KnownOne  |= NewBits;
903      KnownZero &= ~NewBits;
904    } else {   // Otherwise, top bits aren't known.
905      KnownOne  &= ~NewBits;
906      KnownZero &= ~NewBits;
907    }
908    break;
909  }
910  case ISD::ANY_EXTEND: {
911    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
912    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
913                             KnownZero, KnownOne, TLO, Depth+1))
914      return true;
915    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916    break;
917  }
918  case ISD::TRUNCATE: {
919    // Simplify the input, using demanded bit information, and compute the known
920    // zero/one bits live out.
921    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
922                             KnownZero, KnownOne, TLO, Depth+1))
923      return true;
924
925    // If the input is only used by this truncate, see if we can shrink it based
926    // on the known demanded bits.
927    if (Op.getOperand(0).Val->hasOneUse()) {
928      SDOperand In = Op.getOperand(0);
929      switch (In.getOpcode()) {
930      default: break;
931      case ISD::SRL:
932        // Shrink SRL by a constant if none of the high bits shifted in are
933        // demanded.
934        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
935          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
936          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
937          HighBits >>= ShAmt->getValue();
938
939          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
940              (DemandedMask & HighBits) == 0) {
941            // None of the shifted in bits are needed.  Add a truncate of the
942            // shift input, then shift it.
943            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
944                                                 Op.getValueType(),
945                                                 In.getOperand(0));
946            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
947                                                   NewTrunc, In.getOperand(1)));
948          }
949        }
950        break;
951      }
952    }
953
954    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
955    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
956    KnownZero &= OutMask;
957    KnownOne &= OutMask;
958    break;
959  }
960  case ISD::AssertZext: {
961    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
962    uint64_t InMask = MVT::getIntVTBitMask(VT);
963    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
964                             KnownZero, KnownOne, TLO, Depth+1))
965      return true;
966    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
967    KnownZero |= ~InMask & DemandedMask;
968    break;
969  }
970  case ISD::FGETSIGN:
971    // All bits are zero except the low bit.
972    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
973    break;
974  case ISD::BIT_CONVERT:
975#if 0
976    // If this is an FP->Int bitcast and if the sign bit is the only thing that
977    // is demanded, turn this into a FGETSIGN.
978    if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
979        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
980        !MVT::isVector(Op.getOperand(0).getValueType())) {
981      // Only do this xform if FGETSIGN is valid or if before legalize.
982      if (!TLO.AfterLegalize ||
983          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
984        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
985        // place.  We expect the SHL to be eliminated by other optimizations.
986        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
987                                         Op.getOperand(0));
988        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
989        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
990        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
991                                                 Sign, ShAmt));
992      }
993    }
994#endif
995    break;
996  case ISD::ADD:
997  case ISD::SUB:
998  case ISD::INTRINSIC_WO_CHAIN:
999  case ISD::INTRINSIC_W_CHAIN:
1000  case ISD::INTRINSIC_VOID:
1001    // Just use ComputeMaskedBits to compute output bits.
1002    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1003    break;
1004  }
1005
1006  // If we know the value of all of the demanded bits, return this as a
1007  // constant.
1008  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1009    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1010
1011  return false;
1012}
1013
1014/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1015/// in Mask are known to be either zero or one and return them in the
1016/// KnownZero/KnownOne bitsets.
1017void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1018                                                    const APInt &Mask,
1019                                                    APInt &KnownZero,
1020                                                    APInt &KnownOne,
1021                                                    const SelectionDAG &DAG,
1022                                                    unsigned Depth) const {
1023  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1024          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1025          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1026          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1027         "Should use MaskedValueIsZero if you don't know whether Op"
1028         " is a target node!");
1029  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1030}
1031
1032/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1033/// targets that want to expose additional information about sign bits to the
1034/// DAG Combiner.
1035unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1036                                                         unsigned Depth) const {
1037  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1038          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1039          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1040          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1041         "Should use ComputeNumSignBits if you don't know whether Op"
1042         " is a target node!");
1043  return 1;
1044}
1045
1046
1047/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1048/// and cc. If it is unable to simplify it, return a null SDOperand.
