TargetLowering.cpp revision 5f0c658aa40c6d1475f7c9daa72497362fbee216
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetMachine.h"
16#include "llvm/Target/MRegisterInfo.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/Support/MathExtras.h"
20using namespace llvm;
21
22TargetLowering::TargetLowering(TargetMachine &tm)
23  : TM(tm), TD(TM.getTargetData()) {
24  assert(ISD::BUILTIN_OP_END <= 128 &&
25         "Fixed size array in TargetLowering is not large enough!");
26  // All operations default to being supported.
27  memset(OpActions, 0, sizeof(OpActions));
28
29  IsLittleEndian = TD.isLittleEndian();
30  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
31  ShiftAmtHandling = Undefined;
32  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
33  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
34  allowUnalignedMemoryAccesses = false;
35  UseUnderscoreSetJmpLongJmp = false;
36  IntDivIsCheap = false;
37  Pow2DivIsCheap = false;
38  StackPointerRegisterToSaveRestore = 0;
39  SchedPreferenceInfo = SchedulingForLatency;
40}
41
42TargetLowering::~TargetLowering() {}
43
44/// setValueTypeAction - Set the action for a particular value type.  This
45/// assumes an action has not already been set for this value type.
46static void SetValueTypeAction(MVT::ValueType VT,
47                               TargetLowering::LegalizeAction Action,
48                               TargetLowering &TLI,
49                               MVT::ValueType *TransformToType,
50                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
51  ValueTypeActions.setTypeAction(VT, Action);
52  if (Action == TargetLowering::Promote) {
53    MVT::ValueType PromoteTo;
54    if (VT == MVT::f32)
55      PromoteTo = MVT::f64;
56    else {
57      unsigned LargerReg = VT+1;
58      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
59        ++LargerReg;
60        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
61               "Nothing to promote to??");
62      }
63      PromoteTo = (MVT::ValueType)LargerReg;
64    }
65
66    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
67           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
68           "Can only promote from int->int or fp->fp!");
69    assert(VT < PromoteTo && "Must promote to a larger type!");
70    TransformToType[VT] = PromoteTo;
71  } else if (Action == TargetLowering::Expand) {
72    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
73           "Cannot expand this type: target must support SOME integer reg!");
74    // Expand to the next smaller integer type!
75    TransformToType[VT] = (MVT::ValueType)(VT-1);
76  }
77}
78
79
80/// computeRegisterProperties - Once all of the register classes are added,
81/// this allows us to compute derived properties we expose.
82void TargetLowering::computeRegisterProperties() {
83  assert(MVT::LAST_VALUETYPE <= 32 &&
84         "Too many value types for ValueTypeActions to hold!");
85
86  // Everything defaults to one.
87  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
88    NumElementsForVT[i] = 1;
89
90  // Find the largest integer register class.
91  unsigned LargestIntReg = MVT::i128;
92  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
93    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
94
95  // Every integer value type larger than this largest register takes twice as
96  // many registers to represent as the previous ValueType.
97  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
98  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
99    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
100
101  // Inspect all of the ValueType's possible, deciding how to process them.
102  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
103    // If we are expanding this type, expand it!
104    if (getNumElements((MVT::ValueType)IntReg) != 1)
105      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
106                         ValueTypeActions);
107    else if (!isTypeLegal((MVT::ValueType)IntReg))
108      // Otherwise, if we don't have native support, we must promote to a
109      // larger type.
110      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
111                         TransformToType, ValueTypeActions);
112    else
113      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
114
115  // If the target does not have native support for F32, promote it to F64.
116  if (!isTypeLegal(MVT::f32))
117    SetValueTypeAction(MVT::f32, Promote, *this,
118                       TransformToType, ValueTypeActions);
119  else
120    TransformToType[MVT::f32] = MVT::f32;
121
122  // Set MVT::Vector to always be Expanded
123  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
124                     ValueTypeActions);
125
126  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
127  TransformToType[MVT::f64] = MVT::f64;
128}
129
130const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
131  return NULL;
132}
133
134//===----------------------------------------------------------------------===//
135//  Optimization Methods
136//===----------------------------------------------------------------------===//
137
138/// ShrinkDemandedConstant - Check to see if the specified operand of the
139/// specified instruction is a constant integer.  If so, check to see if there
140/// are any bits set in the constant that are not demanded.  If so, shrink the
141/// constant and return true.
142bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
143                                                            uint64_t Demanded) {
144  // FIXME: ISD::SELECT, ISD::SELECT_CC
145  switch(Op.getOpcode()) {
146  default: break;
147  case ISD::AND:
148  case ISD::OR:
149  case ISD::XOR:
150    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
151      if ((~Demanded & C->getValue()) != 0) {
152        MVT::ValueType VT = Op.getValueType();
153        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
154                                    DAG.getConstant(Demanded & C->getValue(),
155                                                    VT));
156        return CombineTo(Op, New);
157      }
158    break;
159  }
160  return false;
161}
162
163/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
164/// DemandedMask bits of the result of Op are ever used downstream.  If we can
165/// use this information to simplify Op, create a new simplified DAG node and
166/// return true, returning the original and new nodes in Old and New. Otherwise,
167/// analyze the expression and return a mask of KnownOne and KnownZero bits for
168/// the expression (used to simplify the caller).  The KnownZero/One bits may
169/// only be accurate for those bits in the DemandedMask.
170bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
171                                          uint64_t &KnownZero,
172                                          uint64_t &KnownOne,
173                                          TargetLoweringOpt &TLO,
174                                          unsigned Depth) const {
175  KnownZero = KnownOne = 0;   // Don't know anything.
176  // Other users may use these bits.
177  if (!Op.Val->hasOneUse()) {
178    if (Depth != 0) {
179      // If not at the root, Just compute the KnownZero/KnownOne bits to
180      // simplify things downstream.
181      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
182      return false;
183    }
184    // If this is the root being simplified, allow it to have multiple uses,
185    // just set the DemandedMask to all bits.
186    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
187  } else if (DemandedMask == 0) {
188    // Not demanding any bits from Op.
189    if (Op.getOpcode() != ISD::UNDEF)
190      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
191    return false;
192  } else if (Depth == 6) {        // Limit search depth.
193    return false;
194  }
195
196  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
197  switch (Op.getOpcode()) {
198  case ISD::Constant:
199    // We know all of the bits for a constant!
200    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
201    KnownZero = ~KnownOne & DemandedMask;
202    return false;   // Don't fall through, will infinitely loop.
203  case ISD::AND:
204    // If either the LHS or the RHS are Zero, the result is zero.
205    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
206                             KnownOne, TLO, Depth+1))
207      return true;
208    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
209    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
210                             KnownZero2, KnownOne2, TLO, Depth+1))
211      return true;
212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
213
214    // If all of the demanded bits are known one on one side, return the other.
215    // These bits cannot contribute to the result of the 'and'.
216    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
217      return TLO.CombineTo(Op, Op.getOperand(0));
218    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
219      return TLO.CombineTo(Op, Op.getOperand(1));
220    // If all of the demanded bits in the inputs are known zeros, return zero.
221    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
222      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
223    // If the RHS is a constant, see if we can simplify it.
224    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
225      return true;
226
227    // If the RHS is a constant, check to see if the LHS would be zero without
228    // using the bits from the RHS.  Above, we used knowledge about the RHS to
229    // simplify the LHS, here we're using information from the LHS to simplify
230    // the RHS.
231    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
232      uint64_t LHSZero, LHSOne;
233      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
234                        LHSZero, LHSOne, Depth+1);
235      // If the LHS already has zeros where RHSC does, this and is dead.
236      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
237        return TLO.CombineTo(Op, Op.getOperand(0));
238      // If any of the set bits in the RHS are known zero on the LHS, shrink
239      // the constant.
240      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
241        return true;
242    }
243
244    // Output known-1 bits are only known if set in both the LHS & RHS.
245    KnownOne &= KnownOne2;
246    // Output known-0 are known to be clear if zero in either the LHS | RHS.
247    KnownZero |= KnownZero2;
248    break;
249  case ISD::OR:
250    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
251                             KnownOne, TLO, Depth+1))
252      return true;
253    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
254    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
255                             KnownZero2, KnownOne2, TLO, Depth+1))
256      return true;
257    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
258
259    // If all of the demanded bits are known zero on one side, return the other.
260    // These bits cannot contribute to the result of the 'or'.
261    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
262      return TLO.CombineTo(Op, Op.getOperand(0));
263    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
264      return TLO.CombineTo(Op, Op.getOperand(1));
265    // If all of the potentially set bits on one side are known to be set on
266    // the other side, just use the 'other' side.
