TargetLowering.cpp revision 672452d5a0dace689d7f9df9837c03afe3a74281
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29namespace llvm {
30TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31  bool isLocal = GV->hasLocalLinkage();
32  bool isDeclaration = GV->isDeclaration();
33  // FIXME: what should we do for protected and internal visibility?
34  // For variables, is internal different from hidden?
35  bool isHidden = GV->hasHiddenVisibility();
36
37  if (reloc == Reloc::PIC_) {
38    if (isLocal || isHidden)
39      return TLSModel::LocalDynamic;
40    else
41      return TLSModel::GeneralDynamic;
42  } else {
43    if (!isDeclaration || isHidden)
44      return TLSModel::LocalExec;
45    else
46      return TLSModel::InitialExec;
47  }
48}
49}
50
51/// InitLibcallNames - Set default libcall names.
52///
53static void InitLibcallNames(const char **Names) {
54  Names[RTLIB::SHL_I16] = "__ashli16";
55  Names[RTLIB::SHL_I32] = "__ashlsi3";
56  Names[RTLIB::SHL_I64] = "__ashldi3";
57  Names[RTLIB::SHL_I128] = "__ashlti3";
58  Names[RTLIB::SRL_I16] = "__lshri16";
59  Names[RTLIB::SRL_I32] = "__lshrsi3";
60  Names[RTLIB::SRL_I64] = "__lshrdi3";
61  Names[RTLIB::SRL_I128] = "__lshrti3";
62  Names[RTLIB::SRA_I16] = "__ashri16";
63  Names[RTLIB::SRA_I32] = "__ashrsi3";
64  Names[RTLIB::SRA_I64] = "__ashrdi3";
65  Names[RTLIB::SRA_I128] = "__ashrti3";
66  Names[RTLIB::MUL_I16] = "__muli16";
67  Names[RTLIB::MUL_I32] = "__mulsi3";
68  Names[RTLIB::MUL_I64] = "__muldi3";
69  Names[RTLIB::MUL_I128] = "__multi3";
70  Names[RTLIB::SDIV_I32] = "__divsi3";
71  Names[RTLIB::SDIV_I64] = "__divdi3";
72  Names[RTLIB::SDIV_I128] = "__divti3";
73  Names[RTLIB::UDIV_I32] = "__udivsi3";
74  Names[RTLIB::UDIV_I64] = "__udivdi3";
75  Names[RTLIB::UDIV_I128] = "__udivti3";
76  Names[RTLIB::SREM_I32] = "__modsi3";
77  Names[RTLIB::SREM_I64] = "__moddi3";
78  Names[RTLIB::SREM_I128] = "__modti3";
79  Names[RTLIB::UREM_I32] = "__umodsi3";
80  Names[RTLIB::UREM_I64] = "__umoddi3";
81  Names[RTLIB::UREM_I128] = "__umodti3";
82  Names[RTLIB::NEG_I32] = "__negsi2";
83  Names[RTLIB::NEG_I64] = "__negdi2";
84  Names[RTLIB::ADD_F32] = "__addsf3";
85  Names[RTLIB::ADD_F64] = "__adddf3";
86  Names[RTLIB::ADD_F80] = "__addxf3";
87  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
88  Names[RTLIB::SUB_F32] = "__subsf3";
89  Names[RTLIB::SUB_F64] = "__subdf3";
90  Names[RTLIB::SUB_F80] = "__subxf3";
91  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
92  Names[RTLIB::MUL_F32] = "__mulsf3";
93  Names[RTLIB::MUL_F64] = "__muldf3";
94  Names[RTLIB::MUL_F80] = "__mulxf3";
95  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
96  Names[RTLIB::DIV_F32] = "__divsf3";
97  Names[RTLIB::DIV_F64] = "__divdf3";
98  Names[RTLIB::DIV_F80] = "__divxf3";
99  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
100  Names[RTLIB::REM_F32] = "fmodf";
101  Names[RTLIB::REM_F64] = "fmod";
102  Names[RTLIB::REM_F80] = "fmodl";
103  Names[RTLIB::REM_PPCF128] = "fmodl";
104  Names[RTLIB::POWI_F32] = "__powisf2";
105  Names[RTLIB::POWI_F64] = "__powidf2";
106  Names[RTLIB::POWI_F80] = "__powixf2";
107  Names[RTLIB::POWI_PPCF128] = "__powitf2";
108  Names[RTLIB::SQRT_F32] = "sqrtf";
109  Names[RTLIB::SQRT_F64] = "sqrt";
110  Names[RTLIB::SQRT_F80] = "sqrtl";
111  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
112  Names[RTLIB::LOG_F32] = "logf";
113  Names[RTLIB::LOG_F64] = "log";
114  Names[RTLIB::LOG_F80] = "logl";
115  Names[RTLIB::LOG_PPCF128] = "logl";
116  Names[RTLIB::LOG2_F32] = "log2f";
117  Names[RTLIB::LOG2_F64] = "log2";
118  Names[RTLIB::LOG2_F80] = "log2l";
119  Names[RTLIB::LOG2_PPCF128] = "log2l";
120  Names[RTLIB::LOG10_F32] = "log10f";
121  Names[RTLIB::LOG10_F64] = "log10";
122  Names[RTLIB::LOG10_F80] = "log10l";
123  Names[RTLIB::LOG10_PPCF128] = "log10l";
124  Names[RTLIB::EXP_F32] = "expf";
125  Names[RTLIB::EXP_F64] = "exp";
126  Names[RTLIB::EXP_F80] = "expl";
127  Names[RTLIB::EXP_PPCF128] = "expl";
128  Names[RTLIB::EXP2_F32] = "exp2f";
129  Names[RTLIB::EXP2_F64] = "exp2";
130  Names[RTLIB::EXP2_F80] = "exp2l";
131  Names[RTLIB::EXP2_PPCF128] = "exp2l";
132  Names[RTLIB::SIN_F32] = "sinf";
133  Names[RTLIB::SIN_F64] = "sin";
134  Names[RTLIB::SIN_F80] = "sinl";
135  Names[RTLIB::SIN_PPCF128] = "sinl";
136  Names[RTLIB::COS_F32] = "cosf";
137  Names[RTLIB::COS_F64] = "cos";
138  Names[RTLIB::COS_F80] = "cosl";
139  Names[RTLIB::COS_PPCF128] = "cosl";
140  Names[RTLIB::POW_F32] = "powf";
141  Names[RTLIB::POW_F64] = "pow";
142  Names[RTLIB::POW_F80] = "powl";
143  Names[RTLIB::POW_PPCF128] = "powl";
144  Names[RTLIB::CEIL_F32] = "ceilf";
145  Names[RTLIB::CEIL_F64] = "ceil";
146  Names[RTLIB::CEIL_F80] = "ceill";
147  Names[RTLIB::CEIL_PPCF128] = "ceill";
148  Names[RTLIB::TRUNC_F32] = "truncf";
149  Names[RTLIB::TRUNC_F64] = "trunc";
150  Names[RTLIB::TRUNC_F80] = "truncl";
151  Names[RTLIB::TRUNC_PPCF128] = "truncl";
152  Names[RTLIB::RINT_F32] = "rintf";
153  Names[RTLIB::RINT_F64] = "rint";
154  Names[RTLIB::RINT_F80] = "rintl";
155  Names[RTLIB::RINT_PPCF128] = "rintl";
156  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
157  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
158  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
159  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
160  Names[RTLIB::FLOOR_F32] = "floorf";
161  Names[RTLIB::FLOOR_F64] = "floor";
162  Names[RTLIB::FLOOR_F80] = "floorl";
163  Names[RTLIB::FLOOR_PPCF128] = "floorl";
164  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
165  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
166  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
167  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
168  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
169  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
170  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
171  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
172  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
173  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
174  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
175  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
176  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
177  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
178  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
179  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
180  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
181  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
182  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
183  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
184  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
185  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
186  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
187  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
188  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
189  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
190  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
191  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
192  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
193  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
194  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
195  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
196  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
197  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
198  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
199  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
200  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
201  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
202  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
203  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
204  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
205  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
206  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
207  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
208  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
209  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
210  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
211  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
212  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
213  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
214  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
215  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
216  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
217  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
218  Names[RTLIB::OEQ_F32] = "__eqsf2";
219  Names[RTLIB::OEQ_F64] = "__eqdf2";
220  Names[RTLIB::UNE_F32] = "__nesf2";
221  Names[RTLIB::UNE_F64] = "__nedf2";
222  Names[RTLIB::OGE_F32] = "__gesf2";
223  Names[RTLIB::OGE_F64] = "__gedf2";
224  Names[RTLIB::OLT_F32] = "__ltsf2";
225  Names[RTLIB::OLT_F64] = "__ltdf2";
226  Names[RTLIB::OLE_F32] = "__lesf2";
227  Names[RTLIB::OLE_F64] = "__ledf2";
228  Names[RTLIB::OGT_F32] = "__gtsf2";
229  Names[RTLIB::OGT_F64] = "__gtdf2";
230  Names[RTLIB::UO_F32] = "__unordsf2";
231  Names[RTLIB::UO_F64] = "__unorddf2";
232  Names[RTLIB::O_F32] = "__unordsf2";
233  Names[RTLIB::O_F64] = "__unorddf2";
234}
235
236/// getFPEXT - Return the FPEXT_*_* value for the given types, or
237/// UNKNOWN_LIBCALL if there is none.
238RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
239  if (OpVT == MVT::f32) {
240    if (RetVT == MVT::f64)
241      return FPEXT_F32_F64;
242  }
243  return UNKNOWN_LIBCALL;
244}
245
246/// getFPROUND - Return the FPROUND_*_* value for the given types, or
247/// UNKNOWN_LIBCALL if there is none.
248RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
249  if (RetVT == MVT::f32) {
250    if (OpVT == MVT::f64)
251      return FPROUND_F64_F32;
252    if (OpVT == MVT::f80)
253      return FPROUND_F80_F32;
254    if (OpVT == MVT::ppcf128)
255      return FPROUND_PPCF128_F32;
256  } else if (RetVT == MVT::f64) {
257    if (OpVT == MVT::f80)
258      return FPROUND_F80_F64;
259    if (OpVT == MVT::ppcf128)
260      return FPROUND_PPCF128_F64;
261  }
262  return UNKNOWN_LIBCALL;
263}
264
265/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
266/// UNKNOWN_LIBCALL if there is none.
267RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
268  if (OpVT == MVT::f32) {
269    if (RetVT == MVT::i32)
270      return FPTOSINT_F32_I32;
271    if (RetVT == MVT::i64)
272      return FPTOSINT_F32_I64;
273    if (RetVT == MVT::i128)
274      return FPTOSINT_F32_I128;
275  } else if (OpVT == MVT::f64) {
276    if (RetVT == MVT::i32)
277      return FPTOSINT_F64_I32;
278    if (RetVT == MVT::i64)
279      return FPTOSINT_F64_I64;
280    if (RetVT == MVT::i128)
281      return FPTOSINT_F64_I128;
282  } else if (OpVT == MVT::f80) {
283    if (RetVT == MVT::i32)
284      return FPTOSINT_F80_I32;
285    if (RetVT == MVT::i64)
286      return FPTOSINT_F80_I64;
287    if (RetVT == MVT::i128)
288      return FPTOSINT_F80_I128;
289  } else if (OpVT == MVT::ppcf128) {
290    if (RetVT == MVT::i32)
291      return FPTOSINT_PPCF128_I32;
292    if (RetVT == MVT::i64)
293      return FPTOSINT_PPCF128_I64;
294    if (RetVT == MVT::i128)
295      return FPTOSINT_PPCF128_I128;
296  }
297  return UNKNOWN_LIBCALL;
298}
299
300/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
301/// UNKNOWN_LIBCALL if there is none.
302RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
303  if (OpVT == MVT::f32) {
304    if (RetVT == MVT::i32)
305      return FPTOUINT_F32_I32;
306    if (RetVT == MVT::i64)
307      return FPTOUINT_F32_I64;
308    if (RetVT == MVT::i128)
309      return FPTOUINT_F32_I128;
310  } else if (OpVT == MVT::f64) {
311    if (RetVT == MVT::i32)
312      return FPTOUINT_F64_I32;
313    if (RetVT == MVT::i64)
314      return FPTOUINT_F64_I64;
315    if (RetVT == MVT::i128)
316      return FPTOUINT_F64_I128;
317  } else if (OpVT == MVT::f80) {
318    if (RetVT == MVT::i32)
319      return FPTOUINT_F80_I32;
320    if (RetVT == MVT::i64)
321      return FPTOUINT_F80_I64;
322    if (RetVT == MVT::i128)
323      return FPTOUINT_F80_I128;
324  } else if (OpVT == MVT::ppcf128) {
325    if (RetVT == MVT::i32)
326      return FPTOUINT_PPCF128_I32;
327    if (RetVT == MVT::i64)
328      return FPTOUINT_PPCF128_I64;
329    if (RetVT == MVT::i128)
330      return FPTOUINT_PPCF128_I128;
331  }
332  return UNKNOWN_LIBCALL;
333}
334
335/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
336/// UNKNOWN_LIBCALL if there is none.
337RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
338  if (OpVT == MVT::i32) {
339    if (RetVT == MVT::f32)
340      return SINTTOFP_I32_F32;
341    else if (RetVT == MVT::f64)
342      return SINTTOFP_I32_F64;
343    else if (RetVT == MVT::f80)
344      return SINTTOFP_I32_F80;
345    else if (RetVT == MVT::ppcf128)
346      return SINTTOFP_I32_PPCF128;
347  } else if (OpVT == MVT::i64) {
348    if (RetVT == MVT::f32)
349      return SINTTOFP_I64_F32;
350    else if (RetVT == MVT::f64)
351      return SINTTOFP_I64_F64;
352    else if (RetVT == MVT::f80)
353      return SINTTOFP_I64_F80;
354    else if (RetVT == MVT::ppcf128)
355      return SINTTOFP_I64_PPCF128;
356  } else if (OpVT == MVT::i128) {
357    if (RetVT == MVT::f32)
358      return SINTTOFP_I128_F32;
359    else if (RetVT == MVT::f64)
360      return SINTTOFP_I128_F64;
361    else if (RetVT == MVT::f80)
362      return SINTTOFP_I128_F80;
363    else if (RetVT == MVT::ppcf128)
364      return SINTTOFP_I128_PPCF128;
365  }
366  return UNKNOWN_LIBCALL;
367}
368
369/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
370/// UNKNOWN_LIBCALL if there is none.
371RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
372  if (OpVT == MVT::i32) {
373    if (RetVT == MVT::f32)
374      return UINTTOFP_I32_F32;
375    else if (RetVT == MVT::f64)
376      return UINTTOFP_I32_F64;
377    else if (RetVT == MVT::f80)
378      return UINTTOFP_I32_F80;
379    else if (RetVT == MVT::ppcf128)
380      return UINTTOFP_I32_PPCF128;
381  } else if (OpVT == MVT::i64) {
382    if (RetVT == MVT::f32)
383      return UINTTOFP_I64_F32;
384    else if (RetVT == MVT::f64)
385      return UINTTOFP_I64_F64;
386    else if (RetVT == MVT::f80)
387      return UINTTOFP_I64_F80;
388    else if (RetVT == MVT::ppcf128)
389      return UINTTOFP_I64_PPCF128;
390  } else if (OpVT == MVT::i128) {
391    if (RetVT == MVT::f32)
392      return UINTTOFP_I128_F32;
393    else if (RetVT == MVT::f64)
394      return UINTTOFP_I128_F64;
395    else if (RetVT == MVT::f80)
396      return UINTTOFP_I128_F80;
397    else if (RetVT == MVT::ppcf128)
398      return UINTTOFP_I128_PPCF128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// InitCmpLibcallCCs - Set default comparison libcall CC.
404///
405static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
406  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
407  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
408  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
409  CCs[RTLIB::UNE_F32] = ISD::SETNE;
410  CCs[RTLIB::UNE_F64] = ISD::SETNE;
411  CCs[RTLIB::OGE_F32] = ISD::SETGE;
412  CCs[RTLIB::OGE_F64] = ISD::SETGE;
413  CCs[RTLIB::OLT_F32] = ISD::SETLT;
414  CCs[RTLIB::OLT_F64] = ISD::SETLT;
415  CCs[RTLIB::OLE_F32] = ISD::SETLE;
416  CCs[RTLIB::OLE_F64] = ISD::SETLE;
417  CCs[RTLIB::OGT_F32] = ISD::SETGT;
418  CCs[RTLIB::OGT_F64] = ISD::SETGT;
419  CCs[RTLIB::UO_F32] = ISD::SETNE;
420  CCs[RTLIB::UO_F64] = ISD::SETNE;
421  CCs[RTLIB::O_F32] = ISD::SETEQ;
422  CCs[RTLIB::O_F64] = ISD::SETEQ;
423}
424
425TargetLowering::TargetLowering(TargetMachine &tm)
426  : TM(tm), TD(TM.getTargetData()) {
427  // All operations default to being supported.
428  memset(OpActions, 0, sizeof(OpActions));
429  memset(LoadExtActions, 0, sizeof(LoadExtActions));
430  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
431  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
432  memset(ConvertActions, 0, sizeof(ConvertActions));
433  memset(CondCodeActions, 0, sizeof(CondCodeActions));
434
435  // Set default actions for various operations.
436  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
437    // Default all indexed load / store to expand.
438    for (unsigned IM = (unsigned)ISD::PRE_INC;
439         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
440      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
441      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
442    }
443
444    // These operations default to expand.
445    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
446  }
447
448  // Most targets ignore the @llvm.prefetch intrinsic.
449  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
450
451  // ConstantFP nodes default to expand.  Targets can either change this to
452  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
453  // to optimize expansions for certain constants.
454  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
455  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
456  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
457
458  // These library functions default to expand.
459  setOperationAction(ISD::FLOG , MVT::f64, Expand);
460  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
461  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
462  setOperationAction(ISD::FEXP , MVT::f64, Expand);
463  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
464  setOperationAction(ISD::FLOG , MVT::f32, Expand);
465  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
466  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
467  setOperationAction(ISD::FEXP , MVT::f32, Expand);
468  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
469
470  // Default ISD::TRAP to expand (which turns it into abort).
471  setOperationAction(ISD::TRAP, MVT::Other, Expand);
472
473  IsLittleEndian = TD->isLittleEndian();
474  UsesGlobalOffsetTable = false;
475  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
476  ShiftAmtHandling = Undefined;
477  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
478  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
479  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
480  allowUnalignedMemoryAccesses = false;
481  UseUnderscoreSetJmp = false;
482  UseUnderscoreLongJmp = false;
483  SelectIsExpensive = false;
484  IntDivIsCheap = false;
485  Pow2DivIsCheap = false;
486  StackPointerRegisterToSaveRestore = 0;
487  ExceptionPointerRegister = 0;
488  ExceptionSelectorRegister = 0;
489  BooleanContents = UndefinedBooleanContent;
490  SchedPreferenceInfo = SchedulingForLatency;
491  JumpBufSize = 0;
492  JumpBufAlignment = 0;
493  IfCvtBlockSizeLimit = 2;
494  IfCvtDupBlockSizeLimit = 0;
495  PrefLoopAlignment = 0;
496
497  InitLibcallNames(LibcallRoutineNames);
498  InitCmpLibcallCCs(CmpLibcallCCs);
499
500  // Tell Legalize whether the assembler supports DEBUG_LOC.
501  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
502  if (!TASM || !TASM->hasDotLocAndDotFile())
503    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
504}
505
506TargetLowering::~TargetLowering() {}
507
508/// computeRegisterProperties - Once all of the register classes are added,
509/// this allows us to compute derived properties we expose.
510void TargetLowering::computeRegisterProperties() {
511  assert(MVT::LAST_VALUETYPE <= 32 &&
512         "Too many value types for ValueTypeActions to hold!");
513
514  // Everything defaults to needing one register.
515  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
516    NumRegistersForVT[i] = 1;
517    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
518  }
519  // ...except isVoid, which doesn't need any registers.
520  NumRegistersForVT[MVT::isVoid] = 0;
521
522  // Find the largest integer register class.
523  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
524  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
525    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
526
527  // Every integer value type larger than this largest register takes twice as
528  // many registers to represent as the previous ValueType.
529  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
530    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
531    if (!EVT.isInteger())
532      break;
533    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
534    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
535    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
536    ValueTypeActions.setTypeAction(EVT, Expand);
537  }
538
539  // Inspect all of the ValueType's smaller than the largest integer
540  // register to see which ones need promotion.
541  unsigned LegalIntReg = LargestIntReg;
542  for (unsigned IntReg = LargestIntReg - 1;
543       IntReg >= (unsigned)MVT::i1; --IntReg) {
544    MVT IVT = (MVT::SimpleValueType)IntReg;
545    if (isTypeLegal(IVT)) {
546      LegalIntReg = IntReg;
547    } else {
548      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
549        (MVT::SimpleValueType)LegalIntReg;
550      ValueTypeActions.setTypeAction(IVT, Promote);
551    }
552  }
553
554  // ppcf128 type is really two f64's.
555  if (!isTypeLegal(MVT::ppcf128)) {
556    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
557    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
558    TransformToType[MVT::ppcf128] = MVT::f64;
559    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
560  }
561
562  // Decide how to handle f64. If the target does not have native f64 support,
563  // expand it to i64 and we will be generating soft float library calls.
564  if (!isTypeLegal(MVT::f64)) {
565    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
566    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
567    TransformToType[MVT::f64] = MVT::i64;
568    ValueTypeActions.setTypeAction(MVT::f64, Expand);
569  }
570
571  // Decide how to handle f32. If the target does not have native support for
572  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
573  if (!isTypeLegal(MVT::f32)) {
574    if (isTypeLegal(MVT::f64)) {
575      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
576      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
577      TransformToType[MVT::f32] = MVT::f64;
578      ValueTypeActions.setTypeAction(MVT::f32, Promote);
579    } else {
580      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
581      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
582      TransformToType[MVT::f32] = MVT::i32;
583      ValueTypeActions.setTypeAction(MVT::f32, Expand);
584    }
585  }
586
587  // Loop over all of the vector value types to see which need transformations.
