TargetLowering.cpp revision 6520e20e4fb31f2e65e25c38b372b19d33a83df4
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::LOG_F32] = "logf";
87  Names[RTLIB::LOG_F64] = "log";
88  Names[RTLIB::LOG_F80] = "logl";
89  Names[RTLIB::LOG_PPCF128] = "logl";
90  Names[RTLIB::LOG2_F32] = "log2f";
91  Names[RTLIB::LOG2_F64] = "log2";
92  Names[RTLIB::LOG2_F80] = "log2l";
93  Names[RTLIB::LOG2_PPCF128] = "log2l";
94  Names[RTLIB::LOG10_F32] = "log10f";
95  Names[RTLIB::LOG10_F64] = "log10";
96  Names[RTLIB::LOG10_F80] = "log10l";
97  Names[RTLIB::LOG10_PPCF128] = "log10l";
98  Names[RTLIB::EXP_F32] = "expf";
99  Names[RTLIB::EXP_F64] = "exp";
100  Names[RTLIB::EXP_F80] = "expl";
101  Names[RTLIB::EXP_PPCF128] = "expl";
102  Names[RTLIB::EXP2_F32] = "exp2f";
103  Names[RTLIB::EXP2_F64] = "exp2";
104  Names[RTLIB::EXP2_F80] = "exp2l";
105  Names[RTLIB::EXP2_PPCF128] = "exp2l";
106  Names[RTLIB::SIN_F32] = "sinf";
107  Names[RTLIB::SIN_F64] = "sin";
108  Names[RTLIB::SIN_F80] = "sinl";
109  Names[RTLIB::SIN_PPCF128] = "sinl";
110  Names[RTLIB::COS_F32] = "cosf";
111  Names[RTLIB::COS_F64] = "cos";
112  Names[RTLIB::COS_F80] = "cosl";
113  Names[RTLIB::COS_PPCF128] = "cosl";
114  Names[RTLIB::POW_F32] = "powf";
115  Names[RTLIB::POW_F64] = "pow";
116  Names[RTLIB::POW_F80] = "powl";
117  Names[RTLIB::POW_PPCF128] = "powl";
118  Names[RTLIB::CEIL_F32] = "ceilf";
119  Names[RTLIB::CEIL_F64] = "ceil";
120  Names[RTLIB::CEIL_F80] = "ceill";
121  Names[RTLIB::CEIL_PPCF128] = "ceill";
122  Names[RTLIB::TRUNC_F32] = "truncf";
123  Names[RTLIB::TRUNC_F64] = "trunc";
124  Names[RTLIB::TRUNC_F80] = "truncl";
125  Names[RTLIB::TRUNC_PPCF128] = "truncl";
126  Names[RTLIB::RINT_F32] = "rintf";
127  Names[RTLIB::RINT_F64] = "rint";
128  Names[RTLIB::RINT_F80] = "rintl";
129  Names[RTLIB::RINT_PPCF128] = "rintl";
130  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
131  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
132  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
133  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
134  Names[RTLIB::FLOOR_F32] = "floorf";
135  Names[RTLIB::FLOOR_F64] = "floor";
136  Names[RTLIB::FLOOR_F80] = "floorl";
137  Names[RTLIB::FLOOR_PPCF128] = "floorl";
138  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
139  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
140  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
141  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
142  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
143  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
144  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
145  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
146  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
147  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
148  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
149  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
150  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
151  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
152  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
153  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
154  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
155  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
156  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
157  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
158  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
159  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
160  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
161  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
162  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
163  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
164  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
165  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
166  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
167  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
168  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
169  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
170  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
171  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
172  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
173  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
174  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
175  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
176  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
177  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
178  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
179  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
180  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
181  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
182  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
183  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
184  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
185  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
186  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
187  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
188  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
189  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
190  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
191  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
192  Names[RTLIB::OEQ_F32] = "__eqsf2";
193  Names[RTLIB::OEQ_F64] = "__eqdf2";
194  Names[RTLIB::UNE_F32] = "__nesf2";
195  Names[RTLIB::UNE_F64] = "__nedf2";
196  Names[RTLIB::OGE_F32] = "__gesf2";
197  Names[RTLIB::OGE_F64] = "__gedf2";
198  Names[RTLIB::OLT_F32] = "__ltsf2";
199  Names[RTLIB::OLT_F64] = "__ltdf2";
200  Names[RTLIB::OLE_F32] = "__lesf2";
201  Names[RTLIB::OLE_F64] = "__ledf2";
202  Names[RTLIB::OGT_F32] = "__gtsf2";
203  Names[RTLIB::OGT_F64] = "__gtdf2";
204  Names[RTLIB::UO_F32] = "__unordsf2";
205  Names[RTLIB::UO_F64] = "__unorddf2";
206  Names[RTLIB::O_F32] = "__unordsf2";
207  Names[RTLIB::O_F64] = "__unorddf2";
208}
209
210/// getFPEXT - Return the FPEXT_*_* value for the given types, or
211/// UNKNOWN_LIBCALL if there is none.
212RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
213  if (OpVT == MVT::f32) {
214    if (RetVT == MVT::f64)
215      return FPEXT_F32_F64;
216  }
217  return UNKNOWN_LIBCALL;
218}
219
220/// getFPROUND - Return the FPROUND_*_* value for the given types, or
221/// UNKNOWN_LIBCALL if there is none.
222RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
223  if (RetVT == MVT::f32) {
224    if (OpVT == MVT::f64)
225      return FPROUND_F64_F32;
226    if (OpVT == MVT::f80)
227      return FPROUND_F80_F32;
228    if (OpVT == MVT::ppcf128)
229      return FPROUND_PPCF128_F32;
230  } else if (RetVT == MVT::f64) {
231    if (OpVT == MVT::f80)
232      return FPROUND_F80_F64;
233    if (OpVT == MVT::ppcf128)
234      return FPROUND_PPCF128_F64;
235  }
236  return UNKNOWN_LIBCALL;
237}
238
239/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
240/// UNKNOWN_LIBCALL if there is none.
241RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
242  if (OpVT == MVT::f32) {
243    if (RetVT == MVT::i32)
244      return FPTOSINT_F32_I32;
245    if (RetVT == MVT::i64)
246      return FPTOSINT_F32_I64;
247    if (RetVT == MVT::i128)
248      return FPTOSINT_F32_I128;
249  } else if (OpVT == MVT::f64) {
250    if (RetVT == MVT::i32)
251      return FPTOSINT_F64_I32;
252    if (RetVT == MVT::i64)
253      return FPTOSINT_F64_I64;
254    if (RetVT == MVT::i128)
255      return FPTOSINT_F64_I128;
256  } else if (OpVT == MVT::f80) {
257    if (RetVT == MVT::i32)
258      return FPTOSINT_F80_I32;
259    if (RetVT == MVT::i64)
260      return FPTOSINT_F80_I64;
261    if (RetVT == MVT::i128)
262      return FPTOSINT_F80_I128;
263  } else if (OpVT == MVT::ppcf128) {
264    if (RetVT == MVT::i32)
265      return FPTOSINT_PPCF128_I32;
266    if (RetVT == MVT::i64)
267      return FPTOSINT_PPCF128_I64;
268    if (RetVT == MVT::i128)
269      return FPTOSINT_PPCF128_I128;
270  }
271  return UNKNOWN_LIBCALL;
272}
273
274/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
275/// UNKNOWN_LIBCALL if there is none.
276RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
277  if (OpVT == MVT::f32) {
278    if (RetVT == MVT::i32)
279      return FPTOUINT_F32_I32;
280    if (RetVT == MVT::i64)
281      return FPTOUINT_F32_I64;
282    if (RetVT == MVT::i128)
283      return FPTOUINT_F32_I128;
284  } else if (OpVT == MVT::f64) {
285    if (RetVT == MVT::i32)
286      return FPTOUINT_F64_I32;
287    if (RetVT == MVT::i64)
288      return FPTOUINT_F64_I64;
289    if (RetVT == MVT::i128)
290      return FPTOUINT_F64_I128;
291  } else if (OpVT == MVT::f80) {
292    if (RetVT == MVT::i32)
293      return FPTOUINT_F80_I32;
294    if (RetVT == MVT::i64)
295      return FPTOUINT_F80_I64;
296    if (RetVT == MVT::i128)
297      return FPTOUINT_F80_I128;
298  } else if (OpVT == MVT::ppcf128) {
299    if (RetVT == MVT::i32)
300      return FPTOUINT_PPCF128_I32;
301    if (RetVT == MVT::i64)
302      return FPTOUINT_PPCF128_I64;
303    if (RetVT == MVT::i128)
304      return FPTOUINT_PPCF128_I128;
305  }
306  return UNKNOWN_LIBCALL;
307}
308
309/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
310/// UNKNOWN_LIBCALL if there is none.
311RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
312  if (OpVT == MVT::i32) {
313    if (RetVT == MVT::f32)
314      return SINTTOFP_I32_F32;
315    else if (RetVT == MVT::f64)
316      return SINTTOFP_I32_F64;
317    else if (RetVT == MVT::f80)
318      return SINTTOFP_I32_F80;
319    else if (RetVT == MVT::ppcf128)
320      return SINTTOFP_I32_PPCF128;
321  } else if (OpVT == MVT::i64) {
322    if (RetVT == MVT::f32)
323      return SINTTOFP_I64_F32;
324    else if (RetVT == MVT::f64)
325      return SINTTOFP_I64_F64;
326    else if (RetVT == MVT::f80)
327      return SINTTOFP_I64_F80;
328    else if (RetVT == MVT::ppcf128)
329      return SINTTOFP_I64_PPCF128;
330  } else if (OpVT == MVT::i128) {
331    if (RetVT == MVT::f32)
332      return SINTTOFP_I128_F32;
333    else if (RetVT == MVT::f64)
334      return SINTTOFP_I128_F64;
335    else if (RetVT == MVT::f80)
336      return SINTTOFP_I128_F80;
337    else if (RetVT == MVT::ppcf128)
338      return SINTTOFP_I128_PPCF128;
339  }
340  return UNKNOWN_LIBCALL;
341}
342
343/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
344/// UNKNOWN_LIBCALL if there is none.
345RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
346  if (OpVT == MVT::i32) {
347    if (RetVT == MVT::f32)
348      return UINTTOFP_I32_F32;
349    else if (RetVT == MVT::f64)
350      return UINTTOFP_I32_F64;
351    else if (RetVT == MVT::f80)
352      return UINTTOFP_I32_F80;
353    else if (RetVT == MVT::ppcf128)
354      return UINTTOFP_I32_PPCF128;
355  } else if (OpVT == MVT::i64) {
356    if (RetVT == MVT::f32)
357      return UINTTOFP_I64_F32;
358    else if (RetVT == MVT::f64)
359      return UINTTOFP_I64_F64;
360    else if (RetVT == MVT::f80)
361      return UINTTOFP_I64_F80;
362    else if (RetVT == MVT::ppcf128)
363      return UINTTOFP_I64_PPCF128;
364  } else if (OpVT == MVT::i128) {
365    if (RetVT == MVT::f32)
366      return UINTTOFP_I128_F32;
367    else if (RetVT == MVT::f64)
368      return UINTTOFP_I128_F64;
369    else if (RetVT == MVT::f80)
370      return UINTTOFP_I128_F80;
371    else if (RetVT == MVT::ppcf128)
372      return UINTTOFP_I128_PPCF128;
373  }
374  return UNKNOWN_LIBCALL;
375}
376
377/// InitCmpLibcallCCs - Set default comparison libcall CC.
378///
379static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
380  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
381  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
382  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
383  CCs[RTLIB::UNE_F32] = ISD::SETNE;
384  CCs[RTLIB::UNE_F64] = ISD::SETNE;
385  CCs[RTLIB::OGE_F32] = ISD::SETGE;
386  CCs[RTLIB::OGE_F64] = ISD::SETGE;
387  CCs[RTLIB::OLT_F32] = ISD::SETLT;
388  CCs[RTLIB::OLT_F64] = ISD::SETLT;
389  CCs[RTLIB::OLE_F32] = ISD::SETLE;
390  CCs[RTLIB::OLE_F64] = ISD::SETLE;
391  CCs[RTLIB::OGT_F32] = ISD::SETGT;
392  CCs[RTLIB::OGT_F64] = ISD::SETGT;
393  CCs[RTLIB::UO_F32] = ISD::SETNE;
394  CCs[RTLIB::UO_F64] = ISD::SETNE;
395  CCs[RTLIB::O_F32] = ISD::SETEQ;
396  CCs[RTLIB::O_F64] = ISD::SETEQ;
397}
398
399TargetLowering::TargetLowering(TargetMachine &tm)
400  : TM(tm), TD(TM.getTargetData()) {
401  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
402         "Fixed size array in TargetLowering is not large enough!");
403  // All operations default to being supported.
404  memset(OpActions, 0, sizeof(OpActions));
405  memset(LoadExtActions, 0, sizeof(LoadExtActions));
406  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
407  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
408  memset(ConvertActions, 0, sizeof(ConvertActions));
409  memset(CondCodeActions, 0, sizeof(CondCodeActions));
410
411  // Set default actions for various operations.
412  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
413    // Default all indexed load / store to expand.
414    for (unsigned IM = (unsigned)ISD::PRE_INC;
415         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
416      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
417      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
418    }
419
420    // These operations default to expand.
421    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
422  }
423
424  // Most targets ignore the @llvm.prefetch intrinsic.
425  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
426
427  // ConstantFP nodes default to expand.  Targets can either change this to
428  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
429  // to optimize expansions for certain constants.
430  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
431  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
432  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
433
434  // These library functions default to expand.
435  setOperationAction(ISD::FLOG , MVT::f64, Expand);
436  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
437  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
438  setOperationAction(ISD::FEXP , MVT::f64, Expand);
439  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
440  setOperationAction(ISD::FLOG , MVT::f32, Expand);
441  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
442  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
443  setOperationAction(ISD::FEXP , MVT::f32, Expand);
444  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
445
446  // Default ISD::TRAP to expand (which turns it into abort).
447  setOperationAction(ISD::TRAP, MVT::Other, Expand);
448
449  IsLittleEndian = TD->isLittleEndian();
450  UsesGlobalOffsetTable = false;
451  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
452  ShiftAmtHandling = Undefined;
453  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
454  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
455  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
456  allowUnalignedMemoryAccesses = false;
457  UseUnderscoreSetJmp = false;
458  UseUnderscoreLongJmp = false;
459  SelectIsExpensive = false;
460  IntDivIsCheap = false;
461  Pow2DivIsCheap = false;
462  StackPointerRegisterToSaveRestore = 0;
463  ExceptionPointerRegister = 0;
464  ExceptionSelectorRegister = 0;
465  SetCCResultContents = UndefinedSetCCResult;
466  SchedPreferenceInfo = SchedulingForLatency;
467  JumpBufSize = 0;
468  JumpBufAlignment = 0;
469  IfCvtBlockSizeLimit = 2;
470  IfCvtDupBlockSizeLimit = 0;
471  PrefLoopAlignment = 0;
472
473  InitLibcallNames(LibcallRoutineNames);
474  InitCmpLibcallCCs(CmpLibcallCCs);
475
476  // Tell Legalize whether the assembler supports DEBUG_LOC.
477  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
478  if (!TASM || !TASM->hasDotLocAndDotFile())
479    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
480}
481
482TargetLowering::~TargetLowering() {}
483
484/// computeRegisterProperties - Once all of the register classes are added,
485/// this allows us to compute derived properties we expose.
486void TargetLowering::computeRegisterProperties() {
487  assert(MVT::LAST_VALUETYPE <= 32 &&
488         "Too many value types for ValueTypeActions to hold!");
489
490  // Everything defaults to needing one register.
491  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
492    NumRegistersForVT[i] = 1;
493    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
494  }
495  // ...except isVoid, which doesn't need any registers.
496  NumRegistersForVT[MVT::isVoid] = 0;
497
498  // Find the largest integer register class.
499  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
500  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
501    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
502
503  // Every integer value type larger than this largest register takes twice as
504  // many registers to represent as the previous ValueType.
505  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
506    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
507    if (!EVT.isInteger())
508      break;
509    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
510    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
511    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
512    ValueTypeActions.setTypeAction(EVT, Expand);
513  }
514
515  // Inspect all of the ValueType's smaller than the largest integer
516  // register to see which ones need promotion.
517  unsigned LegalIntReg = LargestIntReg;
518  for (unsigned IntReg = LargestIntReg - 1;
519       IntReg >= (unsigned)MVT::i1; --IntReg) {
520    MVT IVT = (MVT::SimpleValueType)IntReg;
521    if (isTypeLegal(IVT)) {
522      LegalIntReg = IntReg;
523    } else {
524      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
525        (MVT::SimpleValueType)LegalIntReg;
526      ValueTypeActions.setTypeAction(IVT, Promote);
527    }
528  }
529
530  // ppcf128 type is really two f64's.
531  if (!isTypeLegal(MVT::ppcf128)) {
532    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
533    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
534    TransformToType[MVT::ppcf128] = MVT::f64;
535    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
536  }
537
538  // Decide how to handle f64. If the target does not have native f64 support,
539  // expand it to i64 and we will be generating soft float library calls.
540  if (!isTypeLegal(MVT::f64)) {
541    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
542    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
543    TransformToType[MVT::f64] = MVT::i64;
544    ValueTypeActions.setTypeAction(MVT::f64, Expand);
545  }
546
547  // Decide how to handle f32. If the target does not have native support for
548  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
549  if (!isTypeLegal(MVT::f32)) {
550    if (isTypeLegal(MVT::f64)) {
551      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
552      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
553      TransformToType[MVT::f32] = MVT::f64;
554      ValueTypeActions.setTypeAction(MVT::f32, Promote);
555    } else {
556      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
557      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
558      TransformToType[MVT::f32] = MVT::i32;
559      ValueTypeActions.setTypeAction(MVT::f32, Expand);
560    }
561  }
562
563  // Loop over all of the vector value types to see which need transformations.
564  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
565       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
566    MVT VT = (MVT::SimpleValueType)i;
567    if (!isTypeLegal(VT)) {
568      MVT IntermediateVT, RegisterVT;
569      unsigned NumIntermediates;
570      NumRegistersForVT[i] =
571        getVectorTypeBreakdown(VT,
572                               IntermediateVT, NumIntermediates,
573                               RegisterVT);
574      RegisterTypeForVT[i] = RegisterVT;
575      TransformToType[i] = MVT::Other; // this isn't actually used
576      ValueTypeActions.setTypeAction(VT, Expand);
577    }
578  }
579}
580
581const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
582  return NULL;
583}
584
585
586MVT TargetLowering::getSetCCResultType(const SDValue &) const {
587  return getValueType(TD->getIntPtrType());
588}
589
590
591/// getVectorTypeBreakdown - Vector types are broken down into some number of
592/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
593/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
594/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
595///
596/// This method returns the number of registers needed, and the VT for each
597/// register.  It also returns the VT and quantity of the intermediate values
598/// before they are promoted/expanded.
