TargetLowering.cpp revision 6765834754cbb3cb0f15b4b15e98c5e73fa50066
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/DataLayout.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include <cctype>
34using namespace llvm;
35
36/// InitLibcallNames - Set default libcall names.
37///
38static void InitLibcallNames(const char **Names) {
39  Names[RTLIB::SHL_I16] = "__ashlhi3";
40  Names[RTLIB::SHL_I32] = "__ashlsi3";
41  Names[RTLIB::SHL_I64] = "__ashldi3";
42  Names[RTLIB::SHL_I128] = "__ashlti3";
43  Names[RTLIB::SRL_I16] = "__lshrhi3";
44  Names[RTLIB::SRL_I32] = "__lshrsi3";
45  Names[RTLIB::SRL_I64] = "__lshrdi3";
46  Names[RTLIB::SRL_I128] = "__lshrti3";
47  Names[RTLIB::SRA_I16] = "__ashrhi3";
48  Names[RTLIB::SRA_I32] = "__ashrsi3";
49  Names[RTLIB::SRA_I64] = "__ashrdi3";
50  Names[RTLIB::SRA_I128] = "__ashrti3";
51  Names[RTLIB::MUL_I8] = "__mulqi3";
52  Names[RTLIB::MUL_I16] = "__mulhi3";
53  Names[RTLIB::MUL_I32] = "__mulsi3";
54  Names[RTLIB::MUL_I64] = "__muldi3";
55  Names[RTLIB::MUL_I128] = "__multi3";
56  Names[RTLIB::MULO_I32] = "__mulosi4";
57  Names[RTLIB::MULO_I64] = "__mulodi4";
58  Names[RTLIB::MULO_I128] = "__muloti4";
59  Names[RTLIB::SDIV_I8] = "__divqi3";
60  Names[RTLIB::SDIV_I16] = "__divhi3";
61  Names[RTLIB::SDIV_I32] = "__divsi3";
62  Names[RTLIB::SDIV_I64] = "__divdi3";
63  Names[RTLIB::SDIV_I128] = "__divti3";
64  Names[RTLIB::UDIV_I8] = "__udivqi3";
65  Names[RTLIB::UDIV_I16] = "__udivhi3";
66  Names[RTLIB::UDIV_I32] = "__udivsi3";
67  Names[RTLIB::UDIV_I64] = "__udivdi3";
68  Names[RTLIB::UDIV_I128] = "__udivti3";
69  Names[RTLIB::SREM_I8] = "__modqi3";
70  Names[RTLIB::SREM_I16] = "__modhi3";
71  Names[RTLIB::SREM_I32] = "__modsi3";
72  Names[RTLIB::SREM_I64] = "__moddi3";
73  Names[RTLIB::SREM_I128] = "__modti3";
74  Names[RTLIB::UREM_I8] = "__umodqi3";
75  Names[RTLIB::UREM_I16] = "__umodhi3";
76  Names[RTLIB::UREM_I32] = "__umodsi3";
77  Names[RTLIB::UREM_I64] = "__umoddi3";
78  Names[RTLIB::UREM_I128] = "__umodti3";
79
80  // These are generally not available.