588  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
589       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
590    MVT VT = (MVT::SimpleValueType)i;
591    if (!isTypeLegal(VT)) {
592      MVT IntermediateVT, RegisterVT;
593      unsigned NumIntermediates;
594      NumRegistersForVT[i] =
595        getVectorTypeBreakdown(VT,
596                               IntermediateVT, NumIntermediates,
597                               RegisterVT);
598      RegisterTypeForVT[i] = RegisterVT;
599
600      // Determine if there is a legal wider type.
601      bool IsLegalWiderType = false;
602      MVT EltVT = VT.getVectorElementType();
603      unsigned NElts = VT.getVectorNumElements();
604      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
605        MVT SVT = (MVT::SimpleValueType)nVT;
606        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
607            SVT.getVectorNumElements() > NElts) {
608          TransformToType[i] = SVT;
609          ValueTypeActions.setTypeAction(VT, Promote);
610          IsLegalWiderType = true;
611          break;
612        }
613      }
614      if (!IsLegalWiderType) {
615        MVT NVT = VT.getPow2VectorType();
616        if (NVT == VT) {
617          // Type is already a power of 2.  The default action is to split.
618          TransformToType[i] = MVT::Other;
619          ValueTypeActions.setTypeAction(VT, Expand);
620        } else {
621          TransformToType[i] = NVT;
622          ValueTypeActions.setTypeAction(VT, Promote);
623        }
624      }
625    }
626  }
627}
628
629const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
630  return NULL;
631}
632
633
634MVT TargetLowering::getSetCCResultType(MVT VT) const {
635  return getValueType(TD->getIntPtrType());
636}
637
638
639/// getVectorTypeBreakdown - Vector types are broken down into some number of
640/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
641/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
642/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
643///
644/// This method returns the number of registers needed, and the VT for each
645/// register.  It also returns the VT and quantity of the intermediate values
646/// before they are promoted/expanded.
647///
648unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
649                                                MVT &IntermediateVT,
650                                                unsigned &NumIntermediates,
651                                      MVT &RegisterVT) const {
652  // Figure out the right, legal destination reg to copy into.
653  unsigned NumElts = VT.getVectorNumElements();
654  MVT EltTy = VT.getVectorElementType();
655
656  unsigned NumVectorRegs = 1;
657
658  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
659  // could break down into LHS/RHS like LegalizeDAG does.
660  if (!isPowerOf2_32(NumElts)) {
661    NumVectorRegs = NumElts;
662    NumElts = 1;
663  }
664
665  // Divide the input until we get to a supported size.  This will always
666  // end with a scalar if the target doesn't support vectors.
667  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
668    NumElts >>= 1;
669    NumVectorRegs <<= 1;
670  }
671
672  NumIntermediates = NumVectorRegs;
673
674  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
675  if (!isTypeLegal(NewVT))
676    NewVT = EltTy;
677  IntermediateVT = NewVT;
678
679  MVT DestVT = getRegisterType(NewVT);
680  RegisterVT = DestVT;
681  if (DestVT.bitsLT(NewVT)) {
682    // Value is expanded, e.g. i64 -> i16.
683    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
684  } else {
685    // Otherwise, promotion or legal types use the same number of registers as
686    // the vector decimated to the appropriate level.
687    return NumVectorRegs;
688  }
689
690  return 1;
691}
692
693/// getWidenVectorType: given a vector type, returns the type to widen to
694/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
695/// If there is no vector type that we want to widen to, returns MVT::Other
696/// When and where to widen is target dependent based on the cost of
697/// scalarizing vs using the wider vector type.
698MVT TargetLowering::getWidenVectorType(MVT VT) const {
699  assert(VT.isVector());
700  if (isTypeLegal(VT))
701    return VT;
702
703  // Default is not to widen until moved to LegalizeTypes
704  return MVT::Other;
705}
706
707/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
708/// function arguments in the caller parameter area.  This is the actual
709/// alignment, not its logarithm.
710unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
711  return TD->getCallFrameTypeAlignment(Ty);
712}
713
714SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
715                                                 SelectionDAG &DAG) const {
716  if (usesGlobalOffsetTable())
717    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
718  return Table;
719}
720
721bool
722TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
723  // Assume that everything is safe in static mode.
724  if (getTargetMachine().getRelocationModel() == Reloc::Static)
725    return true;
726
727  // In dynamic-no-pic mode, assume that known defined values are safe.
728  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
729      GA &&
730      !GA->getGlobal()->isDeclaration() &&
731      !GA->getGlobal()->isWeakForLinker())
732    return true;
733
734  // Otherwise assume nothing is safe.
735  return false;
736}
737
738//===----------------------------------------------------------------------===//
739//  Optimization Methods
740//===----------------------------------------------------------------------===//
741
742/// ShrinkDemandedConstant - Check to see if the specified operand of the
743/// specified instruction is a constant integer.  If so, check to see if there
744/// are any bits set in the constant that are not demanded.  If so, shrink the
745/// constant and return true.
746bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
747                                                        const APInt &Demanded) {
748  DebugLoc dl = Op.getDebugLoc();
749
750  // FIXME: ISD::SELECT, ISD::SELECT_CC
751  switch (Op.getOpcode()) {
752  default: break;
753  case ISD::XOR:
754  case ISD::AND:
755  case ISD::OR: {
756    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
757    if (!C) return false;
758
759    if (Op.getOpcode() == ISD::XOR &&
760        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
761      return false;
762
763    // if we can expand it to have all bits set, do it
764    if (C->getAPIntValue().intersects(~Demanded)) {
765      MVT VT = Op.getValueType();
766      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
767                                DAG.getConstant(Demanded &
768                                                C->getAPIntValue(),
769                                                VT));
770      return CombineTo(Op, New);
771    }
772
773    break;
774  }
775  }
776
777  return false;
778}
779
780/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
781/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
782/// cast, but it could be generalized for targets with other types of
783/// implicit widening casts.
784bool
785TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
786                                                    unsigned BitWidth,
787                                                    const APInt &Demanded,
788                                                    DebugLoc dl) {
789  assert(Op.getNumOperands() == 2 &&
790         "ShrinkDemandedOp only supports binary operators!");
791  assert(Op.getNode()->getNumValues() == 1 &&
792         "ShrinkDemandedOp only supports nodes with one result!");
793
794  // Don't do this if the node has another user, which may require the
795  // full value.
796  if (!Op.getNode()->hasOneUse())
797    return false;
798
799  // Search for the smallest integer type with free casts to and from
800  // Op's type. For expedience, just check power-of-2 integer types.
801  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
802  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
803  if (!isPowerOf2_32(SmallVTBits))
804    SmallVTBits = NextPowerOf2(SmallVTBits);
805  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
806    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
807    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
808        TLI.isZExtFree(SmallVT, Op.getValueType())) {
809      // We found a type with free casts.
810      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
811                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
812                                          Op.getNode()->getOperand(0)),
813                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
814                                          Op.getNode()->getOperand(1)));
815      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
816      return CombineTo(Op, Z);
817    }
818  }
819  return false;
820}
821
822/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
823/// DemandedMask bits of the result of Op are ever used downstream.  If we can
824/// use this information to simplify Op, create a new simplified DAG node and
825/// return true, returning the original and new nodes in Old and New. Otherwise,
826/// analyze the expression and return a mask of KnownOne and KnownZero bits for
827/// the expression (used to simplify the caller).  The KnownZero/One bits may
828/// only be accurate for those bits in the DemandedMask.
829bool TargetLowering::SimplifyDemandedBits(SDValue Op,
830                                          const APInt &DemandedMask,
831                                          APInt &KnownZero,
832                                          APInt &KnownOne,
833                                          TargetLoweringOpt &TLO,
834                                          unsigned Depth) const {
835  unsigned BitWidth = DemandedMask.getBitWidth();
836  assert(Op.getValueSizeInBits() == BitWidth &&
837         "Mask size mismatches value type size!");
838  APInt NewMask = DemandedMask;
839  DebugLoc dl = Op.getDebugLoc();
840
841  // Don't know anything.
842  KnownZero = KnownOne = APInt(BitWidth, 0);
843
844  // Other users may use these bits.
845  if (!Op.getNode()->hasOneUse()) {
846    if (Depth != 0) {
847      // If not at the root, Just compute the KnownZero/KnownOne bits to
848      // simplify things downstream.
849      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
850      return false;
851    }
852    // If this is the root being simplified, allow it to have multiple uses,
853    // just set the NewMask to all bits.
854    NewMask = APInt::getAllOnesValue(BitWidth);
855  } else if (DemandedMask == 0) {
856    // Not demanding any bits from Op.
857    if (Op.getOpcode() != ISD::UNDEF)
858      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
859    return false;
860  } else if (Depth == 6) {        // Limit search depth.
861    return false;
862  }
863
864  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
865  switch (Op.getOpcode()) {
866  case ISD::Constant:
867    // We know all of the bits for a constant!
868    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
869    KnownZero = ~KnownOne & NewMask;
870    return false;   // Don't fall through, will infinitely loop.
871  case ISD::AND:
872    // If the RHS is a constant, check to see if the LHS would be zero without
873    // using the bits from the RHS.  Below, we use knowledge about the RHS to
874    // simplify the LHS, here we're using information from the LHS to simplify
875    // the RHS.
876    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
877      APInt LHSZero, LHSOne;
878      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
879                                LHSZero, LHSOne, Depth+1);
880      // If the LHS already has zeros where RHSC does, this and is dead.
881      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
882        return TLO.CombineTo(Op, Op.getOperand(0));
883      // If any of the set bits in the RHS are known zero on the LHS, shrink
884      // the constant.
885      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
886        return true;
887    }
888
889    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
890                             KnownOne, TLO, Depth+1))
891      return true;
892    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
893    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
894                             KnownZero2, KnownOne2, TLO, Depth+1))
895      return true;
896    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
897
898    // If all of the demanded bits are known one on one side, return the other.
899    // These bits cannot contribute to the result of the 'and'.
900    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
901      return TLO.CombineTo(Op, Op.getOperand(0));
902    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
903      return TLO.CombineTo(Op, Op.getOperand(1));
904    // If all of the demanded bits in the inputs are known zeros, return zero.
905    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
906      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
907    // If the RHS is a constant, see if we can simplify it.
908    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
909      return true;
910    // If the operation can be done in a smaller type, do so.
911    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
912      return true;
913
914    // Output known-1 bits are only known if set in both the LHS & RHS.
915    KnownOne &= KnownOne2;
916    // Output known-0 are known to be clear if zero in either the LHS | RHS.
917    KnownZero |= KnownZero2;
918    break;
919  case ISD::OR:
920    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
921                             KnownOne, TLO, Depth+1))
922      return true;
923    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
924    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
925                             KnownZero2, KnownOne2, TLO, Depth+1))
926      return true;
927    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
928
929    // If all of the demanded bits are known zero on one side, return the other.
930    // These bits cannot contribute to the result of the 'or'.