599///
600unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
601                                                MVT &IntermediateVT,
602                                                unsigned &NumIntermediates,
603                                      MVT &RegisterVT) const {
604  // Figure out the right, legal destination reg to copy into.
605  unsigned NumElts = VT.getVectorNumElements();
606  MVT EltTy = VT.getVectorElementType();
607
608  unsigned NumVectorRegs = 1;
609
610  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
611  // could break down into LHS/RHS like LegalizeDAG does.
612  if (!isPowerOf2_32(NumElts)) {
613    NumVectorRegs = NumElts;
614    NumElts = 1;
615  }
616
617  // Divide the input until we get to a supported size.  This will always
618  // end with a scalar if the target doesn't support vectors.
619  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
620    NumElts >>= 1;
621    NumVectorRegs <<= 1;
622  }
623
624  NumIntermediates = NumVectorRegs;
625
626  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
627  if (!isTypeLegal(NewVT))
628    NewVT = EltTy;
629  IntermediateVT = NewVT;
630
631  MVT DestVT = getTypeToTransformTo(NewVT);
632  RegisterVT = DestVT;
633  if (DestVT.bitsLT(NewVT)) {
634    // Value is expanded, e.g. i64 -> i16.
635    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
636  } else {
637    // Otherwise, promotion or legal types use the same number of registers as
638    // the vector decimated to the appropriate level.
639    return NumVectorRegs;
640  }
641
642  return 1;
643}
644
645/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
646/// function arguments in the caller parameter area.  This is the actual
647/// alignment, not its logarithm.
648unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
649  return TD->getCallFrameTypeAlignment(Ty);
650}
651
652SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
653                                                 SelectionDAG &DAG) const {
654  if (usesGlobalOffsetTable())
655    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
656  return Table;
657}
658
659bool
660TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
661  // Assume that everything is safe in static mode.
662  if (getTargetMachine().getRelocationModel() == Reloc::Static)
663    return true;
664
665  // In dynamic-no-pic mode, assume that known defined values are safe.
666  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
667      GA &&
668      !GA->getGlobal()->isDeclaration() &&
669      !GA->getGlobal()->mayBeOverridden())
670    return true;
671
672  // Otherwise assume nothing is safe.
673  return false;
674}
675
676//===----------------------------------------------------------------------===//
677//  Optimization Methods
678//===----------------------------------------------------------------------===//
679
680/// ShrinkDemandedConstant - Check to see if the specified operand of the
681/// specified instruction is a constant integer.  If so, check to see if there
682/// are any bits set in the constant that are not demanded.  If so, shrink the
683/// constant and return true.
684bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
685                                                        const APInt &Demanded) {
686  // FIXME: ISD::SELECT, ISD::SELECT_CC
687  switch(Op.getOpcode()) {
688  default: break;
689  case ISD::AND:
690  case ISD::OR:
691  case ISD::XOR:
692    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
693      if (C->getAPIntValue().intersects(~Demanded)) {
694        MVT VT = Op.getValueType();
695        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
696                                    DAG.getConstant(Demanded &
697                                                      C->getAPIntValue(),
698                                                    VT));
699        return CombineTo(Op, New);
700      }
701    break;
702  }
703  return false;
704}
705
706/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
707/// DemandedMask bits of the result of Op are ever used downstream.  If we can
708/// use this information to simplify Op, create a new simplified DAG node and
709/// return true, returning the original and new nodes in Old and New. Otherwise,
710/// analyze the expression and return a mask of KnownOne and KnownZero bits for
711/// the expression (used to simplify the caller).  The KnownZero/One bits may
712/// only be accurate for those bits in the DemandedMask.
713bool TargetLowering::SimplifyDemandedBits(SDValue Op,
714                                          const APInt &DemandedMask,
715                                          APInt &KnownZero,
716                                          APInt &KnownOne,
717                                          TargetLoweringOpt &TLO,
718                                          unsigned Depth) const {
719  unsigned BitWidth = DemandedMask.getBitWidth();
720  assert(Op.getValueSizeInBits() == BitWidth &&
721         "Mask size mismatches value type size!");
722  APInt NewMask = DemandedMask;
723
724  // Don't know anything.
725  KnownZero = KnownOne = APInt(BitWidth, 0);
726
727  // Other users may use these bits.
728  if (!Op.getNode()->hasOneUse()) {
729    if (Depth != 0) {
730      // If not at the root, Just compute the KnownZero/KnownOne bits to
731      // simplify things downstream.
732      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
733      return false;
734    }
735    // If this is the root being simplified, allow it to have multiple uses,
736    // just set the NewMask to all bits.
737    NewMask = APInt::getAllOnesValue(BitWidth);
738  } else if (DemandedMask == 0) {
739    // Not demanding any bits from Op.
740    if (Op.getOpcode() != ISD::UNDEF)
741      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
742    return false;
743  } else if (Depth == 6) {        // Limit search depth.
744    return false;
745  }
746
747  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
748  switch (Op.getOpcode()) {
749  case ISD::Constant:
750    // We know all of the bits for a constant!
751    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
752    KnownZero = ~KnownOne & NewMask;
753    return false;   // Don't fall through, will infinitely loop.
754  case ISD::AND:
755    // If the RHS is a constant, check to see if the LHS would be zero without
756    // using the bits from the RHS.  Below, we use knowledge about the RHS to
757    // simplify the LHS, here we're using information from the LHS to simplify
758    // the RHS.
759    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
760      APInt LHSZero, LHSOne;
761      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
762                                LHSZero, LHSOne, Depth+1);
763      // If the LHS already has zeros where RHSC does, this and is dead.
764      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
765        return TLO.CombineTo(Op, Op.getOperand(0));
766      // If any of the set bits in the RHS are known zero on the LHS, shrink
767      // the constant.
768      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
769        return true;
770    }
771
772    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
773                             KnownOne, TLO, Depth+1))
774      return true;
775    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
776    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
777                             KnownZero2, KnownOne2, TLO, Depth+1))
778      return true;
779    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
780
781    // If all of the demanded bits are known one on one side, return the other.
782    // These bits cannot contribute to the result of the 'and'.
783    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
784      return TLO.CombineTo(Op, Op.getOperand(0));
785    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
786      return TLO.CombineTo(Op, Op.getOperand(1));
787    // If all of the demanded bits in the inputs are known zeros, return zero.
788    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
789      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
790    // If the RHS is a constant, see if we can simplify it.
791    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
792      return true;
793
794    // Output known-1 bits are only known if set in both the LHS & RHS.
795    KnownOne &= KnownOne2;
796    // Output known-0 are known to be clear if zero in either the LHS | RHS.
797    KnownZero |= KnownZero2;
798    break;
799  case ISD::OR:
800    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
801                             KnownOne, TLO, Depth+1))
802      return true;
803    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
804    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
805                             KnownZero2, KnownOne2, TLO, Depth+1))
806      return true;
807    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
808
809    // If all of the demanded bits are known zero on one side, return the other.
810    // These bits cannot contribute to the result of the 'or'.
811    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
812      return TLO.CombineTo(Op, Op.getOperand(0));
813    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
814      return TLO.CombineTo(Op, Op.getOperand(1));
815    // If all of the potentially set bits on one side are known to be set on
816    // the other side, just use the 'other' side.
817    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
818      return TLO.CombineTo(Op, Op.getOperand(0));
819    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
820      return TLO.CombineTo(Op, Op.getOperand(1));
821    // If the RHS is a constant, see if we can simplify it.
822    if (TLO.ShrinkDemandedConstant(Op, NewMask))
823      return true;
824
825    // Output known-0 bits are only known if clear in both the LHS & RHS.
826    KnownZero &= KnownZero2;
827    // Output known-1 are known to be set if set in either the LHS | RHS.
828    KnownOne |= KnownOne2;
829    break;
830  case ISD::XOR:
831    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
832                             KnownOne, TLO, Depth+1))
833      return true;
834    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
835    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
836                             KnownOne2, TLO, Depth+1))
837      return true;
838    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
839
840    // If all of the demanded bits are known zero on one side, return the other.
841    // These bits cannot contribute to the result of the 'xor'.
842    if ((KnownZero & NewMask) == NewMask)
843      return TLO.CombineTo(Op, Op.getOperand(0));
844    if ((KnownZero2 & NewMask) == NewMask)
845      return TLO.CombineTo(Op, Op.getOperand(1));
846
847    // If all of the unknown bits are known to be zero on one side or the other
848    // (but not both) turn this into an *inclusive* or.
849    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
850    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
851      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
852                                               Op.getOperand(0),
853                                               Op.getOperand(1)));
854
855    // Output known-0 bits are known if clear or set in both the LHS & RHS.
856    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
857    // Output known-1 are known to be set if set in only one of the LHS, RHS.
858    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
859
860    // If all of the demanded bits on one side are known, and all of the set
861    // bits on that side are also known to be set on the other side, turn this
862    // into an AND, as we know the bits will be cleared.
863    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
864    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
865      if ((KnownOne & KnownOne2) == KnownOne) {
866        MVT VT = Op.getValueType();
867        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
868        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
869                                                 ANDC));
870      }
871    }
872
873    // If the RHS is a constant, see if we can simplify it.
874    // for XOR, we prefer to force bits to 1 if they will make a -1.