1049SDOperand
1050TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1051                              ISD::CondCode Cond, bool foldBooleans,
1052                              DAGCombinerInfo &DCI) const {
1053  SelectionDAG &DAG = DCI.DAG;
1054
1055  // These setcc operations always fold.
1056  switch (Cond) {
1057  default: break;
1058  case ISD::SETFALSE:
1059  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1060  case ISD::SETTRUE:
1061  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1062  }
1063
1064  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1065    uint64_t C1 = N1C->getValue();
1066    if (isa<ConstantSDNode>(N0.Val)) {
1067      return DAG.FoldSetCC(VT, N0, N1, Cond);
1068    } else {
1069      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1070      // equality comparison, then we're just comparing whether X itself is
1071      // zero.
1072      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1073          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1074          N0.getOperand(1).getOpcode() == ISD::Constant) {
1075        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1076        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1077            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1078          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1079            // (srl (ctlz x), 5) == 0  -> X != 0
1080            // (srl (ctlz x), 5) != 1  -> X != 0
1081            Cond = ISD::SETNE;
1082          } else {
1083            // (srl (ctlz x), 5) != 0  -> X == 0
1084            // (srl (ctlz x), 5) == 1  -> X == 0
1085            Cond = ISD::SETEQ;
1086          }
1087          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1088          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1089                              Zero, Cond);
1090        }
1091      }
1092
1093      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1094      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1095        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1096
1097        // If the comparison constant has bits in the upper part, the
1098        // zero-extended value could never match.
1099        if (C1 & (~0ULL << InSize)) {
1100          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1101          switch (Cond) {
1102          case ISD::SETUGT:
1103          case ISD::SETUGE:
1104          case ISD::SETEQ: return DAG.getConstant(0, VT);
1105          case ISD::SETULT:
1106          case ISD::SETULE:
1107          case ISD::SETNE: return DAG.getConstant(1, VT);
1108          case ISD::SETGT:
1109          case ISD::SETGE:
1110            // True if the sign bit of C1 is set.
1111            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1112          case ISD::SETLT:
1113          case ISD::SETLE:
1114            // True if the sign bit of C1 isn't set.
1115            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1116          default:
1117            break;
1118          }
1119        }
1120
1121        // Otherwise, we can perform the comparison with the low bits.
1122        switch (Cond) {
1123        case ISD::SETEQ:
1124        case ISD::SETNE:
1125        case ISD::SETUGT:
1126        case ISD::SETUGE:
1127        case ISD::SETULT:
1128        case ISD::SETULE:
1129          return DAG.getSetCC(VT, N0.getOperand(0),
1130                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1131                          Cond);
1132        default:
1133          break;   // todo, be more careful with signed comparisons
1134        }
1135      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1136                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1137        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1138        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1139        MVT::ValueType ExtDstTy = N0.getValueType();
1140        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1141
1142        // If the extended part has any inconsistent bits, it cannot ever
1143        // compare equal.  In other words, they have to be all ones or all
1144        // zeros.
1145        uint64_t ExtBits =
1146          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1147        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1148          return DAG.getConstant(Cond == ISD::SETNE, VT);
1149
1150        SDOperand ZextOp;
1151        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1152        if (Op0Ty == ExtSrcTy) {
1153          ZextOp = N0.getOperand(0);
1154        } else {
1155          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1156          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1157                               DAG.getConstant(Imm, Op0Ty));
1158        }
1159        if (!DCI.isCalledByLegalizer())
1160          DCI.AddToWorklist(ZextOp.Val);
1161        // Otherwise, make this a use of a zext.
1162        return DAG.getSetCC(VT, ZextOp,
1163                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1164                                            ExtDstTy),
1165                            Cond);
1166      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1167                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1168
1169        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1170        if (N0.getOpcode() == ISD::SETCC) {
1171          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1172          if (TrueWhenTrue)
1173            return N0;
1174
1175          // Invert the condition.
1176          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1177          CC = ISD::getSetCCInverse(CC,
1178                               MVT::isInteger(N0.getOperand(0).getValueType()));
1179          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1180        }
1181
1182        if ((N0.getOpcode() == ISD::XOR ||
1183             (N0.getOpcode() == ISD::AND &&
1184              N0.getOperand(0).getOpcode() == ISD::XOR &&
1185              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1186            isa<ConstantSDNode>(N0.getOperand(1)) &&
1187            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1188          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1189          // can only do this if the top bits are known zero.