81  Names[RTLIB::SDIVREM_I8] = 0;
82  Names[RTLIB::SDIVREM_I16] = 0;
83  Names[RTLIB::SDIVREM_I32] = 0;
84  Names[RTLIB::SDIVREM_I64] = 0;
85  Names[RTLIB::SDIVREM_I128] = 0;
86  Names[RTLIB::UDIVREM_I8] = 0;
87  Names[RTLIB::UDIVREM_I16] = 0;
88  Names[RTLIB::UDIVREM_I32] = 0;
89  Names[RTLIB::UDIVREM_I64] = 0;
90  Names[RTLIB::UDIVREM_I128] = 0;
91
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
98  Names[RTLIB::SUB_F32] = "__subsf3";
99  Names[RTLIB::SUB_F64] = "__subdf3";
100  Names[RTLIB::SUB_F80] = "__subxf3";
101  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
102  Names[RTLIB::MUL_F32] = "__mulsf3";
103  Names[RTLIB::MUL_F64] = "__muldf3";
104  Names[RTLIB::MUL_F80] = "__mulxf3";
105  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
106  Names[RTLIB::DIV_F32] = "__divsf3";
107  Names[RTLIB::DIV_F64] = "__divdf3";
108  Names[RTLIB::DIV_F80] = "__divxf3";
109  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
110  Names[RTLIB::REM_F32] = "fmodf";
111  Names[RTLIB::REM_F64] = "fmod";
112  Names[RTLIB::REM_F80] = "fmodl";
113  Names[RTLIB::REM_PPCF128] = "fmodl";
114  Names[RTLIB::FMA_F32] = "fmaf";
115  Names[RTLIB::FMA_F64] = "fma";
116  Names[RTLIB::FMA_F80] = "fmal";
117  Names[RTLIB::FMA_PPCF128] = "fmal";
118  Names[RTLIB::POWI_F32] = "__powisf2";
119  Names[RTLIB::POWI_F64] = "__powidf2";
120  Names[RTLIB::POWI_F80] = "__powixf2";
121  Names[RTLIB::POWI_PPCF128] = "__powitf2";
122  Names[RTLIB::SQRT_F32] = "sqrtf";
123  Names[RTLIB::SQRT_F64] = "sqrt";
124  Names[RTLIB::SQRT_F80] = "sqrtl";
125  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
126  Names[RTLIB::LOG_F32] = "logf";
127  Names[RTLIB::LOG_F64] = "log";
128  Names[RTLIB::LOG_F80] = "logl";
129  Names[RTLIB::LOG_PPCF128] = "logl";
130  Names[RTLIB::LOG2_F32] = "log2f";
131  Names[RTLIB::LOG2_F64] = "log2";
132  Names[RTLIB::LOG2_F80] = "log2l";
133  Names[RTLIB::LOG2_PPCF128] = "log2l";
134  Names[RTLIB::LOG10_F32] = "log10f";
135  Names[RTLIB::LOG10_F64] = "log10";
136  Names[RTLIB::LOG10_F80] = "log10l";
137  Names[RTLIB::LOG10_PPCF128] = "log10l";
138  Names[RTLIB::EXP_F32] = "expf";
139  Names[RTLIB::EXP_F64] = "exp";
140  Names[RTLIB::EXP_F80] = "expl";
141  Names[RTLIB::EXP_PPCF128] = "expl";
142  Names[RTLIB::EXP2_F32] = "exp2f";
143  Names[RTLIB::EXP2_F64] = "exp2";
144  Names[RTLIB::EXP2_F80] = "exp2l";
145  Names[RTLIB::EXP2_PPCF128] = "exp2l";
146  Names[RTLIB::SIN_F32] = "sinf";
147  Names[RTLIB::SIN_F64] = "sin";
148  Names[RTLIB::SIN_F80] = "sinl";
149  Names[RTLIB::SIN_PPCF128] = "sinl";
150  Names[RTLIB::COS_F32] = "cosf";
151  Names[RTLIB::COS_F64] = "cos";
152  Names[RTLIB::COS_F80] = "cosl";
153  Names[RTLIB::COS_PPCF128] = "cosl";
154  Names[RTLIB::POW_F32] = "powf";
155  Names[RTLIB::POW_F64] = "pow";
156  Names[RTLIB::POW_F80] = "powl";
157  Names[RTLIB::POW_PPCF128] = "powl";
158  Names[RTLIB::CEIL_F32] = "ceilf";
159  Names[RTLIB::CEIL_F64] = "ceil";
160  Names[RTLIB::CEIL_F80] = "ceill";
161  Names[RTLIB::CEIL_PPCF128] = "ceill";
162  Names[RTLIB::TRUNC_F32] = "truncf";
163  Names[RTLIB::TRUNC_F64] = "trunc";
164  Names[RTLIB::TRUNC_F80] = "truncl";
165  Names[RTLIB::TRUNC_PPCF128] = "truncl";
166  Names[RTLIB::RINT_F32] = "rintf";
167  Names[RTLIB::RINT_F64] = "rint";
168  Names[RTLIB::RINT_F80] = "rintl";
169  Names[RTLIB::RINT_PPCF128] = "rintl";
170  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
171  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
172  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
173  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
174  Names[RTLIB::FLOOR_F32] = "floorf";
175  Names[RTLIB::FLOOR_F64] = "floor";
176  Names[RTLIB::FLOOR_F80] = "floorl";
177  Names[RTLIB::FLOOR_PPCF128] = "floorl";
178  Names[RTLIB::COPYSIGN_F32] = "copysignf";
179  Names[RTLIB::COPYSIGN_F64] = "copysign";
180  Names[RTLIB::COPYSIGN_F80] = "copysignl";
181  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
182  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
183  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
184  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
185  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
186  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
187  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
188  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
189  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
190  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
191  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
192  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
193  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
194  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
195  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
196  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
197  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
198  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
199  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
200  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
201  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
202  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
203  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
204  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
205  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
206  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
207  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
208  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
209  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
210  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
211  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
212  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
213  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
214  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
215  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