875    // if we can't force bits, try to shrink constant
876    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
877      APInt Expanded = C->getAPIntValue() | (~NewMask);
878      // if we can expand it to have all bits set, do it
879      if (Expanded.isAllOnesValue()) {
880        if (Expanded != C->getAPIntValue()) {
881          MVT VT = Op.getValueType();
882          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
883                                          TLO.DAG.getConstant(Expanded, VT));
884          return TLO.CombineTo(Op, New);
885        }
886        // if it already has all the bits set, nothing to change
887        // but don't shrink either!
888      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
889        return true;
890      }
891    }
892
893    KnownZero = KnownZeroOut;
894    KnownOne  = KnownOneOut;
895    break;
896  case ISD::SELECT:
897    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
898                             KnownOne, TLO, Depth+1))
899      return true;
900    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
901                             KnownOne2, TLO, Depth+1))
902      return true;
903    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
904    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
905
906    // If the operands are constants, see if we can simplify them.
907    if (TLO.ShrinkDemandedConstant(Op, NewMask))
908      return true;
909
910    // Only known if known in both the LHS and RHS.
911    KnownOne &= KnownOne2;
912    KnownZero &= KnownZero2;
913    break;
914  case ISD::SELECT_CC:
915    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
916                             KnownOne, TLO, Depth+1))
917      return true;
918    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
919                             KnownOne2, TLO, Depth+1))
920      return true;
921    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
922    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
923
924    // If the operands are constants, see if we can simplify them.
925    if (TLO.ShrinkDemandedConstant(Op, NewMask))
926      return true;
927
928    // Only known if known in both the LHS and RHS.
929    KnownOne &= KnownOne2;
930    KnownZero &= KnownZero2;
931    break;
932  case ISD::SHL:
933    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
934      unsigned ShAmt = SA->getZExtValue();
935      SDValue InOp = Op.getOperand(0);
936
937      // If the shift count is an invalid immediate, don't do anything.
938      if (ShAmt >= BitWidth)
939        break;
940
941      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
942      // single shift.  We can do this if the bottom bits (which are shifted
943      // out) are never demanded.
944      if (InOp.getOpcode() == ISD::SRL &&
945          isa<ConstantSDNode>(InOp.getOperand(1))) {
946        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
947          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
948          unsigned Opc = ISD::SHL;
949          int Diff = ShAmt-C1;
950          if (Diff < 0) {
951            Diff = -Diff;
952            Opc = ISD::SRL;
953          }
954
955          SDValue NewSA =
956            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
957          MVT VT = Op.getValueType();
958          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
959                                                   InOp.getOperand(0), NewSA));
960        }
961      }
962
963      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
964                               KnownZero, KnownOne, TLO, Depth+1))
965        return true;
966      KnownZero <<= SA->getZExtValue();
967      KnownOne  <<= SA->getZExtValue();
968      // low bits known zero.
969      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
970    }
971    break;
972  case ISD::SRL:
973    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
974      MVT VT = Op.getValueType();
975      unsigned ShAmt = SA->getZExtValue();
976      unsigned VTSize = VT.getSizeInBits();
977      SDValue InOp = Op.getOperand(0);
978
979      // If the shift count is an invalid immediate, don't do anything.
980      if (ShAmt >= BitWidth)
981        break;
982
983      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
984      // single shift.  We can do this if the top bits (which are shifted out)
985      // are never demanded.
986      if (InOp.getOpcode() == ISD::SHL &&
987          isa<ConstantSDNode>(InOp.getOperand(1))) {
988        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
989          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
990          unsigned Opc = ISD::SRL;
991          int Diff = ShAmt-C1;
992          if (Diff < 0) {
993            Diff = -Diff;
994            Opc = ISD::SHL;
995          }
996
997          SDValue NewSA =
998            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
999          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
1000                                                   InOp.getOperand(0), NewSA));
1001        }
1002      }
1003
1004      // Compute the new bits that are at the top now.
1005      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1006                               KnownZero, KnownOne, TLO, Depth+1))
1007        return true;
1008      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1009      KnownZero = KnownZero.lshr(ShAmt);
1010      KnownOne  = KnownOne.lshr(ShAmt);
1011
1012      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1013      KnownZero |= HighBits;  // High bits known zero.
1014    }
1015    break;
1016  case ISD::SRA:
1017    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1018      MVT VT = Op.getValueType();
1019      unsigned ShAmt = SA->getZExtValue();
1020
1021      // If the shift count is an invalid immediate, don't do anything.
1022      if (ShAmt >= BitWidth)
1023        break;
1024
1025      APInt InDemandedMask = (NewMask << ShAmt);
1026
1027      // If any of the demanded bits are produced by the sign extension, we also
1028      // demand the input sign bit.
1029      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1030      if (HighBits.intersects(NewMask))
1031        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1032
1033      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1034                               KnownZero, KnownOne, TLO, Depth+1))
1035        return true;
1036      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1037      KnownZero = KnownZero.lshr(ShAmt);
1038      KnownOne  = KnownOne.lshr(ShAmt);
1039
1040      // Handle the sign bit, adjusted to where it is now in the mask.
1041      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1042
1043      // If the input sign bit is known to be zero, or if none of the top bits
1044      // are demanded, turn this into an unsigned shift right.
1045      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1046        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1047                                                 Op.getOperand(1)));
1048      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1049        KnownOne |= HighBits;
1050      }
1051    }
1052    break;
1053  case ISD::SIGN_EXTEND_INREG: {
1054    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1055
1056    // Sign extension.  Compute the demanded bits in the result that are not
1057    // present in the input.
1058    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1059                                          BitWidth - EVT.getSizeInBits()) &
1060                    NewMask;
1061
1062    // If none of the extended bits are demanded, eliminate the sextinreg.
1063    if (NewBits == 0)
1064      return TLO.CombineTo(Op, Op.getOperand(0));
1065
1066    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1067    InSignBit.zext(BitWidth);
1068    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1069                                                   EVT.getSizeInBits()) &
1070                              NewMask;
1071
1072    // Since the sign extended bits are demanded, we know that the sign
1073    // bit is demanded.
1074    InputDemandedBits |= InSignBit;
1075
1076    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1077                             KnownZero, KnownOne, TLO, Depth+1))
1078      return true;
1079    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1080
1081    // If the sign bit of the input is known set or clear, then we know the
1082    // top bits of the result.
1083
1084    // If the input sign bit is known zero, convert this into a zero extension.
1085    if (KnownZero.intersects(InSignBit))
1086      return TLO.CombineTo(Op,
1087                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1088
1089    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1090      KnownOne |= NewBits;
1091      KnownZero &= ~NewBits;
1092    } else {                       // Input sign bit unknown
1093      KnownZero &= ~NewBits;
1094      KnownOne &= ~NewBits;
1095    }
1096    break;
1097  }
1098  case ISD::ZERO_EXTEND: {
1099    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1100    APInt InMask = NewMask;
1101    InMask.trunc(OperandBitWidth);
1102
1103    // If none of the top bits are demanded, convert this into an any_extend.
1104    APInt NewBits =
1105      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1106    if (!NewBits.intersects(NewMask))
1107      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1108                                               Op.getValueType(),
1109                                               Op.getOperand(0)));
1110
1111    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1112                             KnownZero, KnownOne, TLO, Depth+1))
1113      return true;
1114    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1115    KnownZero.zext(BitWidth);
1116    KnownOne.zext(BitWidth);
1117    KnownZero |= NewBits;
1118    break;
1119  }
1120  case ISD::SIGN_EXTEND: {
1121    MVT InVT = Op.getOperand(0).getValueType();
1122    unsigned InBits = InVT.getSizeInBits();
1123    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1124    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1125    APInt NewBits   = ~InMask & NewMask;
1126
1127    // If none of the top bits are demanded, convert this into an any_extend.
1128    if (NewBits == 0)
1129      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1130                                           Op.getOperand(0)));
1131
1132    // Since some of the sign extended bits are demanded, we know that the sign
1133    // bit is demanded.
1134    APInt InDemandedBits = InMask & NewMask;
1135    InDemandedBits |= InSignBit;
1136    InDemandedBits.trunc(InBits);
1137
1138    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1139                             KnownOne, TLO, Depth+1))
1140      return true;
1141    KnownZero.zext(BitWidth);
1142    KnownOne.zext(BitWidth);
1143
1144    // If the sign bit is known zero, convert this to a zero extend.
1145    if (KnownZero.intersects(InSignBit))
1146      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1147                                               Op.getValueType(),
1148                                               Op.getOperand(0)));
1149
1150    // If the sign bit is known one, the top bits match.
1151    if (KnownOne.intersects(InSignBit)) {
1152      KnownOne  |= NewBits;
1153      KnownZero &= ~NewBits;
1154    } else {   // Otherwise, top bits aren't known.
1155      KnownOne  &= ~NewBits;
1156      KnownZero &= ~NewBits;
1157    }
1158    break;
1159  }
1160  case ISD::ANY_EXTEND: {
1161    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1162    APInt InMask = NewMask;
1163    InMask.trunc(OperandBitWidth);
1164    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1165                             KnownZero, KnownOne, TLO, Depth+1))
1166      return true;
1167    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168    KnownZero.zext(BitWidth);
1169    KnownOne.zext(BitWidth);
1170    break;
1171  }
1172  case ISD::TRUNCATE: {
1173    // Simplify the input, using demanded bit information, and compute the known
1174    // zero/one bits live out.
1175    APInt TruncMask = NewMask;
1176    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1177    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1178                             KnownZero, KnownOne, TLO, Depth+1))
1179      return true;
1180    KnownZero.trunc(BitWidth);
1181    KnownOne.trunc(BitWidth);
1182
1183    // If the input is only used by this truncate, see if we can shrink it based
1184    // on the known demanded bits.
