TargetLowering.cpp revision 63079f0757785c5c461bafdd3101ee40aeb717fe
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
52  Names[RTLIB::SUB_F32] = "__subsf3";
53  Names[RTLIB::SUB_F64] = "__subdf3";
54  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
55  Names[RTLIB::MUL_F32] = "__mulsf3";
56  Names[RTLIB::MUL_F64] = "__muldf3";
57  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
58  Names[RTLIB::DIV_F32] = "__divsf3";
59  Names[RTLIB::DIV_F64] = "__divdf3";
60  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
61  Names[RTLIB::REM_F32] = "fmodf";
62  Names[RTLIB::REM_F64] = "fmod";
63  Names[RTLIB::REM_PPCF128] = "fmodl";
64  Names[RTLIB::NEG_F32] = "__negsf2";
65  Names[RTLIB::NEG_F64] = "__negdf2";
66  Names[RTLIB::POWI_F32] = "__powisf2";
67  Names[RTLIB::POWI_F64] = "__powidf2";
68  Names[RTLIB::POWI_F80] = "__powixf2";
69  Names[RTLIB::POWI_PPCF128] = "__powitf2";
70  Names[RTLIB::SQRT_F32] = "sqrtf";
71  Names[RTLIB::SQRT_F64] = "sqrt";
72  Names[RTLIB::SQRT_F80] = "sqrtl";
73  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
74  Names[RTLIB::SIN_F32] = "sinf";
75  Names[RTLIB::SIN_F64] = "sin";
76  Names[RTLIB::COS_F32] = "cosf";
77  Names[RTLIB::COS_F64] = "cos";
78  Names[RTLIB::POW_F32] = "powf";
79  Names[RTLIB::POW_F64] = "pow";
80  Names[RTLIB::POW_F80] = "powl";
81  Names[RTLIB::POW_PPCF128] = "powl";
82  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
88  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
90  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
94  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
97  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
101  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
103  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107  Names[RTLIB::OEQ_F32] = "__eqsf2";
108  Names[RTLIB::OEQ_F64] = "__eqdf2";
109  Names[RTLIB::UNE_F32] = "__nesf2";
110  Names[RTLIB::UNE_F64] = "__nedf2";
111  Names[RTLIB::OGE_F32] = "__gesf2";
112  Names[RTLIB::OGE_F64] = "__gedf2";
113  Names[RTLIB::OLT_F32] = "__ltsf2";
114  Names[RTLIB::OLT_F64] = "__ltdf2";
115  Names[RTLIB::OLE_F32] = "__lesf2";
116  Names[RTLIB::OLE_F64] = "__ledf2";
117  Names[RTLIB::OGT_F32] = "__gtsf2";
118  Names[RTLIB::OGT_F64] = "__gtdf2";
119  Names[RTLIB::UO_F32] = "__unordsf2";
120  Names[RTLIB::UO_F64] = "__unorddf2";
121  Names[RTLIB::O_F32] = "__unordsf2";
122  Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131  CCs[RTLIB::UNE_F32] = ISD::SETNE;
132  CCs[RTLIB::UNE_F64] = ISD::SETNE;
133  CCs[RTLIB::OGE_F32] = ISD::SETGE;
134  CCs[RTLIB::OGE_F64] = ISD::SETGE;
135  CCs[RTLIB::OLT_F32] = ISD::SETLT;
136  CCs[RTLIB::OLT_F64] = ISD::SETLT;
137  CCs[RTLIB::OLE_F32] = ISD::SETLE;
138  CCs[RTLIB::OLE_F64] = ISD::SETLE;
139  CCs[RTLIB::OGT_F32] = ISD::SETGT;
140  CCs[RTLIB::OGT_F64] = ISD::SETGT;
141  CCs[RTLIB::UO_F32] = ISD::SETNE;
142  CCs[RTLIB::UO_F64] = ISD::SETNE;
143  CCs[RTLIB::O_F32] = ISD::SETEQ;
144  CCs[RTLIB::O_F64] = ISD::SETEQ;
145}
146
147TargetLowering::TargetLowering(TargetMachine &tm)
148  : TM(tm), TD(TM.getTargetData()) {
149  assert(ISD::BUILTIN_OP_END <= 156 &&
150         "Fixed size array in TargetLowering is not large enough!");
151  // All operations default to being supported.
152  memset(OpActions, 0, sizeof(OpActions));
153  memset(LoadXActions, 0, sizeof(LoadXActions));
154  memset(&StoreXActions, 0, sizeof(StoreXActions));
155  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
156  memset(&ConvertActions, 0, sizeof(ConvertActions));
157
158  // Set default actions for various operations.
159  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160    // Default all indexed load / store to expand.
161    for (unsigned IM = (unsigned)ISD::PRE_INC;
162         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
163      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
164      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
165    }
166
167    // These operations default to expand.
168    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
169  }
170
171  IsLittleEndian = TD->isLittleEndian();
172  UsesGlobalOffsetTable = false;
173  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
174  ShiftAmtHandling = Undefined;
175  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
176  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
177  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
178  allowUnalignedMemoryAccesses = false;
179  UseUnderscoreSetJmp = false;
180  UseUnderscoreLongJmp = false;
181  SelectIsExpensive = false;
182  IntDivIsCheap = false;
183  Pow2DivIsCheap = false;
184  StackPointerRegisterToSaveRestore = 0;
185  ExceptionPointerRegister = 0;
186  ExceptionSelectorRegister = 0;
187  SetCCResultContents = UndefinedSetCCResult;
188  SchedPreferenceInfo = SchedulingForLatency;
189  JumpBufSize = 0;
190  JumpBufAlignment = 0;
191  IfCvtBlockSizeLimit = 2;
192
193  InitLibcallNames(LibcallRoutineNames);
194  InitCmpLibcallCCs(CmpLibcallCCs);
195
196  // Tell Legalize whether the assembler supports DEBUG_LOC.
197  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
198    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
199}
200
201TargetLowering::~TargetLowering() {}
202
203
204SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
205  assert(getSubtarget() && "Subtarget not defined");
206  SDOperand ChainOp = Op.getOperand(0);
207  SDOperand DestOp = Op.getOperand(1);
208  SDOperand SourceOp = Op.getOperand(2);
209  SDOperand CountOp = Op.getOperand(3);
210  SDOperand AlignOp = Op.getOperand(4);
211  SDOperand AlwaysInlineOp = Op.getOperand(5);
212
213  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
214  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
215  if (Align == 0) Align = 1;
216
217  // If size is unknown, call memcpy.
218  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
219  if (!I) {
220    assert(!AlwaysInline && "Cannot inline copy of unknown size");
221    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
222  }
223
224  // If not DWORD aligned or if size is more than threshold, then call memcpy.
225  // The libc version is likely to be faster for the following cases. It can
226  // use the address value and run time information about the CPU.
227  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
228  unsigned Size = I->getValue();
229  if (AlwaysInline ||
230      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
231       (Align & 3) == 0))
232    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
233  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
234}
235
236
237SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
238                                          SDOperand Dest,
239                                          SDOperand Source,
240                                          SDOperand Count,
241                                          SelectionDAG &DAG) {
242  MVT::ValueType IntPtr = getPointerTy();
243  TargetLowering::ArgListTy Args;
244  TargetLowering::ArgListEntry Entry;
245  Entry.Ty = getTargetData()->getIntPtrType();
246  Entry.Node = Dest; Args.push_back(Entry);
247  Entry.Node = Source; Args.push_back(Entry);
248  Entry.Node = Count; Args.push_back(Entry);
249  std::pair<SDOperand,SDOperand> CallResult =
250      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
251                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
252  return CallResult.second;
253}
254
255
256/// computeRegisterProperties - Once all of the register classes are added,
257/// this allows us to compute derived properties we expose.