216  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
217  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
218  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
219  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
220  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
221  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
222  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
223  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
224  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
225  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
226  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
227  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
228  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
229  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
230  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
231  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
232  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
233  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
234  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
235  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
236  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
237  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
238  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
239  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
240  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
241  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
242  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
243  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
244  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
245  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
246  Names[RTLIB::OEQ_F32] = "__eqsf2";
247  Names[RTLIB::OEQ_F64] = "__eqdf2";
248  Names[RTLIB::UNE_F32] = "__nesf2";
249  Names[RTLIB::UNE_F64] = "__nedf2";
250  Names[RTLIB::OGE_F32] = "__gesf2";
251  Names[RTLIB::OGE_F64] = "__gedf2";
252  Names[RTLIB::OLT_F32] = "__ltsf2";
253  Names[RTLIB::OLT_F64] = "__ltdf2";
254  Names[RTLIB::OLE_F32] = "__lesf2";
255  Names[RTLIB::OLE_F64] = "__ledf2";
256  Names[RTLIB::OGT_F32] = "__gtsf2";
257  Names[RTLIB::OGT_F64] = "__gtdf2";
258  Names[RTLIB::UO_F32] = "__unordsf2";
259  Names[RTLIB::UO_F64] = "__unorddf2";
260  Names[RTLIB::O_F32] = "__unordsf2";
261  Names[RTLIB::O_F64] = "__unorddf2";
262  Names[RTLIB::MEMCPY] = "memcpy";
263  Names[RTLIB::MEMMOVE] = "memmove";
264  Names[RTLIB::MEMSET] = "memset";
265  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
269  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
273  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
277  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
281  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
282  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
283  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
284  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
285  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
286  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
287  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
288  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
289  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
293  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
297  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
298}
299
300/// InitLibcallCallingConvs - Set default libcall CallingConvs.
301///
302static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
303  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
304    CCs[i] = CallingConv::C;
305  }
306}
307
308/// getFPEXT - Return the FPEXT_*_* value for the given types, or
309/// UNKNOWN_LIBCALL if there is none.
310RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
311  if (OpVT == MVT::f32) {
312    if (RetVT == MVT::f64)
313      return FPEXT_F32_F64;
314  }
315
316  return UNKNOWN_LIBCALL;
317}
318
319/// getFPROUND - Return the FPROUND_*_* value for the given types, or
320/// UNKNOWN_LIBCALL if there is none.
321RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
322  if (RetVT == MVT::f32) {
323    if (OpVT == MVT::f64)
324      return FPROUND_F64_F32;
325    if (OpVT == MVT::f80)
326      return FPROUND_F80_F32;
327    if (OpVT == MVT::ppcf128)
328      return FPROUND_PPCF128_F32;
329  } else if (RetVT == MVT::f64) {
330    if (OpVT == MVT::f80)
331      return FPROUND_F80_F64;
332    if (OpVT == MVT::ppcf128)
333      return FPROUND_PPCF128_F64;
334  }
335
336  return UNKNOWN_LIBCALL;
337}
338
339/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
342  if (OpVT == MVT::f32) {
343    if (RetVT == MVT::i8)
344      return FPTOSINT_F32_I8;
345    if (RetVT == MVT::i16)
346      return FPTOSINT_F32_I16;
347    if (RetVT == MVT::i32)
348      return FPTOSINT_F32_I32;
349    if (RetVT == MVT::i64)
350      return FPTOSINT_F32_I64;
351    if (RetVT == MVT::i128)
352      return FPTOSINT_F32_I128;
353  } else if (OpVT == MVT::f64) {
354    if (RetVT == MVT::i8)
355      return FPTOSINT_F64_I8;
356    if (RetVT == MVT::i16)
357      return FPTOSINT_F64_I16;
358    if (RetVT == MVT::i32)
359      return FPTOSINT_F64_I32;
360    if (RetVT == MVT::i64)
361      return FPTOSINT_F64_I64;
362    if (RetVT == MVT::i128)
363      return FPTOSINT_F64_I128;
364  } else if (OpVT == MVT::f80) {
365    if (RetVT == MVT::i32)
366      return FPTOSINT_F80_I32;
367    if (RetVT == MVT::i64)
368      return FPTOSINT_F80_I64;
369    if (RetVT == MVT::i128)
370      return FPTOSINT_F80_I128;
371  } else if (OpVT == MVT::ppcf128) {
372    if (RetVT == MVT::i32)
373      return FPTOSINT_PPCF128_I32;
374    if (RetVT == MVT::i64)
375      return FPTOSINT_PPCF128_I64;
376    if (RetVT == MVT::i128)
377      return FPTOSINT_PPCF128_I128;
378  }
379  return UNKNOWN_LIBCALL;
380}
381
382/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
383/// UNKNOWN_LIBCALL if there is none.
384RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
385  if (OpVT == MVT::f32) {
386    if (RetVT == MVT::i8)
387      return FPTOUINT_F32_I8;
388    if (RetVT == MVT::i16)
389      return FPTOUINT_F32_I16;
390    if (RetVT == MVT::i32)
391      return FPTOUINT_F32_I32;
392    if (RetVT == MVT::i64)
393      return FPTOUINT_F32_I64;
394    if (RetVT == MVT::i128)
395      return FPTOUINT_F32_I128;
396  } else if (OpVT == MVT::f64) {
397    if (RetVT == MVT::i8)
398      return FPTOUINT_F64_I8;
399    if (RetVT == MVT::i16)
400      return FPTOUINT_F64_I16;
401    if (RetVT == MVT::i32)
402      return FPTOUINT_F64_I32;
403    if (RetVT == MVT::i64)
404      return FPTOUINT_F64_I64;
405    if (RetVT == MVT::i128)
406      return FPTOUINT_F64_I128;
407  } else if (OpVT == MVT::f80) {
408    if (RetVT == MVT::i32)
409      return FPTOUINT_F80_I32;
410    if (RetVT == MVT::i64)
411      return FPTOUINT_F80_I64;
412    if (RetVT == MVT::i128)
413      return FPTOUINT_F80_I128;
414  } else if (OpVT == MVT::ppcf128) {
415    if (RetVT == MVT::i32)
416      return FPTOUINT_PPCF128_I32;
417    if (RetVT == MVT::i64)
418      return FPTOUINT_PPCF128_I64;
419    if (RetVT == MVT::i128)
420      return FPTOUINT_PPCF128_I128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
428  if (OpVT == MVT::i32) {
429    if (RetVT == MVT::f32)
430      return SINTTOFP_I32_F32;
431    else if (RetVT == MVT::f64)
432      return SINTTOFP_I32_F64;
433    else if (RetVT == MVT::f80)
434      return SINTTOFP_I32_F80;
435    else if (RetVT == MVT::ppcf128)
436      return SINTTOFP_I32_PPCF128;
437  } else if (OpVT == MVT::i64) {
438    if (RetVT == MVT::f32)
439      return SINTTOFP_I64_F32;
440    else if (RetVT == MVT::f64)
441      return SINTTOFP_I64_F64;
442    else if (RetVT == MVT::f80)
443      return SINTTOFP_I64_F80;
444    else if (RetVT == MVT::ppcf128)
445      return SINTTOFP_I64_PPCF128;
446  } else if (OpVT == MVT::i128) {
447    if (RetVT == MVT::f32)
448      return SINTTOFP_I128_F32;
449    else if (RetVT == MVT::f64)
450      return SINTTOFP_I128_F64;
451    else if (RetVT == MVT::f80)
452      return SINTTOFP_I128_F80;
453    else if (RetVT == MVT::ppcf128)
454      return SINTTOFP_I128_PPCF128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
461RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
462  if (OpVT == MVT::i32) {
463    if (RetVT == MVT::f32)
464      return UINTTOFP_I32_F32;
465    else if (RetVT == MVT::f64)
466      return UINTTOFP_I32_F64;
467    else if (RetVT == MVT::f80)
468      return UINTTOFP_I32_F80;
469    else if (RetVT == MVT::ppcf128)
470      return UINTTOFP_I32_PPCF128;
471  } else if (OpVT == MVT::i64) {
472    if (RetVT == MVT::f32)
473      return UINTTOFP_I64_F32;
474    else if (RetVT == MVT::f64)
475      return UINTTOFP_I64_F64;
476    else if (RetVT == MVT::f80)
477      return UINTTOFP_I64_F80;
478    else if (RetVT == MVT::ppcf128)
479      return UINTTOFP_I64_PPCF128;
480  } else if (OpVT == MVT::i128) {
481    if (RetVT == MVT::f32)
482      return UINTTOFP_I128_F32;
483    else if (RetVT == MVT::f64)
484      return UINTTOFP_I128_F64;
485    else if (RetVT == MVT::f80)
486      return UINTTOFP_I128_F80;
487    else if (RetVT == MVT::ppcf128)
488      return UINTTOFP_I128_PPCF128;
489  }
490  return UNKNOWN_LIBCALL;
491}
492
493/// InitCmpLibcallCCs - Set default comparison libcall CC.