267    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
268        (DemandedMask & (~KnownZero)))
269      return TLO.CombineTo(Op, Op.getOperand(0));
270    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
271        (DemandedMask & (~KnownZero2)))
272      return TLO.CombineTo(Op, Op.getOperand(1));
273    // If the RHS is a constant, see if we can simplify it.
274    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
275      return true;
276
277    // Output known-0 bits are only known if clear in both the LHS & RHS.
278    KnownZero &= KnownZero2;
279    // Output known-1 are known to be set if set in either the LHS | RHS.
280    KnownOne |= KnownOne2;
281    break;
282  case ISD::XOR:
283    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
284                             KnownOne, TLO, Depth+1))
285      return true;
286    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
287    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
288                             KnownOne2, TLO, Depth+1))
289      return true;
290    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
291
292    // If all of the demanded bits are known zero on one side, return the other.
293    // These bits cannot contribute to the result of the 'xor'.
294    if ((DemandedMask & KnownZero) == DemandedMask)
295      return TLO.CombineTo(Op, Op.getOperand(0));
296    if ((DemandedMask & KnownZero2) == DemandedMask)
297      return TLO.CombineTo(Op, Op.getOperand(1));
298
299    // Output known-0 bits are known if clear or set in both the LHS & RHS.
300    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
301    // Output known-1 are known to be set if set in only one of the LHS, RHS.
302    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
303
304    // If all of the unknown bits are known to be zero on one side or the other
305    // (but not both) turn this into an *inclusive* or.
306    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
307    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
308      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
309        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
310                                                 Op.getOperand(0),
311                                                 Op.getOperand(1)));
312    // If all of the demanded bits on one side are known, and all of the set
313    // bits on that side are also known to be set on the other side, turn this
314    // into an AND, as we know the bits will be cleared.
315    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
316    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
317      if ((KnownOne & KnownOne2) == KnownOne) {
318        MVT::ValueType VT = Op.getValueType();
319        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
320        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
321                                                 ANDC));
322      }
323    }
324
325    // If the RHS is a constant, see if we can simplify it.
326    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
327    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
328      return true;
329
330    KnownZero = KnownZeroOut;
331    KnownOne  = KnownOneOut;
332    break;
333  case ISD::SETCC:
334    // If we know the result of a setcc has the top bits zero, use this info.
335    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
336      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
337    break;
338  case ISD::SELECT:
339    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
340                             KnownOne, TLO, Depth+1))
341      return true;
342    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
343                             KnownOne2, TLO, Depth+1))
344      return true;
345    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
346    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
347
348    // If the operands are constants, see if we can simplify them.
349    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
350      return true;
351
352    // Only known if known in both the LHS and RHS.
353    KnownOne &= KnownOne2;
354    KnownZero &= KnownZero2;
355    break;
356  case ISD::SELECT_CC:
357    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
358                             KnownOne, TLO, Depth+1))
359      return true;
360    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
361                             KnownOne2, TLO, Depth+1))
362      return true;
363    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
364    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
365
366    // If the operands are constants, see if we can simplify them.
367    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
368      return true;
369
370    // Only known if known in both the LHS and RHS.
371    KnownOne &= KnownOne2;
372    KnownZero &= KnownZero2;
373    break;
374  case ISD::SHL:
375    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
376      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
377                               KnownZero, KnownOne, TLO, Depth+1))
378        return true;
379      KnownZero <<= SA->getValue();
380      KnownOne  <<= SA->getValue();
381      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
382    }
383    break;
384  case ISD::SRL:
385    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
386      MVT::ValueType VT = Op.getValueType();
387      unsigned ShAmt = SA->getValue();
388
389      // Compute the new bits that are at the top now.
390      uint64_t HighBits = (1ULL << ShAmt)-1;
391      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
392      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
393
394      if (SimplifyDemandedBits(Op.getOperand(0),
395                               (DemandedMask << ShAmt) & TypeMask,
396                               KnownZero, KnownOne, TLO, Depth+1))
397        return true;
398      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
399      KnownZero &= TypeMask;
400      KnownOne  &= TypeMask;
401      KnownZero >>= ShAmt;
402      KnownOne  >>= ShAmt;
403      KnownZero |= HighBits;  // high bits known zero.
404    }
405    break;
406  case ISD::SRA:
407    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
408      MVT::ValueType VT = Op.getValueType();
409      unsigned ShAmt = SA->getValue();
410
411      // Compute the new bits that are at the top now.