1190          unsigned BitWidth = N0.getValueSizeInBits();
1191          if (DAG.MaskedValueIsZero(N0,
1192                                    APInt::getHighBitsSet(BitWidth,
1193                                                          BitWidth-1))) {
1194            // Okay, get the un-inverted input value.
1195            SDOperand Val;
1196            if (N0.getOpcode() == ISD::XOR)
1197              Val = N0.getOperand(0);
1198            else {
1199              assert(N0.getOpcode() == ISD::AND &&
1200                     N0.getOperand(0).getOpcode() == ISD::XOR);
1201              // ((X^1)&1)^1 -> X & 1
1202              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1203                                N0.getOperand(0).getOperand(0),
1204                                N0.getOperand(1));
1205            }
1206            return DAG.getSetCC(VT, Val, N1,
1207                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1208          }
1209        }
1210      }
1211
1212      uint64_t MinVal, MaxVal;
1213      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1214      if (ISD::isSignedIntSetCC(Cond)) {
1215        MinVal = 1ULL << (OperandBitSize-1);
1216        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1217          MaxVal = ~0ULL >> (65-OperandBitSize);
1218        else
1219          MaxVal = 0;
1220      } else {
1221        MinVal = 0;
1222        MaxVal = ~0ULL >> (64-OperandBitSize);
1223      }
1224
1225      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1226      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1227        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1228        --C1;                                          // X >= C0 --> X > (C0-1)
1229        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1230                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1231      }
1232
1233      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1234        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1235        ++C1;                                          // X <= C0 --> X < (C0+1)
1236        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1237                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1238      }
1239
1240      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1241        return DAG.getConstant(0, VT);      // X < MIN --> false
1242      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1243        return DAG.getConstant(1, VT);      // X >= MIN --> true
1244      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1245        return DAG.getConstant(0, VT);      // X > MAX --> false
1246      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1247        return DAG.getConstant(1, VT);      // X <= MAX --> true
1248
1249      // Canonicalize setgt X, Min --> setne X, Min
1250      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1251        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1252      // Canonicalize setlt X, Max --> setne X, Max
1253      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1254        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1255
1256      // If we have setult X, 1, turn it into seteq X, 0
1257      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1258        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1259                        ISD::SETEQ);
1260      // If we have setugt X, Max-1, turn it into seteq X, Max
1261      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1262        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1263                        ISD::SETEQ);
1264
1265      // If we have "setcc X, C0", check to see if we can shrink the immediate
1266      // by changing cc.
1267
1268      // SETUGT X, SINTMAX  -> SETLT X, 0
1269      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1270          C1 == (~0ULL >> (65-OperandBitSize)))
1271        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1272                            ISD::SETLT);
1273
1274      // FIXME: Implement the rest of these.
1275
1276      // Fold bit comparisons when we can.
1277      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1278          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1279        if (ConstantSDNode *AndRHS =
1280                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1281          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1282            // Perform the xform if the AND RHS is a single bit.
1283            if (isPowerOf2_64(AndRHS->getValue())) {
1284              return DAG.getNode(ISD::SRL, VT, N0,
1285                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1286                                             getShiftAmountTy()));
1287            }
1288          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1289            // (X & 8) == 8  -->  (X & 8) >> 3
1290            // Perform the xform if C1 is a single bit.
1291            if (isPowerOf2_64(C1)) {
1292              return DAG.getNode(ISD::SRL, VT, N0,
1293                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1294            }
1295          }
1296        }
1297    }
1298  } else if (isa<ConstantSDNode>(N0.Val)) {
1299      // Ensure that the constant occurs on the RHS.
1300    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1301  }
1302
1303  if (isa<ConstantFPSDNode>(N0.Val)) {
1304    // Constant fold or commute setcc.
1305    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1306    if (O.Val) return O;
1307  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1308    // If the RHS of an FP comparison is a constant, simplify it away in
1309    // some cases.
1310    if (CFP->getValueAPF().isNaN()) {
1311      // If an operand is known to be a nan, we can fold it.