494///
495static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499  CCs[RTLIB::UNE_F32] = ISD::SETNE;
500  CCs[RTLIB::UNE_F64] = ISD::SETNE;
501  CCs[RTLIB::OGE_F32] = ISD::SETGE;
502  CCs[RTLIB::OGE_F64] = ISD::SETGE;
503  CCs[RTLIB::OLT_F32] = ISD::SETLT;
504  CCs[RTLIB::OLT_F64] = ISD::SETLT;
505  CCs[RTLIB::OLE_F32] = ISD::SETLE;
506  CCs[RTLIB::OLE_F64] = ISD::SETLE;
507  CCs[RTLIB::OGT_F32] = ISD::SETGT;
508  CCs[RTLIB::OGT_F64] = ISD::SETGT;
509  CCs[RTLIB::UO_F32] = ISD::SETNE;
510  CCs[RTLIB::UO_F64] = ISD::SETNE;
511  CCs[RTLIB::O_F32] = ISD::SETEQ;
512  CCs[RTLIB::O_F64] = ISD::SETEQ;
513}
514
515/// NOTE: The constructor takes ownership of TLOF.
516TargetLowering::TargetLowering(const TargetMachine &tm,
517                               const TargetLoweringObjectFile *tlof)
518  : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
519  // All operations default to being supported.
520  memset(OpActions, 0, sizeof(OpActions));
521  memset(LoadExtActions, 0, sizeof(LoadExtActions));
522  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
523  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
524  memset(CondCodeActions, 0, sizeof(CondCodeActions));
525
526  // Set default actions for various operations.
527  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
528    // Default all indexed load / store to expand.
529    for (unsigned IM = (unsigned)ISD::PRE_INC;
530         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
531      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
532      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
533    }
534
535    // These operations default to expand.
536    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
538  }
539
540  // Most targets ignore the @llvm.prefetch intrinsic.
541  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542
543  // ConstantFP nodes default to expand.  Targets can either change this to
544  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
545  // to optimize expansions for certain constants.
546  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
548  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
549  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
550
551  // These library functions default to expand.
552  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
553  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
554  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
555  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
556  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
557  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
558  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
559  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
560  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
561  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
562  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
563  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
564  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
565  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
566  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
567  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
568  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
569  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
570  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
571  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
572  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
573  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
574  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
575  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
576  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
577  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
578  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
579  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
580  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
581  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
582
583  // Default ISD::TRAP to expand (which turns it into abort).
584  setOperationAction(ISD::TRAP, MVT::Other, Expand);
585
586  IsLittleEndian = TD->isLittleEndian();
587  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
588  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
589  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
590  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
591  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
592    = maxStoresPerMemmoveOptSize = 4;
593  benefitFromCodePlacementOpt = false;
594  UseUnderscoreSetJmp = false;
595  UseUnderscoreLongJmp = false;
596  SelectIsExpensive = false;
597  IntDivIsCheap = false;
598  Pow2DivIsCheap = false;
599  JumpIsExpensive = false;
600  predictableSelectIsExpensive = false;
601  StackPointerRegisterToSaveRestore = 0;
602  ExceptionPointerRegister = 0;
603  ExceptionSelectorRegister = 0;
604  BooleanContents = UndefinedBooleanContent;
605  BooleanVectorContents = UndefinedBooleanContent;
606  SchedPreferenceInfo = Sched::ILP;
607  JumpBufSize = 0;
608  JumpBufAlignment = 0;
609  MinFunctionAlignment = 0;
610  PrefFunctionAlignment = 0;
611  PrefLoopAlignment = 0;
612  MinStackArgumentAlignment = 1;
613  ShouldFoldAtomicFences = false;
614  InsertFencesForAtomic = false;
615  SupportJumpTables = true;
616  MinimumJumpTableEntries = 4;
617
618  InitLibcallNames(LibcallRoutineNames);
619  InitCmpLibcallCCs(CmpLibcallCCs);
620  InitLibcallCallingConvs(LibcallCallingConvs);
621}
622
623TargetLowering::~TargetLowering() {
624  delete &TLOF;
625}
626
627MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
628  return MVT::getIntegerVT(8*TD->getPointerSize());
629}
630
631/// canOpTrap - Returns true if the operation can trap for the value type.