258void TargetLowering::computeRegisterProperties() {
259  assert(MVT::LAST_VALUETYPE <= 32 &&
260         "Too many value types for ValueTypeActions to hold!");
261
262  // Everything defaults to needing one register.
263  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
264    NumRegistersForVT[i] = 1;
265    RegisterTypeForVT[i] = TransformToType[i] = i;
266  }
267  // ...except isVoid, which doesn't need any registers.
268  NumRegistersForVT[MVT::isVoid] = 0;
269
270  // Find the largest integer register class.
271  unsigned LargestIntReg = MVT::i128;
272  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
273    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
274
275  // Every integer value type larger than this largest register takes twice as
276  // many registers to represent as the previous ValueType.
277  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
278       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
279    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
280    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
281    TransformToType[ExpandedReg] = ExpandedReg - 1;
282    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
283  }
284
285  // Inspect all of the ValueType's smaller than the largest integer
286  // register to see which ones need promotion.
287  MVT::ValueType LegalIntReg = LargestIntReg;
288  for (MVT::ValueType IntReg = LargestIntReg - 1;
289       IntReg >= MVT::i1; --IntReg) {
290    if (isTypeLegal(IntReg)) {
291      LegalIntReg = IntReg;
292    } else {
293      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
294      ValueTypeActions.setTypeAction(IntReg, Promote);
295    }
296  }
297
298  // ppcf128 type is really two f64's.
299  if (!isTypeLegal(MVT::ppcf128)) {
300    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
301    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
302    TransformToType[MVT::ppcf128] = MVT::f64;
303    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
304  }
305
306  // Decide how to handle f64. If the target does not have native f64 support,
307  // expand it to i64 and we will be generating soft float library calls.
308  if (!isTypeLegal(MVT::f64)) {
309    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
310    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
311    TransformToType[MVT::f64] = MVT::i64;
312    ValueTypeActions.setTypeAction(MVT::f64, Expand);
313  }
314
315  // Decide how to handle f32. If the target does not have native support for
316  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
317  if (!isTypeLegal(MVT::f32)) {
318    if (isTypeLegal(MVT::f64)) {
319      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
320      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
321      TransformToType[MVT::f32] = MVT::f64;
322      ValueTypeActions.setTypeAction(MVT::f32, Promote);
323    } else {
324      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
325      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
326      TransformToType[MVT::f32] = MVT::i32;
327      ValueTypeActions.setTypeAction(MVT::f32, Expand);
328    }
329  }
330
331  // Loop over all of the vector value types to see which need transformations.
332  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
333       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
334    if (!isTypeLegal(i)) {
335      MVT::ValueType IntermediateVT, RegisterVT;
336      unsigned NumIntermediates;
337      NumRegistersForVT[i] =
338        getVectorTypeBreakdown(i,
339                               IntermediateVT, NumIntermediates,
340                               RegisterVT);
341      RegisterTypeForVT[i] = RegisterVT;
342      TransformToType[i] = MVT::Other; // this isn't actually used
343      ValueTypeActions.setTypeAction(i, Expand);
344    }
345  }
346}
347
348const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
349  return NULL;
350}
351
352/// getVectorTypeBreakdown - Vector types are broken down into some number of
353/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
354/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
355/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
356///
357/// This method returns the number of registers needed, and the VT for each
358/// register.  It also returns the VT and quantity of the intermediate values
359/// before they are promoted/expanded.
360///
361unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
362                                                MVT::ValueType &IntermediateVT,
363                                                unsigned &NumIntermediates,
364                                      MVT::ValueType &RegisterVT) const {
365  // Figure out the right, legal destination reg to copy into.
366  unsigned NumElts = MVT::getVectorNumElements(VT);
367  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
368
369  unsigned NumVectorRegs = 1;
370
371  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
372  // could break down into LHS/RHS like LegalizeDAG does.
373  if (!isPowerOf2_32(NumElts)) {
374    NumVectorRegs = NumElts;
375    NumElts = 1;
376  }
377
378  // Divide the input until we get to a supported size.  This will always
379  // end with a scalar if the target doesn't support vectors.
380  while (NumElts > 1 &&
381         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
382    NumElts >>= 1;
383    NumVectorRegs <<= 1;
384  }
385
386  NumIntermediates = NumVectorRegs;
387
388  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
389  if (!isTypeLegal(NewVT))
390    NewVT = EltTy;
391  IntermediateVT = NewVT;
392
393  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
394  RegisterVT = DestVT;
395  if (DestVT < NewVT) {
396    // Value is expanded, e.g. i64 -> i16.
397    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
398  } else {
399    // Otherwise, promotion or legal types use the same number of registers as
400    // the vector decimated to the appropriate level.
401    return NumVectorRegs;
402  }
403
404  return 1;
405}
406
407SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
408                                                   SelectionDAG &DAG) const {
409  if (usesGlobalOffsetTable())
410    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
411  return Table;
412}
413
414//===----------------------------------------------------------------------===//
415//  Optimization Methods
416//===----------------------------------------------------------------------===//
417
418/// ShrinkDemandedConstant - Check to see if the specified operand of the
419/// specified instruction is a constant integer.  If so, check to see if there
420/// are any bits set in the constant that are not demanded.  If so, shrink the
421/// constant and return true.
422bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
423                                                            uint64_t Demanded) {
424  // FIXME: ISD::SELECT, ISD::SELECT_CC
425  switch(Op.getOpcode()) {
426  default: break;
427  case ISD::AND:
428  case ISD::OR:
429  case ISD::XOR:
430    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
431      if ((~Demanded & C->getValue()) != 0) {
432        MVT::ValueType VT = Op.getValueType();
433        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
434                                    DAG.getConstant(Demanded & C->getValue(),
435                                                    VT));
436        return CombineTo(Op, New);
437      }
438    break;
439  }
440  return false;
441}
442
443/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
444/// DemandedMask bits of the result of Op are ever used downstream.  If we can
445/// use this information to simplify Op, create a new simplified DAG node and
446/// return true, returning the original and new nodes in Old and New. Otherwise,
447/// analyze the expression and return a mask of KnownOne and KnownZero bits for
448/// the expression (used to simplify the caller).  The KnownZero/One bits may
449/// only be accurate for those bits in the DemandedMask.
450bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
451                                          uint64_t &KnownZero,
452                                          uint64_t &KnownOne,
453                                          TargetLoweringOpt &TLO,
454                                          unsigned Depth) const {
455  KnownZero = KnownOne = 0;   // Don't know anything.
456
457  // The masks are not wide enough to represent this type!  Should use APInt.
458  if (Op.getValueType() == MVT::i128)
459    return false;
460
461  // Other users may use these bits.
462  if (!Op.Val->hasOneUse()) {
463    if (Depth != 0) {
464      // If not at the root, Just compute the KnownZero/KnownOne bits to
465      // simplify things downstream.
466      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
467      return false;
468    }
469    // If this is the root being simplified, allow it to have multiple uses,
470    // just set the DemandedMask to all bits.
471    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
472  } else if (DemandedMask == 0) {
473    // Not demanding any bits from Op.