931    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
932      return TLO.CombineTo(Op, Op.getOperand(0));
933    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
934      return TLO.CombineTo(Op, Op.getOperand(1));
935    // If all of the potentially set bits on one side are known to be set on
936    // the other side, just use the 'other' side.
937    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
938      return TLO.CombineTo(Op, Op.getOperand(0));
939    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
940      return TLO.CombineTo(Op, Op.getOperand(1));
941    // If the RHS is a constant, see if we can simplify it.
942    if (TLO.ShrinkDemandedConstant(Op, NewMask))
943      return true;
944    // If the operation can be done in a smaller type, do so.
945    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
946      return true;
947
948    // Output known-0 bits are only known if clear in both the LHS & RHS.
949    KnownZero &= KnownZero2;
950    // Output known-1 are known to be set if set in either the LHS | RHS.
951    KnownOne |= KnownOne2;
952    break;
953  case ISD::XOR:
954    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
955                             KnownOne, TLO, Depth+1))
956      return true;
957    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
958    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
959                             KnownOne2, TLO, Depth+1))
960      return true;
961    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
962
963    // If all of the demanded bits are known zero on one side, return the other.
964    // These bits cannot contribute to the result of the 'xor'.
965    if ((KnownZero & NewMask) == NewMask)
966      return TLO.CombineTo(Op, Op.getOperand(0));
967    if ((KnownZero2 & NewMask) == NewMask)
968      return TLO.CombineTo(Op, Op.getOperand(1));
969    // If the operation can be done in a smaller type, do so.
970    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
971      return true;
972
973    // If all of the unknown bits are known to be zero on one side or the other
974    // (but not both) turn this into an *inclusive* or.
975    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
976    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
977      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
978                                               Op.getOperand(0),
979                                               Op.getOperand(1)));
980
981    // Output known-0 bits are known if clear or set in both the LHS & RHS.
982    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
983    // Output known-1 are known to be set if set in only one of the LHS, RHS.
984    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
985
986    // If all of the demanded bits on one side are known, and all of the set
987    // bits on that side are also known to be set on the other side, turn this
988    // into an AND, as we know the bits will be cleared.
989    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
990    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
991      if ((KnownOne & KnownOne2) == KnownOne) {
992        MVT VT = Op.getValueType();
993        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
994        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
995                                                 Op.getOperand(0), ANDC));
996      }
997    }
998
999    // If the RHS is a constant, see if we can simplify it.
1000    // for XOR, we prefer to force bits to 1 if they will make a -1.
1001    // if we can't force bits, try to shrink constant
1002    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1003      APInt Expanded = C->getAPIntValue() | (~NewMask);
1004      // if we can expand it to have all bits set, do it
1005      if (Expanded.isAllOnesValue()) {
1006        if (Expanded != C->getAPIntValue()) {
1007          MVT VT = Op.getValueType();
1008          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1009                                          TLO.DAG.getConstant(Expanded, VT));
1010          return TLO.CombineTo(Op, New);
1011        }
1012        // if it already has all the bits set, nothing to change
1013        // but don't shrink either!
1014      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1015        return true;
1016      }
1017    }
1018
1019    KnownZero = KnownZeroOut;
1020    KnownOne  = KnownOneOut;
1021    break;
1022  case ISD::SELECT:
1023    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1024                             KnownOne, TLO, Depth+1))
1025      return true;
1026    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1027                             KnownOne2, TLO, Depth+1))
1028      return true;
1029    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1030    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1031
1032    // If the operands are constants, see if we can simplify them.
1033    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1034      return true;
1035
1036    // Only known if known in both the LHS and RHS.
1037    KnownOne &= KnownOne2;
1038    KnownZero &= KnownZero2;
1039    break;
1040  case ISD::SELECT_CC:
1041    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1042                             KnownOne, TLO, Depth+1))
1043      return true;
1044    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1045                             KnownOne2, TLO, Depth+1))
1046      return true;
1047    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1048    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1049
1050    // If the operands are constants, see if we can simplify them.
1051    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1052      return true;
1053
1054    // Only known if known in both the LHS and RHS.
1055    KnownOne &= KnownOne2;
1056    KnownZero &= KnownZero2;
1057    break;
1058  case ISD::SHL:
1059    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1060      unsigned ShAmt = SA->getZExtValue();
1061      SDValue InOp = Op.getOperand(0);
1062
1063      // If the shift count is an invalid immediate, don't do anything.
1064      if (ShAmt >= BitWidth)
1065        break;
1066
1067      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1068      // single shift.  We can do this if the bottom bits (which are shifted
1069      // out) are never demanded.
1070      if (InOp.getOpcode() == ISD::SRL &&
1071          isa<ConstantSDNode>(InOp.getOperand(1))) {
1072        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1073          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1074          unsigned Opc = ISD::SHL;
1075          int Diff = ShAmt-C1;
1076          if (Diff < 0) {
1077            Diff = -Diff;
1078            Opc = ISD::SRL;
1079          }
1080
1081          SDValue NewSA =
1082            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1083          MVT VT = Op.getValueType();
1084          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1085                                                   InOp.getOperand(0), NewSA));
1086        }
1087      }
1088
1089      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1090                               KnownZero, KnownOne, TLO, Depth+1))
1091        return true;
1092      KnownZero <<= SA->getZExtValue();
1093      KnownOne  <<= SA->getZExtValue();
1094      // low bits known zero.
1095      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1096    }
1097    break;
1098  case ISD::SRL:
1099    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1100      MVT VT = Op.getValueType();
1101      unsigned ShAmt = SA->getZExtValue();
1102      unsigned VTSize = VT.getSizeInBits();
1103      SDValue InOp = Op.getOperand(0);
1104
1105      // If the shift count is an invalid immediate, don't do anything.
1106      if (ShAmt >= BitWidth)
1107        break;
1108
1109      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1110      // single shift.  We can do this if the top bits (which are shifted out)
1111      // are never demanded.
1112      if (InOp.getOpcode() == ISD::SHL &&
1113          isa<ConstantSDNode>(InOp.getOperand(1))) {
1114        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1115          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1116          unsigned Opc = ISD::SRL;
1117          int Diff = ShAmt-C1;
1118          if (Diff < 0) {
1119            Diff = -Diff;
1120            Opc = ISD::SHL;
1121          }
1122
1123          SDValue NewSA =
1124            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1125          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1126                                                   InOp.getOperand(0), NewSA));
1127        }
1128      }
1129
1130      // Compute the new bits that are at the top now.
1131      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1132                               KnownZero, KnownOne, TLO, Depth+1))
1133        return true;
1134      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1135      KnownZero = KnownZero.lshr(ShAmt);
1136      KnownOne  = KnownOne.lshr(ShAmt);
1137
1138      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1139      KnownZero |= HighBits;  // High bits known zero.
1140    }
1141    break;
1142  case ISD::SRA:
1143    // If this is an arithmetic shift right and only the low-bit is set, we can
1144    // always convert this into a logical shr, even if the shift amount is
1145    // variable.  The low bit of the shift cannot be an input sign bit unless
1146    // the shift amount is >= the size of the datatype, which is undefined.
1147    if (DemandedMask == 1)
1148      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1149                                               Op.getOperand(0), Op.getOperand(1)));
1150
1151    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1152      MVT VT = Op.getValueType();
1153      unsigned ShAmt = SA->getZExtValue();
1154
1155      // If the shift count is an invalid immediate, don't do anything.
1156      if (ShAmt >= BitWidth)
1157        break;
1158
1159      APInt InDemandedMask = (NewMask << ShAmt);
1160
1161      // If any of the demanded bits are produced by the sign extension, we also
1162      // demand the input sign bit.
1163      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1164      if (HighBits.intersects(NewMask))
1165        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1166
1167      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1168                               KnownZero, KnownOne, TLO, Depth+1))
1169        return true;
1170      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171      KnownZero = KnownZero.lshr(ShAmt);
1172      KnownOne  = KnownOne.lshr(ShAmt);
1173
1174      // Handle the sign bit, adjusted to where it is now in the mask.
1175      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1176
1177      // If the input sign bit is known to be zero, or if none of the top bits
1178      // are demanded, turn this into an unsigned shift right.
1179      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1180        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1181                                                 Op.getOperand(0),
1182                                                 Op.getOperand(1)));
1183      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1184        KnownOne |= HighBits;
1185      }
1186    }
1187    break;
1188  case ISD::SIGN_EXTEND_INREG: {
1189    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1190
1191    // Sign extension.  Compute the demanded bits in the result that are not
1192    // present in the input.
1193    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1194                                          BitWidth - EVT.getSizeInBits()) &
1195                    NewMask;
1196
1197    // If none of the extended bits are demanded, eliminate the sextinreg.
1198    if (NewBits == 0)
1199      return TLO.CombineTo(Op, Op.getOperand(0));
1200
1201    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1202    InSignBit.zext(BitWidth);
1203    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1204                                                   EVT.getSizeInBits()) &
1205                              NewMask;
1206
1207    // Since the sign extended bits are demanded, we know that the sign
1208    // bit is demanded.
1209    InputDemandedBits |= InSignBit;
1210
1211    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1212                             KnownZero, KnownOne, TLO, Depth+1))
1213      return true;
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215
1216    // If the sign bit of the input is known set or clear, then we know the
1217    // top bits of the result.
1218
1219    // If the input sign bit is known zero, convert this into a zero extension.
1220    if (KnownZero.intersects(InSignBit))
1221      return TLO.CombineTo(Op,
1222                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1223
1224    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1225      KnownOne |= NewBits;
1226      KnownZero &= ~NewBits;
1227    } else {                       // Input sign bit unknown
1228      KnownZero &= ~NewBits;
1229      KnownOne &= ~NewBits;
1230    }
1231    break;
1232  }
1233  case ISD::ZERO_EXTEND: {
1234    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1235    APInt InMask = NewMask;
1236    InMask.trunc(OperandBitWidth);
1237
1238    // If none of the top bits are demanded, convert this into an any_extend.
1239    APInt NewBits =
1240      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1241    if (!NewBits.intersects(NewMask))
1242      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1243                                               Op.getValueType(),
1244                                               Op.getOperand(0)));
1245
1246    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1247                             KnownZero, KnownOne, TLO, Depth+1))
1248      return true;
1249    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1250    KnownZero.zext(BitWidth);
1251    KnownOne.zext(BitWidth);
1252    KnownZero |= NewBits;
1253    break;
1254  }
1255  case ISD::SIGN_EXTEND: {
1256    MVT InVT = Op.getOperand(0).getValueType();
1257    unsigned InBits = InVT.getSizeInBits();
1258    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1259    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1260    APInt NewBits   = ~InMask & NewMask;
1261
1262    // If none of the top bits are demanded, convert this into an any_extend.
1263    if (NewBits == 0)
1264      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1265                                              Op.getValueType(),
1266                                              Op.getOperand(0)));
1267
1268    // Since some of the sign extended bits are demanded, we know that the sign
1269    // bit is demanded.
