TargetLowering.cpp revision 64fa4a9584113f63eccc1a650e7e0cc4ddbab3f6
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetLoweringObjectFile.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Target/TargetSubtarget.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30namespace llvm {
31TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
32  bool isLocal = GV->hasLocalLinkage();
33  bool isDeclaration = GV->isDeclaration();
34  // FIXME: what should we do for protected and internal visibility?
35  // For variables, is internal different from hidden?
36  bool isHidden = GV->hasHiddenVisibility();
37
38  if (reloc == Reloc::PIC_) {
39    if (isLocal || isHidden)
40      return TLSModel::LocalDynamic;
41    else
42      return TLSModel::GeneralDynamic;
43  } else {
44    if (!isDeclaration || isHidden)
45      return TLSModel::LocalExec;
46    else
47      return TLSModel::InitialExec;
48  }
49}
50}
51
52/// InitLibcallNames - Set default libcall names.
53///
54static void InitLibcallNames(const char **Names) {
55  Names[RTLIB::SHL_I16] = "__ashlhi3";
56  Names[RTLIB::SHL_I32] = "__ashlsi3";
57  Names[RTLIB::SHL_I64] = "__ashldi3";
58  Names[RTLIB::SHL_I128] = "__ashlti3";
59  Names[RTLIB::SRL_I16] = "__lshrhi3";
60  Names[RTLIB::SRL_I32] = "__lshrsi3";
61  Names[RTLIB::SRL_I64] = "__lshrdi3";
62  Names[RTLIB::SRL_I128] = "__lshrti3";
63  Names[RTLIB::SRA_I16] = "__ashrhi3";
64  Names[RTLIB::SRA_I32] = "__ashrsi3";
65  Names[RTLIB::SRA_I64] = "__ashrdi3";
66  Names[RTLIB::SRA_I128] = "__ashrti3";
67  Names[RTLIB::MUL_I8] = "__mulqi3";
68  Names[RTLIB::MUL_I16] = "__mulhi3";
69  Names[RTLIB::MUL_I32] = "__mulsi3";
70  Names[RTLIB::MUL_I64] = "__muldi3";
71  Names[RTLIB::MUL_I128] = "__multi3";
72  Names[RTLIB::SDIV_I8] = "__divqi3";
73  Names[RTLIB::SDIV_I16] = "__divhi3";
74  Names[RTLIB::SDIV_I32] = "__divsi3";
75  Names[RTLIB::SDIV_I64] = "__divdi3";
76  Names[RTLIB::SDIV_I128] = "__divti3";
77  Names[RTLIB::UDIV_I8] = "__udivqi3";
78  Names[RTLIB::UDIV_I16] = "__udivhi3";
79  Names[RTLIB::UDIV_I32] = "__udivsi3";
80  Names[RTLIB::UDIV_I64] = "__udivdi3";
81  Names[RTLIB::UDIV_I128] = "__udivti3";
82  Names[RTLIB::SREM_I8] = "__modqi3";
83  Names[RTLIB::SREM_I16] = "__modhi3";
84  Names[RTLIB::SREM_I32] = "__modsi3";
85  Names[RTLIB::SREM_I64] = "__moddi3";
86  Names[RTLIB::SREM_I128] = "__modti3";
87  Names[RTLIB::UREM_I8] = "__umodqi3";
88  Names[RTLIB::UREM_I16] = "__umodhi3";
89  Names[RTLIB::UREM_I32] = "__umodsi3";
90  Names[RTLIB::UREM_I64] = "__umoddi3";
91  Names[RTLIB::UREM_I128] = "__umodti3";
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
98  Names[RTLIB::SUB_F32] = "__subsf3";
99  Names[RTLIB::SUB_F64] = "__subdf3";
100  Names[RTLIB::SUB_F80] = "__subxf3";
101  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
102  Names[RTLIB::MUL_F32] = "__mulsf3";
103  Names[RTLIB::MUL_F64] = "__muldf3";
104  Names[RTLIB::MUL_F80] = "__mulxf3";
105  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
106  Names[RTLIB::DIV_F32] = "__divsf3";
107  Names[RTLIB::DIV_F64] = "__divdf3";
108  Names[RTLIB::DIV_F80] = "__divxf3";
109  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
110  Names[RTLIB::REM_F32] = "fmodf";
111  Names[RTLIB::REM_F64] = "fmod";
112  Names[RTLIB::REM_F80] = "fmodl";
113  Names[RTLIB::REM_PPCF128] = "fmodl";
114  Names[RTLIB::POWI_F32] = "__powisf2";
115  Names[RTLIB::POWI_F64] = "__powidf2";
116  Names[RTLIB::POWI_F80] = "__powixf2";
117  Names[RTLIB::POWI_PPCF128] = "__powitf2";
118  Names[RTLIB::SQRT_F32] = "sqrtf";
119  Names[RTLIB::SQRT_F64] = "sqrt";
120  Names[RTLIB::SQRT_F80] = "sqrtl";
121  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
122  Names[RTLIB::LOG_F32] = "logf";
123  Names[RTLIB::LOG_F64] = "log";
124  Names[RTLIB::LOG_F80] = "logl";
125  Names[RTLIB::LOG_PPCF128] = "logl";
126  Names[RTLIB::LOG2_F32] = "log2f";
127  Names[RTLIB::LOG2_F64] = "log2";
128  Names[RTLIB::LOG2_F80] = "log2l";
129  Names[RTLIB::LOG2_PPCF128] = "log2l";
130  Names[RTLIB::LOG10_F32] = "log10f";
131  Names[RTLIB::LOG10_F64] = "log10";
132  Names[RTLIB::LOG10_F80] = "log10l";
133  Names[RTLIB::LOG10_PPCF128] = "log10l";
134  Names[RTLIB::EXP_F32] = "expf";
135  Names[RTLIB::EXP_F64] = "exp";
136  Names[RTLIB::EXP_F80] = "expl";
137  Names[RTLIB::EXP_PPCF128] = "expl";
138  Names[RTLIB::EXP2_F32] = "exp2f";
139  Names[RTLIB::EXP2_F64] = "exp2";
140  Names[RTLIB::EXP2_F80] = "exp2l";
141  Names[RTLIB::EXP2_PPCF128] = "exp2l";
142  Names[RTLIB::SIN_F32] = "sinf";
143  Names[RTLIB::SIN_F64] = "sin";
144  Names[RTLIB::SIN_F80] = "sinl";
145  Names[RTLIB::SIN_PPCF128] = "sinl";
146  Names[RTLIB::COS_F32] = "cosf";
147  Names[RTLIB::COS_F64] = "cos";
148  Names[RTLIB::COS_F80] = "cosl";
149  Names[RTLIB::COS_PPCF128] = "cosl";
150  Names[RTLIB::POW_F32] = "powf";
151  Names[RTLIB::POW_F64] = "pow";
152  Names[RTLIB::POW_F80] = "powl";
153  Names[RTLIB::POW_PPCF128] = "powl";
154  Names[RTLIB::CEIL_F32] = "ceilf";
155  Names[RTLIB::CEIL_F64] = "ceil";
156  Names[RTLIB::CEIL_F80] = "ceill";
157  Names[RTLIB::CEIL_PPCF128] = "ceill";
158  Names[RTLIB::TRUNC_F32] = "truncf";
159  Names[RTLIB::TRUNC_F64] = "trunc";
160  Names[RTLIB::TRUNC_F80] = "truncl";
161  Names[RTLIB::TRUNC_PPCF128] = "truncl";
162  Names[RTLIB::RINT_F32] = "rintf";
163  Names[RTLIB::RINT_F64] = "rint";
164  Names[RTLIB::RINT_F80] = "rintl";
165  Names[RTLIB::RINT_PPCF128] = "rintl";
166  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
167  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
168  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
169  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
170  Names[RTLIB::FLOOR_F32] = "floorf";
171  Names[RTLIB::FLOOR_F64] = "floor";
172  Names[RTLIB::FLOOR_F80] = "floorl";
173  Names[RTLIB::FLOOR_PPCF128] = "floorl";
174  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
175  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
176  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
177  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
178  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
179  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
180  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
181  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
182  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
183  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
184  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
185  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
186  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
187  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
188  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
189  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
190  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
191  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
192  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
193  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
194  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
195  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
196  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
197  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
198  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
199  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
200  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
201  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
202  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
203  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
204  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
205  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
206  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
207  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
208  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
209  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
210  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
211  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
212  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
213  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
214  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
215  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
216  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
217  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
218  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
219  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
220  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
221  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
222  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
223  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
224  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
225  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
226  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
227  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
228  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
229  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
230  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
231  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
232  Names[RTLIB::OEQ_F32] = "__eqsf2";
233  Names[RTLIB::OEQ_F64] = "__eqdf2";
234  Names[RTLIB::UNE_F32] = "__nesf2";
235  Names[RTLIB::UNE_F64] = "__nedf2";
236  Names[RTLIB::OGE_F32] = "__gesf2";
237  Names[RTLIB::OGE_F64] = "__gedf2";
238  Names[RTLIB::OLT_F32] = "__ltsf2";
239  Names[RTLIB::OLT_F64] = "__ltdf2";
240  Names[RTLIB::OLE_F32] = "__lesf2";
241  Names[RTLIB::OLE_F64] = "__ledf2";
242  Names[RTLIB::OGT_F32] = "__gtsf2";
243  Names[RTLIB::OGT_F64] = "__gtdf2";
244  Names[RTLIB::UO_F32] = "__unordsf2";
245  Names[RTLIB::UO_F64] = "__unorddf2";
246  Names[RTLIB::O_F32] = "__unordsf2";
247  Names[RTLIB::O_F64] = "__unorddf2";
248  Names[RTLIB::MEMCPY] = "memcpy";
249  Names[RTLIB::MEMMOVE] = "memmove";
250  Names[RTLIB::MEMSET] = "memset";
251  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
252}
253
254/// InitLibcallCallingConvs - Set default libcall CallingConvs.
255///
256static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
257  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
258    CCs[i] = CallingConv::C;
259  }
260}
261
262/// getFPEXT - Return the FPEXT_*_* value for the given types, or
263/// UNKNOWN_LIBCALL if there is none.
264RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
265  if (OpVT == MVT::f32) {
266    if (RetVT == MVT::f64)
267      return FPEXT_F32_F64;
268  }
269  return UNKNOWN_LIBCALL;
270}
271
272/// getFPROUND - Return the FPROUND_*_* value for the given types, or
273/// UNKNOWN_LIBCALL if there is none.
274RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
275  if (RetVT == MVT::f32) {
276    if (OpVT == MVT::f64)
277      return FPROUND_F64_F32;
278    if (OpVT == MVT::f80)
279      return FPROUND_F80_F32;
280    if (OpVT == MVT::ppcf128)
281      return FPROUND_PPCF128_F32;
282  } else if (RetVT == MVT::f64) {
283    if (OpVT == MVT::f80)
284      return FPROUND_F80_F64;
285    if (OpVT == MVT::ppcf128)
286      return FPROUND_PPCF128_F64;
287  }
288  return UNKNOWN_LIBCALL;
289}
290
291/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
292/// UNKNOWN_LIBCALL if there is none.
293RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
294  if (OpVT == MVT::f32) {
295    if (RetVT == MVT::i8)
296      return FPTOSINT_F32_I8;
297    if (RetVT == MVT::i16)
298      return FPTOSINT_F32_I16;
299    if (RetVT == MVT::i32)
300      return FPTOSINT_F32_I32;
301    if (RetVT == MVT::i64)
302      return FPTOSINT_F32_I64;
303    if (RetVT == MVT::i128)
304      return FPTOSINT_F32_I128;
305  } else if (OpVT == MVT::f64) {
306    if (RetVT == MVT::i32)
307      return FPTOSINT_F64_I32;
308    if (RetVT == MVT::i64)
309      return FPTOSINT_F64_I64;
310    if (RetVT == MVT::i128)
311      return FPTOSINT_F64_I128;
312  } else if (OpVT == MVT::f80) {
313    if (RetVT == MVT::i32)
314      return FPTOSINT_F80_I32;
315    if (RetVT == MVT::i64)
316      return FPTOSINT_F80_I64;
317    if (RetVT == MVT::i128)
318      return FPTOSINT_F80_I128;
319  } else if (OpVT == MVT::ppcf128) {
320    if (RetVT == MVT::i32)
321      return FPTOSINT_PPCF128_I32;
322    if (RetVT == MVT::i64)
323      return FPTOSINT_PPCF128_I64;
324    if (RetVT == MVT::i128)
325      return FPTOSINT_PPCF128_I128;
326  }
327  return UNKNOWN_LIBCALL;
328}
329
330/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
331/// UNKNOWN_LIBCALL if there is none.
332RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
333  if (OpVT == MVT::f32) {
334    if (RetVT == MVT::i8)
335      return FPTOUINT_F32_I8;
336    if (RetVT == MVT::i16)
337      return FPTOUINT_F32_I16;
338    if (RetVT == MVT::i32)
339      return FPTOUINT_F32_I32;
340    if (RetVT == MVT::i64)
341      return FPTOUINT_F32_I64;
342    if (RetVT == MVT::i128)
343      return FPTOUINT_F32_I128;
344  } else if (OpVT == MVT::f64) {
345    if (RetVT == MVT::i32)
346      return FPTOUINT_F64_I32;
347    if (RetVT == MVT::i64)
348      return FPTOUINT_F64_I64;
349    if (RetVT == MVT::i128)
350      return FPTOUINT_F64_I128;
351  } else if (OpVT == MVT::f80) {
352    if (RetVT == MVT::i32)
353      return FPTOUINT_F80_I32;
354    if (RetVT == MVT::i64)
355      return FPTOUINT_F80_I64;
356    if (RetVT == MVT::i128)
357      return FPTOUINT_F80_I128;
358  } else if (OpVT == MVT::ppcf128) {
359    if (RetVT == MVT::i32)
360      return FPTOUINT_PPCF128_I32;
361    if (RetVT == MVT::i64)
362      return FPTOUINT_PPCF128_I64;
363    if (RetVT == MVT::i128)
364      return FPTOUINT_PPCF128_I128;
365  }
366  return UNKNOWN_LIBCALL;
367}
368
369/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
370/// UNKNOWN_LIBCALL if there is none.
371RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
372  if (OpVT == MVT::i32) {
373    if (RetVT == MVT::f32)
374      return SINTTOFP_I32_F32;
375    else if (RetVT == MVT::f64)
376      return SINTTOFP_I32_F64;
377    else if (RetVT == MVT::f80)
378      return SINTTOFP_I32_F80;
379    else if (RetVT == MVT::ppcf128)
380      return SINTTOFP_I32_PPCF128;
381  } else if (OpVT == MVT::i64) {
382    if (RetVT == MVT::f32)
383      return SINTTOFP_I64_F32;
384    else if (RetVT == MVT::f64)
385      return SINTTOFP_I64_F64;
386    else if (RetVT == MVT::f80)
387      return SINTTOFP_I64_F80;
388    else if (RetVT == MVT::ppcf128)
389      return SINTTOFP_I64_PPCF128;
390  } else if (OpVT == MVT::i128) {
391    if (RetVT == MVT::f32)
392      return SINTTOFP_I128_F32;
393    else if (RetVT == MVT::f64)
394      return SINTTOFP_I128_F64;
395    else if (RetVT == MVT::f80)
396      return SINTTOFP_I128_F80;
397    else if (RetVT == MVT::ppcf128)
398      return SINTTOFP_I128_PPCF128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
404/// UNKNOWN_LIBCALL if there is none.
405RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
406  if (OpVT == MVT::i32) {
407    if (RetVT == MVT::f32)
408      return UINTTOFP_I32_F32;
409    else if (RetVT == MVT::f64)
410      return UINTTOFP_I32_F64;
411    else if (RetVT == MVT::f80)
412      return UINTTOFP_I32_F80;
413    else if (RetVT == MVT::ppcf128)
414      return UINTTOFP_I32_PPCF128;
415  } else if (OpVT == MVT::i64) {
416    if (RetVT == MVT::f32)
417      return UINTTOFP_I64_F32;
418    else if (RetVT == MVT::f64)
419      return UINTTOFP_I64_F64;
420    else if (RetVT == MVT::f80)
421      return UINTTOFP_I64_F80;
422    else if (RetVT == MVT::ppcf128)
423      return UINTTOFP_I64_PPCF128;
424  } else if (OpVT == MVT::i128) {
425    if (RetVT == MVT::f32)
426      return UINTTOFP_I128_F32;
427    else if (RetVT == MVT::f64)
428      return UINTTOFP_I128_F64;
429    else if (RetVT == MVT::f80)
430      return UINTTOFP_I128_F80;
431    else if (RetVT == MVT::ppcf128)
432      return UINTTOFP_I128_PPCF128;
433  }
434  return UNKNOWN_LIBCALL;
435}
436
437/// InitCmpLibcallCCs - Set default comparison libcall CC.
438///
439static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
440  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
441  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
442  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
443  CCs[RTLIB::UNE_F32] = ISD::SETNE;
444  CCs[RTLIB::UNE_F64] = ISD::SETNE;
445  CCs[RTLIB::OGE_F32] = ISD::SETGE;
446  CCs[RTLIB::OGE_F64] = ISD::SETGE;
447  CCs[RTLIB::OLT_F32] = ISD::SETLT;
448  CCs[RTLIB::OLT_F64] = ISD::SETLT;
449  CCs[RTLIB::OLE_F32] = ISD::SETLE;
450  CCs[RTLIB::OLE_F64] = ISD::SETLE;
451  CCs[RTLIB::OGT_F32] = ISD::SETGT;
452  CCs[RTLIB::OGT_F64] = ISD::SETGT;
453  CCs[RTLIB::UO_F32] = ISD::SETNE;
454  CCs[RTLIB::UO_F64] = ISD::SETNE;
455  CCs[RTLIB::O_F32] = ISD::SETEQ;
456  CCs[RTLIB::O_F64] = ISD::SETEQ;
457}
458
459/// NOTE: The constructor takes ownership of TLOF.
460TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
461  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
462  // All operations default to being supported.
463  memset(OpActions, 0, sizeof(OpActions));
464  memset(LoadExtActions, 0, sizeof(LoadExtActions));
465  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
466  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
467  memset(ConvertActions, 0, sizeof(ConvertActions));
468  memset(CondCodeActions, 0, sizeof(CondCodeActions));
469
470  // Set default actions for various operations.
471  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
472    // Default all indexed load / store to expand.
473    for (unsigned IM = (unsigned)ISD::PRE_INC;
474         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
475      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
476      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
477    }
478
479    // These operations default to expand.
480    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
481    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
482  }
483
484  // Most targets ignore the @llvm.prefetch intrinsic.
485  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
486
487  // ConstantFP nodes default to expand.  Targets can either change this to
488  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
489  // to optimize expansions for certain constants.
490  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
491  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
492  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
493
494  // These library functions default to expand.
495  setOperationAction(ISD::FLOG , MVT::f64, Expand);
496  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
497  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
498  setOperationAction(ISD::FEXP , MVT::f64, Expand);
499  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
500  setOperationAction(ISD::FLOG , MVT::f32, Expand);
501  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
502  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
503  setOperationAction(ISD::FEXP , MVT::f32, Expand);
504  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
505
506  // Default ISD::TRAP to expand (which turns it into abort).
507  setOperationAction(ISD::TRAP, MVT::Other, Expand);
508
509  IsLittleEndian = TD->isLittleEndian();
510  UsesGlobalOffsetTable = false;
511  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
512  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
513  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
514  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
515  benefitFromCodePlacementOpt = false;
516  UseUnderscoreSetJmp = false;
517  UseUnderscoreLongJmp = false;
518  SelectIsExpensive = false;
519  IntDivIsCheap = false;
520  Pow2DivIsCheap = false;
521  StackPointerRegisterToSaveRestore = 0;
522  ExceptionPointerRegister = 0;
523  ExceptionSelectorRegister = 0;
524  BooleanContents = UndefinedBooleanContent;
525  SchedPreferenceInfo = SchedulingForLatency;
526  JumpBufSize = 0;
527  JumpBufAlignment = 0;
528  IfCvtBlockSizeLimit = 2;
529  IfCvtDupBlockSizeLimit = 0;
530  PrefLoopAlignment = 0;
531
532  InitLibcallNames(LibcallRoutineNames);
533  InitCmpLibcallCCs(CmpLibcallCCs);
534  InitLibcallCallingConvs(LibcallCallingConvs);
535}
536
537TargetLowering::~TargetLowering() {
538  delete &TLOF;
539}
540
541static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
542                                       unsigned &NumIntermediates,
543                                       EVT &RegisterVT,
544                                       TargetLowering* TLI) {
545  // Figure out the right, legal destination reg to copy into.
546  unsigned NumElts = VT.getVectorNumElements();
547  MVT EltTy = VT.getVectorElementType();
548
549  unsigned NumVectorRegs = 1;
550
551  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
552  // could break down into LHS/RHS like LegalizeDAG does.
553  if (!isPowerOf2_32(NumElts)) {
554    NumVectorRegs = NumElts;
555    NumElts = 1;
556  }
557
558  // Divide the input until we get to a supported size.  This will always
559  // end with a scalar if the target doesn't support vectors.
560  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
561    NumElts >>= 1;
562    NumVectorRegs <<= 1;
563  }
564
565  NumIntermediates = NumVectorRegs;
566
567  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
568  if (!TLI->isTypeLegal(NewVT))
569    NewVT = EltTy;
570  IntermediateVT = NewVT;
571
572  EVT DestVT = TLI->getRegisterType(NewVT);
573  RegisterVT = DestVT;
574  if (EVT(DestVT).bitsLT(NewVT)) {
575    // Value is expanded, e.g. i64 -> i16.