474    if (Op.getOpcode() != ISD::UNDEF)
475      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
476    return false;
477  } else if (Depth == 6) {        // Limit search depth.
478    return false;
479  }
480
481  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
482  switch (Op.getOpcode()) {
483  case ISD::Constant:
484    // We know all of the bits for a constant!
485    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
486    KnownZero = ~KnownOne & DemandedMask;
487    return false;   // Don't fall through, will infinitely loop.
488  case ISD::AND:
489    // If the RHS is a constant, check to see if the LHS would be zero without
490    // using the bits from the RHS.  Below, we use knowledge about the RHS to
491    // simplify the LHS, here we're using information from the LHS to simplify
492    // the RHS.
493    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
494      uint64_t LHSZero, LHSOne;
495      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
496                                LHSZero, LHSOne, Depth+1);
497      // If the LHS already has zeros where RHSC does, this and is dead.
498      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
499        return TLO.CombineTo(Op, Op.getOperand(0));
500      // If any of the set bits in the RHS are known zero on the LHS, shrink
501      // the constant.
502      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
503        return true;
504    }
505
506    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
507                             KnownOne, TLO, Depth+1))
508      return true;
509    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
510    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
511                             KnownZero2, KnownOne2, TLO, Depth+1))
512      return true;
513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
514
515    // If all of the demanded bits are known one on one side, return the other.
516    // These bits cannot contribute to the result of the 'and'.
517    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
518      return TLO.CombineTo(Op, Op.getOperand(0));
519    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
520      return TLO.CombineTo(Op, Op.getOperand(1));
521    // If all of the demanded bits in the inputs are known zeros, return zero.
522    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
523      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
524    // If the RHS is a constant, see if we can simplify it.
525    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
526      return true;
527
528    // Output known-1 bits are only known if set in both the LHS & RHS.
529    KnownOne &= KnownOne2;
530    // Output known-0 are known to be clear if zero in either the LHS | RHS.
531    KnownZero |= KnownZero2;
532    break;
533  case ISD::OR:
534    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
535                             KnownOne, TLO, Depth+1))
536      return true;
537    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
538    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
539                             KnownZero2, KnownOne2, TLO, Depth+1))
540      return true;
541    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
542
543    // If all of the demanded bits are known zero on one side, return the other.
544    // These bits cannot contribute to the result of the 'or'.
545    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
546      return TLO.CombineTo(Op, Op.getOperand(0));
547    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
548      return TLO.CombineTo(Op, Op.getOperand(1));
549    // If all of the potentially set bits on one side are known to be set on
550    // the other side, just use the 'other' side.
551    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
552        (DemandedMask & (~KnownZero)))
553      return TLO.CombineTo(Op, Op.getOperand(0));
554    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
555        (DemandedMask & (~KnownZero2)))
556      return TLO.CombineTo(Op, Op.getOperand(1));
557    // If the RHS is a constant, see if we can simplify it.
558    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
559      return true;
560
561    // Output known-0 bits are only known if clear in both the LHS & RHS.
562    KnownZero &= KnownZero2;
563    // Output known-1 are known to be set if set in either the LHS | RHS.
564    KnownOne |= KnownOne2;
565    break;
566  case ISD::XOR:
567    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
568                             KnownOne, TLO, Depth+1))
569      return true;
570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
571    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
572                             KnownOne2, TLO, Depth+1))
573      return true;
574    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
575
576    // If all of the demanded bits are known zero on one side, return the other.
577    // These bits cannot contribute to the result of the 'xor'.
578    if ((DemandedMask & KnownZero) == DemandedMask)
579      return TLO.CombineTo(Op, Op.getOperand(0));
580    if ((DemandedMask & KnownZero2) == DemandedMask)
581      return TLO.CombineTo(Op, Op.getOperand(1));
582
583    // If all of the unknown bits are known to be zero on one side or the other
584    // (but not both) turn this into an *inclusive* or.
585    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
586    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
587      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
588                                               Op.getOperand(0),
589                                               Op.getOperand(1)));
590
591    // Output known-0 bits are known if clear or set in both the LHS & RHS.
592    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
593    // Output known-1 are known to be set if set in only one of the LHS, RHS.
594    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
595
596    // If all of the demanded bits on one side are known, and all of the set
597    // bits on that side are also known to be set on the other side, turn this
598    // into an AND, as we know the bits will be cleared.
599    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
600    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
601      if ((KnownOne & KnownOne2) == KnownOne) {
602        MVT::ValueType VT = Op.getValueType();
603        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
604        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
605                                                 ANDC));
606      }
607    }
608
609    // If the RHS is a constant, see if we can simplify it.
610    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
611    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
612      return true;
613
614    KnownZero = KnownZeroOut;
615    KnownOne  = KnownOneOut;
616    break;
617  case ISD::SETCC:
618    // If we know the result of a setcc has the top bits zero, use this info.
619    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
620      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
621    break;
622  case ISD::SELECT:
623    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
624                             KnownOne, TLO, Depth+1))
625      return true;
626    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
627                             KnownOne2, TLO, Depth+1))
628      return true;
629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
630    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
631
632    // If the operands are constants, see if we can simplify them.
633    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
634      return true;
635
636    // Only known if known in both the LHS and RHS.
637    KnownOne &= KnownOne2;
638    KnownZero &= KnownZero2;
639    break;
640  case ISD::SELECT_CC:
641    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
642                             KnownOne, TLO, Depth+1))
643      return true;
644    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
645                             KnownOne2, TLO, Depth+1))
646      return true;
647    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
648    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
649
650    // If the operands are constants, see if we can simplify them.
651    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
652      return true;
653
654    // Only known if known in both the LHS and RHS.
655    KnownOne &= KnownOne2;
656    KnownZero &= KnownZero2;
657    break;
658  case ISD::SHL:
659    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
660      unsigned ShAmt = SA->getValue();
661      SDOperand InOp = Op.getOperand(0);
662
663      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
664      // single shift.  We can do this if the bottom bits (which are shifted
665      // out) are never demanded.
666      if (InOp.getOpcode() == ISD::SRL &&
667          isa<ConstantSDNode>(InOp.getOperand(1))) {
668        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
669          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
670          unsigned Opc = ISD::SHL;
671          int Diff = ShAmt-C1;
672          if (Diff < 0) {
673            Diff = -Diff;
674            Opc = ISD::SRL;
675          }
676
677          SDOperand NewSA =
678            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
679          MVT::ValueType VT = Op.getValueType();
680          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
681                                                   InOp.getOperand(0), NewSA));
682        }
683      }
684
685      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
686                               KnownZero, KnownOne, TLO, Depth+1))
687        return true;
688      KnownZero <<= SA->getValue();
689      KnownOne  <<= SA->getValue();
690      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
691    }
692    break;
693  case ISD::SRL:
694    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
695      MVT::ValueType VT = Op.getValueType();
696      unsigned ShAmt = SA->getValue();
697      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
698      unsigned VTSize = MVT::getSizeInBits(VT);
699      SDOperand InOp = Op.getOperand(0);
700
701      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
702      // single shift.  We can do this if the top bits (which are shifted out)
703      // are never demanded.
704      if (InOp.getOpcode() == ISD::SHL &&
705          isa<ConstantSDNode>(InOp.getOperand(1))) {
706        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
707          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
708          unsigned Opc = ISD::SRL;
709          int Diff = ShAmt-C1;
710          if (Diff < 0) {
711            Diff = -Diff;
712            Opc = ISD::SHL;
713          }
714
715          SDOperand NewSA =
716            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
717          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
718                                                   InOp.getOperand(0), NewSA));
719        }
720      }
721
722      // Compute the new bits that are at the top now.