1185    if (Op.getOperand(0).getNode()->hasOneUse()) {
1186      SDValue In = Op.getOperand(0);
1187      unsigned InBitWidth = In.getValueSizeInBits();
1188      switch (In.getOpcode()) {
1189      default: break;
1190      case ISD::SRL:
1191        // Shrink SRL by a constant if none of the high bits shifted in are
1192        // demanded.
1193        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1194          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1195                                                 InBitWidth - BitWidth);
1196          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1197          HighBits.trunc(BitWidth);
1198
1199          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1200            // None of the shifted in bits are needed.  Add a truncate of the
1201            // shift input, then shift it.
1202            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1203                                                 Op.getValueType(),
1204                                                 In.getOperand(0));
1205            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1206                                                   NewTrunc, In.getOperand(1)));
1207          }
1208        }
1209        break;
1210      }
1211    }
1212
1213    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214    break;
1215  }
1216  case ISD::AssertZext: {
1217    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1218    APInt InMask = APInt::getLowBitsSet(BitWidth,
1219                                        VT.getSizeInBits());
1220    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1221                             KnownZero, KnownOne, TLO, Depth+1))
1222      return true;
1223    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1224    KnownZero |= ~InMask & NewMask;
1225    break;
1226  }
1227  case ISD::BIT_CONVERT:
1228#if 0
1229    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1230    // is demanded, turn this into a FGETSIGN.
1231    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1232        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1233        !MVT::isVector(Op.getOperand(0).getValueType())) {
1234      // Only do this xform if FGETSIGN is valid or if before legalize.
1235      if (!TLO.AfterLegalize ||
1236          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1237        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1238        // place.  We expect the SHL to be eliminated by other optimizations.
1239        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1240                                         Op.getOperand(0));
1241        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1242        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1243        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1244                                                 Sign, ShAmt));
1245      }
1246    }
1247#endif
1248    break;
1249  default:
1250    // Just use ComputeMaskedBits to compute output bits.
1251    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1252    break;
1253  }
1254
1255  // If we know the value of all of the demanded bits, return this as a
1256  // constant.
1257  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1258    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1259
1260  return false;
1261}
1262
1263/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1264/// in Mask are known to be either zero or one and return them in the
1265/// KnownZero/KnownOne bitsets.
1266void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1267                                                    const APInt &Mask,
1268                                                    APInt &KnownZero,
1269                                                    APInt &KnownOne,
1270                                                    const SelectionDAG &DAG,
1271                                                    unsigned Depth) const {
1272  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1273          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1274          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1275          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1276         "Should use MaskedValueIsZero if you don't know whether Op"
1277         " is a target node!");
1278  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1279}
1280
1281/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1282/// targets that want to expose additional information about sign bits to the
1283/// DAG Combiner.
1284unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1285                                                         unsigned Depth) const {
1286  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1287          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1288          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1289          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1290         "Should use ComputeNumSignBits if you don't know whether Op"
1291         " is a target node!");
1292  return 1;
1293}
1294
1295
1296/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1297/// and cc. If it is unable to simplify it, return a null SDValue.
1298SDValue
1299TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1300                              ISD::CondCode Cond, bool foldBooleans,
1301                              DAGCombinerInfo &DCI) const {
1302  SelectionDAG &DAG = DCI.DAG;
1303
1304  // These setcc operations always fold.
1305  switch (Cond) {
1306  default: break;
1307  case ISD::SETFALSE:
1308  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1309  case ISD::SETTRUE:
1310  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1311  }
1312
1313  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1314    const APInt &C1 = N1C->getAPIntValue();
1315    if (isa<ConstantSDNode>(N0.getNode())) {
1316      return DAG.FoldSetCC(VT, N0, N1, Cond);
1317    } else {
1318      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1319      // equality comparison, then we're just comparing whether X itself is
1320      // zero.
1321      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1322          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1323          N0.getOperand(1).getOpcode() == ISD::Constant) {
1324        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1325        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1326            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1327          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1328            // (srl (ctlz x), 5) == 0  -> X != 0
1329            // (srl (ctlz x), 5) != 1  -> X != 0
1330            Cond = ISD::SETNE;
1331          } else {
1332            // (srl (ctlz x), 5) != 0  -> X == 0
1333            // (srl (ctlz x), 5) == 1  -> X == 0
1334            Cond = ISD::SETEQ;
1335          }
1336          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1337          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1338                              Zero, Cond);
1339        }
1340      }
1341
1342      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1343      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1344        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1345
1346        // If the comparison constant has bits in the upper part, the
1347        // zero-extended value could never match.
1348        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1349                                                C1.getBitWidth() - InSize))) {
1350          switch (Cond) {
1351          case ISD::SETUGT:
1352          case ISD::SETUGE:
1353          case ISD::SETEQ: return DAG.getConstant(0, VT);
1354          case ISD::SETULT:
1355          case ISD::SETULE:
1356          case ISD::SETNE: return DAG.getConstant(1, VT);
1357          case ISD::SETGT:
1358          case ISD::SETGE:
1359            // True if the sign bit of C1 is set.
1360            return DAG.getConstant(C1.isNegative(), VT);
1361          case ISD::SETLT:
1362          case ISD::SETLE:
1363            // True if the sign bit of C1 isn't set.
1364            return DAG.getConstant(C1.isNonNegative(), VT);
1365          default:
1366            break;
1367          }
1368        }
1369
1370        // Otherwise, we can perform the comparison with the low bits.
1371        switch (Cond) {
1372        case ISD::SETEQ:
1373        case ISD::SETNE:
1374        case ISD::SETUGT:
1375        case ISD::SETUGE:
1376        case ISD::SETULT:
1377        case ISD::SETULE:
1378          return DAG.getSetCC(VT, N0.getOperand(0),
1379                          DAG.getConstant(APInt(C1).trunc(InSize),
1380                                          N0.getOperand(0).getValueType()),
1381                          Cond);
1382        default:
1383          break;   // todo, be more careful with signed comparisons
1384        }
1385      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1386                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1387        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1388        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1389        MVT ExtDstTy = N0.getValueType();
1390        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1391
1392        // If the extended part has any inconsistent bits, it cannot ever
1393        // compare equal.  In other words, they have to be all ones or all
1394        // zeros.
1395        APInt ExtBits =
1396          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1397        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1398          return DAG.getConstant(Cond == ISD::SETNE, VT);
1399
1400        SDValue ZextOp;
1401        MVT Op0Ty = N0.getOperand(0).getValueType();
1402        if (Op0Ty == ExtSrcTy) {
1403          ZextOp = N0.getOperand(0);
1404        } else {
1405          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1406          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1407                               DAG.getConstant(Imm, Op0Ty));
1408        }
1409        if (!DCI.isCalledByLegalizer())
1410          DCI.AddToWorklist(ZextOp.getNode());
1411        // Otherwise, make this a use of a zext.
1412        return DAG.getSetCC(VT, ZextOp,
1413                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1414                                                               ExtDstTyBits,
1415                                                               ExtSrcTyBits),
1416                                            ExtDstTy),
1417                            Cond);
1418      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1419                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1420
1421        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1422        if (N0.getOpcode() == ISD::SETCC) {
1423          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1424          if (TrueWhenTrue)
1425            return N0;
1426
1427          // Invert the condition.
1428          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1429          CC = ISD::getSetCCInverse(CC,
1430                                   N0.getOperand(0).getValueType().isInteger());
1431          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1432        }
1433
1434        if ((N0.getOpcode() == ISD::XOR ||
1435             (N0.getOpcode() == ISD::AND &&
1436              N0.getOperand(0).getOpcode() == ISD::XOR &&
1437              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1438            isa<ConstantSDNode>(N0.getOperand(1)) &&
1439            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1440          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1441          // can only do this if the top bits are known zero.
1442          unsigned BitWidth = N0.getValueSizeInBits();
1443          if (DAG.MaskedValueIsZero(N0,
1444                                    APInt::getHighBitsSet(BitWidth,
1445                                                          BitWidth-1))) {
1446            // Okay, get the un-inverted input value.
1447            SDValue Val;
1448            if (N0.getOpcode() == ISD::XOR)
1449              Val = N0.getOperand(0);
1450            else {
1451              assert(N0.getOpcode() == ISD::AND &&
1452                     N0.getOperand(0).getOpcode() == ISD::XOR);
1453              // ((X^1)&1)^1 -> X & 1
1454              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1455                                N0.getOperand(0).getOperand(0),
1456                                N0.getOperand(1));
1457            }
1458            return DAG.getSetCC(VT, Val, N1,
1459                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1460          }
1461        }
1462      }
1463
1464      APInt MinVal, MaxVal;
1465      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1466      if (ISD::isSignedIntSetCC(Cond)) {
1467        MinVal = APInt::getSignedMinValue(OperandBitSize);
1468        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1469      } else {
1470        MinVal = APInt::getMinValue(OperandBitSize);
1471        MaxVal = APInt::getMaxValue(OperandBitSize);
1472      }
1473
1474      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1475      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1476        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1477        // X >= C0 --> X > (C0-1)
1478        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1479                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1480      }
1481
1482      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1483        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1484        // X <= C0 --> X < (C0+1)
1485        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1486                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1487      }
1488
1489      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1490        return DAG.getConstant(0, VT);      // X < MIN --> false
1491      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1492        return DAG.getConstant(1, VT);      // X >= MIN --> true
1493      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1494        return DAG.getConstant(0, VT);      // X > MAX --> false
1495      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1496        return DAG.getConstant(1, VT);      // X <= MAX --> true
1497
1498      // Canonicalize setgt X, Min --> setne X, Min
1499      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1500        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1501      // Canonicalize setlt X, Max --> setne X, Max
1502      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1503        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1504
1505      // If we have setult X, 1, turn it into seteq X, 0
1506      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1507        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1508                        ISD::SETEQ);
1509      // If we have setugt X, Max-1, turn it into seteq X, Max
1510      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1511        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1512                        ISD::SETEQ);
1513
1514      // If we have "setcc X, C0", check to see if we can shrink the immediate
1515      // by changing cc.