576    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
577  } else {
578    // Otherwise, promotion or legal types use the same number of registers as
579    // the vector decimated to the appropriate level.
580    return NumVectorRegs;
581  }
582
583  return 1;
584}
585
586/// computeRegisterProperties - Once all of the register classes are added,
587/// this allows us to compute derived properties we expose.
588void TargetLowering::computeRegisterProperties() {
589  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
590         "Too many value types for ValueTypeActions to hold!");
591
592  // Everything defaults to needing one register.
593  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
594    NumRegistersForVT[i] = 1;
595    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
596  }
597  // ...except isVoid, which doesn't need any registers.
598  NumRegistersForVT[MVT::isVoid] = 0;
599
600  // Find the largest integer register class.
601  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
602  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
603    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
604
605  // Every integer value type larger than this largest register takes twice as
606  // many registers to represent as the previous ValueType.
607  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
608    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
609    if (!ExpandedVT.isInteger())
610      break;
611    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
612    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
613    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
614    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
615  }
616
617  // Inspect all of the ValueType's smaller than the largest integer
618  // register to see which ones need promotion.
619  unsigned LegalIntReg = LargestIntReg;
620  for (unsigned IntReg = LargestIntReg - 1;
621       IntReg >= (unsigned)MVT::i1; --IntReg) {
622    EVT IVT = (MVT::SimpleValueType)IntReg;
623    if (isTypeLegal(IVT)) {
624      LegalIntReg = IntReg;
625    } else {
626      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
627        (MVT::SimpleValueType)LegalIntReg;
628      ValueTypeActions.setTypeAction(IVT, Promote);
629    }
630  }
631
632  // ppcf128 type is really two f64's.
633  if (!isTypeLegal(MVT::ppcf128)) {
634    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
635    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
636    TransformToType[MVT::ppcf128] = MVT::f64;
637    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
638  }
639
640  // Decide how to handle f64. If the target does not have native f64 support,
641  // expand it to i64 and we will be generating soft float library calls.
642  if (!isTypeLegal(MVT::f64)) {
643    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
644    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
645    TransformToType[MVT::f64] = MVT::i64;
646    ValueTypeActions.setTypeAction(MVT::f64, Expand);
647  }
648
649  // Decide how to handle f32. If the target does not have native support for
650  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
651  if (!isTypeLegal(MVT::f32)) {
652    if (isTypeLegal(MVT::f64)) {
653      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
654      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
655      TransformToType[MVT::f32] = MVT::f64;
656      ValueTypeActions.setTypeAction(MVT::f32, Promote);
657    } else {
658      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
659      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
660      TransformToType[MVT::f32] = MVT::i32;
661      ValueTypeActions.setTypeAction(MVT::f32, Expand);
662    }
663  }
664
665  // Loop over all of the vector value types to see which need transformations.
666  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
667       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
668    MVT VT = (MVT::SimpleValueType)i;
669    if (!isTypeLegal(VT)) {
670      MVT IntermediateVT;
671      EVT RegisterVT;
672      unsigned NumIntermediates;
673      NumRegistersForVT[i] =
674        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
675                                  RegisterVT, this);
676      RegisterTypeForVT[i] = RegisterVT;
677
678      // Determine if there is a legal wider type.
679      bool IsLegalWiderType = false;
680      EVT EltVT = VT.getVectorElementType();
681      unsigned NElts = VT.getVectorNumElements();
682      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
683        EVT SVT = (MVT::SimpleValueType)nVT;
684        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
685            SVT.getVectorNumElements() > NElts) {
686          TransformToType[i] = SVT;
687          ValueTypeActions.setTypeAction(VT, Promote);
688          IsLegalWiderType = true;
689          break;
690        }
691      }
692      if (!IsLegalWiderType) {
693        EVT NVT = VT.getPow2VectorType();
694        if (NVT == VT) {
695          // Type is already a power of 2.  The default action is to split.
696          TransformToType[i] = MVT::Other;
697          ValueTypeActions.setTypeAction(VT, Expand);
698        } else {
699          TransformToType[i] = NVT;
700          ValueTypeActions.setTypeAction(VT, Promote);
701        }
702      }
703    }
704  }
705}
706
707const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
708  return NULL;
709}
710
711
712MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
713  return PointerTy.SimpleTy;
714}
715
716/// getVectorTypeBreakdown - Vector types are broken down into some number of
717/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
718/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
719/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
720///
721/// This method returns the number of registers needed, and the VT for each
722/// register.  It also returns the VT and quantity of the intermediate values
723/// before they are promoted/expanded.
724///
725unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
726                                                EVT &IntermediateVT,
727                                                unsigned &NumIntermediates,
728                                                EVT &RegisterVT) const {
729  // Figure out the right, legal destination reg to copy into.
730  unsigned NumElts = VT.getVectorNumElements();
731  EVT EltTy = VT.getVectorElementType();
732
733  unsigned NumVectorRegs = 1;
734
735  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
736  // could break down into LHS/RHS like LegalizeDAG does.
737  if (!isPowerOf2_32(NumElts)) {
738    NumVectorRegs = NumElts;
739    NumElts = 1;
740  }
741
742  // Divide the input until we get to a supported size.  This will always
743  // end with a scalar if the target doesn't support vectors.
744  while (NumElts > 1 && !isTypeLegal(
745                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
746    NumElts >>= 1;
747    NumVectorRegs <<= 1;
748  }
749
750  NumIntermediates = NumVectorRegs;
751
752  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
753  if (!isTypeLegal(NewVT))
754    NewVT = EltTy;
755  IntermediateVT = NewVT;
756
757  EVT DestVT = getRegisterType(Context, NewVT);
758  RegisterVT = DestVT;
759  if (DestVT.bitsLT(NewVT)) {
760    // Value is expanded, e.g. i64 -> i16.
761    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
762  } else {
763    // Otherwise, promotion or legal types use the same number of registers as
764    // the vector decimated to the appropriate level.
765    return NumVectorRegs;
766  }
767
768  return 1;
769}
770
771/// getWidenVectorType: given a vector type, returns the type to widen to
772/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
773/// If there is no vector type that we want to widen to, returns MVT::Other
774/// When and where to widen is target dependent based on the cost of
775/// scalarizing vs using the wider vector type.
776EVT TargetLowering::getWidenVectorType(EVT VT) const {
777  assert(VT.isVector());
778  if (isTypeLegal(VT))
779    return VT;
780
781  // Default is not to widen until moved to LegalizeTypes
782  return MVT::Other;
783}
784
785/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
786/// function arguments in the caller parameter area.  This is the actual
787/// alignment, not its logarithm.
788unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
789  return TD->getCallFrameTypeAlignment(Ty);
790}
791
792SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
793                                                 SelectionDAG &DAG) const {
794  if (usesGlobalOffsetTable())
795    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
796  return Table;
797}
798
799bool
800TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
801  // Assume that everything is safe in static mode.
802  if (getTargetMachine().getRelocationModel() == Reloc::Static)
803    return true;
804
805  // In dynamic-no-pic mode, assume that known defined values are safe.
806  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
807      GA &&
808      !GA->getGlobal()->isDeclaration() &&
809      !GA->getGlobal()->isWeakForLinker())
810    return true;
811
812  // Otherwise assume nothing is safe.
813  return false;
814}
815
816//===----------------------------------------------------------------------===//
817//  Optimization Methods
818//===----------------------------------------------------------------------===//
819
820/// ShrinkDemandedConstant - Check to see if the specified operand of the
821/// specified instruction is a constant integer.  If so, check to see if there
822/// are any bits set in the constant that are not demanded.  If so, shrink the
823/// constant and return true.
824bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
825                                                        const APInt &Demanded) {
826  DebugLoc dl = Op.getDebugLoc();
827
828  // FIXME: ISD::SELECT, ISD::SELECT_CC
829  switch (Op.getOpcode()) {
830  default: break;
831  case ISD::XOR:
832  case ISD::AND:
833  case ISD::OR: {
834    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
835    if (!C) return false;
836
837    if (Op.getOpcode() == ISD::XOR &&
838        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
839      return false;
840
841    // if we can expand it to have all bits set, do it
842    if (C->getAPIntValue().intersects(~Demanded)) {
843      EVT VT = Op.getValueType();
844      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
845                                DAG.getConstant(Demanded &
846                                                C->getAPIntValue(),
847                                                VT));
848      return CombineTo(Op, New);
849    }
850
851    break;
852  }
853  }
854
855  return false;
856}
857
858/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
859/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
860/// cast, but it could be generalized for targets with other types of
861/// implicit widening casts.
862bool
863TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
864                                                    unsigned BitWidth,
865                                                    const APInt &Demanded,
866                                                    DebugLoc dl) {
867  assert(Op.getNumOperands() == 2 &&
868         "ShrinkDemandedOp only supports binary operators!");
869  assert(Op.getNode()->getNumValues() == 1 &&
870         "ShrinkDemandedOp only supports nodes with one result!");
871
872  // Don't do this if the node has another user, which may require the
873  // full value.
874  if (!Op.getNode()->hasOneUse())
875    return false;
876
877  // Search for the smallest integer type with free casts to and from
878  // Op's type. For expedience, just check power-of-2 integer types.
879  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
881  if (!isPowerOf2_32(SmallVTBits))
882    SmallVTBits = NextPowerOf2(SmallVTBits);
883  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
884    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
885    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
886        TLI.isZExtFree(SmallVT, Op.getValueType())) {
887      // We found a type with free casts.
888      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
889                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
890                                          Op.getNode()->getOperand(0)),
891                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
892                                          Op.getNode()->getOperand(1)));
893      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
894      return CombineTo(Op, Z);
895    }
896  }
897  return false;
898}
899
900/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
901/// DemandedMask bits of the result of Op are ever used downstream.  If we can
902/// use this information to simplify Op, create a new simplified DAG node and
903/// return true, returning the original and new nodes in Old and New. Otherwise,
904/// analyze the expression and return a mask of KnownOne and KnownZero bits for
905/// the expression (used to simplify the caller).  The KnownZero/One bits may
906/// only be accurate for those bits in the DemandedMask.
907bool TargetLowering::SimplifyDemandedBits(SDValue Op,
908                                          const APInt &DemandedMask,
909                                          APInt &KnownZero,
910                                          APInt &KnownOne,
911                                          TargetLoweringOpt &TLO,
912                                          unsigned Depth) const {
913  unsigned BitWidth = DemandedMask.getBitWidth();
914  assert(Op.getValueSizeInBits() == BitWidth &&
915         "Mask size mismatches value type size!");
916  APInt NewMask = DemandedMask;
917  DebugLoc dl = Op.getDebugLoc();
918
919  // Don't know anything.
920  KnownZero = KnownOne = APInt(BitWidth, 0);
921
922  // Other users may use these bits.