723      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
724                               KnownZero, KnownOne, TLO, Depth+1))
725        return true;
726      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
727      KnownZero &= TypeMask;
728      KnownOne  &= TypeMask;
729      KnownZero >>= ShAmt;
730      KnownOne  >>= ShAmt;
731
732      uint64_t HighBits = (1ULL << ShAmt)-1;
733      HighBits <<= VTSize - ShAmt;
734      KnownZero |= HighBits;  // High bits known zero.
735    }
736    break;
737  case ISD::SRA:
738    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
739      MVT::ValueType VT = Op.getValueType();
740      unsigned ShAmt = SA->getValue();
741
742      // Compute the new bits that are at the top now.
743      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
744
745      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
746
747      // If any of the demanded bits are produced by the sign extension, we also
748      // demand the input sign bit.
749      uint64_t HighBits = (1ULL << ShAmt)-1;
750      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
751      if (HighBits & DemandedMask)
752        InDemandedMask |= MVT::getIntVTSignBit(VT);
753
754      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
755                               KnownZero, KnownOne, TLO, Depth+1))
756        return true;
757      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
758      KnownZero &= TypeMask;
759      KnownOne  &= TypeMask;
760      KnownZero >>= ShAmt;
761      KnownOne  >>= ShAmt;
762
763      // Handle the sign bits.
764      uint64_t SignBit = MVT::getIntVTSignBit(VT);
765      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
766
767      // If the input sign bit is known to be zero, or if none of the top bits
768      // are demanded, turn this into an unsigned shift right.
769      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
770        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
771                                                 Op.getOperand(1)));
772      } else if (KnownOne & SignBit) { // New bits are known one.
773        KnownOne |= HighBits;
774      }
775    }
776    break;
777  case ISD::SIGN_EXTEND_INREG: {
778    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779
780    // Sign extension.  Compute the demanded bits in the result that are not
781    // present in the input.
782    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
783
784    // If none of the extended bits are demanded, eliminate the sextinreg.
785    if (NewBits == 0)
786      return TLO.CombineTo(Op, Op.getOperand(0));
787
788    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
789    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
790
791    // Since the sign extended bits are demanded, we know that the sign
792    // bit is demanded.
793    InputDemandedBits |= InSignBit;
794
795    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
796                             KnownZero, KnownOne, TLO, Depth+1))
797      return true;
798    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
799
800    // If the sign bit of the input is known set or clear, then we know the
801    // top bits of the result.
802
803    // If the input sign bit is known zero, convert this into a zero extension.
804    if (KnownZero & InSignBit)
805      return TLO.CombineTo(Op,
806                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
807
808    if (KnownOne & InSignBit) {    // Input sign bit known set
809      KnownOne |= NewBits;
810      KnownZero &= ~NewBits;
811    } else {                       // Input sign bit unknown
812      KnownZero &= ~NewBits;
813      KnownOne &= ~NewBits;
814    }
815    break;
816  }
817  case ISD::CTTZ:
818  case ISD::CTLZ:
819  case ISD::CTPOP: {
820    MVT::ValueType VT = Op.getValueType();
821    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
822    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
823    KnownOne  = 0;
824    break;
825  }
826  case ISD::LOAD: {
827    if (ISD::isZEXTLoad(Op.Val)) {
828      LoadSDNode *LD = cast<LoadSDNode>(Op);
829      MVT::ValueType VT = LD->getLoadedVT();
830      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
831    }
832    break;
833  }
834  case ISD::ZERO_EXTEND: {
835    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
836
837    // If none of the top bits are demanded, convert this into an any_extend.
838    uint64_t NewBits = (~InMask) & DemandedMask;
839    if (NewBits == 0)
840      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
841                                               Op.getValueType(),
842                                               Op.getOperand(0)));
843
844    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
845                             KnownZero, KnownOne, TLO, Depth+1))
846      return true;
847    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
848    KnownZero |= NewBits;
849    break;
850  }
851  case ISD::SIGN_EXTEND: {
852    MVT::ValueType InVT = Op.getOperand(0).getValueType();
853    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
854    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
855    uint64_t NewBits   = (~InMask) & DemandedMask;
856
857    // If none of the top bits are demanded, convert this into an any_extend.
858    if (NewBits == 0)
859      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
860                                           Op.getOperand(0)));
861
862    // Since some of the sign extended bits are demanded, we know that the sign
863    // bit is demanded.
864    uint64_t InDemandedBits = DemandedMask & InMask;
865    InDemandedBits |= InSignBit;
866
867    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
868                             KnownOne, TLO, Depth+1))
869      return true;
870
871    // If the sign bit is known zero, convert this to a zero extend.
872    if (KnownZero & InSignBit)
873      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
874                                               Op.getValueType(),
875                                               Op.getOperand(0)));
876
877    // If the sign bit is known one, the top bits match.
878    if (KnownOne & InSignBit) {
879      KnownOne  |= NewBits;
880      KnownZero &= ~NewBits;
881    } else {   // Otherwise, top bits aren't known.
882      KnownOne  &= ~NewBits;
883      KnownZero &= ~NewBits;
884    }
885    break;
886  }
887  case ISD::ANY_EXTEND: {
888    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
889    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
890                             KnownZero, KnownOne, TLO, Depth+1))
891      return true;
892    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
893    break;
894  }
895  case ISD::TRUNCATE: {
896    // Simplify the input, using demanded bit information, and compute the known
897    // zero/one bits live out.
898    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
899                             KnownZero, KnownOne, TLO, Depth+1))
900      return true;
901
902    // If the input is only used by this truncate, see if we can shrink it based
903    // on the known demanded bits.
904    if (Op.getOperand(0).Val->hasOneUse()) {
905      SDOperand In = Op.getOperand(0);
906      switch (In.getOpcode()) {
907      default: break;
908      case ISD::SRL:
909        // Shrink SRL by a constant if none of the high bits shifted in are
910        // demanded.
911        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
912          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
913          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
914          HighBits >>= ShAmt->getValue();
915
916          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
917              (DemandedMask & HighBits) == 0) {
918            // None of the shifted in bits are needed.  Add a truncate of the
919            // shift input, then shift it.
920            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
921                                                 Op.getValueType(),
922                                                 In.getOperand(0));
923            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
924                                                   NewTrunc, In.getOperand(1)));
925          }
926        }
927        break;
928      }
929    }
930
931    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
932    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
933    KnownZero &= OutMask;
934    KnownOne &= OutMask;
935    break;
936  }
937  case ISD::AssertZext: {
938    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
939    uint64_t InMask = MVT::getIntVTBitMask(VT);
940    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
941                             KnownZero, KnownOne, TLO, Depth+1))
942      return true;
943    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944    KnownZero |= ~InMask & DemandedMask;
945    break;
946  }
947  case ISD::FGETSIGN:
948    // All bits are zero except the low bit.
949    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
950    break;
951  case ISD::BIT_CONVERT:
952#if 0
953    // If this is an FP->Int bitcast and if the sign bit is the only thing that
954    // is demanded, turn this into a FGETSIGN.
955    if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
956        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
957        !MVT::isVector(Op.getOperand(0).getValueType())) {
958      // Only do this xform if FGETSIGN is valid or if before legalize.
959      if (!TLO.AfterLegalize ||
960          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
961        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
962        // place.  We expect the SHL to be eliminated by other optimizations.