632/// VT must be a legal type.
633bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
634  assert(isTypeLegal(VT));
635  switch (Op) {
636  default:
637    return false;
638  case ISD::FDIV:
639  case ISD::FREM:
640  case ISD::SDIV:
641  case ISD::UDIV:
642  case ISD::SREM:
643  case ISD::UREM:
644    return true;
645  }
646}
647
648
649static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
650                                          unsigned &NumIntermediates,
651                                          EVT &RegisterVT,
652                                          TargetLowering *TLI) {
653  // Figure out the right, legal destination reg to copy into.
654  unsigned NumElts = VT.getVectorNumElements();
655  MVT EltTy = VT.getVectorElementType();
656
657  unsigned NumVectorRegs = 1;
658
659  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
660  // could break down into LHS/RHS like LegalizeDAG does.
661  if (!isPowerOf2_32(NumElts)) {
662    NumVectorRegs = NumElts;
663    NumElts = 1;
664  }
665
666  // Divide the input until we get to a supported size.  This will always
667  // end with a scalar if the target doesn't support vectors.
668  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
669    NumElts >>= 1;
670    NumVectorRegs <<= 1;
671  }
672
673  NumIntermediates = NumVectorRegs;
674
675  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
676  if (!TLI->isTypeLegal(NewVT))
677    NewVT = EltTy;
678  IntermediateVT = NewVT;
679
680  unsigned NewVTSize = NewVT.getSizeInBits();
681
682  // Convert sizes such as i33 to i64.
683  if (!isPowerOf2_32(NewVTSize))
684    NewVTSize = NextPowerOf2(NewVTSize);
685
686  EVT DestVT = TLI->getRegisterType(NewVT);
687  RegisterVT = DestVT;
688  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
689    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
690
691  // Otherwise, promotion or legal types use the same number of registers as
692  // the vector decimated to the appropriate level.
693  return NumVectorRegs;
694}
695
696/// isLegalRC - Return true if the value types that can be represented by the
697/// specified register class are all legal.
698bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
699  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
700       I != E; ++I) {
701    if (isTypeLegal(*I))
702      return true;
703  }
704  return false;
705}
706
707/// findRepresentativeClass - Return the largest legal super-reg register class
708/// of the register class for the specified type and its associated "cost".
709std::pair<const TargetRegisterClass*, uint8_t>
710TargetLowering::findRepresentativeClass(EVT VT) const {
711  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
712  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
713  if (!RC)
714    return std::make_pair(RC, 0);
715
716  // Compute the set of all super-register classes.
717  BitVector SuperRegRC(TRI->getNumRegClasses());
718  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
719    SuperRegRC.setBitsInMask(RCI.getMask());
720
721  // Find the first legal register class with the largest spill size.
722  const TargetRegisterClass *BestRC = RC;
723  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
724    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
725    // We want the largest possible spill size.
726    if (SuperRC->getSize() <= BestRC->getSize())
727      continue;
728    if (!isLegalRC(SuperRC))
729      continue;
730    BestRC = SuperRC;
731  }
732  return std::make_pair(BestRC, 1);
733}
734
735/// computeRegisterProperties - Once all of the register classes are added,
736/// this allows us to compute derived properties we expose.
737void TargetLowering::computeRegisterProperties() {
738  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
739         "Too many value types for ValueTypeActions to hold!");
740
741  // Everything defaults to needing one register.
742  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
743    NumRegistersForVT[i] = 1;
744    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
745  }
746  // ...except isVoid, which doesn't need any registers.
747  NumRegistersForVT[MVT::isVoid] = 0;
748
749  // Find the largest integer register class.