1270    APInt InDemandedBits = InMask & NewMask;
1271    InDemandedBits |= InSignBit;
1272    InDemandedBits.trunc(InBits);
1273
1274    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1275                             KnownOne, TLO, Depth+1))
1276      return true;
1277    KnownZero.zext(BitWidth);
1278    KnownOne.zext(BitWidth);
1279
1280    // If the sign bit is known zero, convert this to a zero extend.
1281    if (KnownZero.intersects(InSignBit))
1282      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1283                                               Op.getValueType(),
1284                                               Op.getOperand(0)));
1285
1286    // If the sign bit is known one, the top bits match.
1287    if (KnownOne.intersects(InSignBit)) {
1288      KnownOne  |= NewBits;
1289      KnownZero &= ~NewBits;
1290    } else {   // Otherwise, top bits aren't known.
1291      KnownOne  &= ~NewBits;
1292      KnownZero &= ~NewBits;
1293    }
1294    break;
1295  }
1296  case ISD::ANY_EXTEND: {
1297    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1298    APInt InMask = NewMask;
1299    InMask.trunc(OperandBitWidth);
1300    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1301                             KnownZero, KnownOne, TLO, Depth+1))
1302      return true;
1303    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1304    KnownZero.zext(BitWidth);
1305    KnownOne.zext(BitWidth);
1306    break;
1307  }
1308  case ISD::TRUNCATE: {
1309    // Simplify the input, using demanded bit information, and compute the known
1310    // zero/one bits live out.
1311    APInt TruncMask = NewMask;
1312    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1313    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1314                             KnownZero, KnownOne, TLO, Depth+1))
1315      return true;
1316    KnownZero.trunc(BitWidth);
1317    KnownOne.trunc(BitWidth);
1318
1319    // If the input is only used by this truncate, see if we can shrink it based
1320    // on the known demanded bits.
1321    if (Op.getOperand(0).getNode()->hasOneUse()) {
1322      SDValue In = Op.getOperand(0);
1323      unsigned InBitWidth = In.getValueSizeInBits();
1324      switch (In.getOpcode()) {
1325      default: break;
1326      case ISD::SRL:
1327        // Shrink SRL by a constant if none of the high bits shifted in are
1328        // demanded.
1329        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1330          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1331                                                 InBitWidth - BitWidth);
1332          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1333          HighBits.trunc(BitWidth);
1334
1335          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1336            // None of the shifted in bits are needed.  Add a truncate of the
1337            // shift input, then shift it.
1338            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1339                                                 Op.getValueType(),
1340                                                 In.getOperand(0));
1341            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1342                                                     Op.getValueType(),
1343                                                     NewTrunc,
1344                                                     In.getOperand(1)));
1345          }
1346        }
1347        break;
1348      }
1349    }
1350
1351    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1352    break;
1353  }
1354  case ISD::AssertZext: {
1355    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1356    APInt InMask = APInt::getLowBitsSet(BitWidth,
1357                                        VT.getSizeInBits());
1358    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1359                             KnownZero, KnownOne, TLO, Depth+1))
1360      return true;
1361    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1362    KnownZero |= ~InMask & NewMask;
1363    break;
1364  }
1365  case ISD::BIT_CONVERT:
1366#if 0
1367    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1368    // is demanded, turn this into a FGETSIGN.
1369    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1370        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1371        !MVT::isVector(Op.getOperand(0).getValueType())) {
1372      // Only do this xform if FGETSIGN is valid or if before legalize.
1373      if (!TLO.AfterLegalize ||
1374          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1375        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1376        // place.  We expect the SHL to be eliminated by other optimizations.
1377        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1378                                         Op.getOperand(0));
1379        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1380        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1381        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1382                                                 Sign, ShAmt));
1383      }
1384    }
1385#endif
1386    break;
1387  case ISD::ADD:
1388  case ISD::MUL:
1389  case ISD::SUB: {
1390    // Add, Sub, and Mul don't demand any bits in positions beyond that
1391    // of the highest bit demanded of them.
1392    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1393                                        BitWidth - NewMask.countLeadingZeros());
1394    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1395                             KnownOne2, TLO, Depth+1))
1396      return true;
1397    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1398                             KnownOne2, TLO, Depth+1))
1399      return true;
1400    // See if the operation should be performed at a smaller bit width.
1401    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1402      return true;
1403  }
1404  // FALL THROUGH
1405  default:
1406    // Just use ComputeMaskedBits to compute output bits.
1407    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1408    break;
1409  }
1410
1411  // If we know the value of all of the demanded bits, return this as a
1412  // constant.
1413  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1414    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1415
1416  return false;
1417}
1418
1419/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1420/// in Mask are known to be either zero or one and return them in the
1421/// KnownZero/KnownOne bitsets.
1422void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1423                                                    const APInt &Mask,
1424                                                    APInt &KnownZero,
1425                                                    APInt &KnownOne,
1426                                                    const SelectionDAG &DAG,
1427                                                    unsigned Depth) const {
1428  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1429          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1430          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1431          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1432         "Should use MaskedValueIsZero if you don't know whether Op"
1433         " is a target node!");
1434  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1435}
1436
1437/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1438/// targets that want to expose additional information about sign bits to the
1439/// DAG Combiner.
1440unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1441                                                         unsigned Depth) const {
1442  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1443          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1444          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1445          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1446         "Should use ComputeNumSignBits if you don't know whether Op"
1447         " is a target node!");
1448  return 1;
1449}
1450
1451/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1452/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1453/// determine which bit is set.
1454///
1455static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1456  // A left-shift of a constant one will have exactly one bit set, because
1457  // shifting the bit off the end is undefined.
1458  if (Val.getOpcode() == ISD::SHL)
1459    if (ConstantSDNode *C =
1460         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1461      if (C->getAPIntValue() == 1)
1462        return true;
1463
1464  // Similarly, a right-shift of a constant sign-bit will have exactly
1465  // one bit set.
1466  if (Val.getOpcode() == ISD::SRL)
1467    if (ConstantSDNode *C =
1468         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1469      if (C->getAPIntValue().isSignBit())
1470        return true;
1471
1472  // More could be done here, though the above checks are enough
1473  // to handle some common cases.
1474
1475  // Fall back to ComputeMaskedBits to catch other known cases.
1476  MVT OpVT = Val.getValueType();
1477  unsigned BitWidth = OpVT.getSizeInBits();
1478  APInt Mask = APInt::getAllOnesValue(BitWidth);
1479  APInt KnownZero, KnownOne;
1480  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1481  return (KnownZero.countPopulation() == BitWidth - 1) &&
1482         (KnownOne.countPopulation() == 1);
1483}
1484
1485/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1486/// and cc. If it is unable to simplify it, return a null SDValue.
1487SDValue
1488TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1489                              ISD::CondCode Cond, bool foldBooleans,
1490                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1491  SelectionDAG &DAG = DCI.DAG;
1492
1493  // These setcc operations always fold.
1494  switch (Cond) {
1495  default: break;
1496  case ISD::SETFALSE:
1497  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1498  case ISD::SETTRUE:
1499  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1500  }
1501
1502  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1503    const APInt &C1 = N1C->getAPIntValue();
1504    if (isa<ConstantSDNode>(N0.getNode())) {
1505      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1506    } else {
1507      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1508      // equality comparison, then we're just comparing whether X itself is
1509      // zero.
1510      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1511          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1512          N0.getOperand(1).getOpcode() == ISD::Constant) {
1513        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1514        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1515            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1516          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1517            // (srl (ctlz x), 5) == 0  -> X != 0
1518            // (srl (ctlz x), 5) != 1  -> X != 0
1519            Cond = ISD::SETNE;
1520          } else {
1521            // (srl (ctlz x), 5) != 0  -> X == 0
1522            // (srl (ctlz x), 5) == 1  -> X == 0
1523            Cond = ISD::SETEQ;
1524          }
1525          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1526          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1527                              Zero, Cond);
1528        }
1529      }
1530
1531      // If the LHS is '(and load, const)', the RHS is 0,
1532      // the test is for equality or unsigned, and all 1 bits of the const are
1533      // in the same partial word, see if we can shorten the load.
1534      if (DCI.isBeforeLegalize() &&
1535          N0.getOpcode() == ISD::AND && C1 == 0 &&
1536          N0.getNode()->hasOneUse() &&
1537          isa<LoadSDNode>(N0.getOperand(0)) &&
1538          N0.getOperand(0).getNode()->hasOneUse() &&
1539          isa<ConstantSDNode>(N0.getOperand(1))) {
1540        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1541        uint64_t bestMask = 0;
1542        unsigned bestWidth = 0, bestOffset = 0;
1543        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1544            // FIXME: This uses getZExtValue() below so it only works on i64 and
1545            // below.
1546            N0.getValueType().getSizeInBits() <= 64) {
1547          unsigned origWidth = N0.getValueType().getSizeInBits();
1548          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1549          // 8 bits, but have to be careful...
1550          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1551            origWidth = Lod->getMemoryVT().getSizeInBits();
1552          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1553          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1554            uint64_t newMask = (1ULL << width) - 1;
1555            for (unsigned offset=0; offset<origWidth/width; offset++) {
1556              if ((newMask & Mask) == Mask) {
1557                if (!TD->isLittleEndian())
1558                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1559                else
1560                  bestOffset = (uint64_t)offset * (width/8);
1561                bestMask = Mask >> (offset * (width/8) * 8);
1562                bestWidth = width;
1563                break;
1564              }
1565              newMask = newMask << width;
1566            }
1567          }
1568        }
1569        if (bestWidth) {
1570          MVT newVT = MVT::getIntegerVT(bestWidth);
1571          if (newVT.isRound()) {
1572            MVT PtrType = Lod->getOperand(1).getValueType();
1573            SDValue Ptr = Lod->getBasePtr();
1574            if (bestOffset != 0)
1575              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1576                                DAG.getConstant(bestOffset, PtrType));
1577            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1578            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1579                                          Lod->getSrcValue(),
1580                                          Lod->getSrcValueOffset() + bestOffset,
1581                                          false, NewAlign);
1582            return DAG.getSetCC(dl, VT,
1583                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1584                                            DAG.getConstant(bestMask, newVT)),
1585                                DAG.getConstant(0LL, newVT), Cond);
1586          }
1587        }
1588      }
1589
1590      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1591      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1592        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1593
1594        // If the comparison constant has bits in the upper part, the
1595        // zero-extended value could never match.
1596        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1597                                                C1.getBitWidth() - InSize))) {
1598          switch (Cond) {
1599          case ISD::SETUGT:
1600          case ISD::SETUGE:
1601          case ISD::SETEQ: return DAG.getConstant(0, VT);
1602          case ISD::SETULT:
1603          case ISD::SETULE:
1604          case ISD::SETNE: return DAG.getConstant(1, VT);
1605          case ISD::SETGT:
1606          case ISD::SETGE:
1607            // True if the sign bit of C1 is set.
1608            return DAG.getConstant(C1.isNegative(), VT);
1609          case ISD::SETLT:
1610          case ISD::SETLE:
1611            // True if the sign bit of C1 isn't set.
1612            return DAG.getConstant(C1.isNonNegative(), VT);
1613          default:
1614            break;
1615          }
1616        }
1617
1618        // Otherwise, we can perform the comparison with the low bits.