963        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
964                                         Op.getOperand(0));
965        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
966        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
967        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
968                                                 Sign, ShAmt));
969      }
970    }
971#endif
972    break;
973  case ISD::ADD:
974  case ISD::SUB:
975  case ISD::INTRINSIC_WO_CHAIN:
976  case ISD::INTRINSIC_W_CHAIN:
977  case ISD::INTRINSIC_VOID:
978    // Just use ComputeMaskedBits to compute output bits.
979    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
980    break;
981  }
982
983  // If we know the value of all of the demanded bits, return this as a
984  // constant.
985  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
986    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
987
988  return false;
989}
990
991/// computeMaskedBitsForTargetNode - Determine which of the bits specified
992/// in Mask are known to be either zero or one and return them in the
993/// KnownZero/KnownOne bitsets.
994void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
995                                                    uint64_t Mask,
996                                                    uint64_t &KnownZero,
997                                                    uint64_t &KnownOne,
998                                                    const SelectionDAG &DAG,
999                                                    unsigned Depth) const {
1000  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1001          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1002          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1003          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1004         "Should use MaskedValueIsZero if you don't know whether Op"
1005         " is a target node!");
1006  KnownZero = 0;
1007  KnownOne = 0;
1008}
1009
1010/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1011/// targets that want to expose additional information about sign bits to the
1012/// DAG Combiner.
1013unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1014                                                         unsigned Depth) const {
1015  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1016          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1017          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1018          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1019         "Should use ComputeNumSignBits if you don't know whether Op"
1020         " is a target node!");
1021  return 1;
1022}
1023
1024
1025/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1026/// and cc. If it is unable to simplify it, return a null SDOperand.
1027SDOperand
1028TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1029                              ISD::CondCode Cond, bool foldBooleans,
1030                              DAGCombinerInfo &DCI) const {
1031  SelectionDAG &DAG = DCI.DAG;
1032
1033  // These setcc operations always fold.
1034  switch (Cond) {
1035  default: break;
1036  case ISD::SETFALSE:
1037  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1038  case ISD::SETTRUE:
1039  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1040  }
1041
1042  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1043    uint64_t C1 = N1C->getValue();
1044    if (isa<ConstantSDNode>(N0.Val)) {
1045      return DAG.FoldSetCC(VT, N0, N1, Cond);
1046    } else {
1047      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1048      // equality comparison, then we're just comparing whether X itself is
1049      // zero.
1050      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1051          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1052          N0.getOperand(1).getOpcode() == ISD::Constant) {
1053        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1054        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1055            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1056          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1057            // (srl (ctlz x), 5) == 0  -> X != 0
1058            // (srl (ctlz x), 5) != 1  -> X != 0
1059            Cond = ISD::SETNE;
1060          } else {
1061            // (srl (ctlz x), 5) != 0  -> X == 0
1062            // (srl (ctlz x), 5) == 1  -> X == 0
1063            Cond = ISD::SETEQ;
1064          }
1065          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1066          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1067                              Zero, Cond);
1068        }
1069      }
1070
1071      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1072      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1073        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1074
1075        // If the comparison constant has bits in the upper part, the
1076        // zero-extended value could never match.
1077        if (C1 & (~0ULL << InSize)) {
1078          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1079          switch (Cond) {
1080          case ISD::SETUGT:
1081          case ISD::SETUGE:
1082          case ISD::SETEQ: return DAG.getConstant(0, VT);
1083          case ISD::SETULT:
1084          case ISD::SETULE:
1085          case ISD::SETNE: return DAG.getConstant(1, VT);
1086          case ISD::SETGT:
1087          case ISD::SETGE:
1088            // True if the sign bit of C1 is set.
1089            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1090          case ISD::SETLT:
1091          case ISD::SETLE:
1092            // True if the sign bit of C1 isn't set.
1093            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1094          default:
1095            break;
1096          }
1097        }
1098
1099        // Otherwise, we can perform the comparison with the low bits.
1100        switch (Cond) {
1101        case ISD::SETEQ:
1102        case ISD::SETNE:
1103        case ISD::SETUGT:
1104        case ISD::SETUGE:
1105        case ISD::SETULT:
1106        case ISD::SETULE:
1107          return DAG.getSetCC(VT, N0.getOperand(0),
1108                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1109                          Cond);
1110        default:
1111          break;   // todo, be more careful with signed comparisons
1112        }
1113      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1114                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1115        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1116        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1117        MVT::ValueType ExtDstTy = N0.getValueType();
1118        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1119
1120        // If the extended part has any inconsistent bits, it cannot ever
1121        // compare equal.  In other words, they have to be all ones or all
1122        // zeros.
1123        uint64_t ExtBits =
1124          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1125        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1126          return DAG.getConstant(Cond == ISD::SETNE, VT);
1127
1128        SDOperand ZextOp;
1129        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1130        if (Op0Ty == ExtSrcTy) {
1131          ZextOp = N0.getOperand(0);
1132        } else {
1133          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1134          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1135                               DAG.getConstant(Imm, Op0Ty));
1136        }
1137        if (!DCI.isCalledByLegalizer())
1138          DCI.AddToWorklist(ZextOp.Val);
1139        // Otherwise, make this a use of a zext.
1140        return DAG.getSetCC(VT, ZextOp,
1141                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1142                                            ExtDstTy),
1143                            Cond);
1144      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1145                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1146
1147        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1148        if (N0.getOpcode() == ISD::SETCC) {
1149          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1150          if (TrueWhenTrue)
1151            return N0;
1152
1153          // Invert the condition.
1154          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1155          CC = ISD::getSetCCInverse(CC,
1156                               MVT::isInteger(N0.getOperand(0).getValueType()));
1157          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1158        }
1159
1160        if ((N0.getOpcode() == ISD::XOR ||
1161             (N0.getOpcode() == ISD::AND &&
1162              N0.getOperand(0).getOpcode() == ISD::XOR &&
1163              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1164            isa<ConstantSDNode>(N0.getOperand(1)) &&
1165            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1166          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1167          // can only do this if the top bits are known zero.
1168          if (DAG.MaskedValueIsZero(N0,
1169                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1170            // Okay, get the un-inverted input value.
1171            SDOperand Val;
1172            if (N0.getOpcode() == ISD::XOR)
1173              Val = N0.getOperand(0);
1174            else {
1175              assert(N0.getOpcode() == ISD::AND &&
1176                     N0.getOperand(0).getOpcode() == ISD::XOR);
1177              // ((X^1)&1)^1 -> X & 1
1178              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1179                                N0.getOperand(0).getOperand(0),
1180                                N0.getOperand(1));
1181            }
1182            return DAG.getSetCC(VT, Val, N1,
1183                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1184          }
1185        }
1186      }
1187
1188      uint64_t MinVal, MaxVal;
1189      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1190      if (ISD::isSignedIntSetCC(Cond)) {
1191        MinVal = 1ULL << (OperandBitSize-1);
1192        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1193          MaxVal = ~0ULL >> (65-OperandBitSize);
1194        else
1195          MaxVal = 0;
1196      } else {
1197        MinVal = 0;
1198        MaxVal = ~0ULL >> (64-OperandBitSize);
1199      }
1200
1201      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1202      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1203        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1204        --C1;                                          // X >= C0 --> X > (C0-1)
1205        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1206                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1207      }
1208
1209      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1210        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1211        ++C1;                                          // X <= C0 --> X < (C0+1)
1212        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1213                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1214      }
1215
1216      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1217        return DAG.getConstant(0, VT);      // X < MIN --> false
1218      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1219        return DAG.getConstant(1, VT);      // X >= MIN --> true
1220      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1221        return DAG.getConstant(0, VT);      // X > MAX --> false
1222      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1223        return DAG.getConstant(1, VT);      // X <= MAX --> true
1224
1225      // Canonicalize setgt X, Min --> setne X, Min
1226      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1227        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1228      // Canonicalize setlt X, Max --> setne X, Max
1229      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1230        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1231
1232      // If we have setult X, 1, turn it into seteq X, 0
1233      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1234        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1235                        ISD::SETEQ);
1236      // If we have setugt X, Max-1, turn it into seteq X, Max
1237      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1238        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1239                        ISD::SETEQ);
1240
1241      // If we have "setcc X, C0", check to see if we can shrink the immediate
1242      // by changing cc.