750  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
751  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
752    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
753
754  // Every integer value type larger than this largest register takes twice as
755  // many registers to represent as the previous ValueType.
756  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
757    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
758    if (!ExpandedVT.isInteger())
759      break;
760    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
761    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
762    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
763    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
764  }
765
766  // Inspect all of the ValueType's smaller than the largest integer
767  // register to see which ones need promotion.
768  unsigned LegalIntReg = LargestIntReg;
769  for (unsigned IntReg = LargestIntReg - 1;
770       IntReg >= (unsigned)MVT::i1; --IntReg) {
771    EVT IVT = (MVT::SimpleValueType)IntReg;
772    if (isTypeLegal(IVT)) {
773      LegalIntReg = IntReg;
774    } else {
775      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
776        (const MVT::SimpleValueType)LegalIntReg;
777      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
778    }
779  }
780
781  // ppcf128 type is really two f64's.
782  if (!isTypeLegal(MVT::ppcf128)) {
783    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
784    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
785    TransformToType[MVT::ppcf128] = MVT::f64;
786    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
787  }
788
789  // Decide how to handle f64. If the target does not have native f64 support,
790  // expand it to i64 and we will be generating soft float library calls.
791  if (!isTypeLegal(MVT::f64)) {
792    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
793    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
794    TransformToType[MVT::f64] = MVT::i64;
795    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
796  }
797
798  // Decide how to handle f32. If the target does not have native support for
799  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
800  if (!isTypeLegal(MVT::f32)) {
801    if (isTypeLegal(MVT::f64)) {
802      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
803      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
804      TransformToType[MVT::f32] = MVT::f64;
805      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
806    } else {
807      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
808      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
809      TransformToType[MVT::f32] = MVT::i32;
810      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
811    }
812  }
813
814  // Loop over all of the vector value types to see which need transformations.
815  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
816       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
817    MVT VT = (MVT::SimpleValueType)i;
818    if (isTypeLegal(VT)) continue;
819
820    // Determine if there is a legal wider type.  If so, we should promote to
821    // that wider vector type.
822    EVT EltVT = VT.getVectorElementType();
823    unsigned NElts = VT.getVectorNumElements();
824    if (NElts != 1) {
825      bool IsLegalWiderType = false;
826      // First try to promote the elements of integer vectors. If no legal
827      // promotion was found, fallback to the widen-vector method.
828      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
829        EVT SVT = (MVT::SimpleValueType)nVT;
830        // Promote vectors of integers to vectors with the same number
831        // of elements, with a wider element type.
832        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
833            && SVT.getVectorNumElements() == NElts &&
834            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
835          TransformToType[i] = SVT;
836          RegisterTypeForVT[i] = SVT;
837          NumRegistersForVT[i] = 1;
838          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
839          IsLegalWiderType = true;
840          break;
841        }
842      }
843
844      if (IsLegalWiderType) continue;
845
846      // Try to widen the vector.
847      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
848        EVT SVT = (MVT::SimpleValueType)nVT;
849        if (SVT.getVectorElementType() == EltVT &&
850            SVT.getVectorNumElements() > NElts &&
851            isTypeLegal(SVT)) {
852          TransformToType[i] = SVT;
853          RegisterTypeForVT[i] = SVT;
854          NumRegistersForVT[i] = 1;
855          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
856          IsLegalWiderType = true;
857          break;
858        }
859      }
860      if (IsLegalWiderType) continue;
861    }
862
863    MVT IntermediateVT;
864    EVT RegisterVT;
865    unsigned NumIntermediates;
866    NumRegistersForVT[i] =
867      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
868                                RegisterVT, this);
869    RegisterTypeForVT[i] = RegisterVT;
870
871    EVT NVT = VT.getPow2VectorType();
872    if (NVT == VT) {
873      // Type is already a power of 2.  The default action is to split.
874      TransformToType[i] = MVT::Other;
875      unsigned NumElts = VT.getVectorNumElements();
876      ValueTypeActions.setTypeAction(VT,
877            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
878    } else {
879      TransformToType[i] = NVT;
880      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
881    }
882  }
883
884  // Determine the 'representative' register class for each value type.
885  // An representative register class is the largest (meaning one which is
886  // not a sub-register class / subreg register class) legal register class for
887  // a group of value types. For example, on i386, i8, i16, and i32
888  // representative would be GR32; while on x86_64 it's GR64.