923  if (!Op.getNode()->hasOneUse()) {
924    if (Depth != 0) {
925      // If not at the root, Just compute the KnownZero/KnownOne bits to
926      // simplify things downstream.
927      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
928      return false;
929    }
930    // If this is the root being simplified, allow it to have multiple uses,
931    // just set the NewMask to all bits.
932    NewMask = APInt::getAllOnesValue(BitWidth);
933  } else if (DemandedMask == 0) {
934    // Not demanding any bits from Op.
935    if (Op.getOpcode() != ISD::UNDEF)
936      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
937    return false;
938  } else if (Depth == 6) {        // Limit search depth.
939    return false;
940  }
941
942  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
943  switch (Op.getOpcode()) {
944  case ISD::Constant:
945    // We know all of the bits for a constant!
946    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
947    KnownZero = ~KnownOne & NewMask;
948    return false;   // Don't fall through, will infinitely loop.
949  case ISD::AND:
950    // If the RHS is a constant, check to see if the LHS would be zero without
951    // using the bits from the RHS.  Below, we use knowledge about the RHS to
952    // simplify the LHS, here we're using information from the LHS to simplify
953    // the RHS.
954    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
955      APInt LHSZero, LHSOne;
956      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
957                                LHSZero, LHSOne, Depth+1);
958      // If the LHS already has zeros where RHSC does, this and is dead.
959      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
960        return TLO.CombineTo(Op, Op.getOperand(0));
961      // If any of the set bits in the RHS are known zero on the LHS, shrink
962      // the constant.
963      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
964        return true;
965    }
966
967    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
968                             KnownOne, TLO, Depth+1))
969      return true;
970    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
971    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
972                             KnownZero2, KnownOne2, TLO, Depth+1))
973      return true;
974    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
975
976    // If all of the demanded bits are known one on one side, return the other.
977    // These bits cannot contribute to the result of the 'and'.
978    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
979      return TLO.CombineTo(Op, Op.getOperand(0));
980    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
981      return TLO.CombineTo(Op, Op.getOperand(1));
982    // If all of the demanded bits in the inputs are known zeros, return zero.
983    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
984      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
985    // If the RHS is a constant, see if we can simplify it.
986    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
987      return true;
988    // If the operation can be done in a smaller type, do so.
989    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
990      return true;
991
992    // Output known-1 bits are only known if set in both the LHS & RHS.
993    KnownOne &= KnownOne2;
994    // Output known-0 are known to be clear if zero in either the LHS | RHS.
995    KnownZero |= KnownZero2;
996    break;
997  case ISD::OR:
998    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
999                             KnownOne, TLO, Depth+1))
1000      return true;
1001    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1002    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1003                             KnownZero2, KnownOne2, TLO, Depth+1))
1004      return true;
1005    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1006
1007    // If all of the demanded bits are known zero on one side, return the other.
1008    // These bits cannot contribute to the result of the 'or'.
1009    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1010      return TLO.CombineTo(Op, Op.getOperand(0));
1011    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1012      return TLO.CombineTo(Op, Op.getOperand(1));
1013    // If all of the potentially set bits on one side are known to be set on
1014    // the other side, just use the 'other' side.
1015    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1016      return TLO.CombineTo(Op, Op.getOperand(0));
1017    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1018      return TLO.CombineTo(Op, Op.getOperand(1));
1019    // If the RHS is a constant, see if we can simplify it.
1020    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1021      return true;
1022    // If the operation can be done in a smaller type, do so.
1023    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1024      return true;
1025
1026    // Output known-0 bits are only known if clear in both the LHS & RHS.
1027    KnownZero &= KnownZero2;
1028    // Output known-1 are known to be set if set in either the LHS | RHS.
1029    KnownOne |= KnownOne2;
1030    break;
1031  case ISD::XOR:
1032    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1033                             KnownOne, TLO, Depth+1))
1034      return true;
1035    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1036    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1037                             KnownOne2, TLO, Depth+1))
1038      return true;
1039    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1040
1041    // If all of the demanded bits are known zero on one side, return the other.
1042    // These bits cannot contribute to the result of the 'xor'.
1043    if ((KnownZero & NewMask) == NewMask)
1044      return TLO.CombineTo(Op, Op.getOperand(0));
1045    if ((KnownZero2 & NewMask) == NewMask)
1046      return TLO.CombineTo(Op, Op.getOperand(1));
1047    // If the operation can be done in a smaller type, do so.
1048    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1049      return true;
1050
1051    // If all of the unknown bits are known to be zero on one side or the other
1052    // (but not both) turn this into an *inclusive* or.
1053    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1054    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1055      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1056                                               Op.getOperand(0),
1057                                               Op.getOperand(1)));
1058
1059    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1060    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1061    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1062    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1063
1064    // If all of the demanded bits on one side are known, and all of the set
1065    // bits on that side are also known to be set on the other side, turn this
1066    // into an AND, as we know the bits will be cleared.
1067    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1068    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1069      if ((KnownOne & KnownOne2) == KnownOne) {
1070        EVT VT = Op.getValueType();
1071        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1072        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1073                                                 Op.getOperand(0), ANDC));
1074      }
1075    }
1076
1077    // If the RHS is a constant, see if we can simplify it.
1078    // for XOR, we prefer to force bits to 1 if they will make a -1.
1079    // if we can't force bits, try to shrink constant
1080    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1081      APInt Expanded = C->getAPIntValue() | (~NewMask);
1082      // if we can expand it to have all bits set, do it
1083      if (Expanded.isAllOnesValue()) {
1084        if (Expanded != C->getAPIntValue()) {
1085          EVT VT = Op.getValueType();
1086          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1087                                          TLO.DAG.getConstant(Expanded, VT));
1088          return TLO.CombineTo(Op, New);
1089        }
1090        // if it already has all the bits set, nothing to change
1091        // but don't shrink either!
1092      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1093        return true;
1094      }
1095    }
1096
1097    KnownZero = KnownZeroOut;
1098    KnownOne  = KnownOneOut;
1099    break;
1100  case ISD::SELECT:
1101    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1102                             KnownOne, TLO, Depth+1))
1103      return true;
1104    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1105                             KnownOne2, TLO, Depth+1))
1106      return true;
1107    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1108    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1109
1110    // If the operands are constants, see if we can simplify them.
1111    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1112      return true;
1113
1114    // Only known if known in both the LHS and RHS.
1115    KnownOne &= KnownOne2;
1116    KnownZero &= KnownZero2;
1117    break;
1118  case ISD::SELECT_CC:
1119    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1120                             KnownOne, TLO, Depth+1))
1121      return true;
1122    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1123                             KnownOne2, TLO, Depth+1))
1124      return true;
1125    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1127
1128    // If the operands are constants, see if we can simplify them.
1129    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1130      return true;
1131
1132    // Only known if known in both the LHS and RHS.
1133    KnownOne &= KnownOne2;
1134    KnownZero &= KnownZero2;
1135    break;
1136  case ISD::SHL:
1137    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1138      unsigned ShAmt = SA->getZExtValue();
1139      SDValue InOp = Op.getOperand(0);
1140
1141      // If the shift count is an invalid immediate, don't do anything.
1142      if (ShAmt >= BitWidth)
1143        break;
1144
1145      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1146      // single shift.  We can do this if the bottom bits (which are shifted
1147      // out) are never demanded.
1148      if (InOp.getOpcode() == ISD::SRL &&
1149          isa<ConstantSDNode>(InOp.getOperand(1))) {
1150        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1151          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1152          unsigned Opc = ISD::SHL;
1153          int Diff = ShAmt-C1;
1154          if (Diff < 0) {
1155            Diff = -Diff;
1156            Opc = ISD::SRL;
1157          }
1158
1159          SDValue NewSA =
1160            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1161          EVT VT = Op.getValueType();
1162          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1163                                                   InOp.getOperand(0), NewSA));
1164        }
1165      }
1166
1167      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1168                               KnownZero, KnownOne, TLO, Depth+1))
1169        return true;
1170      KnownZero <<= SA->getZExtValue();
1171      KnownOne  <<= SA->getZExtValue();
1172      // low bits known zero.
1173      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1174    }
1175    break;
1176  case ISD::SRL:
1177    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1178      EVT VT = Op.getValueType();
1179      unsigned ShAmt = SA->getZExtValue();
1180      unsigned VTSize = VT.getSizeInBits();
1181      SDValue InOp = Op.getOperand(0);
1182
1183      // If the shift count is an invalid immediate, don't do anything.
1184      if (ShAmt >= BitWidth)
1185        break;
1186
1187      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1188      // single shift.  We can do this if the top bits (which are shifted out)
1189      // are never demanded.
1190      if (InOp.getOpcode() == ISD::SHL &&
1191          isa<ConstantSDNode>(InOp.getOperand(1))) {
1192        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1193          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1194          unsigned Opc = ISD::SRL;
1195          int Diff = ShAmt-C1;
1196          if (Diff < 0) {
1197            Diff = -Diff;
1198            Opc = ISD::SHL;
1199          }
1200
1201          SDValue NewSA =
1202            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1203          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1204                                                   InOp.getOperand(0), NewSA));
1205        }
1206      }
1207
1208      // Compute the new bits that are at the top now.
1209      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1210                               KnownZero, KnownOne, TLO, Depth+1))
1211        return true;
1212      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213      KnownZero = KnownZero.lshr(ShAmt);
1214      KnownOne  = KnownOne.lshr(ShAmt);
1215
1216      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1217      KnownZero |= HighBits;  // High bits known zero.
1218    }
1219    break;
1220  case ISD::SRA:
1221    // If this is an arithmetic shift right and only the low-bit is set, we can
1222    // always convert this into a logical shr, even if the shift amount is
1223    // variable.  The low bit of the shift cannot be an input sign bit unless
1224    // the shift amount is >= the size of the datatype, which is undefined.
1225    if (DemandedMask == 1)
1226      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1227                                               Op.getOperand(0), Op.getOperand(1)));
1228
1229    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1230      EVT VT = Op.getValueType();
1231      unsigned ShAmt = SA->getZExtValue();
1232
1233      // If the shift count is an invalid immediate, don't do anything.
1234      if (ShAmt >= BitWidth)
1235        break;
1236
1237      APInt InDemandedMask = (NewMask << ShAmt);
1238
1239      // If any of the demanded bits are produced by the sign extension, we also
1240      // demand the input sign bit.
1241      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1242      if (HighBits.intersects(NewMask))
1243        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1244
1245      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1246                               KnownZero, KnownOne, TLO, Depth+1))
1247        return true;
1248      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1249      KnownZero = KnownZero.lshr(ShAmt);
1250      KnownOne  = KnownOne.lshr(ShAmt);
1251
1252      // Handle the sign bit, adjusted to where it is now in the mask.
1253      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1254
1255      // If the input sign bit is known to be zero, or if none of the top bits
1256      // are demanded, turn this into an unsigned shift right.