1312      switch (ISD::getUnorderedFlavor(Cond)) {
1313      default: assert(0 && "Unknown flavor!");
1314      case 0:  // Known false.
1315        return DAG.getConstant(0, VT);
1316      case 1:  // Known true.
1317        return DAG.getConstant(1, VT);
1318      case 2:  // Undefined.
1319        return DAG.getNode(ISD::UNDEF, VT);
1320      }
1321    }
1322
1323    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1324    // constant if knowing that the operand is non-nan is enough.  We prefer to
1325    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1326    // materialize 0.0.
1327    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1328      return DAG.getSetCC(VT, N0, N0, Cond);
1329  }
1330
1331  if (N0 == N1) {
1332    // We can always fold X == X for integer setcc's.
1333    if (MVT::isInteger(N0.getValueType()))
1334      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1335    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1336    if (UOF == 2)   // FP operators that are undefined on NaNs.
1337      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1338    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1339      return DAG.getConstant(UOF, VT);
1340    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1341    // if it is not already.
1342    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1343    if (NewCond != Cond)
1344      return DAG.getSetCC(VT, N0, N1, NewCond);
1345  }
1346
1347  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1348      MVT::isInteger(N0.getValueType())) {
1349    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1350        N0.getOpcode() == ISD::XOR) {
1351      // Simplify (X+Y) == (X+Z) -->  Y == Z
1352      if (N0.getOpcode() == N1.getOpcode()) {
1353        if (N0.getOperand(0) == N1.getOperand(0))
1354          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1355        if (N0.getOperand(1) == N1.getOperand(1))
1356          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1357        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1358          // If X op Y == Y op X, try other combinations.
1359          if (N0.getOperand(0) == N1.getOperand(1))
1360            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1361          if (N0.getOperand(1) == N1.getOperand(0))
1362            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1363        }
1364      }
1365
1366      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1367        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1368          // Turn (X+C1) == C2 --> X == C2-C1
1369          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1370            return DAG.getSetCC(VT, N0.getOperand(0),
1371                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1372                                N0.getValueType()), Cond);
1373          }
1374
1375          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1376          if (N0.getOpcode() == ISD::XOR)
1377            // If we know that all of the inverted bits are zero, don't bother
1378            // performing the inversion.
1379            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1380              return
1381                DAG.getSetCC(VT, N0.getOperand(0),
1382                             DAG.getConstant(LHSR->getAPIntValue() ^
1383                                               RHSC->getAPIntValue(),
1384                                             N0.getValueType()),
1385                             Cond);
1386        }
1387
1388        // Turn (C1-X) == C2 --> X == C1-C2
1389        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1390          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1391            return
1392              DAG.getSetCC(VT, N0.getOperand(1),
1393                           DAG.getConstant(SUBC->getAPIntValue() -
1394                                             RHSC->getAPIntValue(),
1395                                           N0.getValueType()),
1396                           Cond);
1397          }
1398        }
1399      }
1400
1401      // Simplify (X+Z) == X -->  Z == 0
1402      if (N0.getOperand(0) == N1)
1403        return DAG.getSetCC(VT, N0.getOperand(1),
1404                        DAG.getConstant(0, N0.getValueType()), Cond);
1405      if (N0.getOperand(1) == N1) {
1406        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1407          return DAG.getSetCC(VT, N0.getOperand(0),
1408                          DAG.getConstant(0, N0.getValueType()), Cond);
1409        else if (N0.Val->hasOneUse()) {
1410          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1411          // (Z-X) == X  --> Z == X<<1
1412          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1413                                     N1,
1414                                     DAG.getConstant(1, getShiftAmountTy()));
1415          if (!DCI.isCalledByLegalizer())
1416            DCI.AddToWorklist(SH.Val);
1417          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1418        }
1419      }
1420    }
1421
1422    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1423        N1.getOpcode() == ISD::XOR) {
1424      // Simplify  X == (X+Z) -->  Z == 0
1425      if (N1.getOperand(0) == N0) {
1426        return DAG.getSetCC(VT, N1.getOperand(1),
1427                        DAG.getConstant(0, N1.getValueType()), Cond);
1428      } else if (N1.getOperand(1) == N0) {
1429        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1430          return DAG.getSetCC(VT, N1.getOperand(0),
1431                          DAG.getConstant(0, N1.getValueType()), Cond);
1432        } else if (N1.Val->hasOneUse()) {
1433          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1434          // X == (Z-X)  --> X<<1 == Z
1435          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1436                                     DAG.getConstant(1, getShiftAmountTy()));
1437          if (!DCI.isCalledByLegalizer())
1438            DCI.AddToWorklist(SH.Val);
1439          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1440        }
1441      }
1442    }
1443  }
1444
1445  // Fold away ALL boolean setcc's.