1516
1517      // SETUGT X, SINTMAX  -> SETLT X, 0
1518      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1519          C1 == (~0ULL >> (65-OperandBitSize)))
1520        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1521                            ISD::SETLT);
1522
1523      // FIXME: Implement the rest of these.
1524
1525      // Fold bit comparisons when we can.
1526      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1527          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1528        if (ConstantSDNode *AndRHS =
1529                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1530          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1531            // Perform the xform if the AND RHS is a single bit.
1532            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1533              return DAG.getNode(ISD::SRL, VT, N0,
1534                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1535                                             getShiftAmountTy()));
1536            }
1537          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1538            // (X & 8) == 8  -->  (X & 8) >> 3
1539            // Perform the xform if C1 is a single bit.
1540            if (C1.isPowerOf2()) {
1541              return DAG.getNode(ISD::SRL, VT, N0,
1542                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1543            }
1544          }
1545        }
1546    }
1547  } else if (isa<ConstantSDNode>(N0.getNode())) {
1548      // Ensure that the constant occurs on the RHS.
1549    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1550  }
1551
1552  if (isa<ConstantFPSDNode>(N0.getNode())) {
1553    // Constant fold or commute setcc.
1554    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1555    if (O.getNode()) return O;
1556  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1557    // If the RHS of an FP comparison is a constant, simplify it away in
1558    // some cases.
1559    if (CFP->getValueAPF().isNaN()) {
1560      // If an operand is known to be a nan, we can fold it.
1561      switch (ISD::getUnorderedFlavor(Cond)) {
1562      default: assert(0 && "Unknown flavor!");
1563      case 0:  // Known false.
1564        return DAG.getConstant(0, VT);
1565      case 1:  // Known true.
1566        return DAG.getConstant(1, VT);
1567      case 2:  // Undefined.
1568        return DAG.getNode(ISD::UNDEF, VT);
1569      }
1570    }
1571
1572    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1573    // constant if knowing that the operand is non-nan is enough.  We prefer to
1574    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1575    // materialize 0.0.
1576    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1577      return DAG.getSetCC(VT, N0, N0, Cond);
1578  }
1579
1580  if (N0 == N1) {
1581    // We can always fold X == X for integer setcc's.
1582    if (N0.getValueType().isInteger())
1583      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1584    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1585    if (UOF == 2)   // FP operators that are undefined on NaNs.
1586      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1587    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1588      return DAG.getConstant(UOF, VT);
1589    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1590    // if it is not already.
1591    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1592    if (NewCond != Cond)
1593      return DAG.getSetCC(VT, N0, N1, NewCond);
1594  }
1595
1596  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1597      N0.getValueType().isInteger()) {
1598    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1599        N0.getOpcode() == ISD::XOR) {
1600      // Simplify (X+Y) == (X+Z) -->  Y == Z
1601      if (N0.getOpcode() == N1.getOpcode()) {
1602        if (N0.getOperand(0) == N1.getOperand(0))
1603          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1604        if (N0.getOperand(1) == N1.getOperand(1))
1605          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1606        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1607          // If X op Y == Y op X, try other combinations.
1608          if (N0.getOperand(0) == N1.getOperand(1))
1609            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1610          if (N0.getOperand(1) == N1.getOperand(0))
1611            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1612        }
1613      }
1614
1615      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1616        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1617          // Turn (X+C1) == C2 --> X == C2-C1
1618          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1619            return DAG.getSetCC(VT, N0.getOperand(0),
1620                                DAG.getConstant(RHSC->getAPIntValue()-
1621                                                LHSR->getAPIntValue(),
1622                                N0.getValueType()), Cond);
1623          }
1624
1625          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1626          if (N0.getOpcode() == ISD::XOR)
1627            // If we know that all of the inverted bits are zero, don't bother
1628            // performing the inversion.
1629            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1630              return
1631                DAG.getSetCC(VT, N0.getOperand(0),
1632                             DAG.getConstant(LHSR->getAPIntValue() ^
1633                                               RHSC->getAPIntValue(),
1634                                             N0.getValueType()),
1635                             Cond);
1636        }
1637
1638        // Turn (C1-X) == C2 --> X == C1-C2
1639        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1640          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1641            return
1642              DAG.getSetCC(VT, N0.getOperand(1),
1643                           DAG.getConstant(SUBC->getAPIntValue() -
1644                                             RHSC->getAPIntValue(),
1645                                           N0.getValueType()),
1646                           Cond);
1647          }
1648        }
1649      }
1650
1651      // Simplify (X+Z) == X -->  Z == 0
1652      if (N0.getOperand(0) == N1)
1653        return DAG.getSetCC(VT, N0.getOperand(1),
1654                        DAG.getConstant(0, N0.getValueType()), Cond);
1655      if (N0.getOperand(1) == N1) {
1656        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1657          return DAG.getSetCC(VT, N0.getOperand(0),
1658                          DAG.getConstant(0, N0.getValueType()), Cond);
1659        else if (N0.getNode()->hasOneUse()) {
1660          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1661          // (Z-X) == X  --> Z == X<<1
1662          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1663                                     N1,
1664                                     DAG.getConstant(1, getShiftAmountTy()));
1665          if (!DCI.isCalledByLegalizer())
1666            DCI.AddToWorklist(SH.getNode());
1667          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1668        }
1669      }
1670    }
1671
1672    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1673        N1.getOpcode() == ISD::XOR) {
1674      // Simplify  X == (X+Z) -->  Z == 0
1675      if (N1.getOperand(0) == N0) {
1676        return DAG.getSetCC(VT, N1.getOperand(1),
1677                        DAG.getConstant(0, N1.getValueType()), Cond);
1678      } else if (N1.getOperand(1) == N0) {
1679        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1680          return DAG.getSetCC(VT, N1.getOperand(0),
1681                          DAG.getConstant(0, N1.getValueType()), Cond);
1682        } else if (N1.getNode()->hasOneUse()) {
1683          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1684          // X == (Z-X)  --> X<<1 == Z
1685          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1686                                     DAG.getConstant(1, getShiftAmountTy()));
1687          if (!DCI.isCalledByLegalizer())
1688            DCI.AddToWorklist(SH.getNode());
1689          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1690        }
1691      }
1692    }
1693  }
1694
1695  // Fold away ALL boolean setcc's.
1696  SDValue Temp;
1697  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1698    switch (Cond) {
1699    default: assert(0 && "Unknown integer setcc!");
1700    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1701      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1702      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1703      if (!DCI.isCalledByLegalizer())
1704        DCI.AddToWorklist(Temp.getNode());
1705      break;
1706    case ISD::SETNE:  // X != Y   -->  (X^Y)
1707      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1708      break;
1709    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1710    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1711      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1712      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1713      if (!DCI.isCalledByLegalizer())
1714        DCI.AddToWorklist(Temp.getNode());
1715      break;
1716    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1717    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1718      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1719      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1720      if (!DCI.isCalledByLegalizer())
1721        DCI.AddToWorklist(Temp.getNode());
1722      break;
1723    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1724    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1725      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1726      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1727      if (!DCI.isCalledByLegalizer())
1728        DCI.AddToWorklist(Temp.getNode());
1729      break;
1730    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1731    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1732      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1733      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1734      break;
1735    }
1736    if (VT != MVT::i1) {
1737      if (!DCI.isCalledByLegalizer())
1738        DCI.AddToWorklist(N0.getNode());
1739      // FIXME: If running after legalize, we probably can't do this.
1740      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1741    }
1742    return N0;
1743  }
1744
1745  // Could not fold it.
1746  return SDValue();
1747}
1748
1749/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1750/// node is a GlobalAddress + offset.
1751bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1752                                    int64_t &Offset) const {
1753  if (isa<GlobalAddressSDNode>(N)) {
1754    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1755    GA = GASD->getGlobal();
1756    Offset += GASD->getOffset();
1757    return true;
1758  }
1759
1760  if (N->getOpcode() == ISD::ADD) {
1761    SDValue N1 = N->getOperand(0);
1762    SDValue N2 = N->getOperand(1);
1763    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1764      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1765      if (V) {
1766        Offset += V->getSExtValue();
1767        return true;
1768      }
1769    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1770      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1771      if (V) {
1772        Offset += V->getSExtValue();
1773        return true;
1774      }
1775    }
1776  }
1777  return false;
1778}
1779
1780
1781/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1782/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1783/// location that the 'Base' load is loading from.
1784bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1785                                       unsigned Bytes, int Dist,
1786                                       const MachineFrameInfo *MFI) const {
1787  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1788    return false;
1789  MVT VT = LD->getValueType(0);
1790  if (VT.getSizeInBits() / 8 != Bytes)
1791    return false;
1792
1793  SDValue Loc = LD->getOperand(1);
1794  SDValue BaseLoc = Base->getOperand(1);
1795  if (Loc.getOpcode() == ISD::FrameIndex) {
1796    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1797      return false;
1798    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1799    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1800    int FS  = MFI->getObjectSize(FI);
1801    int BFS = MFI->getObjectSize(BFI);
1802    if (FS != BFS || FS != (int)Bytes) return false;
1803    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1804  }
1805
1806  GlobalValue *GV1 = NULL;
1807  GlobalValue *GV2 = NULL;
1808  int64_t Offset1 = 0;
1809  int64_t Offset2 = 0;
1810  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1811  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1812  if (isGA1 && isGA2 && GV1 == GV2)
1813    return Offset1 == (Offset2 + Dist*Bytes);
1814  return false;
1815}
1816
1817
1818SDValue TargetLowering::
1819PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1820  // Default implementation: no optimization.