1257      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1258        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1259                                                 Op.getOperand(0),
1260                                                 Op.getOperand(1)));
1261      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1262        KnownOne |= HighBits;
1263      }
1264    }
1265    break;
1266  case ISD::SIGN_EXTEND_INREG: {
1267    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1268
1269    // Sign extension.  Compute the demanded bits in the result that are not
1270    // present in the input.
1271    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1272                                          BitWidth - EVT.getSizeInBits()) &
1273                    NewMask;
1274
1275    // If none of the extended bits are demanded, eliminate the sextinreg.
1276    if (NewBits == 0)
1277      return TLO.CombineTo(Op, Op.getOperand(0));
1278
1279    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1280    InSignBit.zext(BitWidth);
1281    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1282                                                   EVT.getSizeInBits()) &
1283                              NewMask;
1284
1285    // Since the sign extended bits are demanded, we know that the sign
1286    // bit is demanded.
1287    InputDemandedBits |= InSignBit;
1288
1289    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1290                             KnownZero, KnownOne, TLO, Depth+1))
1291      return true;
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293
1294    // If the sign bit of the input is known set or clear, then we know the
1295    // top bits of the result.
1296
1297    // If the input sign bit is known zero, convert this into a zero extension.
1298    if (KnownZero.intersects(InSignBit))
1299      return TLO.CombineTo(Op,
1300                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1301
1302    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1303      KnownOne |= NewBits;
1304      KnownZero &= ~NewBits;
1305    } else {                       // Input sign bit unknown
1306      KnownZero &= ~NewBits;
1307      KnownOne &= ~NewBits;
1308    }
1309    break;
1310  }
1311  case ISD::ZERO_EXTEND: {
1312    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1313    APInt InMask = NewMask;
1314    InMask.trunc(OperandBitWidth);
1315
1316    // If none of the top bits are demanded, convert this into an any_extend.
1317    APInt NewBits =
1318      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1319    if (!NewBits.intersects(NewMask))
1320      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1321                                               Op.getValueType(),
1322                                               Op.getOperand(0)));
1323
1324    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1325                             KnownZero, KnownOne, TLO, Depth+1))
1326      return true;
1327    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1328    KnownZero.zext(BitWidth);
1329    KnownOne.zext(BitWidth);
1330    KnownZero |= NewBits;
1331    break;
1332  }
1333  case ISD::SIGN_EXTEND: {
1334    EVT InVT = Op.getOperand(0).getValueType();
1335    unsigned InBits = InVT.getSizeInBits();
1336    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1337    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1338    APInt NewBits   = ~InMask & NewMask;
1339
1340    // If none of the top bits are demanded, convert this into an any_extend.
1341    if (NewBits == 0)
1342      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1343                                              Op.getValueType(),
1344                                              Op.getOperand(0)));
1345
1346    // Since some of the sign extended bits are demanded, we know that the sign
1347    // bit is demanded.
1348    APInt InDemandedBits = InMask & NewMask;
1349    InDemandedBits |= InSignBit;
1350    InDemandedBits.trunc(InBits);
1351
1352    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1353                             KnownOne, TLO, Depth+1))
1354      return true;
1355    KnownZero.zext(BitWidth);
1356    KnownOne.zext(BitWidth);
1357
1358    // If the sign bit is known zero, convert this to a zero extend.
1359    if (KnownZero.intersects(InSignBit))
1360      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1361                                               Op.getValueType(),
1362                                               Op.getOperand(0)));
1363
1364    // If the sign bit is known one, the top bits match.
1365    if (KnownOne.intersects(InSignBit)) {
1366      KnownOne  |= NewBits;
1367      KnownZero &= ~NewBits;
1368    } else {   // Otherwise, top bits aren't known.
1369      KnownOne  &= ~NewBits;
1370      KnownZero &= ~NewBits;
1371    }
1372    break;
1373  }
1374  case ISD::ANY_EXTEND: {
1375    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1376    APInt InMask = NewMask;
1377    InMask.trunc(OperandBitWidth);
1378    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1379                             KnownZero, KnownOne, TLO, Depth+1))
1380      return true;
1381    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382    KnownZero.zext(BitWidth);
1383    KnownOne.zext(BitWidth);
1384    break;
1385  }
1386  case ISD::TRUNCATE: {
1387    // Simplify the input, using demanded bit information, and compute the known
1388    // zero/one bits live out.
1389    APInt TruncMask = NewMask;
1390    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1391    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1392                             KnownZero, KnownOne, TLO, Depth+1))
1393      return true;
1394    KnownZero.trunc(BitWidth);
1395    KnownOne.trunc(BitWidth);
1396
1397    // If the input is only used by this truncate, see if we can shrink it based
1398    // on the known demanded bits.
1399    if (Op.getOperand(0).getNode()->hasOneUse()) {
1400      SDValue In = Op.getOperand(0);
1401      unsigned InBitWidth = In.getValueSizeInBits();
1402      switch (In.getOpcode()) {
1403      default: break;
1404      case ISD::SRL:
1405        // Shrink SRL by a constant if none of the high bits shifted in are
1406        // demanded.
1407        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1408          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1409                                                 InBitWidth - BitWidth);
1410          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1411          HighBits.trunc(BitWidth);
1412
1413          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1414            // None of the shifted in bits are needed.  Add a truncate of the
1415            // shift input, then shift it.
1416            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1417                                                 Op.getValueType(),
1418                                                 In.getOperand(0));
1419            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1420                                                     Op.getValueType(),
1421                                                     NewTrunc,
1422                                                     In.getOperand(1)));
1423          }
1424        }
1425        break;
1426      }
1427    }
1428
1429    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1430    break;
1431  }
1432  case ISD::AssertZext: {
1433    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1434    APInt InMask = APInt::getLowBitsSet(BitWidth,
1435                                        VT.getSizeInBits());
1436    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1437                             KnownZero, KnownOne, TLO, Depth+1))
1438      return true;
1439    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1440    KnownZero |= ~InMask & NewMask;
1441    break;
1442  }
1443  case ISD::BIT_CONVERT:
1444#if 0
1445    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1446    // is demanded, turn this into a FGETSIGN.
1447    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1448        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1449        !MVT::isVector(Op.getOperand(0).getValueType())) {
1450      // Only do this xform if FGETSIGN is valid or if before legalize.
1451      if (!TLO.AfterLegalize ||
1452          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1453        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1454        // place.  We expect the SHL to be eliminated by other optimizations.
1455        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1456                                         Op.getOperand(0));
1457        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1458        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1459        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1460                                                 Sign, ShAmt));
1461      }
1462    }
1463#endif
1464    break;
1465  case ISD::ADD:
1466  case ISD::MUL:
1467  case ISD::SUB: {
1468    // Add, Sub, and Mul don't demand any bits in positions beyond that
1469    // of the highest bit demanded of them.
1470    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1471                                        BitWidth - NewMask.countLeadingZeros());
1472    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1473                             KnownOne2, TLO, Depth+1))
1474      return true;
1475    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1476                             KnownOne2, TLO, Depth+1))
1477      return true;
1478    // See if the operation should be performed at a smaller bit width.
1479    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1480      return true;
1481  }
1482  // FALL THROUGH
1483  default:
1484    // Just use ComputeMaskedBits to compute output bits.
1485    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1486    break;
1487  }
1488
1489  // If we know the value of all of the demanded bits, return this as a
1490  // constant.
1491  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1492    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1493
1494  return false;
1495}
1496
1497/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1498/// in Mask are known to be either zero or one and return them in the
1499/// KnownZero/KnownOne bitsets.
1500void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1501                                                    const APInt &Mask,
1502                                                    APInt &KnownZero,
1503                                                    APInt &KnownOne,
1504                                                    const SelectionDAG &DAG,
1505                                                    unsigned Depth) const {
1506  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1507          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1508          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1509          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1510         "Should use MaskedValueIsZero if you don't know whether Op"
1511         " is a target node!");
1512  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1513}
1514
1515/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1516/// targets that want to expose additional information about sign bits to the
1517/// DAG Combiner.
1518unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1519                                                         unsigned Depth) const {
1520  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1521          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1522          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1523          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1524         "Should use ComputeNumSignBits if you don't know whether Op"
1525         " is a target node!");
1526  return 1;
1527}
1528
1529/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1530/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1531/// determine which bit is set.
1532///
1533static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1534  // A left-shift of a constant one will have exactly one bit set, because
1535  // shifting the bit off the end is undefined.
1536  if (Val.getOpcode() == ISD::SHL)
1537    if (ConstantSDNode *C =
1538         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1539      if (C->getAPIntValue() == 1)
1540        return true;
1541
1542  // Similarly, a right-shift of a constant sign-bit will have exactly
1543  // one bit set.
1544  if (Val.getOpcode() == ISD::SRL)
1545    if (ConstantSDNode *C =
1546         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1547      if (C->getAPIntValue().isSignBit())
1548        return true;
1549
1550  // More could be done here, though the above checks are enough
1551  // to handle some common cases.
1552
1553  // Fall back to ComputeMaskedBits to catch other known cases.
1554  EVT OpVT = Val.getValueType();
1555  unsigned BitWidth = OpVT.getSizeInBits();
1556  APInt Mask = APInt::getAllOnesValue(BitWidth);
1557  APInt KnownZero, KnownOne;
1558  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1559  return (KnownZero.countPopulation() == BitWidth - 1) &&
1560         (KnownOne.countPopulation() == 1);
1561}
1562
1563/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1564/// and cc. If it is unable to simplify it, return a null SDValue.
1565SDValue
1566TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1567                              ISD::CondCode Cond, bool foldBooleans,
1568                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1569  SelectionDAG &DAG = DCI.DAG;
1570  LLVMContext &Context = *DAG.getContext();
1571
1572  // These setcc operations always fold.
1573  switch (Cond) {
1574  default: break;
1575  case ISD::SETFALSE:
1576  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1577  case ISD::SETTRUE:
1578  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1579  }
1580
1581  if (isa<ConstantSDNode>(N0.getNode())) {
1582    // Ensure that the constant occurs on the RHS, and fold constant
1583    // comparisons.
1584    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1585  }
1586
1587  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1588    const APInt &C1 = N1C->getAPIntValue();
1589
1590    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1591    // equality comparison, then we're just comparing whether X itself is
1592    // zero.
1593    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1594        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1595        N0.getOperand(1).getOpcode() == ISD::Constant) {
1596      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1597      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1598          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1599        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1600          // (srl (ctlz x), 5) == 0  -> X != 0
1601          // (srl (ctlz x), 5) != 1  -> X != 0
1602          Cond = ISD::SETNE;
1603        } else {
1604          // (srl (ctlz x), 5) != 0  -> X == 0
1605          // (srl (ctlz x), 5) == 1  -> X == 0
1606          Cond = ISD::SETEQ;
1607        }
1608        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1609        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1610                            Zero, Cond);
1611      }
1612    }
1613
1614    // If the LHS is '(and load, const)', the RHS is 0,
1615    // the test is for equality or unsigned, and all 1 bits of the const are
1616    // in the same partial word, see if we can shorten the load.