412      uint64_t HighBits = (1ULL << ShAmt)-1;
413      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
414      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
415
416      if (SimplifyDemandedBits(Op.getOperand(0),
417                               (DemandedMask << ShAmt) & TypeMask,
418                               KnownZero, KnownOne, TLO, Depth+1))
419        return true;
420      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
421      KnownZero &= TypeMask;
422      KnownOne  &= TypeMask;
423      KnownZero >>= SA->getValue();
424      KnownOne  >>= SA->getValue();
425
426      // Handle the sign bits.
427      uint64_t SignBit = MVT::getIntVTSignBit(VT);
428      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
429
430      // If the input sign bit is known to be zero, or if none of the top bits
431      // are demanded, turn this into an unsigned shift right.
432      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
433        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
434                                                 Op.getOperand(1)));
435      } else if (KnownOne & SignBit) { // New bits are known one.
436        KnownOne |= HighBits;
437      }
438    }
439    break;
440  case ISD::SIGN_EXTEND_INREG: {
441    MVT::ValueType  VT = Op.getValueType();
442    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
443
444    // Sign extension.  Compute the demanded bits in the result that are not
445    // present in the input.
446    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
447
448    // If none of the extended bits are demanded, eliminate the sextinreg.
449    if (NewBits == 0)
450      return TLO.CombineTo(Op, Op.getOperand(0));
451
452    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
453    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
454
455    // Since the sign extended bits are demanded, we know that the sign
456    // bit is demanded.
457    InputDemandedBits |= InSignBit;
458
459    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
460                             KnownZero, KnownOne, TLO, Depth+1))
461      return true;
462    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
463
464    // If the sign bit of the input is known set or clear, then we know the
465    // top bits of the result.
466
467    // If the input sign bit is known zero, convert this into a zero extension.
468    if (KnownZero & InSignBit)
469      return TLO.CombineTo(Op,
470                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
471
472    if (KnownOne & InSignBit) {    // Input sign bit known set
473      KnownOne |= NewBits;
474      KnownZero &= ~NewBits;
475    } else {                       // Input sign bit unknown
476      KnownZero &= ~NewBits;
477      KnownOne &= ~NewBits;
478    }
479    break;
480  }
481  case ISD::CTTZ:
482  case ISD::CTLZ:
483  case ISD::CTPOP: {
484    MVT::ValueType VT = Op.getValueType();
485    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
486    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
487    KnownOne  = 0;
488    break;
489  }
490  case ISD::ZEXTLOAD: {
491    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
492    KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
493    break;
494  }
495  case ISD::ZERO_EXTEND: {
496    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
497
498    // If none of the top bits are demanded, convert this into an any_extend.
499    uint64_t NewBits = (~InMask) & DemandedMask;
500    if (NewBits == 0)
501      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
502                                               Op.getValueType(),
503                                               Op.getOperand(0)));
504
505    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
506                             KnownZero, KnownOne, TLO, Depth+1))
507      return true;
508    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
509    KnownZero |= NewBits;
510    break;
511  }
512  case ISD::SIGN_EXTEND: {
513    MVT::ValueType InVT = Op.getOperand(0).getValueType();
514    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
515    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
516    uint64_t NewBits   = (~InMask) & DemandedMask;
517
518    // If none of the top bits are demanded, convert this into an any_extend.
519    if (NewBits == 0)
520      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
521                                           Op.getOperand(0)));
522
523    // Since some of the sign extended bits are demanded, we know that the sign
524    // bit is demanded.
525    uint64_t InDemandedBits = DemandedMask & InMask;
526    InDemandedBits |= InSignBit;
527
528    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
529                             KnownOne, TLO, Depth+1))
530      return true;
531
532    // If the sign bit is known zero, convert this to a zero extend.
533    if (KnownZero & InSignBit)
534      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
535                                               Op.getValueType(),
536                                               Op.getOperand(0)));
537
538    // If the sign bit is known one, the top bits match.
539    if (KnownOne & InSignBit) {
540      KnownOne  |= NewBits;
541      KnownZero &= ~NewBits;
542    } else {   // Otherwise, top bits aren't known.