1243
1244      // SETUGT X, SINTMAX  -> SETLT X, 0
1245      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1246          C1 == (~0ULL >> (65-OperandBitSize)))
1247        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1248                            ISD::SETLT);
1249
1250      // FIXME: Implement the rest of these.
1251
1252      // Fold bit comparisons when we can.
1253      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1254          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1255        if (ConstantSDNode *AndRHS =
1256                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1257          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1258            // Perform the xform if the AND RHS is a single bit.
1259            if (isPowerOf2_64(AndRHS->getValue())) {
1260              return DAG.getNode(ISD::SRL, VT, N0,
1261                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1262                                             getShiftAmountTy()));
1263            }
1264          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1265            // (X & 8) == 8  -->  (X & 8) >> 3
1266            // Perform the xform if C1 is a single bit.
1267            if (isPowerOf2_64(C1)) {
1268              return DAG.getNode(ISD::SRL, VT, N0,
1269                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1270            }
1271          }
1272        }
1273    }
1274  } else if (isa<ConstantSDNode>(N0.Val)) {
1275      // Ensure that the constant occurs on the RHS.
1276    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1277  }
1278
1279  if (isa<ConstantFPSDNode>(N0.Val)) {
1280    // Constant fold or commute setcc.
1281    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1282    if (O.Val) return O;
1283  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1284    // If the RHS of an FP comparison is a constant, simplify it away in
1285    // some cases.
1286    if (CFP->getValueAPF().isNaN()) {
1287      // If an operand is known to be a nan, we can fold it.
1288      switch (ISD::getUnorderedFlavor(Cond)) {
1289      default: assert(0 && "Unknown flavor!");
1290      case 0:  // Known false.
1291        return DAG.getConstant(0, VT);
1292      case 1:  // Known true.
1293        return DAG.getConstant(1, VT);
1294      case 2:  // undefind.
1295        return DAG.getNode(ISD::UNDEF, VT);
1296      }
1297    }
1298
1299    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1300    // constant if knowing that the operand is non-nan is enough.  We prefer to
1301    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1302    // materialize 0.0.
1303    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1304      return DAG.getSetCC(VT, N0, N0, Cond);
1305  }
1306
1307  if (N0 == N1) {
1308    // We can always fold X == X for integer setcc's.
1309    if (MVT::isInteger(N0.getValueType()))
1310      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1311    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1312    if (UOF == 2)   // FP operators that are undefined on NaNs.
1313      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1314    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1315      return DAG.getConstant(UOF, VT);
1316    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1317    // if it is not already.
1318    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1319    if (NewCond != Cond)
1320      return DAG.getSetCC(VT, N0, N1, NewCond);
1321  }
1322
1323  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1324      MVT::isInteger(N0.getValueType())) {
1325    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1326        N0.getOpcode() == ISD::XOR) {
1327      // Simplify (X+Y) == (X+Z) -->  Y == Z
1328      if (N0.getOpcode() == N1.getOpcode()) {
1329        if (N0.getOperand(0) == N1.getOperand(0))
1330          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1331        if (N0.getOperand(1) == N1.getOperand(1))
1332          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1333        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1334          // If X op Y == Y op X, try other combinations.
1335          if (N0.getOperand(0) == N1.getOperand(1))
1336            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1337          if (N0.getOperand(1) == N1.getOperand(0))
1338            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1339        }
1340      }
1341
1342      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1343        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1344          // Turn (X+C1) == C2 --> X == C2-C1
1345          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1346            return DAG.getSetCC(VT, N0.getOperand(0),
1347                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1348                                N0.getValueType()), Cond);
1349          }
1350
1351          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1352          if (N0.getOpcode() == ISD::XOR)
1353            // If we know that all of the inverted bits are zero, don't bother
1354            // performing the inversion.
1355            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1356              return DAG.getSetCC(VT, N0.getOperand(0),
1357                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1358                                              N0.getValueType()), Cond);
1359        }
1360
1361        // Turn (C1-X) == C2 --> X == C1-C2
1362        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1363          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1364            return DAG.getSetCC(VT, N0.getOperand(1),
1365                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1366                                             N0.getValueType()), Cond);
1367          }
1368        }
1369      }
1370
1371      // Simplify (X+Z) == X -->  Z == 0
1372      if (N0.getOperand(0) == N1)
1373        return DAG.getSetCC(VT, N0.getOperand(1),
1374                        DAG.getConstant(0, N0.getValueType()), Cond);
1375      if (N0.getOperand(1) == N1) {
1376        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1377          return DAG.getSetCC(VT, N0.getOperand(0),
1378                          DAG.getConstant(0, N0.getValueType()), Cond);
1379        else if (N0.Val->hasOneUse()) {
1380          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1381          // (Z-X) == X  --> Z == X<<1
1382          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1383                                     N1,
1384                                     DAG.getConstant(1, getShiftAmountTy()));
1385          if (!DCI.isCalledByLegalizer())
1386            DCI.AddToWorklist(SH.Val);
1387          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1388        }
1389      }
1390    }
1391
1392    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1393        N1.getOpcode() == ISD::XOR) {
1394      // Simplify  X == (X+Z) -->  Z == 0
1395      if (N1.getOperand(0) == N0) {
1396        return DAG.getSetCC(VT, N1.getOperand(1),
1397                        DAG.getConstant(0, N1.getValueType()), Cond);
1398      } else if (N1.getOperand(1) == N0) {
1399        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1400          return DAG.getSetCC(VT, N1.getOperand(0),
1401                          DAG.getConstant(0, N1.getValueType()), Cond);
1402        } else if (N1.Val->hasOneUse()) {
1403          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1404          // X == (Z-X)  --> X<<1 == Z
1405          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1406                                     DAG.getConstant(1, getShiftAmountTy()));
1407          if (!DCI.isCalledByLegalizer())
1408            DCI.AddToWorklist(SH.Val);
1409          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1410        }
1411      }
1412    }
1413  }
1414
1415  // Fold away ALL boolean setcc's.