1617    if (DCI.isBeforeLegalize() &&
1618        N0.getOpcode() == ISD::AND && C1 == 0 &&
1619        N0.getNode()->hasOneUse() &&
1620        isa<LoadSDNode>(N0.getOperand(0)) &&
1621        N0.getOperand(0).getNode()->hasOneUse() &&
1622        isa<ConstantSDNode>(N0.getOperand(1))) {
1623      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1624      uint64_t bestMask = 0;
1625      unsigned bestWidth = 0, bestOffset = 0;
1626      if (!Lod->isVolatile() && Lod->isUnindexed() &&
1627          // FIXME: This uses getZExtValue() below so it only works on i64 and
1628          // below.
1629          N0.getValueType().getSizeInBits() <= 64) {
1630        unsigned origWidth = N0.getValueType().getSizeInBits();
1631        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1632        // 8 bits, but have to be careful...
1633        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1634          origWidth = Lod->getMemoryVT().getSizeInBits();
1635        uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1636        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1637          uint64_t newMask = (1ULL << width) - 1;
1638          for (unsigned offset=0; offset<origWidth/width; offset++) {
1639            if ((newMask & Mask) == Mask) {
1640              if (!TD->isLittleEndian())
1641                bestOffset = (origWidth/width - offset - 1) * (width/8);
1642              else
1643                bestOffset = (uint64_t)offset * (width/8);
1644              bestMask = Mask >> (offset * (width/8) * 8);
1645              bestWidth = width;
1646              break;
1647            }
1648            newMask = newMask << width;
1649          }
1650        }
1651      }
1652      if (bestWidth) {
1653        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1654        if (newVT.isRound()) {
1655          EVT PtrType = Lod->getOperand(1).getValueType();
1656          SDValue Ptr = Lod->getBasePtr();
1657          if (bestOffset != 0)
1658            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1659                              DAG.getConstant(bestOffset, PtrType));
1660          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1661          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1662                                        Lod->getSrcValue(),
1663                                        Lod->getSrcValueOffset() + bestOffset,
1664                                        false, NewAlign);
1665          return DAG.getSetCC(dl, VT,
1666                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1667                                          DAG.getConstant(bestMask, newVT)),
1668                              DAG.getConstant(0LL, newVT), Cond);
1669        }
1670      }
1671    }
1672
1673    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1674    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1675      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1676
1677      // If the comparison constant has bits in the upper part, the
1678      // zero-extended value could never match.
1679      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1680                                              C1.getBitWidth() - InSize))) {
1681        switch (Cond) {
1682        case ISD::SETUGT:
1683        case ISD::SETUGE:
1684        case ISD::SETEQ: return DAG.getConstant(0, VT);
1685        case ISD::SETULT:
1686        case ISD::SETULE:
1687        case ISD::SETNE: return DAG.getConstant(1, VT);
1688        case ISD::SETGT:
1689        case ISD::SETGE:
1690          // True if the sign bit of C1 is set.
1691          return DAG.getConstant(C1.isNegative(), VT);
1692        case ISD::SETLT:
1693        case ISD::SETLE:
1694          // True if the sign bit of C1 isn't set.
1695          return DAG.getConstant(C1.isNonNegative(), VT);
1696        default:
1697          break;
1698        }
1699      }
1700
1701      // Otherwise, we can perform the comparison with the low bits.
1702      switch (Cond) {
1703      case ISD::SETEQ:
1704      case ISD::SETNE:
1705      case ISD::SETUGT:
1706      case ISD::SETUGE:
1707      case ISD::SETULT:
1708      case ISD::SETULE: {
1709        EVT newVT = N0.getOperand(0).getValueType();
1710        if (DCI.isBeforeLegalizeOps() ||
1711            (isOperationLegal(ISD::SETCC, newVT) &&
1712              getCondCodeAction(Cond, newVT)==Legal))
1713          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1714                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1715                              Cond);
1716        break;
1717      }
1718      default:
1719        break;   // todo, be more careful with signed comparisons
1720      }
1721    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1722                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1723      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1724      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1725      EVT ExtDstTy = N0.getValueType();
1726      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1727
1728      // If the extended part has any inconsistent bits, it cannot ever
1729      // compare equal.  In other words, they have to be all ones or all
1730      // zeros.
1731      APInt ExtBits =
1732        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1733      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1734        return DAG.getConstant(Cond == ISD::SETNE, VT);
1735
1736      SDValue ZextOp;
1737      EVT Op0Ty = N0.getOperand(0).getValueType();
1738      if (Op0Ty == ExtSrcTy) {
1739        ZextOp = N0.getOperand(0);
1740      } else {
1741        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1742        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1743                              DAG.getConstant(Imm, Op0Ty));
1744      }
1745      if (!DCI.isCalledByLegalizer())
1746        DCI.AddToWorklist(ZextOp.getNode());
1747      // Otherwise, make this a use of a zext.
1748      return DAG.getSetCC(dl, VT, ZextOp,
1749                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1750                                                              ExtDstTyBits,
1751                                                              ExtSrcTyBits),
1752                                          ExtDstTy),
1753                          Cond);
1754    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1755                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1756
1757      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1758      if (N0.getOpcode() == ISD::SETCC) {
1759        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1760        if (TrueWhenTrue)
1761          return N0;
1762
1763        // Invert the condition.
1764        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1765        CC = ISD::getSetCCInverse(CC,
1766                                  N0.getOperand(0).getValueType().isInteger());
1767        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1768      }
1769
1770      if ((N0.getOpcode() == ISD::XOR ||
1771            (N0.getOpcode() == ISD::AND &&
1772            N0.getOperand(0).getOpcode() == ISD::XOR &&
1773            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1774          isa<ConstantSDNode>(N0.getOperand(1)) &&
1775          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1776        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1777        // can only do this if the top bits are known zero.
1778        unsigned BitWidth = N0.getValueSizeInBits();
1779        if (DAG.MaskedValueIsZero(N0,
1780                                  APInt::getHighBitsSet(BitWidth,
1781                                                        BitWidth-1))) {
1782          // Okay, get the un-inverted input value.
1783          SDValue Val;
1784          if (N0.getOpcode() == ISD::XOR)
1785            Val = N0.getOperand(0);
1786          else {
1787            assert(N0.getOpcode() == ISD::AND &&
1788                    N0.getOperand(0).getOpcode() == ISD::XOR);
1789            // ((X^1)&1)^1 -> X & 1
1790            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1791                              N0.getOperand(0).getOperand(0),
1792                              N0.getOperand(1));
1793          }
1794          return DAG.getSetCC(dl, VT, Val, N1,
1795                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1796        }
1797      }
1798    }
1799
1800    APInt MinVal, MaxVal;
1801    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1802    if (ISD::isSignedIntSetCC(Cond)) {
1803      MinVal = APInt::getSignedMinValue(OperandBitSize);
1804      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1805    } else {
1806      MinVal = APInt::getMinValue(OperandBitSize);
1807      MaxVal = APInt::getMaxValue(OperandBitSize);
1808    }
1809
1810    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1811    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1812      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1813      // X >= C0 --> X > (C0-1)
1814      return DAG.getSetCC(dl, VT, N0,
1815                          DAG.getConstant(C1-1, N1.getValueType()),
1816                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1817    }
1818
1819    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1820      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1821      // X <= C0 --> X < (C0+1)
1822      return DAG.getSetCC(dl, VT, N0,
1823                          DAG.getConstant(C1+1, N1.getValueType()),
1824                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1825    }
1826
1827    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1828      return DAG.getConstant(0, VT);      // X < MIN --> false
1829    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1830      return DAG.getConstant(1, VT);      // X >= MIN --> true
1831    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1832      return DAG.getConstant(0, VT);      // X > MAX --> false
1833    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1834      return DAG.getConstant(1, VT);      // X <= MAX --> true
1835
1836    // Canonicalize setgt X, Min --> setne X, Min
1837    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1838      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1839    // Canonicalize setlt X, Max --> setne X, Max
1840    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1841      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1842
1843    // If we have setult X, 1, turn it into seteq X, 0
1844    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1845      return DAG.getSetCC(dl, VT, N0,
1846                          DAG.getConstant(MinVal, N0.getValueType()),
1847                          ISD::SETEQ);
1848    // If we have setugt X, Max-1, turn it into seteq X, Max
1849    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1850      return DAG.getSetCC(dl, VT, N0,
1851                          DAG.getConstant(MaxVal, N0.getValueType()),
1852                          ISD::SETEQ);
1853
1854    // If we have "setcc X, C0", check to see if we can shrink the immediate
1855    // by changing cc.
1856
1857    // SETUGT X, SINTMAX  -> SETLT X, 0
1858    if (Cond == ISD::SETUGT &&
1859        C1 == APInt::getSignedMaxValue(OperandBitSize))
1860      return DAG.getSetCC(dl, VT, N0,
1861                          DAG.getConstant(0, N1.getValueType()),
1862                          ISD::SETLT);
1863
1864    // SETULT X, SINTMIN  -> SETGT X, -1
1865    if (Cond == ISD::SETULT &&
1866        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1867      SDValue ConstMinusOne =
1868          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1869                          N1.getValueType());
1870      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1871    }
1872
1873    // Fold bit comparisons when we can.
1874    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1875        VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1876      if (ConstantSDNode *AndRHS =
1877                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1878        EVT ShiftTy = DCI.isBeforeLegalize() ?
1879          getPointerTy() : getShiftAmountTy();
1880        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1881          // Perform the xform if the AND RHS is a single bit.
1882          if (isPowerOf2_64(AndRHS->getZExtValue())) {
1883            return DAG.getNode(ISD::SRL, dl, VT, N0,
1884                                DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1885                                                ShiftTy));
1886          }
1887        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1888          // (X & 8) == 8  -->  (X & 8) >> 3
1889          // Perform the xform if C1 is a single bit.
1890          if (C1.isPowerOf2()) {
1891            return DAG.getNode(ISD::SRL, dl, VT, N0,
1892                                DAG.getConstant(C1.logBase2(), ShiftTy));
1893          }
1894        }
1895      }
1896  }
1897
1898  if (isa<ConstantFPSDNode>(N0.getNode())) {
1899    // Constant fold or commute setcc.
1900    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1901    if (O.getNode()) return O;
1902  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1903    // If the RHS of an FP comparison is a constant, simplify it away in
1904    // some cases.
1905    if (CFP->getValueAPF().isNaN()) {
1906      // If an operand is known to be a nan, we can fold it.
1907      switch (ISD::getUnorderedFlavor(Cond)) {
1908      default: llvm_unreachable("Unknown flavor!");
1909      case 0:  // Known false.
1910        return DAG.getConstant(0, VT);
1911      case 1:  // Known true.
1912        return DAG.getConstant(1, VT);
1913      case 2:  // Undefined.