1446  SDOperand Temp;
1447  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1448    switch (Cond) {
1449    default: assert(0 && "Unknown integer setcc!");
1450    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1451      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1452      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1453      if (!DCI.isCalledByLegalizer())
1454        DCI.AddToWorklist(Temp.Val);
1455      break;
1456    case ISD::SETNE:  // X != Y   -->  (X^Y)
1457      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1458      break;
1459    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1460    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1461      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1462      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1463      if (!DCI.isCalledByLegalizer())
1464        DCI.AddToWorklist(Temp.Val);
1465      break;
1466    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1467    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1468      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1469      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1470      if (!DCI.isCalledByLegalizer())
1471        DCI.AddToWorklist(Temp.Val);
1472      break;
1473    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1474    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1475      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1476      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1477      if (!DCI.isCalledByLegalizer())
1478        DCI.AddToWorklist(Temp.Val);
1479      break;
1480    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1481    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1482      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1483      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1484      break;
1485    }
1486    if (VT != MVT::i1) {
1487      if (!DCI.isCalledByLegalizer())
1488        DCI.AddToWorklist(N0.Val);
1489      // FIXME: If running after legalize, we probably can't do this.
1490      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1491    }
1492    return N0;
1493  }
1494
1495  // Could not fold it.
1496  return SDOperand();
1497}
1498
1499SDOperand TargetLowering::
1500PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1501  // Default implementation: no optimization.
1502  return SDOperand();
1503}
1504
1505//===----------------------------------------------------------------------===//
1506//  Inline Assembler Implementation Methods
1507//===----------------------------------------------------------------------===//
1508
1509TargetLowering::ConstraintType
1510TargetLowering::getConstraintType(const std::string &Constraint) const {
1511  // FIXME: lots more standard ones to handle.
1512  if (Constraint.size() == 1) {
1513    switch (Constraint[0]) {
1514    default: break;
1515    case 'r': return C_RegisterClass;
1516    case 'm':    // memory
1517    case 'o':    // offsetable
1518    case 'V':    // not offsetable
1519      return C_Memory;
1520    case 'i':    // Simple Integer or Relocatable Constant
1521    case 'n':    // Simple Integer
1522    case 's':    // Relocatable Constant
1523    case 'X':    // Allow ANY value.
1524    case 'I':    // Target registers.
1525    case 'J':
1526    case 'K':
1527    case 'L':
1528    case 'M':
1529    case 'N':
1530    case 'O':
1531    case 'P':
1532      return C_Other;
1533    }
1534  }
1535
1536  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1537      Constraint[Constraint.size()-1] == '}')
1538    return C_Register;
1539  return C_Unknown;
1540}
1541
1542/// LowerXConstraint - try to replace an X constraint, which matches anything,
1543/// with another that has more specific requirements based on the type of the
1544/// corresponding operand.
1545void TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
1546                                      std::string& s) const {
1547  if (MVT::isInteger(ConstraintVT))
1548    s = "r";
1549  else if (MVT::isFloatingPoint(ConstraintVT))
1550    s = "f";      // works for many targets
1551  else
1552    s = "";
1553}
1554
1555/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1556/// vector.  If it is invalid, don't add anything to Ops.
1557void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1558                                                  char ConstraintLetter,
1559                                                  std::vector<SDOperand> &Ops,
1560                                                  SelectionDAG &DAG) {
1561  switch (ConstraintLetter) {
1562  default: break;
1563  case 'X':     // Allows any operand; labels (basic block) use this.