1416  SDOperand Temp;
1417  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1418    switch (Cond) {
1419    default: assert(0 && "Unknown integer setcc!");
1420    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1421      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1422      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1423      if (!DCI.isCalledByLegalizer())
1424        DCI.AddToWorklist(Temp.Val);
1425      break;
1426    case ISD::SETNE:  // X != Y   -->  (X^Y)
1427      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1428      break;
1429    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1430    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1431      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1432      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1433      if (!DCI.isCalledByLegalizer())
1434        DCI.AddToWorklist(Temp.Val);
1435      break;
1436    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1437    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1438      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1439      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1440      if (!DCI.isCalledByLegalizer())
1441        DCI.AddToWorklist(Temp.Val);
1442      break;
1443    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1444    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1445      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1446      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1447      if (!DCI.isCalledByLegalizer())
1448        DCI.AddToWorklist(Temp.Val);
1449      break;
1450    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1451    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1452      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1453      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1454      break;
1455    }
1456    if (VT != MVT::i1) {
1457      if (!DCI.isCalledByLegalizer())
1458        DCI.AddToWorklist(N0.Val);
1459      // FIXME: If running after legalize, we probably can't do this.
1460      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1461    }
1462    return N0;
1463  }
1464
1465  // Could not fold it.
1466  return SDOperand();
1467}
1468
1469SDOperand TargetLowering::
1470PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1471  // Default implementation: no optimization.
1472  return SDOperand();
1473}
1474
1475//===----------------------------------------------------------------------===//
1476//  Inline Assembler Implementation Methods
1477//===----------------------------------------------------------------------===//
1478
1479TargetLowering::ConstraintType
1480TargetLowering::getConstraintType(const std::string &Constraint) const {
1481  // FIXME: lots more standard ones to handle.
1482  if (Constraint.size() == 1) {
1483    switch (Constraint[0]) {
1484    default: break;
1485    case 'r': return C_RegisterClass;
1486    case 'm':    // memory
1487    case 'o':    // offsetable
1488    case 'V':    // not offsetable
1489      return C_Memory;
1490    case 'i':    // Simple Integer or Relocatable Constant
1491    case 'n':    // Simple Integer
1492    case 's':    // Relocatable Constant
1493    case 'X':    // Allow ANY value.
1494    case 'I':    // Target registers.
1495    case 'J':
1496    case 'K':
1497    case 'L':
1498    case 'M':
1499    case 'N':
1500    case 'O':
1501    case 'P':
1502      return C_Other;
1503    }
1504  }
1505
1506  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1507      Constraint[Constraint.size()-1] == '}')
1508    return C_Register;
1509  return C_Unknown;
1510}
1511
1512/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1513/// vector.  If it is invalid, don't add anything to Ops.
1514void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1515                                                  char ConstraintLetter,
1516                                                  std::vector<SDOperand> &Ops,
1517                                                  SelectionDAG &DAG) {
1518  switch (ConstraintLetter) {
1519  default: break;
1520  case 'X':     // Allows any operand; labels (basic block) use this.
1521    if (Op.getOpcode() == ISD::BasicBlock) {
1522      Ops.push_back(Op);
1523      return;
1524    }
1525    // fall through
1526  case 'i':    // Simple Integer or Relocatable Constant
1527  case 'n':    // Simple Integer
1528  case 's': {  // Relocatable Constant
1529    // These operands are interested in values of the form (GV+C), where C may
1530    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1531    // is possible and fine if either GV or C are missing.
1532    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1533    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1534
1535    // If we have "(add GV, C)", pull out GV/C
1536    if (Op.getOpcode() == ISD::ADD) {
1537      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1538      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1539      if (C == 0 || GA == 0) {
1540        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1541        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1542      }
1543      if (C == 0 || GA == 0)
1544        C = 0, GA = 0;
1545    }
1546
1547    // If we find a valid operand, map to the TargetXXX version so that the
1548    // value itself doesn't get selected.
1549    if (GA) {   // Either &GV   or   &GV+C
1550      if (ConstraintLetter != 'n') {
1551        int64_t Offs = GA->getOffset();
1552        if (C) Offs += C->getValue();
1553        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1554                                                 Op.getValueType(), Offs));
1555        return;
1556      }
1557    }
1558    if (C) {   // just C, no GV.
1559      // Simple constants are not allowed for 's'.
1560      if (ConstraintLetter != 's') {
1561        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1562        return;
1563      }
1564    }
1565    break;
1566  }
1567  }
1568}
1569
1570std::vector<unsigned> TargetLowering::
1571getRegClassForInlineAsmConstraint(const std::string &Constraint,
1572                                  MVT::ValueType VT) const {
1573  return std::vector<unsigned>();
1574}
1575
1576
1577std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1578getRegForInlineAsmConstraint(const std::string &Constraint,
1579                             MVT::ValueType VT) const {
1580  if (Constraint[0] != '{')
1581    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1582  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1583
1584  // Remove the braces from around the name.
1585  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1586
1587  // Figure out which register class contains this reg.
1588  const MRegisterInfo *RI = TM.getRegisterInfo();
1589  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1590       E = RI->regclass_end(); RCI != E; ++RCI) {
1591    const TargetRegisterClass *RC = *RCI;
1592
1593    // If none of the the value types for this register class are valid, we
1594    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1595    bool isLegal = false;
1596    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1597         I != E; ++I) {
1598      if (isTypeLegal(*I)) {
1599        isLegal = true;
1600        break;
1601      }
1602    }
1603
1604    if (!isLegal) continue;
1605
1606    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1607         I != E; ++I) {
1608      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1609        return std::make_pair(*I, RC);
1610    }
1611  }
1612
1613  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1614}
1615
1616//===----------------------------------------------------------------------===//
1617//  Loop Strength Reduction hooks
1618//===----------------------------------------------------------------------===//
1619
1620/// isLegalAddressingMode - Return true if the addressing mode represented
1621/// by AM is legal for this target, for a load/store of the specified type.
1622bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1623                                           const Type *Ty) const {
1624  // The default implementation of this implements a conservative RISCy, r+r and
1625  // r+i addr mode.
1626
1627  // Allows a sign-extended 16-bit immediate field.
1628  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1629    return false;
1630
1631  // No global is ever allowed as a base.
1632  if (AM.BaseGV)
1633    return false;
1634
1635  // Only support r+r,
1636  switch (AM.Scale) {
1637  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1638    break;
1639  case 1:
1640    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1641      return false;
1642    // Otherwise we have r+r or r+i.
1643    break;
1644  case 2:
1645    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1646      return false;
1647    // Allow 2*r as r+r.
1648    break;
1649  }
1650
1651  return true;
1652}
1653
1654// Magic for divide replacement
1655
1656struct ms {
1657  int64_t m;  // magic number
1658  int64_t s;  // shift amount
1659};
1660
1661struct mu {
1662  uint64_t m; // magic number
1663  int64_t a;  // add indicator
1664  int64_t s;  // shift amount
1665};
1666
1667/// magic - calculate the magic numbers required to codegen an integer sdiv as
1668/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1669/// or -1.