1914        return DAG.getUNDEF(VT);
1915      }
1916    }
1917
1918    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1919    // constant if knowing that the operand is non-nan is enough.  We prefer to
1920    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1921    // materialize 0.0.
1922    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1923      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1924
1925    // If the condition is not legal, see if we can find an equivalent one
1926    // which is legal.
1927    if (!isCondCodeLegal(Cond, N0.getValueType())) {
1928      // If the comparison was an awkward floating-point == or != and one of
1929      // the comparison operands is infinity or negative infinity, convert the
1930      // condition to a less-awkward <= or >=.
1931      if (CFP->getValueAPF().isInfinity()) {
1932        if (CFP->getValueAPF().isNegative()) {
1933          if (Cond == ISD::SETOEQ &&
1934              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1935            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1936          if (Cond == ISD::SETUEQ &&
1937              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1938            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1939          if (Cond == ISD::SETUNE &&
1940              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1941            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1942          if (Cond == ISD::SETONE &&
1943              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1944            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1945        } else {
1946          if (Cond == ISD::SETOEQ &&
1947              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1948            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1949          if (Cond == ISD::SETUEQ &&
1950              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1951            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1952          if (Cond == ISD::SETUNE &&
1953              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1954            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1955          if (Cond == ISD::SETONE &&
1956              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1957            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1958        }
1959      }
1960    }
1961  }
1962
1963  if (N0 == N1) {
1964    // We can always fold X == X for integer setcc's.
1965    if (N0.getValueType().isInteger())
1966      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1967    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1968    if (UOF == 2)   // FP operators that are undefined on NaNs.
1969      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1970    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1971      return DAG.getConstant(UOF, VT);
1972    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1973    // if it is not already.
1974    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1975    if (NewCond != Cond)
1976      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1977  }
1978
1979  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1980      N0.getValueType().isInteger()) {
1981    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1982        N0.getOpcode() == ISD::XOR) {
1983      // Simplify (X+Y) == (X+Z) -->  Y == Z
1984      if (N0.getOpcode() == N1.getOpcode()) {
1985        if (N0.getOperand(0) == N1.getOperand(0))
1986          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1987        if (N0.getOperand(1) == N1.getOperand(1))
1988          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1989        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1990          // If X op Y == Y op X, try other combinations.
1991          if (N0.getOperand(0) == N1.getOperand(1))
1992            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1993                                Cond);
1994          if (N0.getOperand(1) == N1.getOperand(0))
1995            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1996                                Cond);
1997        }
1998      }
1999
2000      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2001        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2002          // Turn (X+C1) == C2 --> X == C2-C1
2003          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2004            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2005                                DAG.getConstant(RHSC->getAPIntValue()-
2006                                                LHSR->getAPIntValue(),
2007                                N0.getValueType()), Cond);
2008          }
2009
2010          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2011          if (N0.getOpcode() == ISD::XOR)
2012            // If we know that all of the inverted bits are zero, don't bother
2013            // performing the inversion.
2014            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2015              return
2016                DAG.getSetCC(dl, VT, N0.getOperand(0),
2017                             DAG.getConstant(LHSR->getAPIntValue() ^
2018                                               RHSC->getAPIntValue(),
2019                                             N0.getValueType()),
2020                             Cond);
2021        }
2022
2023        // Turn (C1-X) == C2 --> X == C1-C2
2024        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2025          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2026            return
2027              DAG.getSetCC(dl, VT, N0.getOperand(1),
2028                           DAG.getConstant(SUBC->getAPIntValue() -
2029                                             RHSC->getAPIntValue(),
2030                                           N0.getValueType()),
2031                           Cond);
2032          }
2033        }
2034      }
2035
2036      // Simplify (X+Z) == X -->  Z == 0
2037      if (N0.getOperand(0) == N1)
2038        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2039                        DAG.getConstant(0, N0.getValueType()), Cond);
2040      if (N0.getOperand(1) == N1) {
2041        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2042          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2043                          DAG.getConstant(0, N0.getValueType()), Cond);
2044        else if (N0.getNode()->hasOneUse()) {
2045          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2046          // (Z-X) == X  --> Z == X<<1
2047          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2048                                     N1,
2049                                     DAG.getConstant(1, getShiftAmountTy()));
2050          if (!DCI.isCalledByLegalizer())
2051            DCI.AddToWorklist(SH.getNode());
2052          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2053        }
2054      }
2055    }
2056
2057    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2058        N1.getOpcode() == ISD::XOR) {
2059      // Simplify  X == (X+Z) -->  Z == 0
2060      if (N1.getOperand(0) == N0) {
2061        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2062                        DAG.getConstant(0, N1.getValueType()), Cond);
2063      } else if (N1.getOperand(1) == N0) {
2064        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2065          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2066                          DAG.getConstant(0, N1.getValueType()), Cond);
2067        } else if (N1.getNode()->hasOneUse()) {
2068          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2069          // X == (Z-X)  --> X<<1 == Z
2070          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2071                                     DAG.getConstant(1, getShiftAmountTy()));
2072          if (!DCI.isCalledByLegalizer())
2073            DCI.AddToWorklist(SH.getNode());
2074          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2075        }
2076      }
2077    }
2078
2079    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2080    // Note that where y is variable and is known to have at most
2081    // one bit set (for example, if it is z&1) we cannot do this;
2082    // the expressions are not equivalent when y==0.
2083    if (N0.getOpcode() == ISD::AND)
2084      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2085        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2086          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2087          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2088          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2089        }
2090      }
2091    if (N1.getOpcode() == ISD::AND)
2092      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2093        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2094          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2095          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2096          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2097        }
2098      }
2099  }
2100
2101  // Fold away ALL boolean setcc's.
2102  SDValue Temp;
2103  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2104    switch (Cond) {
2105    default: llvm_unreachable("Unknown integer setcc!");
2106    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2107      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2108      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2109      if (!DCI.isCalledByLegalizer())
2110        DCI.AddToWorklist(Temp.getNode());
2111      break;
2112    case ISD::SETNE:  // X != Y   -->  (X^Y)
2113      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2114      break;
2115    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2116    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2117      Temp = DAG.getNOT(dl, N0, MVT::i1);
2118      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2119      if (!DCI.isCalledByLegalizer())
2120        DCI.AddToWorklist(Temp.getNode());
2121      break;
2122    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2123    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2124      Temp = DAG.getNOT(dl, N1, MVT::i1);
2125      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2126      if (!DCI.isCalledByLegalizer())
2127        DCI.AddToWorklist(Temp.getNode());
2128      break;
2129    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2130    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2131      Temp = DAG.getNOT(dl, N0, MVT::i1);
2132      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2133      if (!DCI.isCalledByLegalizer())
2134        DCI.AddToWorklist(Temp.getNode());
2135      break;
2136    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2137    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2138      Temp = DAG.getNOT(dl, N1, MVT::i1);
2139      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2140      break;
2141    }
2142    if (VT != MVT::i1) {
2143      if (!DCI.isCalledByLegalizer())
2144        DCI.AddToWorklist(N0.getNode());
2145      // FIXME: If running after legalize, we probably can't do this.
2146      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2147    }
2148    return N0;
2149  }
2150
2151  // Could not fold it.
2152  return SDValue();
2153}
2154
2155/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2156/// node is a GlobalAddress + offset.
2157bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2158                                    int64_t &Offset) const {
2159  if (isa<GlobalAddressSDNode>(N)) {
2160    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2161    GA = GASD->getGlobal();
2162    Offset += GASD->getOffset();
2163    return true;
2164  }
2165
2166  if (N->getOpcode() == ISD::ADD) {
2167    SDValue N1 = N->getOperand(0);
2168    SDValue N2 = N->getOperand(1);
2169    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2170      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2171      if (V) {
2172        Offset += V->getSExtValue();
2173        return true;
2174      }
2175    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2176      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2177      if (V) {
2178        Offset += V->getSExtValue();
2179        return true;
2180      }
2181    }
2182  }
2183  return false;
2184}
2185
2186
2187SDValue TargetLowering::
2188PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2189  // Default implementation: no optimization.
2190  return SDValue();
2191}
2192
2193//===----------------------------------------------------------------------===//
2194//  Inline Assembler Implementation Methods
2195//===----------------------------------------------------------------------===//
2196
2197
2198TargetLowering::ConstraintType
2199TargetLowering::getConstraintType(const std::string &Constraint) const {
2200  // FIXME: lots more standard ones to handle.
2201  if (Constraint.size() == 1) {
2202    switch (Constraint[0]) {
2203    default: break;
2204    case 'r': return C_RegisterClass;
2205    case 'm':    // memory
2206    case 'o':    // offsetable
2207    case 'V':    // not offsetable
2208      return C_Memory;
2209    case 'i':    // Simple Integer or Relocatable Constant
2210    case 'n':    // Simple Integer
2211    case 's':    // Relocatable Constant
2212    case 'X':    // Allow ANY value.
2213    case 'I':    // Target registers.
2214    case 'J':
2215    case 'K':
2216    case 'L':
2217    case 'M':
2218    case 'N':
2219    case 'O':
2220    case 'P':
2221      return C_Other;
2222    }
2223  }
2224
2225  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2226      Constraint[Constraint.size()-1] == '}')
2227    return C_Register;
2228  return C_Unknown;
2229}
2230
2231/// LowerXConstraint - try to replace an X constraint, which matches anything,
2232/// with another that has more specific requirements based on the type of the
2233/// corresponding operand.
2234const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2235  if (ConstraintVT.isInteger())
2236    return "r";
2237  if (ConstraintVT.isFloatingPoint())
2238    return "f";      // works for many targets
2239  return 0;
2240}
2241
2242/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2243/// vector.  If it is invalid, don't add anything to Ops.
2244void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2245                                                  char ConstraintLetter,
2246                                                  bool hasMemory,
2247                                                  std::vector<SDValue> &Ops,
2248                                                  SelectionDAG &DAG) const {
2249  switch (ConstraintLetter) {
2250  default: break;
2251  case 'X':     // Allows any operand; labels (basic block) use this.
2252    if (Op.getOpcode() == ISD::BasicBlock) {
2253      Ops.push_back(Op);
2254      return;
2255    }
2256    // fall through
2257  case 'i':    // Simple Integer or Relocatable Constant
2258  case 'n':    // Simple Integer
2259  case 's': {  // Relocatable Constant
2260    // These operands are interested in values of the form (GV+C), where C may
2261    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2262    // is possible and fine if either GV or C are missing.
2263    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2264    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2265
2266    // If we have "(add GV, C)", pull out GV/C
2267    if (Op.getOpcode() == ISD::ADD) {
2268      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2269      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2270      if (C == 0 || GA == 0) {
2271        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2272        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2273      }
2274      if (C == 0 || GA == 0)
2275        C = 0, GA = 0;
2276    }
2277
2278    // If we find a valid operand, map to the TargetXXX version so that the
2279    // value itself doesn't get selected.