1564    if (Op.getOpcode() == ISD::BasicBlock) {
1565      Ops.push_back(Op);
1566      return;
1567    }
1568    // fall through
1569  case 'i':    // Simple Integer or Relocatable Constant
1570  case 'n':    // Simple Integer
1571  case 's': {  // Relocatable Constant
1572    // These operands are interested in values of the form (GV+C), where C may
1573    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1574    // is possible and fine if either GV or C are missing.
1575    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1576    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1577
1578    // If we have "(add GV, C)", pull out GV/C
1579    if (Op.getOpcode() == ISD::ADD) {
1580      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1581      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1582      if (C == 0 || GA == 0) {
1583        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1584        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1585      }
1586      if (C == 0 || GA == 0)
1587        C = 0, GA = 0;
1588    }
1589
1590    // If we find a valid operand, map to the TargetXXX version so that the
1591    // value itself doesn't get selected.
1592    if (GA) {   // Either &GV   or   &GV+C
1593      if (ConstraintLetter != 'n') {
1594        int64_t Offs = GA->getOffset();
1595        if (C) Offs += C->getValue();
1596        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1597                                                 Op.getValueType(), Offs));
1598        return;
1599      }
1600    }
1601    if (C) {   // just C, no GV.
1602      // Simple constants are not allowed for 's'.
1603      if (ConstraintLetter != 's') {
1604        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1605        return;
1606      }
1607    }
1608    break;
1609  }
1610  }
1611}
1612
1613std::vector<unsigned> TargetLowering::
1614getRegClassForInlineAsmConstraint(const std::string &Constraint,
1615                                  MVT::ValueType VT) const {
1616  return std::vector<unsigned>();
1617}
1618
1619
1620std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1621getRegForInlineAsmConstraint(const std::string &Constraint,
1622                             MVT::ValueType VT) const {
1623  if (Constraint[0] != '{')
1624    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1625  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1626
1627  // Remove the braces from around the name.
1628  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1629
1630  // Figure out which register class contains this reg.
1631  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1632  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1633       E = RI->regclass_end(); RCI != E; ++RCI) {
1634    const TargetRegisterClass *RC = *RCI;
1635
1636    // If none of the the value types for this register class are valid, we
1637    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1638    bool isLegal = false;
1639    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1640         I != E; ++I) {
1641      if (isTypeLegal(*I)) {
1642        isLegal = true;
1643        break;
1644      }
1645    }
1646
1647    if (!isLegal) continue;
1648
1649    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1650         I != E; ++I) {
1651      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1652        return std::make_pair(*I, RC);
1653    }
1654  }
1655
1656  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1657}
1658
1659//===----------------------------------------------------------------------===//
1660//  Loop Strength Reduction hooks
1661//===----------------------------------------------------------------------===//
1662
1663/// isLegalAddressingMode - Return true if the addressing mode represented
1664/// by AM is legal for this target, for a load/store of the specified type.
1665bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1666                                           const Type *Ty) const {
1667  // The default implementation of this implements a conservative RISCy, r+r and
1668  // r+i addr mode.
1669
1670  // Allows a sign-extended 16-bit immediate field.
1671  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1672    return false;
1673
1674  // No global is ever allowed as a base.
1675  if (AM.BaseGV)
1676    return false;
1677
1678  // Only support r+r,
1679  switch (AM.Scale) {
1680  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1681    break;
1682  case 1:
1683    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1684      return false;
1685    // Otherwise we have r+r or r+i.
1686    break;
1687  case 2:
1688    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1689      return false;
1690    // Allow 2*r as r+r.
1691    break;
1692  }
1693
1694  return true;
1695}
1696
1697// Magic for divide replacement
1698
1699struct ms {
1700  int64_t m;  // magic number
1701  int64_t s;  // shift amount
1702};
1703
1704struct mu {
1705  uint64_t m; // magic number
1706  int64_t a;  // add indicator
1707  int64_t s;  // shift amount
1708};
1709
1710/// magic - calculate the magic numbers required to codegen an integer sdiv as
1711/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1712/// or -1.