1821  return SDValue();
1822}
1823
1824//===----------------------------------------------------------------------===//
1825//  Inline Assembler Implementation Methods
1826//===----------------------------------------------------------------------===//
1827
1828
1829TargetLowering::ConstraintType
1830TargetLowering::getConstraintType(const std::string &Constraint) const {
1831  // FIXME: lots more standard ones to handle.
1832  if (Constraint.size() == 1) {
1833    switch (Constraint[0]) {
1834    default: break;
1835    case 'r': return C_RegisterClass;
1836    case 'm':    // memory
1837    case 'o':    // offsetable
1838    case 'V':    // not offsetable
1839      return C_Memory;
1840    case 'i':    // Simple Integer or Relocatable Constant
1841    case 'n':    // Simple Integer
1842    case 's':    // Relocatable Constant
1843    case 'X':    // Allow ANY value.
1844    case 'I':    // Target registers.
1845    case 'J':
1846    case 'K':
1847    case 'L':
1848    case 'M':
1849    case 'N':
1850    case 'O':
1851    case 'P':
1852      return C_Other;
1853    }
1854  }
1855
1856  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1857      Constraint[Constraint.size()-1] == '}')
1858    return C_Register;
1859  return C_Unknown;
1860}
1861
1862/// LowerXConstraint - try to replace an X constraint, which matches anything,
1863/// with another that has more specific requirements based on the type of the
1864/// corresponding operand.
1865const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1866  if (ConstraintVT.isInteger())
1867    return "r";
1868  if (ConstraintVT.isFloatingPoint())
1869    return "f";      // works for many targets
1870  return 0;
1871}
1872
1873/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1874/// vector.  If it is invalid, don't add anything to Ops.
1875void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1876                                                  char ConstraintLetter,
1877                                                  bool hasMemory,
1878                                                  std::vector<SDValue> &Ops,
1879                                                  SelectionDAG &DAG) const {
1880  switch (ConstraintLetter) {
1881  default: break;
1882  case 'X':     // Allows any operand; labels (basic block) use this.
1883    if (Op.getOpcode() == ISD::BasicBlock) {
1884      Ops.push_back(Op);
1885      return;
1886    }
1887    // fall through
1888  case 'i':    // Simple Integer or Relocatable Constant
1889  case 'n':    // Simple Integer
1890  case 's': {  // Relocatable Constant
1891    // These operands are interested in values of the form (GV+C), where C may
1892    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1893    // is possible and fine if either GV or C are missing.
1894    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1895    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1896
1897    // If we have "(add GV, C)", pull out GV/C
1898    if (Op.getOpcode() == ISD::ADD) {
1899      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1900      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1901      if (C == 0 || GA == 0) {
1902        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1903        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1904      }
1905      if (C == 0 || GA == 0)
1906        C = 0, GA = 0;
1907    }
1908
1909    // If we find a valid operand, map to the TargetXXX version so that the
1910    // value itself doesn't get selected.
1911    if (GA) {   // Either &GV   or   &GV+C
1912      if (ConstraintLetter != 'n') {
1913        int64_t Offs = GA->getOffset();
1914        if (C) Offs += C->getZExtValue();
1915        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1916                                                 Op.getValueType(), Offs));
1917        return;
1918      }
1919    }
1920    if (C) {   // just C, no GV.
1921      // Simple constants are not allowed for 's'.
1922      if (ConstraintLetter != 's') {
1923        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
1924                                            Op.getValueType()));
1925        return;
1926      }
1927    }
1928    break;
1929  }
1930  }
1931}
1932
1933std::vector<unsigned> TargetLowering::
1934getRegClassForInlineAsmConstraint(const std::string &Constraint,
1935                                  MVT VT) const {
1936  return std::vector<unsigned>();
1937}
1938
1939
1940std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1941getRegForInlineAsmConstraint(const std::string &Constraint,
1942                             MVT VT) const {
1943  if (Constraint[0] != '{')
1944    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1945  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1946
1947  // Remove the braces from around the name.
1948  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1949
1950  // Figure out which register class contains this reg.
1951  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1952  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1953       E = RI->regclass_end(); RCI != E; ++RCI) {
1954    const TargetRegisterClass *RC = *RCI;
1955
1956    // If none of the the value types for this register class are valid, we
1957    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1958    bool isLegal = false;
1959    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1960         I != E; ++I) {
1961      if (isTypeLegal(*I)) {
1962        isLegal = true;
1963        break;
1964      }
1965    }
1966
1967    if (!isLegal) continue;
1968
1969    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1970         I != E; ++I) {
1971      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1972        return std::make_pair(*I, RC);
1973    }
1974  }
1975
1976  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1977}
1978
1979//===----------------------------------------------------------------------===//
1980// Constraint Selection.
1981
1982/// isMatchingInputConstraint - Return true of this is an input operand that is
1983/// a matching constraint like "4".
1984bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
1985  assert(!ConstraintCode.empty() && "No known constraint!");
1986  return isdigit(ConstraintCode[0]);
1987}
1988
1989/// getMatchedOperand - If this is an input matching constraint, this method
1990/// returns the output operand it matches.
1991unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
1992  assert(!ConstraintCode.empty() && "No known constraint!");
1993  return atoi(ConstraintCode.c_str());
1994}
1995
1996
1997/// getConstraintGenerality - Return an integer indicating how general CT
1998/// is.
1999static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2000  switch (CT) {
2001  default: assert(0 && "Unknown constraint type!");
2002  case TargetLowering::C_Other:
2003  case TargetLowering::C_Unknown:
2004    return 0;
2005  case TargetLowering::C_Register:
2006    return 1;
2007  case TargetLowering::C_RegisterClass:
2008    return 2;
2009  case TargetLowering::C_Memory:
2010    return 3;
2011  }
2012}
2013
2014/// ChooseConstraint - If there are multiple different constraints that we
2015/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2016/// This is somewhat tricky: constraints fall into four classes:
2017///    Other         -> immediates and magic values
2018///    Register      -> one specific register
2019///    RegisterClass -> a group of regs
2020///    Memory        -> memory
2021/// Ideally, we would pick the most specific constraint possible: if we have
2022/// something that fits into a register, we would pick it.  The problem here
2023/// is that if we have something that could either be in a register or in
2024/// memory that use of the register could cause selection of *other*
2025/// operands to fail: they might only succeed if we pick memory.  Because of
2026/// this the heuristic we use is:
2027///
2028///  1) If there is an 'other' constraint, and if the operand is valid for
2029///     that constraint, use it.  This makes us take advantage of 'i'
2030///     constraints when available.
2031///  2) Otherwise, pick the most general constraint present.  This prefers
2032///     'm' over 'r', for example.
2033///
2034static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2035                             bool hasMemory,  const TargetLowering &TLI,
2036                             SDValue Op, SelectionDAG *DAG) {
2037  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2038  unsigned BestIdx = 0;
2039  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2040  int BestGenerality = -1;
2041
2042  // Loop over the options, keeping track of the most general one.
2043  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2044    TargetLowering::ConstraintType CType =
2045      TLI.getConstraintType(OpInfo.Codes[i]);
2046
2047    // If this is an 'other' constraint, see if the operand is valid for it.
2048    // For example, on X86 we might have an 'rI' constraint.  If the operand
2049    // is an integer in the range [0..31] we want to use I (saving a load
2050    // of a register), otherwise we must use 'r'.
2051    if (CType == TargetLowering::C_Other && Op.getNode()) {
2052      assert(OpInfo.Codes[i].size() == 1 &&
2053             "Unhandled multi-letter 'other' constraint");
2054      std::vector<SDValue> ResultOps;
2055      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2056                                       ResultOps, *DAG);
2057      if (!ResultOps.empty()) {
2058        BestType = CType;
2059        BestIdx = i;
2060        break;
2061      }
2062    }
2063
2064    // This constraint letter is more general than the previous one, use it.
2065    int Generality = getConstraintGenerality(CType);
2066    if (Generality > BestGenerality) {
2067      BestType = CType;
2068      BestIdx = i;
2069      BestGenerality = Generality;
2070    }
2071  }
2072
2073  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2074  OpInfo.ConstraintType = BestType;
2075}
2076
2077/// ComputeConstraintToUse - Determines the constraint code and constraint
2078/// type to use for the specific AsmOperandInfo, setting
2079/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2080void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2081                                            SDValue Op,
2082                                            bool hasMemory,
2083                                            SelectionDAG *DAG) const {
2084  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2085
2086  // Single-letter constraints ('r') are very common.
2087  if (OpInfo.Codes.size() == 1) {
2088    OpInfo.ConstraintCode = OpInfo.Codes[0];
2089    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2090  } else {
2091    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2092  }
2093
2094  // 'X' matches anything.
2095  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2096    // Labels and constants are handled elsewhere ('X' is the only thing
2097    // that matches labels).
2098    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2099        isa<ConstantInt>(OpInfo.CallOperandVal))
2100      return;
2101
2102    // Otherwise, try to resolve it to something we know about by looking at
2103    // the actual operand type.