2280    if (GA) {   // Either &GV   or   &GV+C
2281      if (ConstraintLetter != 'n') {
2282        int64_t Offs = GA->getOffset();
2283        if (C) Offs += C->getZExtValue();
2284        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2285                                                 Op.getValueType(), Offs));
2286        return;
2287      }
2288    }
2289    if (C) {   // just C, no GV.
2290      // Simple constants are not allowed for 's'.
2291      if (ConstraintLetter != 's') {
2292        // gcc prints these as sign extended.  Sign extend value to 64 bits
2293        // now; without this it would get ZExt'd later in
2294        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2295        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2296                                            MVT::i64));
2297        return;
2298      }
2299    }
2300    break;
2301  }
2302  }
2303}
2304
2305std::vector<unsigned> TargetLowering::
2306getRegClassForInlineAsmConstraint(const std::string &Constraint,
2307                                  EVT VT) const {
2308  return std::vector<unsigned>();
2309}
2310
2311
2312std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2313getRegForInlineAsmConstraint(const std::string &Constraint,
2314                             EVT VT) const {
2315  if (Constraint[0] != '{')
2316    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2317  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2318
2319  // Remove the braces from around the name.
2320  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2321
2322  // Figure out which register class contains this reg.
2323  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2324  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2325       E = RI->regclass_end(); RCI != E; ++RCI) {
2326    const TargetRegisterClass *RC = *RCI;
2327
2328    // If none of the the value types for this register class are valid, we
2329    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2330    bool isLegal = false;
2331    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2332         I != E; ++I) {
2333      if (isTypeLegal(*I)) {
2334        isLegal = true;
2335        break;
2336      }
2337    }
2338
2339    if (!isLegal) continue;
2340
2341    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2342         I != E; ++I) {
2343      if (RegName.equals_lower(RI->getName(*I)))
2344        return std::make_pair(*I, RC);
2345    }
2346  }
2347
2348  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2349}
2350
2351//===----------------------------------------------------------------------===//
2352// Constraint Selection.
2353
2354/// isMatchingInputConstraint - Return true of this is an input operand that is
2355/// a matching constraint like "4".
2356bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2357  assert(!ConstraintCode.empty() && "No known constraint!");
2358  return isdigit(ConstraintCode[0]);
2359}
2360
2361/// getMatchedOperand - If this is an input matching constraint, this method
2362/// returns the output operand it matches.
2363unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2364  assert(!ConstraintCode.empty() && "No known constraint!");
2365  return atoi(ConstraintCode.c_str());
2366}
2367
2368
2369/// getConstraintGenerality - Return an integer indicating how general CT
2370/// is.
2371static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2372  switch (CT) {
2373  default: llvm_unreachable("Unknown constraint type!");
2374  case TargetLowering::C_Other:
2375  case TargetLowering::C_Unknown:
2376    return 0;
2377  case TargetLowering::C_Register:
2378    return 1;
2379  case TargetLowering::C_RegisterClass:
2380    return 2;
2381  case TargetLowering::C_Memory:
2382    return 3;
2383  }
2384}
2385
2386/// ChooseConstraint - If there are multiple different constraints that we
2387/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2388/// This is somewhat tricky: constraints fall into four classes:
2389///    Other         -> immediates and magic values
2390///    Register      -> one specific register
2391///    RegisterClass -> a group of regs
2392///    Memory        -> memory
2393/// Ideally, we would pick the most specific constraint possible: if we have
2394/// something that fits into a register, we would pick it.  The problem here
2395/// is that if we have something that could either be in a register or in
2396/// memory that use of the register could cause selection of *other*
2397/// operands to fail: they might only succeed if we pick memory.  Because of
2398/// this the heuristic we use is:
2399///
2400///  1) If there is an 'other' constraint, and if the operand is valid for
2401///     that constraint, use it.  This makes us take advantage of 'i'
2402///     constraints when available.
2403///  2) Otherwise, pick the most general constraint present.  This prefers
2404///     'm' over 'r', for example.
2405///
2406static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2407                             bool hasMemory,  const TargetLowering &TLI,
2408                             SDValue Op, SelectionDAG *DAG) {
2409  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2410  unsigned BestIdx = 0;
2411  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2412  int BestGenerality = -1;
2413
2414  // Loop over the options, keeping track of the most general one.
2415  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2416    TargetLowering::ConstraintType CType =
2417      TLI.getConstraintType(OpInfo.Codes[i]);
2418
2419    // If this is an 'other' constraint, see if the operand is valid for it.
2420    // For example, on X86 we might have an 'rI' constraint.  If the operand
2421    // is an integer in the range [0..31] we want to use I (saving a load
2422    // of a register), otherwise we must use 'r'.
2423    if (CType == TargetLowering::C_Other && Op.getNode()) {
2424      assert(OpInfo.Codes[i].size() == 1 &&
2425             "Unhandled multi-letter 'other' constraint");
2426      std::vector<SDValue> ResultOps;
2427      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2428                                       ResultOps, *DAG);
2429      if (!ResultOps.empty()) {
2430        BestType = CType;
2431        BestIdx = i;
2432        break;
2433      }
2434    }
2435
2436    // This constraint letter is more general than the previous one, use it.
2437    int Generality = getConstraintGenerality(CType);
2438    if (Generality > BestGenerality) {
2439      BestType = CType;
2440      BestIdx = i;
2441      BestGenerality = Generality;
2442    }
2443  }
2444
2445  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2446  OpInfo.ConstraintType = BestType;
2447}
2448
2449/// ComputeConstraintToUse - Determines the constraint code and constraint
2450/// type to use for the specific AsmOperandInfo, setting
2451/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2452void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2453                                            SDValue Op,
2454                                            bool hasMemory,
2455                                            SelectionDAG *DAG) const {
2456  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2457
2458  // Single-letter constraints ('r') are very common.
2459  if (OpInfo.Codes.size() == 1) {
2460    OpInfo.ConstraintCode = OpInfo.Codes[0];
2461    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2462  } else {
2463    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2464  }
2465
2466  // 'X' matches anything.
2467  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2468    // Labels and constants are handled elsewhere ('X' is the only thing
2469    // that matches labels).  For Functions, the type here is the type of
2470    // the result, which is not what we want to look at; leave them alone.
2471    Value *v = OpInfo.CallOperandVal;
2472    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2473      OpInfo.CallOperandVal = v;
2474      return;
2475    }
2476
2477    // Otherwise, try to resolve it to something we know about by looking at
2478    // the actual operand type.
2479    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2480      OpInfo.ConstraintCode = Repl;
2481      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2482    }
2483  }
2484}
2485
2486//===----------------------------------------------------------------------===//
2487//  Loop Strength Reduction hooks
2488//===----------------------------------------------------------------------===//
2489
2490/// isLegalAddressingMode - Return true if the addressing mode represented
2491/// by AM is legal for this target, for a load/store of the specified type.
2492bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2493                                           const Type *Ty) const {
2494  // The default implementation of this implements a conservative RISCy, r+r and
2495  // r+i addr mode.
2496
2497  // Allows a sign-extended 16-bit immediate field.
2498  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2499    return false;
2500
2501  // No global is ever allowed as a base.
2502  if (AM.BaseGV)
2503    return false;
2504
2505  // Only support r+r,
2506  switch (AM.Scale) {
2507  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2508    break;
2509  case 1:
2510    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2511      return false;
2512    // Otherwise we have r+r or r+i.
2513    break;
2514  case 2:
2515    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2516      return false;
2517    // Allow 2*r as r+r.
2518    break;
2519  }
2520
2521  return true;
2522}
2523
2524/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2525/// return a DAG expression to select that will generate the same value by
2526/// multiplying by a magic number.  See:
2527/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2528SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2529                                  std::vector<SDNode*>* Created) const {
2530  EVT VT = N->getValueType(0);
2531  DebugLoc dl= N->getDebugLoc();
2532
2533  // Check to see if we can do this.
2534  // FIXME: We should be more aggressive here.
2535  if (!isTypeLegal(VT))
2536    return SDValue();
2537
2538  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2539  APInt::ms magics = d.magic();
2540
2541  // Multiply the numerator (operand 0) by the magic value
2542  // FIXME: We should support doing a MUL in a wider type
2543  SDValue Q;
2544  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2545    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2546                    DAG.getConstant(magics.m, VT));
2547  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2548    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2549                              N->getOperand(0),
2550                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2551  else
2552    return SDValue();       // No mulhs or equvialent
2553  // If d > 0 and m < 0, add the numerator
2554  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2555    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2556    if (Created)
2557      Created->push_back(Q.getNode());
2558  }
2559  // If d < 0 and m > 0, subtract the numerator.
2560  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2561    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2562    if (Created)
2563      Created->push_back(Q.getNode());
2564  }
2565  // Shift right algebraic if shift value is nonzero
2566  if (magics.s > 0) {
2567    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2568                    DAG.getConstant(magics.s, getShiftAmountTy()));
2569    if (Created)
2570      Created->push_back(Q.getNode());
2571  }
2572  // Extract the sign bit and add it to the quotient
2573  SDValue T =
2574    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2575                                                 getShiftAmountTy()));
2576  if (Created)
2577    Created->push_back(T.getNode());
2578  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2579}
2580
2581/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2582/// return a DAG expression to select that will generate the same value by
2583/// multiplying by a magic number.  See:
2584/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2585SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2586                                  std::vector<SDNode*>* Created) const {
2587  EVT VT = N->getValueType(0);
2588  DebugLoc dl = N->getDebugLoc();
2589
2590  // Check to see if we can do this.
2591  // FIXME: We should be more aggressive here.
2592  if (!isTypeLegal(VT))
2593    return SDValue();
2594
2595  // FIXME: We should use a narrower constant when the upper
2596  // bits are known to be zero.
2597  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2598  APInt::mu magics = N1C->getAPIntValue().magicu();
2599
2600  // Multiply the numerator (operand 0) by the magic value
2601  // FIXME: We should support doing a MUL in a wider type
2602  SDValue Q;
2603  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2604    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2605                    DAG.getConstant(magics.m, VT));
2606  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2607    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2608                              N->getOperand(0),
2609                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2610  else
2611    return SDValue();       // No mulhu or equvialent
2612  if (Created)
2613    Created->push_back(Q.getNode());
2614
2615  if (magics.a == 0) {
2616    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2617           "We shouldn't generate an undefined shift!");
2618    return DAG.getNode(ISD::SRL, dl, VT, Q,
2619                       DAG.getConstant(magics.s, getShiftAmountTy()));
2620  } else {
2621    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2622    if (Created)
2623      Created->push_back(NPQ.getNode());
2624    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2625                      DAG.getConstant(1, getShiftAmountTy()));
2626    if (Created)
2627      Created->push_back(NPQ.getNode());
2628    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2629    if (Created)
2630      Created->push_back(NPQ.getNode());
2631    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2632                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2633  }
2634}
2635