1619        switch (Cond) {
1620        case ISD::SETEQ:
1621        case ISD::SETNE:
1622        case ISD::SETUGT:
1623        case ISD::SETUGE:
1624        case ISD::SETULT:
1625        case ISD::SETULE:
1626          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1627                          DAG.getConstant(APInt(C1).trunc(InSize),
1628                                          N0.getOperand(0).getValueType()),
1629                          Cond);
1630        default:
1631          break;   // todo, be more careful with signed comparisons
1632        }
1633      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1634                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1635        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1636        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1637        MVT ExtDstTy = N0.getValueType();
1638        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1639
1640        // If the extended part has any inconsistent bits, it cannot ever
1641        // compare equal.  In other words, they have to be all ones or all
1642        // zeros.
1643        APInt ExtBits =
1644          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1645        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1646          return DAG.getConstant(Cond == ISD::SETNE, VT);
1647
1648        SDValue ZextOp;
1649        MVT Op0Ty = N0.getOperand(0).getValueType();
1650        if (Op0Ty == ExtSrcTy) {
1651          ZextOp = N0.getOperand(0);
1652        } else {
1653          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1654          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1655                               DAG.getConstant(Imm, Op0Ty));
1656        }
1657        if (!DCI.isCalledByLegalizer())
1658          DCI.AddToWorklist(ZextOp.getNode());
1659        // Otherwise, make this a use of a zext.
1660        return DAG.getSetCC(dl, VT, ZextOp,
1661                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1662                                                               ExtDstTyBits,
1663                                                               ExtSrcTyBits),
1664                                            ExtDstTy),
1665                            Cond);
1666      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1667                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1668
1669        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1670        if (N0.getOpcode() == ISD::SETCC) {
1671          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1672          if (TrueWhenTrue)
1673            return N0;
1674
1675          // Invert the condition.
1676          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1677          CC = ISD::getSetCCInverse(CC,
1678                                   N0.getOperand(0).getValueType().isInteger());
1679          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1680        }
1681
1682        if ((N0.getOpcode() == ISD::XOR ||
1683             (N0.getOpcode() == ISD::AND &&
1684              N0.getOperand(0).getOpcode() == ISD::XOR &&
1685              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1686            isa<ConstantSDNode>(N0.getOperand(1)) &&
1687            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1688          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1689          // can only do this if the top bits are known zero.
1690          unsigned BitWidth = N0.getValueSizeInBits();
1691          if (DAG.MaskedValueIsZero(N0,
1692                                    APInt::getHighBitsSet(BitWidth,
1693                                                          BitWidth-1))) {
1694            // Okay, get the un-inverted input value.
1695            SDValue Val;
1696            if (N0.getOpcode() == ISD::XOR)
1697              Val = N0.getOperand(0);
1698            else {
1699              assert(N0.getOpcode() == ISD::AND &&
1700                     N0.getOperand(0).getOpcode() == ISD::XOR);
1701              // ((X^1)&1)^1 -> X & 1
1702              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1703                                N0.getOperand(0).getOperand(0),
1704                                N0.getOperand(1));
1705            }
1706            return DAG.getSetCC(dl, VT, Val, N1,
1707                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1708          }
1709        }
1710      }
1711
1712      APInt MinVal, MaxVal;
1713      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1714      if (ISD::isSignedIntSetCC(Cond)) {
1715        MinVal = APInt::getSignedMinValue(OperandBitSize);
1716        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1717      } else {
1718        MinVal = APInt::getMinValue(OperandBitSize);
1719        MaxVal = APInt::getMaxValue(OperandBitSize);
1720      }
1721
1722      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1723      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1724        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1725        // X >= C0 --> X > (C0-1)
1726        return DAG.getSetCC(dl, VT, N0,
1727                            DAG.getConstant(C1-1, N1.getValueType()),
1728                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1729      }
1730
1731      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1732        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1733        // X <= C0 --> X < (C0+1)
1734        return DAG.getSetCC(dl, VT, N0,
1735                            DAG.getConstant(C1+1, N1.getValueType()),
1736                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1737      }
1738
1739      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1740        return DAG.getConstant(0, VT);      // X < MIN --> false
1741      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1742        return DAG.getConstant(1, VT);      // X >= MIN --> true
1743      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1744        return DAG.getConstant(0, VT);      // X > MAX --> false
1745      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1746        return DAG.getConstant(1, VT);      // X <= MAX --> true
1747
1748      // Canonicalize setgt X, Min --> setne X, Min
1749      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1750        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1751      // Canonicalize setlt X, Max --> setne X, Max
1752      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1753        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1754
1755      // If we have setult X, 1, turn it into seteq X, 0
1756      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1757        return DAG.getSetCC(dl, VT, N0,
1758                            DAG.getConstant(MinVal, N0.getValueType()),
1759                            ISD::SETEQ);
1760      // If we have setugt X, Max-1, turn it into seteq X, Max
1761      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1762        return DAG.getSetCC(dl, VT, N0,
1763                            DAG.getConstant(MaxVal, N0.getValueType()),
1764                            ISD::SETEQ);
1765
1766      // If we have "setcc X, C0", check to see if we can shrink the immediate
1767      // by changing cc.
1768
1769      // SETUGT X, SINTMAX  -> SETLT X, 0
1770      if (Cond == ISD::SETUGT &&
1771          C1 == APInt::getSignedMaxValue(OperandBitSize))
1772        return DAG.getSetCC(dl, VT, N0,
1773                            DAG.getConstant(0, N1.getValueType()),
1774                            ISD::SETLT);
1775
1776      // SETULT X, SINTMIN  -> SETGT X, -1
1777      if (Cond == ISD::SETULT &&
1778          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1779        SDValue ConstMinusOne =
1780            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1781                            N1.getValueType());
1782        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1783      }
1784
1785      // Fold bit comparisons when we can.
1786      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1787          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1788        if (ConstantSDNode *AndRHS =
1789                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1790          MVT ShiftTy = DCI.isBeforeLegalize() ?
1791            getPointerTy() : getShiftAmountTy();
1792          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1793            // Perform the xform if the AND RHS is a single bit.
1794            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1795              return DAG.getNode(ISD::SRL, dl, VT, N0,
1796                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1797                                                 ShiftTy));
1798            }
1799          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1800            // (X & 8) == 8  -->  (X & 8) >> 3
1801            // Perform the xform if C1 is a single bit.
1802            if (C1.isPowerOf2()) {
1803              return DAG.getNode(ISD::SRL, dl, VT, N0,
1804                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1805            }
1806          }
1807        }
1808    }
1809  } else if (isa<ConstantSDNode>(N0.getNode())) {
1810      // Ensure that the constant occurs on the RHS.
1811    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1812  }
1813
1814  if (isa<ConstantFPSDNode>(N0.getNode())) {
1815    // Constant fold or commute setcc.
1816    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1817    if (O.getNode()) return O;
1818  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1819    // If the RHS of an FP comparison is a constant, simplify it away in
1820    // some cases.
1821    if (CFP->getValueAPF().isNaN()) {
1822      // If an operand is known to be a nan, we can fold it.
1823      switch (ISD::getUnorderedFlavor(Cond)) {
1824      default: assert(0 && "Unknown flavor!");
1825      case 0:  // Known false.
1826        return DAG.getConstant(0, VT);
1827      case 1:  // Known true.
1828        return DAG.getConstant(1, VT);
1829      case 2:  // Undefined.
1830        return DAG.getUNDEF(VT);
1831      }
1832    }
1833
1834    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1835    // constant if knowing that the operand is non-nan is enough.  We prefer to
1836    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1837    // materialize 0.0.
1838    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1839      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1840  }
1841
1842  if (N0 == N1) {
1843    // We can always fold X == X for integer setcc's.
1844    if (N0.getValueType().isInteger())
1845      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1846    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1847    if (UOF == 2)   // FP operators that are undefined on NaNs.
1848      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1849    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1850      return DAG.getConstant(UOF, VT);
1851    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1852    // if it is not already.
1853    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1854    if (NewCond != Cond)
1855      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1856  }
1857
1858  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1859      N0.getValueType().isInteger()) {
1860    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1861        N0.getOpcode() == ISD::XOR) {
1862      // Simplify (X+Y) == (X+Z) -->  Y == Z
1863      if (N0.getOpcode() == N1.getOpcode()) {
1864        if (N0.getOperand(0) == N1.getOperand(0))
1865          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1866        if (N0.getOperand(1) == N1.getOperand(1))
1867          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1868        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1869          // If X op Y == Y op X, try other combinations.
1870          if (N0.getOperand(0) == N1.getOperand(1))
1871            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1872                                Cond);
1873          if (N0.getOperand(1) == N1.getOperand(0))
1874            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1875                                Cond);
1876        }
1877      }
1878
1879      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1880        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1881          // Turn (X+C1) == C2 --> X == C2-C1
1882          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1883            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1884                                DAG.getConstant(RHSC->getAPIntValue()-
1885                                                LHSR->getAPIntValue(),
1886                                N0.getValueType()), Cond);
1887          }
1888
1889          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1890          if (N0.getOpcode() == ISD::XOR)
1891            // If we know that all of the inverted bits are zero, don't bother
1892            // performing the inversion.
1893            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1894              return
1895                DAG.getSetCC(dl, VT, N0.getOperand(0),
1896                             DAG.getConstant(LHSR->getAPIntValue() ^
1897                                               RHSC->getAPIntValue(),
1898                                             N0.getValueType()),
1899                             Cond);
1900        }
1901
1902        // Turn (C1-X) == C2 --> X == C1-C2
1903        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1904          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1905            return
1906              DAG.getSetCC(dl, VT, N0.getOperand(1),
1907                           DAG.getConstant(SUBC->getAPIntValue() -
1908                                             RHSC->getAPIntValue(),
1909                                           N0.getValueType()),
1910                           Cond);
1911          }
1912        }
1913      }
1914
1915      // Simplify (X+Z) == X -->  Z == 0
1916      if (N0.getOperand(0) == N1)
1917        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1918                        DAG.getConstant(0, N0.getValueType()), Cond);
1919      if (N0.getOperand(1) == N1) {
1920        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1921          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1922                          DAG.getConstant(0, N0.getValueType()), Cond);
1923        else if (N0.getNode()->hasOneUse()) {
1924          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1925          // (Z-X) == X  --> Z == X<<1
1926          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1927                                     N1,
1928                                     DAG.getConstant(1, getShiftAmountTy()));
1929          if (!DCI.isCalledByLegalizer())
1930            DCI.AddToWorklist(SH.getNode());
1931          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1932        }
1933      }
1934    }
1935
1936    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1937        N1.getOpcode() == ISD::XOR) {
1938      // Simplify  X == (X+Z) -->  Z == 0
1939      if (N1.getOperand(0) == N0) {
1940        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1941                        DAG.getConstant(0, N1.getValueType()), Cond);
1942      } else if (N1.getOperand(1) == N0) {
1943        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1944          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1945                          DAG.getConstant(0, N1.getValueType()), Cond);
1946        } else if (N1.getNode()->hasOneUse()) {
1947          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1948          // X == (Z-X)  --> X<<1 == Z
1949          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1950                                     DAG.getConstant(1, getShiftAmountTy()));
1951          if (!DCI.isCalledByLegalizer())
1952            DCI.AddToWorklist(SH.getNode());
1953          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1954        }
1955      }
1956    }
1957
1958    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1959    // Note that where y is variable and is known to have at most
1960    // one bit set (for example, if it is z&1) we cannot do this;
1961    // the expressions are not equivalent when y==0.