1670static ms magic32(int32_t d) {
1671  int32_t p;
1672  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1673  const uint32_t two31 = 0x80000000U;
1674  struct ms mag;
1675
1676  ad = abs(d);
1677  t = two31 + ((uint32_t)d >> 31);
1678  anc = t - 1 - t%ad;   // absolute value of nc
1679  p = 31;               // initialize p
1680  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1681  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1682  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1683  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1684  do {
1685    p = p + 1;
1686    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1687    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1688    if (r1 >= anc) {  // must be unsigned comparison
1689      q1 = q1 + 1;
1690      r1 = r1 - anc;
1691    }
1692    q2 = 2*q2;        // update q2 = 2p/abs(d)
1693    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1694    if (r2 >= ad) {   // must be unsigned comparison
1695      q2 = q2 + 1;
1696      r2 = r2 - ad;
1697    }
1698    delta = ad - r2;
1699  } while (q1 < delta || (q1 == delta && r1 == 0));
1700
1701  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1702  if (d < 0) mag.m = -mag.m; // resulting magic number
1703  mag.s = p - 32;            // resulting shift
1704  return mag;
1705}
1706
1707/// magicu - calculate the magic numbers required to codegen an integer udiv as
1708/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1709static mu magicu32(uint32_t d) {
1710  int32_t p;
1711  uint32_t nc, delta, q1, r1, q2, r2;
1712  struct mu magu;
1713  magu.a = 0;               // initialize "add" indicator
1714  nc = - 1 - (-d)%d;
1715  p = 31;                   // initialize p
1716  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1717  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1718  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1719  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1720  do {
1721    p = p + 1;
1722    if (r1 >= nc - r1 ) {
1723      q1 = 2*q1 + 1;  // update q1
1724      r1 = 2*r1 - nc; // update r1
1725    }
1726    else {
1727      q1 = 2*q1; // update q1
1728      r1 = 2*r1; // update r1
1729    }
1730    if (r2 + 1 >= d - r2) {
1731      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1732      q2 = 2*q2 + 1;     // update q2
1733      r2 = 2*r2 + 1 - d; // update r2
1734    }
1735    else {
1736      if (q2 >= 0x80000000) magu.a = 1;
1737      q2 = 2*q2;     // update q2
1738      r2 = 2*r2 + 1; // update r2
1739    }
1740    delta = d - 1 - r2;
1741  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1742  magu.m = q2 + 1; // resulting magic number
1743  magu.s = p - 32;  // resulting shift
1744  return magu;
1745}
1746
1747/// magic - calculate the magic numbers required to codegen an integer sdiv as
1748/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1749/// or -1.
1750static ms magic64(int64_t d) {
1751  int64_t p;
1752  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1753  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1754  struct ms mag;
1755
1756  ad = d >= 0 ? d : -d;
1757  t = two63 + ((uint64_t)d >> 63);
1758  anc = t - 1 - t%ad;   // absolute value of nc
1759  p = 63;               // initialize p
1760  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1761  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1762  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1763  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1764  do {
1765    p = p + 1;
1766    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1767    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1768    if (r1 >= anc) {  // must be unsigned comparison
1769      q1 = q1 + 1;
1770      r1 = r1 - anc;
1771    }
1772    q2 = 2*q2;        // update q2 = 2p/abs(d)
1773    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1774    if (r2 >= ad) {   // must be unsigned comparison
1775      q2 = q2 + 1;
1776      r2 = r2 - ad;
1777    }
1778    delta = ad - r2;
1779  } while (q1 < delta || (q1 == delta && r1 == 0));
1780
1781  mag.m = q2 + 1;
1782  if (d < 0) mag.m = -mag.m; // resulting magic number
1783  mag.s = p - 64;            // resulting shift
1784  return mag;
1785}
1786
1787/// magicu - calculate the magic numbers required to codegen an integer udiv as
1788/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1789static mu magicu64(uint64_t d)
1790{
1791  int64_t p;
1792  uint64_t nc, delta, q1, r1, q2, r2;
1793  struct mu magu;
1794  magu.a = 0;               // initialize "add" indicator
1795  nc = - 1 - (-d)%d;
1796  p = 63;                   // initialize p
1797  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1798  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1799  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1800  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1801  do {
1802    p = p + 1;
1803    if (r1 >= nc - r1 ) {
1804      q1 = 2*q1 + 1;  // update q1
1805      r1 = 2*r1 - nc; // update r1
1806    }
1807    else {
1808      q1 = 2*q1; // update q1
1809      r1 = 2*r1; // update r1
1810    }
1811    if (r2 + 1 >= d - r2) {
1812      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1813      q2 = 2*q2 + 1;     // update q2
1814      r2 = 2*r2 + 1 - d; // update r2
1815    }
1816    else {
1817      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1818      q2 = 2*q2;     // update q2
1819      r2 = 2*r2 + 1; // update r2
1820    }
1821    delta = d - 1 - r2;
1822  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1823  magu.m = q2 + 1; // resulting magic number
1824  magu.s = p - 64;  // resulting shift
1825  return magu;
1826}
1827
1828/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1829/// return a DAG expression to select that will generate the same value by
1830/// multiplying by a magic number.  See:
1831/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1832SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1833                                    std::vector<SDNode*>* Created) const {
1834  MVT::ValueType VT = N->getValueType(0);
1835
1836  // Check to see if we can do this.
1837  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1838    return SDOperand();       // BuildSDIV only operates on i32 or i64
1839
1840  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1841  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1842
1843  // Multiply the numerator (operand 0) by the magic value
1844  SDOperand Q;
1845  if (isOperationLegal(ISD::MULHS, VT))
1846    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1847                    DAG.getConstant(magics.m, VT));
1848  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1849    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1850                              N->getOperand(0),
1851                              DAG.getConstant(magics.m, VT)).Val, 1);
1852  else
1853    return SDOperand();       // No mulhs or equvialent
1854  // If d > 0 and m < 0, add the numerator
1855  if (d > 0 && magics.m < 0) {
1856    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1857    if (Created)
1858      Created->push_back(Q.Val);
1859  }
1860  // If d < 0 and m > 0, subtract the numerator.
1861  if (d < 0 && magics.m > 0) {
1862    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1863    if (Created)
1864      Created->push_back(Q.Val);
1865  }
1866  // Shift right algebraic if shift value is nonzero
1867  if (magics.s > 0) {
1868    Q = DAG.getNode(ISD::SRA, VT, Q,
1869                    DAG.getConstant(magics.s, getShiftAmountTy()));
1870    if (Created)
1871      Created->push_back(Q.Val);
1872  }
1873  // Extract the sign bit and add it to the quotient
1874  SDOperand T =
1875    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1876                                                 getShiftAmountTy()));
1877  if (Created)
1878    Created->push_back(T.Val);
1879  return DAG.getNode(ISD::ADD, VT, Q, T);
1880}
1881
1882/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1883/// return a DAG expression to select that will generate the same value by
1884/// multiplying by a magic number.  See:
1885/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1886SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1887                                    std::vector<SDNode*>* Created) const {
1888  MVT::ValueType VT = N->getValueType(0);
1889
1890  // Check to see if we can do this.
1891  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1892    return SDOperand();       // BuildUDIV only operates on i32 or i64
1893
1894  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1895  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1896
1897  // Multiply the numerator (operand 0) by the magic value
1898  SDOperand Q;
1899  if (isOperationLegal(ISD::MULHU, VT))
1900    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1901                    DAG.getConstant(magics.m, VT));
1902  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1903    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1904                              N->getOperand(0),
1905                              DAG.getConstant(magics.m, VT)).Val, 1);
1906  else
1907    return SDOperand();       // No mulhu or equvialent
1908  if (Created)
1909    Created->push_back(Q.Val);
1910
1911  if (magics.a == 0) {
1912    return DAG.getNode(ISD::SRL, VT, Q,
1913                       DAG.getConstant(magics.s, getShiftAmountTy()));
1914  } else {
1915    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1916    if (Created)
1917      Created->push_back(NPQ.Val);
1918    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1919                      DAG.getConstant(1, getShiftAmountTy()));
1920    if (Created)
1921      Created->push_back(NPQ.Val);
1922    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1923    if (Created)
1924      Created->push_back(NPQ.Val);
1925    return DAG.getNode(ISD::SRL, VT, NPQ,
1926                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1927  }
1928}
1929