543      KnownOne  &= ~NewBits;
544      KnownZero &= ~NewBits;
545    }
546    break;
547  }
548  case ISD::ANY_EXTEND: {
549    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
550    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
551                             KnownZero, KnownOne, TLO, Depth+1))
552      return true;
553    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554    break;
555  }
556  case ISD::AssertZext: {
557    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
558    uint64_t InMask = MVT::getIntVTBitMask(VT);
559    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
560                             KnownZero, KnownOne, TLO, Depth+1))
561      return true;
562    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
563    KnownZero |= ~InMask & DemandedMask;
564    break;
565  }
566  case ISD::ADD:
567    if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
568      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero,
569                               KnownOne, TLO, Depth+1))
570        return true;
571      // Compute the KnownOne/KnownZero masks for the constant, so we can set
572      // KnownZero appropriately if we're adding a constant that has all low
573      // bits cleared.
574      ComputeMaskedBits(Op.getOperand(1),
575                        MVT::getIntVTBitMask(Op.getValueType()),
576                        KnownZero2, KnownOne2, Depth+1);
577
578      uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
579                                       CountTrailingZeros_64(~KnownZero2));
580      KnownZero = (1ULL << KnownZeroOut) - 1;
581      KnownOne = 0;
582
583      SDOperand SH = Op.getOperand(0);
584      // fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1)
585      if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() &&
586          Op.Val->hasOneUse()) {
587        if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) {
588          MVT::ValueType VT = Op.getValueType();
589          unsigned ShiftAmt = SA->getValue();
590          uint64_t AddAmt = AA->getValue();
591          uint64_t AddShr = AddAmt >> ShiftAmt;
592          if (AddAmt == (AddShr << ShiftAmt)) {
593            SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0),
594                                            TLO.DAG.getConstant(AddShr, VT));
595            SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1));
596            return TLO.CombineTo(Op, SHL);
597          }
598        }
599      }
600    }
601    break;
602  }
603
604  // If we know the value of all of the demanded bits, return this as a
605  // constant.
606  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
607    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
608
609  return false;
610}
611
612/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
613/// this predicate to simplify operations downstream.  Mask is known to be zero
614/// for bits that V cannot have.
615bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
616                                       unsigned Depth) const {
617  uint64_t KnownZero, KnownOne;
618  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
619  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
620  return (KnownZero & Mask) == Mask;
621}
622
623/// ComputeMaskedBits - Determine which of the bits specified in Mask are
624/// known to be either zero or one and return them in the KnownZero/KnownOne
625/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
626/// processing.
627void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
628                                       uint64_t &KnownZero, uint64_t &KnownOne,
629                                       unsigned Depth) const {
630  KnownZero = KnownOne = 0;   // Don't know anything.
631  if (Depth == 6 || Mask == 0)
632    return;  // Limit search depth.
633
634  uint64_t KnownZero2, KnownOne2;
635
636  switch (Op.getOpcode()) {
637  case ISD::Constant:
638    // We know all of the bits for a constant!
639    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
640    KnownZero = ~KnownOne & Mask;
641    return;
642  case ISD::AND:
643    // If either the LHS or the RHS are Zero, the result is zero.
644    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
645    Mask &= ~KnownZero;
646    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
647    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
648    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
649
650    // Output known-1 bits are only known if set in both the LHS & RHS.
651    KnownOne &= KnownOne2;
652    // Output known-0 are known to be clear if zero in either the LHS | RHS.
653    KnownZero |= KnownZero2;
654    return;
655  case ISD::OR:
656    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
657    Mask &= ~KnownOne;
658    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
660    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
661
662    // Output known-0 bits are only known if clear in both the LHS & RHS.
663    KnownZero &= KnownZero2;
664    // Output known-1 are known to be set if set in either the LHS | RHS.
665    KnownOne |= KnownOne2;
666    return;
667  case ISD::XOR: {
668    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
669    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
670    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
671    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
672
673    // Output known-0 bits are known if clear or set in both the LHS & RHS.
674    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
675    // Output known-1 are known to be set if set in only one of the LHS, RHS.
676    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
677    KnownZero = KnownZeroOut;
678    return;
679  }
680  case ISD::SELECT:
681    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
682    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
683    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
684    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
685
686    // Only known if known in both the LHS and RHS.