1713static ms magic32(int32_t d) {
1714  int32_t p;
1715  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1716  const uint32_t two31 = 0x80000000U;
1717  struct ms mag;
1718
1719  ad = abs(d);
1720  t = two31 + ((uint32_t)d >> 31);
1721  anc = t - 1 - t%ad;   // absolute value of nc
1722  p = 31;               // initialize p
1723  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1724  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1725  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1726  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1727  do {
1728    p = p + 1;
1729    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1730    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1731    if (r1 >= anc) {  // must be unsigned comparison
1732      q1 = q1 + 1;
1733      r1 = r1 - anc;
1734    }
1735    q2 = 2*q2;        // update q2 = 2p/abs(d)
1736    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1737    if (r2 >= ad) {   // must be unsigned comparison
1738      q2 = q2 + 1;
1739      r2 = r2 - ad;
1740    }
1741    delta = ad - r2;
1742  } while (q1 < delta || (q1 == delta && r1 == 0));
1743
1744  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1745  if (d < 0) mag.m = -mag.m; // resulting magic number
1746  mag.s = p - 32;            // resulting shift
1747  return mag;
1748}
1749
1750/// magicu - calculate the magic numbers required to codegen an integer udiv as
1751/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1752static mu magicu32(uint32_t d) {
1753  int32_t p;
1754  uint32_t nc, delta, q1, r1, q2, r2;
1755  struct mu magu;
1756  magu.a = 0;               // initialize "add" indicator
1757  nc = - 1 - (-d)%d;
1758  p = 31;                   // initialize p
1759  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1760  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1761  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1762  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1763  do {
1764    p = p + 1;
1765    if (r1 >= nc - r1 ) {
1766      q1 = 2*q1 + 1;  // update q1
1767      r1 = 2*r1 - nc; // update r1
1768    }
1769    else {
1770      q1 = 2*q1; // update q1
1771      r1 = 2*r1; // update r1
1772    }
1773    if (r2 + 1 >= d - r2) {
1774      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1775      q2 = 2*q2 + 1;     // update q2
1776      r2 = 2*r2 + 1 - d; // update r2
1777    }
1778    else {
1779      if (q2 >= 0x80000000) magu.a = 1;
1780      q2 = 2*q2;     // update q2
1781      r2 = 2*r2 + 1; // update r2
1782    }
1783    delta = d - 1 - r2;
1784  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1785  magu.m = q2 + 1; // resulting magic number
1786  magu.s = p - 32;  // resulting shift
1787  return magu;
1788}
1789
1790/// magic - calculate the magic numbers required to codegen an integer sdiv as
1791/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1792/// or -1.
1793static ms magic64(int64_t d) {
1794  int64_t p;
1795  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1796  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1797  struct ms mag;
1798
1799  ad = d >= 0 ? d : -d;
1800  t = two63 + ((uint64_t)d >> 63);
1801  anc = t - 1 - t%ad;   // absolute value of nc
1802  p = 63;               // initialize p
1803  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1804  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1805  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1806  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1807  do {
1808    p = p + 1;
1809    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1810    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1811    if (r1 >= anc) {  // must be unsigned comparison
1812      q1 = q1 + 1;
1813      r1 = r1 - anc;
1814    }
1815    q2 = 2*q2;        // update q2 = 2p/abs(d)
1816    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1817    if (r2 >= ad) {   // must be unsigned comparison
1818      q2 = q2 + 1;
1819      r2 = r2 - ad;
1820    }
1821    delta = ad - r2;
1822  } while (q1 < delta || (q1 == delta && r1 == 0));
1823
1824  mag.m = q2 + 1;
1825  if (d < 0) mag.m = -mag.m; // resulting magic number
1826  mag.s = p - 64;            // resulting shift
1827  return mag;
1828}
1829
1830/// magicu - calculate the magic numbers required to codegen an integer udiv as
1831/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1832static mu magicu64(uint64_t d)
1833{
1834  int64_t p;
1835  uint64_t nc, delta, q1, r1, q2, r2;
1836  struct mu magu;
1837  magu.a = 0;               // initialize "add" indicator
1838  nc = - 1 - (-d)%d;
1839  p = 63;                   // initialize p
1840  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1841  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1842  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1843  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1844  do {
1845    p = p + 1;
1846    if (r1 >= nc - r1 ) {
1847      q1 = 2*q1 + 1;  // update q1
1848      r1 = 2*r1 - nc; // update r1
1849    }
1850    else {
1851      q1 = 2*q1; // update q1
1852      r1 = 2*r1; // update r1
1853    }
1854    if (r2 + 1 >= d - r2) {
1855      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1856      q2 = 2*q2 + 1;     // update q2
1857      r2 = 2*r2 + 1 - d; // update r2
1858    }
1859    else {
1860      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1861      q2 = 2*q2;     // update q2
1862      r2 = 2*r2 + 1; // update r2
1863    }
1864    delta = d - 1 - r2;
1865  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1866  magu.m = q2 + 1; // resulting magic number
1867  magu.s = p - 64;  // resulting shift
1868  return magu;
1869}
1870
1871/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1872/// return a DAG expression to select that will generate the same value by
1873/// multiplying by a magic number.  See:
1874/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1875SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1876                                    std::vector<SDNode*>* Created) const {
1877  MVT::ValueType VT = N->getValueType(0);
1878
1879  // Check to see if we can do this.