1962    if (N0.getOpcode() == ISD::AND)
1963      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1964        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1965          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1966          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1967          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1968        }
1969      }
1970    if (N1.getOpcode() == ISD::AND)
1971      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1972        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1973          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1974          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1975          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1976        }
1977      }
1978  }
1979
1980  // Fold away ALL boolean setcc's.
1981  SDValue Temp;
1982  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1983    switch (Cond) {
1984    default: assert(0 && "Unknown integer setcc!");
1985    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1986      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1987      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1988      if (!DCI.isCalledByLegalizer())
1989        DCI.AddToWorklist(Temp.getNode());
1990      break;
1991    case ISD::SETNE:  // X != Y   -->  (X^Y)
1992      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1993      break;
1994    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1995    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1996      Temp = DAG.getNOT(dl, N0, MVT::i1);
1997      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1998      if (!DCI.isCalledByLegalizer())
1999        DCI.AddToWorklist(Temp.getNode());
2000      break;
2001    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2002    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2003      Temp = DAG.getNOT(dl, N1, MVT::i1);
2004      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2005      if (!DCI.isCalledByLegalizer())
2006        DCI.AddToWorklist(Temp.getNode());
2007      break;
2008    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2009    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2010      Temp = DAG.getNOT(dl, N0, MVT::i1);
2011      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2012      if (!DCI.isCalledByLegalizer())
2013        DCI.AddToWorklist(Temp.getNode());
2014      break;
2015    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2016    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2017      Temp = DAG.getNOT(dl, N1, MVT::i1);
2018      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2019      break;
2020    }
2021    if (VT != MVT::i1) {
2022      if (!DCI.isCalledByLegalizer())
2023        DCI.AddToWorklist(N0.getNode());
2024      // FIXME: If running after legalize, we probably can't do this.
2025      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2026    }
2027    return N0;
2028  }
2029
2030  // Could not fold it.
2031  return SDValue();
2032}
2033
2034/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2035/// node is a GlobalAddress + offset.
2036bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2037                                    int64_t &Offset) const {
2038  if (isa<GlobalAddressSDNode>(N)) {
2039    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2040    GA = GASD->getGlobal();
2041    Offset += GASD->getOffset();
2042    return true;
2043  }
2044
2045  if (N->getOpcode() == ISD::ADD) {
2046    SDValue N1 = N->getOperand(0);
2047    SDValue N2 = N->getOperand(1);
2048    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2049      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2050      if (V) {
2051        Offset += V->getSExtValue();
2052        return true;
2053      }
2054    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2055      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2056      if (V) {
2057        Offset += V->getSExtValue();
2058        return true;
2059      }
2060    }
2061  }
2062  return false;
2063}
2064
2065
2066/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
2067/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
2068/// location that the 'Base' load is loading from.
2069bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
2070                                       unsigned Bytes, int Dist,
2071                                       const MachineFrameInfo *MFI) const {
2072  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
2073    return false;
2074  MVT VT = LD->getValueType(0);
2075  if (VT.getSizeInBits() / 8 != Bytes)
2076    return false;
2077
2078  SDValue Loc = LD->getOperand(1);
2079  SDValue BaseLoc = Base->getOperand(1);
2080  if (Loc.getOpcode() == ISD::FrameIndex) {
2081    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2082      return false;
2083    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2084    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2085    int FS  = MFI->getObjectSize(FI);
2086    int BFS = MFI->getObjectSize(BFI);
2087    if (FS != BFS || FS != (int)Bytes) return false;
2088    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2089  }
2090
2091  GlobalValue *GV1 = NULL;
2092  GlobalValue *GV2 = NULL;
2093  int64_t Offset1 = 0;
2094  int64_t Offset2 = 0;
2095  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2096  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2097  if (isGA1 && isGA2 && GV1 == GV2)
2098    return Offset1 == (Offset2 + Dist*Bytes);
2099  return false;
2100}
2101
2102
2103SDValue TargetLowering::
2104PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2105  // Default implementation: no optimization.
2106  return SDValue();
2107}
2108
2109//===----------------------------------------------------------------------===//
2110//  Inline Assembler Implementation Methods
2111//===----------------------------------------------------------------------===//
2112
2113
2114TargetLowering::ConstraintType
2115TargetLowering::getConstraintType(const std::string &Constraint) const {
2116  // FIXME: lots more standard ones to handle.
2117  if (Constraint.size() == 1) {
2118    switch (Constraint[0]) {
2119    default: break;
2120    case 'r': return C_RegisterClass;
2121    case 'm':    // memory
2122    case 'o':    // offsetable
2123    case 'V':    // not offsetable
2124      return C_Memory;
2125    case 'i':    // Simple Integer or Relocatable Constant
2126    case 'n':    // Simple Integer
2127    case 's':    // Relocatable Constant
2128    case 'X':    // Allow ANY value.
2129    case 'I':    // Target registers.
2130    case 'J':
2131    case 'K':
2132    case 'L':
2133    case 'M':
2134    case 'N':
2135    case 'O':
2136    case 'P':
2137      return C_Other;
2138    }
2139  }
2140
2141  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2142      Constraint[Constraint.size()-1] == '}')
2143    return C_Register;
2144  return C_Unknown;
2145}
2146
2147/// LowerXConstraint - try to replace an X constraint, which matches anything,
2148/// with another that has more specific requirements based on the type of the
2149/// corresponding operand.
2150const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2151  if (ConstraintVT.isInteger())
2152    return "r";
2153  if (ConstraintVT.isFloatingPoint())
2154    return "f";      // works for many targets
2155  return 0;
2156}
2157
2158/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2159/// vector.  If it is invalid, don't add anything to Ops.
2160void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2161                                                  char ConstraintLetter,
2162                                                  bool hasMemory,
2163                                                  std::vector<SDValue> &Ops,
2164                                                  SelectionDAG &DAG) const {
2165  switch (ConstraintLetter) {
2166  default: break;
2167  case 'X':     // Allows any operand; labels (basic block) use this.
2168    if (Op.getOpcode() == ISD::BasicBlock) {
2169      Ops.push_back(Op);
2170      return;
2171    }
2172    // fall through
2173  case 'i':    // Simple Integer or Relocatable Constant
2174  case 'n':    // Simple Integer
2175  case 's': {  // Relocatable Constant
2176    // These operands are interested in values of the form (GV+C), where C may
2177    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2178    // is possible and fine if either GV or C are missing.
2179    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2180    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2181
2182    // If we have "(add GV, C)", pull out GV/C
2183    if (Op.getOpcode() == ISD::ADD) {
2184      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2185      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2186      if (C == 0 || GA == 0) {
2187        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2188        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2189      }
2190      if (C == 0 || GA == 0)
2191        C = 0, GA = 0;
2192    }
2193
2194    // If we find a valid operand, map to the TargetXXX version so that the
2195    // value itself doesn't get selected.
2196    if (GA) {   // Either &GV   or   &GV+C
2197      if (ConstraintLetter != 'n') {
2198        int64_t Offs = GA->getOffset();
2199        if (C) Offs += C->getZExtValue();
2200        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2201                                                 Op.getValueType(), Offs));
2202        return;
2203      }
2204    }
2205    if (C) {   // just C, no GV.
2206      // Simple constants are not allowed for 's'.
2207      if (ConstraintLetter != 's') {
2208        // gcc prints these as sign extended.  Sign extend value to 64 bits
2209        // now; without this it would get ZExt'd later in
2210        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2211        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2212                                            MVT::i64));
2213        return;
2214      }
2215    }
2216    break;
2217  }
2218  }
2219}
2220
2221std::vector<unsigned> TargetLowering::
2222getRegClassForInlineAsmConstraint(const std::string &Constraint,
2223                                  MVT VT) const {
2224  return std::vector<unsigned>();
2225}
2226
2227
2228std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2229getRegForInlineAsmConstraint(const std::string &Constraint,
2230                             MVT VT) const {
2231  if (Constraint[0] != '{')
2232    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2233  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2234
2235  // Remove the braces from around the name.
2236  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2237
2238  // Figure out which register class contains this reg.
2239  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2240  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2241       E = RI->regclass_end(); RCI != E; ++RCI) {
2242    const TargetRegisterClass *RC = *RCI;
2243
2244    // If none of the the value types for this register class are valid, we
2245    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2246    bool isLegal = false;
2247    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2248         I != E; ++I) {
2249      if (isTypeLegal(*I)) {
2250        isLegal = true;
2251        break;
2252      }
2253    }
2254
2255    if (!isLegal) continue;
2256
2257    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2258         I != E; ++I) {
2259      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2260        return std::make_pair(*I, RC);
2261    }
2262  }
2263
2264  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2265}
2266
2267//===----------------------------------------------------------------------===//
2268// Constraint Selection.
2269
2270/// isMatchingInputConstraint - Return true of this is an input operand that is
2271/// a matching constraint like "4".
2272bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2273  assert(!ConstraintCode.empty() && "No known constraint!");
2274  return isdigit(ConstraintCode[0]);
2275}
2276
2277/// getMatchedOperand - If this is an input matching constraint, this method
2278/// returns the output operand it matches.
2279unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2280  assert(!ConstraintCode.empty() && "No known constraint!");
2281  return atoi(ConstraintCode.c_str());
2282}
2283
2284
2285/// getConstraintGenerality - Return an integer indicating how general CT
2286/// is.
2287static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2288  switch (CT) {
2289  default: assert(0 && "Unknown constraint type!");
2290  case TargetLowering::C_Other:
2291  case TargetLowering::C_Unknown:
2292    return 0;
2293  case TargetLowering::C_Register:
2294    return 1;
2295  case TargetLowering::C_RegisterClass:
2296    return 2;
2297  case TargetLowering::C_Memory:
2298    return 3;
2299  }
2300}
2301
2302/// ChooseConstraint - If there are multiple different constraints that we
2303/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2304/// This is somewhat tricky: constraints fall into four classes:
2305///    Other         -> immediates and magic values
2306///    Register      -> one specific register
2307///    RegisterClass -> a group of regs
2308///    Memory        -> memory
2309/// Ideally, we would pick the most specific constraint possible: if we have
2310/// something that fits into a register, we would pick it.  The problem here
2311/// is that if we have something that could either be in a register or in
2312/// memory that use of the register could cause selection of *other*
2313/// operands to fail: they might only succeed if we pick memory.  Because of
2314/// this the heuristic we use is:
2315///
2316///  1) If there is an 'other' constraint, and if the operand is valid for
2317///     that constraint, use it.  This makes us take advantage of 'i'
2318///     constraints when available.
2319///  2) Otherwise, pick the most general constraint present.  This prefers
2320///     'm' over 'r', for example.