2104    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2105      OpInfo.ConstraintCode = Repl;
2106      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2107    }
2108  }
2109}
2110
2111//===----------------------------------------------------------------------===//
2112//  Loop Strength Reduction hooks
2113//===----------------------------------------------------------------------===//
2114
2115/// isLegalAddressingMode - Return true if the addressing mode represented
2116/// by AM is legal for this target, for a load/store of the specified type.
2117bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2118                                           const Type *Ty) const {
2119  // The default implementation of this implements a conservative RISCy, r+r and
2120  // r+i addr mode.
2121
2122  // Allows a sign-extended 16-bit immediate field.
2123  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2124    return false;
2125
2126  // No global is ever allowed as a base.
2127  if (AM.BaseGV)
2128    return false;
2129
2130  // Only support r+r,
2131  switch (AM.Scale) {
2132  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2133    break;
2134  case 1:
2135    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2136      return false;
2137    // Otherwise we have r+r or r+i.
2138    break;
2139  case 2:
2140    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2141      return false;
2142    // Allow 2*r as r+r.
2143    break;
2144  }
2145
2146  return true;
2147}
2148
2149// Magic for divide replacement
2150
2151struct ms {
2152  int64_t m;  // magic number
2153  int64_t s;  // shift amount
2154};
2155
2156struct mu {
2157  uint64_t m; // magic number
2158  int64_t a;  // add indicator
2159  int64_t s;  // shift amount
2160};
2161
2162/// magic - calculate the magic numbers required to codegen an integer sdiv as
2163/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2164/// or -1.
2165static ms magic32(int32_t d) {
2166  int32_t p;
2167  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2168  const uint32_t two31 = 0x80000000U;
2169  struct ms mag;
2170
2171  ad = abs(d);
2172  t = two31 + ((uint32_t)d >> 31);
2173  anc = t - 1 - t%ad;   // absolute value of nc
2174  p = 31;               // initialize p
2175  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2176  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2177  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2178  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2179  do {
2180    p = p + 1;
2181    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2182    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2183    if (r1 >= anc) {  // must be unsigned comparison
2184      q1 = q1 + 1;
2185      r1 = r1 - anc;
2186    }
2187    q2 = 2*q2;        // update q2 = 2p/abs(d)
2188    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2189    if (r2 >= ad) {   // must be unsigned comparison
2190      q2 = q2 + 1;
2191      r2 = r2 - ad;
2192    }
2193    delta = ad - r2;
2194  } while (q1 < delta || (q1 == delta && r1 == 0));
2195
2196  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2197  if (d < 0) mag.m = -mag.m; // resulting magic number
2198  mag.s = p - 32;            // resulting shift
2199  return mag;
2200}
2201
2202/// magicu - calculate the magic numbers required to codegen an integer udiv as
2203/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2204static mu magicu32(uint32_t d) {
2205  int32_t p;
2206  uint32_t nc, delta, q1, r1, q2, r2;
2207  struct mu magu;
2208  magu.a = 0;               // initialize "add" indicator
2209  nc = - 1 - (-d)%d;
2210  p = 31;                   // initialize p
2211  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2212  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2213  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2214  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2215  do {
2216    p = p + 1;
2217    if (r1 >= nc - r1 ) {
2218      q1 = 2*q1 + 1;  // update q1
2219      r1 = 2*r1 - nc; // update r1
2220    }
2221    else {
2222      q1 = 2*q1; // update q1
2223      r1 = 2*r1; // update r1
2224    }
2225    if (r2 + 1 >= d - r2) {
2226      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2227      q2 = 2*q2 + 1;     // update q2
2228      r2 = 2*r2 + 1 - d; // update r2
2229    }
2230    else {
2231      if (q2 >= 0x80000000) magu.a = 1;
2232      q2 = 2*q2;     // update q2
2233      r2 = 2*r2 + 1; // update r2
2234    }
2235    delta = d - 1 - r2;
2236  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2237  magu.m = q2 + 1; // resulting magic number
2238  magu.s = p - 32;  // resulting shift
2239  return magu;
2240}
2241
2242/// magic - calculate the magic numbers required to codegen an integer sdiv as
2243/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2244/// or -1.
2245static ms magic64(int64_t d) {
2246  int64_t p;
2247  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2248  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2249  struct ms mag;
2250
2251  ad = d >= 0 ? d : -d;
2252  t = two63 + ((uint64_t)d >> 63);
2253  anc = t - 1 - t%ad;   // absolute value of nc
2254  p = 63;               // initialize p
2255  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2256  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2257  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2258  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2259  do {
2260    p = p + 1;
2261    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2262    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2263    if (r1 >= anc) {  // must be unsigned comparison
2264      q1 = q1 + 1;
2265      r1 = r1 - anc;
2266    }
2267    q2 = 2*q2;        // update q2 = 2p/abs(d)
2268    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2269    if (r2 >= ad) {   // must be unsigned comparison
2270      q2 = q2 + 1;
2271      r2 = r2 - ad;
2272    }
2273    delta = ad - r2;
2274  } while (q1 < delta || (q1 == delta && r1 == 0));
2275
2276  mag.m = q2 + 1;
2277  if (d < 0) mag.m = -mag.m; // resulting magic number
2278  mag.s = p - 64;            // resulting shift
2279  return mag;
2280}
2281
2282/// magicu - calculate the magic numbers required to codegen an integer udiv as
2283/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2284static mu magicu64(uint64_t d)
2285{
2286  int64_t p;
2287  uint64_t nc, delta, q1, r1, q2, r2;
2288  struct mu magu;
2289  magu.a = 0;               // initialize "add" indicator
2290  nc = - 1 - (-d)%d;
2291  p = 63;                   // initialize p
2292  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2293  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2294  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2295  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2296  do {
2297    p = p + 1;
2298    if (r1 >= nc - r1 ) {
2299      q1 = 2*q1 + 1;  // update q1
2300      r1 = 2*r1 - nc; // update r1
2301    }
2302    else {
2303      q1 = 2*q1; // update q1
2304      r1 = 2*r1; // update r1
2305    }
2306    if (r2 + 1 >= d - r2) {
2307      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2308      q2 = 2*q2 + 1;     // update q2
2309      r2 = 2*r2 + 1 - d; // update r2
2310    }
2311    else {
2312      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2313      q2 = 2*q2;     // update q2
2314      r2 = 2*r2 + 1; // update r2
2315    }
2316    delta = d - 1 - r2;
2317  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2318  magu.m = q2 + 1; // resulting magic number
2319  magu.s = p - 64;  // resulting shift
2320  return magu;
2321}
2322
2323/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2324/// return a DAG expression to select that will generate the same value by
2325/// multiplying by a magic number.  See:
2326/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2327SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2328                                  std::vector<SDNode*>* Created) const {
2329  MVT VT = N->getValueType(0);
2330
2331  // Check to see if we can do this.
2332  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2333    return SDValue();       // BuildSDIV only operates on i32 or i64
2334
2335  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2336  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2337
2338  // Multiply the numerator (operand 0) by the magic value
2339  SDValue Q;
2340  if (isOperationLegal(ISD::MULHS, VT))
2341    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2342                    DAG.getConstant(magics.m, VT));
2343  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2344    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2345                              N->getOperand(0),
2346                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2347  else
2348    return SDValue();       // No mulhs or equvialent
2349  // If d > 0 and m < 0, add the numerator
2350  if (d > 0 && magics.m < 0) {
2351    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2352    if (Created)
2353      Created->push_back(Q.getNode());
2354  }
2355  // If d < 0 and m > 0, subtract the numerator.
2356  if (d < 0 && magics.m > 0) {
2357    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2358    if (Created)
2359      Created->push_back(Q.getNode());
2360  }
2361  // Shift right algebraic if shift value is nonzero
2362  if (magics.s > 0) {
2363    Q = DAG.getNode(ISD::SRA, VT, Q,
2364                    DAG.getConstant(magics.s, getShiftAmountTy()));
2365    if (Created)
2366      Created->push_back(Q.getNode());
2367  }
2368  // Extract the sign bit and add it to the quotient
2369  SDValue T =
2370    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2371                                                 getShiftAmountTy()));
2372  if (Created)
2373    Created->push_back(T.getNode());
2374  return DAG.getNode(ISD::ADD, VT, Q, T);
2375}
2376
2377/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2378/// return a DAG expression to select that will generate the same value by
2379/// multiplying by a magic number.  See:
2380/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2381SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2382                                  std::vector<SDNode*>* Created) const {
2383  MVT VT = N->getValueType(0);
2384
2385  // Check to see if we can do this.
2386  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2387    return SDValue();       // BuildUDIV only operates on i32 or i64
2388
2389  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2390  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2391
2392  // Multiply the numerator (operand 0) by the magic value
2393  SDValue Q;
2394  if (isOperationLegal(ISD::MULHU, VT))
2395    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2396                    DAG.getConstant(magics.m, VT));
2397  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2398    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2399                              N->getOperand(0),
2400                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2401  else
2402    return SDValue();       // No mulhu or equvialent
2403  if (Created)
2404    Created->push_back(Q.getNode());
2405
2406  if (magics.a == 0) {
2407    return DAG.getNode(ISD::SRL, VT, Q,
2408                       DAG.getConstant(magics.s, getShiftAmountTy()));
2409  } else {
2410    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2411    if (Created)
2412      Created->push_back(NPQ.getNode());
2413    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2414                      DAG.getConstant(1, getShiftAmountTy()));
2415    if (Created)
2416      Created->push_back(NPQ.getNode());
2417    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2418    if (Created)
2419      Created->push_back(NPQ.getNode());
2420    return DAG.getNode(ISD::SRL, VT, NPQ,
2421                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2422  }
2423}
2424