687    KnownOne &= KnownOne2;
688    KnownZero &= KnownZero2;
689    return;
690  case ISD::SELECT_CC:
691    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
692    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
695
696    // Only known if known in both the LHS and RHS.
697    KnownOne &= KnownOne2;
698    KnownZero &= KnownZero2;
699    return;
700  case ISD::SETCC:
701    // If we know the result of a setcc has the top bits zero, use this info.
702    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
703      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
704    return;
705  case ISD::SHL:
706    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
707    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
708      Mask >>= SA->getValue();
709      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
710      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
711      KnownZero <<= SA->getValue();
712      KnownOne  <<= SA->getValue();
713      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
714    }
715    return;
716  case ISD::SRL:
717    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
718    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
719      uint64_t HighBits = (1ULL << SA->getValue())-1;
720      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
721      Mask <<= SA->getValue();
722      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
723      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
724      KnownZero >>= SA->getValue();
725      KnownOne  >>= SA->getValue();
726      KnownZero |= HighBits;  // high bits known zero.
727    }
728    return;
729  case ISD::SRA:
730    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
731      uint64_t HighBits = (1ULL << SA->getValue())-1;
732      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
733      Mask <<= SA->getValue();
734      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
735      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
736      KnownZero >>= SA->getValue();
737      KnownOne  >>= SA->getValue();
738
739      // Handle the sign bits.
740      uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
741      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
742
743      if (KnownZero & SignBit) {       // New bits are known zero.
744        KnownZero |= HighBits;
745      } else if (KnownOne & SignBit) { // New bits are known one.
746        KnownOne |= HighBits;
747      }
748    }
749    return;
750  case ISD::SIGN_EXTEND_INREG: {
751    MVT::ValueType  VT = Op.getValueType();
752    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
753
754    // Sign extension.  Compute the demanded bits in the result that are not
755    // present in the input.
756    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
757
758    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
759    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
760
761    // If the sign extended bits are demanded, we know that the sign
762    // bit is demanded.
763    if (NewBits)
764      InputDemandedBits |= InSignBit;
765
766    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
767                      KnownZero, KnownOne, Depth+1);
768    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
769
770    // If the sign bit of the input is known set or clear, then we know the
771    // top bits of the result.
772    if (KnownZero & InSignBit) {          // Input sign bit known clear
773      KnownZero |= NewBits;
774      KnownOne  &= ~NewBits;
775    } else if (KnownOne & InSignBit) {    // Input sign bit known set
776      KnownOne  |= NewBits;
777      KnownZero &= ~NewBits;
778    } else {                              // Input sign bit unknown
779      KnownZero &= ~NewBits;
780      KnownOne  &= ~NewBits;
781    }
782    return;
783  }
784  case ISD::CTTZ:
785  case ISD::CTLZ:
786  case ISD::CTPOP: {
787    MVT::ValueType VT = Op.getValueType();
788    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
789    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
790    KnownOne  = 0;
791    return;
792  }
793  case ISD::ZEXTLOAD: {
794    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
795    KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
796    return;
797  }
798  case ISD::ZERO_EXTEND: {
799    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
800    uint64_t NewBits = (~InMask) & Mask;
801    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
802                      KnownOne, Depth+1);
803    KnownZero |= NewBits & Mask;
804    KnownOne  &= ~NewBits;
805    return;
806  }
807  case ISD::SIGN_EXTEND: {
808    MVT::ValueType InVT = Op.getOperand(0).getValueType();
809    unsigned InBits    = MVT::getSizeInBits(InVT);
810    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
811    uint64_t InSignBit = 1ULL << (InBits-1);
812    uint64_t NewBits   = (~InMask) & Mask;
813    uint64_t InDemandedBits = Mask & InMask;
814
815    // If any of the sign extended bits are demanded, we know that the sign
816    // bit is demanded.
817    if (NewBits & Mask)
818      InDemandedBits |= InSignBit;
819
820    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
821                      KnownOne, Depth+1);
822    // If the sign bit is known zero or one, the  top bits match.
823    if (KnownZero & InSignBit) {
824      KnownZero |= NewBits;
825      KnownOne  &= ~NewBits;
826    } else if (KnownOne & InSignBit) {
827      KnownOne  |= NewBits;
828      KnownZero &= ~NewBits;
829    } else {   // Otherwise, top bits aren't known.