2321///
2322static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2323                             bool hasMemory,  const TargetLowering &TLI,
2324                             SDValue Op, SelectionDAG *DAG) {
2325  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2326  unsigned BestIdx = 0;
2327  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2328  int BestGenerality = -1;
2329
2330  // Loop over the options, keeping track of the most general one.
2331  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2332    TargetLowering::ConstraintType CType =
2333      TLI.getConstraintType(OpInfo.Codes[i]);
2334
2335    // If this is an 'other' constraint, see if the operand is valid for it.
2336    // For example, on X86 we might have an 'rI' constraint.  If the operand
2337    // is an integer in the range [0..31] we want to use I (saving a load
2338    // of a register), otherwise we must use 'r'.
2339    if (CType == TargetLowering::C_Other && Op.getNode()) {
2340      assert(OpInfo.Codes[i].size() == 1 &&
2341             "Unhandled multi-letter 'other' constraint");
2342      std::vector<SDValue> ResultOps;
2343      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2344                                       ResultOps, *DAG);
2345      if (!ResultOps.empty()) {
2346        BestType = CType;
2347        BestIdx = i;
2348        break;
2349      }
2350    }
2351
2352    // This constraint letter is more general than the previous one, use it.
2353    int Generality = getConstraintGenerality(CType);
2354    if (Generality > BestGenerality) {
2355      BestType = CType;
2356      BestIdx = i;
2357      BestGenerality = Generality;
2358    }
2359  }
2360
2361  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2362  OpInfo.ConstraintType = BestType;
2363}
2364
2365/// ComputeConstraintToUse - Determines the constraint code and constraint
2366/// type to use for the specific AsmOperandInfo, setting
2367/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2368void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2369                                            SDValue Op,
2370                                            bool hasMemory,
2371                                            SelectionDAG *DAG) const {
2372  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2373
2374  // Single-letter constraints ('r') are very common.
2375  if (OpInfo.Codes.size() == 1) {
2376    OpInfo.ConstraintCode = OpInfo.Codes[0];
2377    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2378  } else {
2379    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2380  }
2381
2382  // 'X' matches anything.
2383  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2384    // Labels and constants are handled elsewhere ('X' is the only thing
2385    // that matches labels).
2386    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2387        isa<ConstantInt>(OpInfo.CallOperandVal))
2388      return;
2389
2390    // Otherwise, try to resolve it to something we know about by looking at
2391    // the actual operand type.
2392    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2393      OpInfo.ConstraintCode = Repl;
2394      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2395    }
2396  }
2397}
2398
2399//===----------------------------------------------------------------------===//
2400//  Loop Strength Reduction hooks
2401//===----------------------------------------------------------------------===//
2402
2403/// isLegalAddressingMode - Return true if the addressing mode represented
2404/// by AM is legal for this target, for a load/store of the specified type.
2405bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2406                                           const Type *Ty) const {
2407  // The default implementation of this implements a conservative RISCy, r+r and
2408  // r+i addr mode.
2409
2410  // Allows a sign-extended 16-bit immediate field.
2411  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2412    return false;
2413
2414  // No global is ever allowed as a base.
2415  if (AM.BaseGV)
2416    return false;
2417
2418  // Only support r+r,
2419  switch (AM.Scale) {
2420  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2421    break;
2422  case 1:
2423    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2424      return false;
2425    // Otherwise we have r+r or r+i.
2426    break;
2427  case 2:
2428    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2429      return false;
2430    // Allow 2*r as r+r.
2431    break;
2432  }
2433
2434  return true;
2435}
2436
2437struct mu {
2438  APInt m;     // magic number
2439  bool a;      // add indicator
2440  unsigned s;  // shift amount
2441};
2442
2443/// magicu - calculate the magic numbers required to codegen an integer udiv as
2444/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2445static mu magicu(const APInt& d) {
2446  unsigned p;
2447  APInt nc, delta, q1, r1, q2, r2;
2448  struct mu magu;
2449  magu.a = 0;               // initialize "add" indicator
2450  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2451  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2452  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2453
2454  nc = allOnes - (-d).urem(d);
2455  p = d.getBitWidth() - 1;  // initialize p
2456  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2457  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2458  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2459  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2460  do {
2461    p = p + 1;
2462    if (r1.uge(nc - r1)) {
2463      q1 = q1 + q1 + 1;  // update q1
2464      r1 = r1 + r1 - nc; // update r1
2465    }
2466    else {
2467      q1 = q1+q1; // update q1
2468      r1 = r1+r1; // update r1
2469    }
2470    if ((r2 + 1).uge(d - r2)) {
2471      if (q2.uge(signedMax)) magu.a = 1;
2472      q2 = q2+q2 + 1;     // update q2
2473      r2 = r2+r2 + 1 - d; // update r2
2474    }
2475    else {
2476      if (q2.uge(signedMin)) magu.a = 1;
2477      q2 = q2+q2;     // update q2
2478      r2 = r2+r2 + 1; // update r2
2479    }
2480    delta = d - 1 - r2;
2481  } while (p < d.getBitWidth()*2 &&
2482           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2483  magu.m = q2 + 1; // resulting magic number
2484  magu.s = p - d.getBitWidth();  // resulting shift
2485  return magu;
2486}
2487
2488// Magic for divide replacement
2489struct ms {
2490  APInt m;  // magic number
2491  unsigned s;  // shift amount
2492};
2493
2494/// magic - calculate the magic numbers required to codegen an integer sdiv as
2495/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2496/// or -1.
2497static ms magic(const APInt& d) {
2498  unsigned p;
2499  APInt ad, anc, delta, q1, r1, q2, r2, t;
2500  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2501  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2502  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2503  struct ms mag;
2504
2505  ad = d.abs();
2506  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2507  anc = t - 1 - t.urem(ad);   // absolute value of nc
2508  p = d.getBitWidth() - 1;    // initialize p
2509  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2510  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2511  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2512  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2513  do {
2514    p = p + 1;
2515    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2516    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2517    if (r1.uge(anc)) {  // must be unsigned comparison
2518      q1 = q1 + 1;
2519      r1 = r1 - anc;
2520    }
2521    q2 = q2<<1;          // update q2 = 2p/abs(d)
2522    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2523    if (r2.uge(ad)) {   // must be unsigned comparison
2524      q2 = q2 + 1;
2525      r2 = r2 - ad;
2526    }
2527    delta = ad - r2;
2528  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2529
2530  mag.m = q2 + 1;
2531  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2532  mag.s = p - d.getBitWidth();          // resulting shift
2533  return mag;
2534}
2535
2536/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2537/// return a DAG expression to select that will generate the same value by
2538/// multiplying by a magic number.  See:
2539/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2540SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2541                                  std::vector<SDNode*>* Created) const {
2542  MVT VT = N->getValueType(0);
2543  DebugLoc dl= N->getDebugLoc();
2544
2545  // Check to see if we can do this.
2546  // FIXME: We should be more aggressive here.
2547  if (!isTypeLegal(VT))
2548    return SDValue();
2549
2550  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2551  ms magics = magic(d);
2552
2553  // Multiply the numerator (operand 0) by the magic value
2554  // FIXME: We should support doing a MUL in a wider type
2555  SDValue Q;
2556  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2557    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2558                    DAG.getConstant(magics.m, VT));
2559  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2560    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2561                              N->getOperand(0),
2562                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2563  else
2564    return SDValue();       // No mulhs or equvialent
2565  // If d > 0 and m < 0, add the numerator
2566  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2567    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2568    if (Created)
2569      Created->push_back(Q.getNode());
2570  }
2571  // If d < 0 and m > 0, subtract the numerator.
2572  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2573    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2574    if (Created)
2575      Created->push_back(Q.getNode());
2576  }
2577  // Shift right algebraic if shift value is nonzero
2578  if (magics.s > 0) {
2579    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2580                    DAG.getConstant(magics.s, getShiftAmountTy()));
2581    if (Created)
2582      Created->push_back(Q.getNode());
2583  }
2584  // Extract the sign bit and add it to the quotient
2585  SDValue T =
2586    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2587                                                 getShiftAmountTy()));
2588  if (Created)
2589    Created->push_back(T.getNode());
2590  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2591}
2592
2593/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2594/// return a DAG expression to select that will generate the same value by
2595/// multiplying by a magic number.  See:
2596/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2597SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2598                                  std::vector<SDNode*>* Created) const {
2599  MVT VT = N->getValueType(0);
2600  DebugLoc dl = N->getDebugLoc();
2601
2602  // Check to see if we can do this.
2603  // FIXME: We should be more aggressive here.
2604  if (!isTypeLegal(VT))
2605    return SDValue();
2606
2607  // FIXME: We should use a narrower constant when the upper
2608  // bits are known to be zero.
2609  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2610  mu magics = magicu(N1C->getAPIntValue());
2611
2612  // Multiply the numerator (operand 0) by the magic value
2613  // FIXME: We should support doing a MUL in a wider type
2614  SDValue Q;
2615  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2616    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2617                    DAG.getConstant(magics.m, VT));
2618  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2619    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2620                              N->getOperand(0),
2621                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2622  else
2623    return SDValue();       // No mulhu or equvialent
2624  if (Created)
2625    Created->push_back(Q.getNode());
2626
2627  if (magics.a == 0) {
2628    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2629           "We shouldn't generate an undefined shift!");
2630    return DAG.getNode(ISD::SRL, dl, VT, Q,
2631                       DAG.getConstant(magics.s, getShiftAmountTy()));
2632  } else {
2633    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2634    if (Created)
2635      Created->push_back(NPQ.getNode());
2636    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2637                      DAG.getConstant(1, getShiftAmountTy()));
2638    if (Created)
2639      Created->push_back(NPQ.getNode());
2640    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2641    if (Created)
2642      Created->push_back(NPQ.getNode());
2643    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2644                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2645  }
2646}
2647
2648/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2649/// node that don't prevent tail call optimization.
2650static SDValue IgnoreHarmlessInstructions(SDValue node) {
2651  // Found call return.
2652  if (node.getOpcode() == ISD::CALL) return node;
2653  // Ignore MERGE_VALUES. Will have at least one operand.
2654  if (node.getOpcode() == ISD::MERGE_VALUES)
2655    return IgnoreHarmlessInstructions(node.getOperand(0));
2656  // Ignore ANY_EXTEND node.
2657  if (node.getOpcode() == ISD::ANY_EXTEND)
2658    return IgnoreHarmlessInstructions(node.getOperand(0));
2659  if (node.getOpcode() == ISD::TRUNCATE)
2660    return IgnoreHarmlessInstructions(node.getOperand(0));
2661  // Any other node type.
2662  return node;
2663}
2664
2665bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2666                                                    SDValue Ret) {
2667  unsigned NumOps = Ret.getNumOperands();
2668  // ISD::CALL results:(value0, ..., valuen, chain)
2669  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2670  // Value return:
2671  // Check that operand of the RET node sources from the CALL node. The RET node
2672  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2673  // value.
2674  if (NumOps > 1 &&
2675      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0))
2676    return true;
2677  // void return: The RET node  has the chain result value of the CALL node as
2678  // input.
2679  if (NumOps == 1 &&
2680      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2681    return true;
2682
2683  return false;
2684}
2685