1880  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1881    return SDOperand();       // BuildSDIV only operates on i32 or i64
1882
1883  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1884  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1885
1886  // Multiply the numerator (operand 0) by the magic value
1887  SDOperand Q;
1888  if (isOperationLegal(ISD::MULHS, VT))
1889    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1890                    DAG.getConstant(magics.m, VT));
1891  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1892    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1893                              N->getOperand(0),
1894                              DAG.getConstant(magics.m, VT)).Val, 1);
1895  else
1896    return SDOperand();       // No mulhs or equvialent
1897  // If d > 0 and m < 0, add the numerator
1898  if (d > 0 && magics.m < 0) {
1899    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1900    if (Created)
1901      Created->push_back(Q.Val);
1902  }
1903  // If d < 0 and m > 0, subtract the numerator.
1904  if (d < 0 && magics.m > 0) {
1905    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1906    if (Created)
1907      Created->push_back(Q.Val);
1908  }
1909  // Shift right algebraic if shift value is nonzero
1910  if (magics.s > 0) {
1911    Q = DAG.getNode(ISD::SRA, VT, Q,
1912                    DAG.getConstant(magics.s, getShiftAmountTy()));
1913    if (Created)
1914      Created->push_back(Q.Val);
1915  }
1916  // Extract the sign bit and add it to the quotient
1917  SDOperand T =
1918    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1919                                                 getShiftAmountTy()));
1920  if (Created)
1921    Created->push_back(T.Val);
1922  return DAG.getNode(ISD::ADD, VT, Q, T);
1923}
1924
1925/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1926/// return a DAG expression to select that will generate the same value by
1927/// multiplying by a magic number.  See:
1928/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1929SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1930                                    std::vector<SDNode*>* Created) const {
1931  MVT::ValueType VT = N->getValueType(0);
1932
1933  // Check to see if we can do this.
1934  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1935    return SDOperand();       // BuildUDIV only operates on i32 or i64
1936
1937  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1938  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1939
1940  // Multiply the numerator (operand 0) by the magic value
1941  SDOperand Q;
1942  if (isOperationLegal(ISD::MULHU, VT))
1943    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1944                    DAG.getConstant(magics.m, VT));
1945  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1946    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1947                              N->getOperand(0),
1948                              DAG.getConstant(magics.m, VT)).Val, 1);
1949  else
1950    return SDOperand();       // No mulhu or equvialent
1951  if (Created)
1952    Created->push_back(Q.Val);
1953
1954  if (magics.a == 0) {
1955    return DAG.getNode(ISD::SRL, VT, Q,
1956                       DAG.getConstant(magics.s, getShiftAmountTy()));
1957  } else {
1958    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1959    if (Created)
1960      Created->push_back(NPQ.Val);
1961    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1962                      DAG.getConstant(1, getShiftAmountTy()));
1963    if (Created)
1964      Created->push_back(NPQ.Val);
1965    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1966    if (Created)
1967      Created->push_back(NPQ.Val);
1968    return DAG.getNode(ISD::SRL, VT, NPQ,
1969                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1970  }
1971}
1972