830      KnownOne  &= ~NewBits;
831      KnownZero &= ~NewBits;
832    }
833    return;
834  }
835  case ISD::ANY_EXTEND: {
836    MVT::ValueType VT = Op.getOperand(0).getValueType();
837    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
838                      KnownZero, KnownOne, Depth+1);
839    return;
840  }
841  case ISD::AssertZext: {
842    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
843    uint64_t InMask = MVT::getIntVTBitMask(VT);
844    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
845                      KnownOne, Depth+1);
846    KnownZero |= (~InMask) & Mask;
847    return;
848  }
849  case ISD::ADD: {
850    // If either the LHS or the RHS are Zero, the result is zero.
851    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
852    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
853    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
854    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
855
856    // Output known-0 bits are known if clear or set in both the low clear bits
857    // common to both LHS & RHS;
858    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
859                                     CountTrailingZeros_64(~KnownZero2));
860
861    KnownZero = (1ULL << KnownZeroOut) - 1;
862    KnownOne = 0;
863    return;
864  }
865  case ISD::SUB:
866    // We know that the top bits of C-X are clear if X contains less bits
867    // than C (i.e. no wrap-around can happen).  For example, 20-X is
868    // positive if we can prove that X is >= 0 and < 16.  Remember to update
869    // SimplifyDemandedBits if/when this is implemented.
870    return;
871  default:
872    // Allow the target to implement this method for its nodes.
873    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
874      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
875    return;
876  }
877}
878
879/// computeMaskedBitsForTargetNode - Determine which of the bits specified
880/// in Mask are known to be either zero or one and return them in the
881/// KnownZero/KnownOne bitsets.
882void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
883                                                    uint64_t Mask,
884                                                    uint64_t &KnownZero,
885                                                    uint64_t &KnownOne,
886                                                    unsigned Depth) const {
887  assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
888         "Should use MaskedValueIsZero if you don't know whether Op"
889         " is a target node!");
890  KnownZero = 0;
891  KnownOne = 0;
892}
893
894//===----------------------------------------------------------------------===//
895//  Inline Assembler Implementation Methods
896//===----------------------------------------------------------------------===//
897
898TargetLowering::ConstraintType
899TargetLowering::getConstraintType(char ConstraintLetter) const {
900  // FIXME: lots more standard ones to handle.
901  switch (ConstraintLetter) {
902  default: return C_Unknown;
903  case 'r': return C_RegisterClass;
904  case 'm':    // memory
905  case 'o':    // offsetable
906  case 'V':    // not offsetable
907    return C_Memory;
908  case 'i':    // Simple Integer or Relocatable Constant
909  case 'n':    // Simple Integer
910  case 's':    // Relocatable Constant
911  case 'I':    // Target registers.
912  case 'J':
913  case 'K':
914  case 'L':
915  case 'M':
916  case 'N':
917  case 'O':
918  case 'P':
919    return C_Other;
920  }
921}
922
923bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
924                                                 char ConstraintLetter) {
925  switch (ConstraintLetter) {
926  default: return false;
927  case 'i':    // Simple Integer or Relocatable Constant
928  case 'n':    // Simple Integer
929  case 's':    // Relocatable Constant
930    return true;   // FIXME: not right.
931  }
932}
933
934
935std::vector<unsigned> TargetLowering::
936getRegClassForInlineAsmConstraint(const std::string &Constraint,
937                                  MVT::ValueType VT) const {
938  return std::vector<unsigned>();
939}
940
941
942std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
943getRegForInlineAsmConstraint(const std::string &Constraint,
944                             MVT::ValueType VT) const {
945  if (Constraint[0] != '{')
946    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
947  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
948
949  // Remove the braces from around the name.
950  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
951
952  // Figure out which register class contains this reg.
953  const MRegisterInfo *RI = TM.getRegisterInfo();
954  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
955       E = RI->regclass_end(); RCI != E; ++RCI) {
956    const TargetRegisterClass *RC = *RCI;
957
958    // If none of the the value types for this register class are valid, we
959    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
960    bool isLegal = false;
961    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
962         I != E; ++I) {
963      if (isTypeLegal(*I)) {
964        isLegal = true;
965        break;
966      }
967    }
968
969    if (!isLegal) continue;
970
971    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
972         I != E; ++I) {
973      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
974        return std::make_pair(*I, RC);
975    }
976  }
977
978  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
979}
980