889  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
890    const TargetRegisterClass* RRC;
891    uint8_t Cost;
892    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
893    RepRegClassForVT[i] = RRC;
894    RepRegClassCostForVT[i] = Cost;
895  }
896}
897
898const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
899  return NULL;
900}
901
902EVT TargetLowering::getSetCCResultType(EVT VT) const {
903  assert(!VT.isVector() && "No default SetCC type for vectors!");
904  return PointerTy.SimpleTy;
905}
906
907MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
908  return MVT::i32; // return the default value
909}
910
911/// getVectorTypeBreakdown - Vector types are broken down into some number of
912/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
913/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
914/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
915///
916/// This method returns the number of registers needed, and the VT for each
917/// register.  It also returns the VT and quantity of the intermediate values
918/// before they are promoted/expanded.
919///
920unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
921                                                EVT &IntermediateVT,
922                                                unsigned &NumIntermediates,
923                                                EVT &RegisterVT) const {
924  unsigned NumElts = VT.getVectorNumElements();
925
926  // If there is a wider vector type with the same element type as this one,
927  // or a promoted vector type that has the same number of elements which
928  // are wider, then we should convert to that legal vector type.
929  // This handles things like <2 x float> -> <4 x float> and
930  // <4 x i1> -> <4 x i32>.
931  LegalizeTypeAction TA = getTypeAction(Context, VT);
932  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
933    RegisterVT = getTypeToTransformTo(Context, VT);
934    if (isTypeLegal(RegisterVT)) {
935      IntermediateVT = RegisterVT;
936      NumIntermediates = 1;
937      return 1;
938    }
939  }
940
941  // Figure out the right, legal destination reg to copy into.
942  EVT EltTy = VT.getVectorElementType();
943
944  unsigned NumVectorRegs = 1;
945
946  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
947  // could break down into LHS/RHS like LegalizeDAG does.
948  if (!isPowerOf2_32(NumElts)) {
949    NumVectorRegs = NumElts;
950    NumElts = 1;
951  }
952
953  // Divide the input until we get to a supported size.  This will always
954  // end with a scalar if the target doesn't support vectors.
955  while (NumElts > 1 && !isTypeLegal(
956                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
957    NumElts >>= 1;
958    NumVectorRegs <<= 1;
959  }
960
961  NumIntermediates = NumVectorRegs;
962
963  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
964  if (!isTypeLegal(NewVT))
965    NewVT = EltTy;
966  IntermediateVT = NewVT;
967
968  EVT DestVT = getRegisterType(Context, NewVT);
969  RegisterVT = DestVT;
970  unsigned NewVTSize = NewVT.getSizeInBits();
971
972  // Convert sizes such as i33 to i64.
973  if (!isPowerOf2_32(NewVTSize))
974    NewVTSize = NextPowerOf2(NewVTSize);
975
976  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
977    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
978
979  // Otherwise, promotion or legal types use the same number of registers as
980  // the vector decimated to the appropriate level.
981  return NumVectorRegs;
982}
983
984/// Get the EVTs and ArgFlags collections that represent the legalized return
985/// type of the given function.  This does not require a DAG or a return value,
986/// and is suitable for use before any DAGs for the function are constructed.
987/// TODO: Move this out of TargetLowering.cpp.
988void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
989                         SmallVectorImpl<ISD::OutputArg> &Outs,
990                         const TargetLowering &TLI) {
991  SmallVector<EVT, 4> ValueVTs;
992  ComputeValueVTs(TLI, ReturnType, ValueVTs);
993  unsigned NumValues = ValueVTs.size();
994  if (NumValues == 0) return;
995
996  for (unsigned j = 0, f = NumValues; j != f; ++j) {
997    EVT VT = ValueVTs[j];
998    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
999
1000    if (attr.hasAttribute(Attributes::SExt))
1001      ExtendKind = ISD::SIGN_EXTEND;
1002    else if (attr.hasAttribute(Attributes::ZExt))
1003      ExtendKind = ISD::ZERO_EXTEND;
1004
1005    // FIXME: C calling convention requires the return type to be promoted to
1006    // at least 32-bit. But this is not necessary for non-C calling
1007    // conventions. The frontend should mark functions whose return values
1008    // require promoting with signext or zeroext attributes.
1009    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1010      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1011      if (VT.bitsLT(MinVT))
1012        VT = MinVT;
1013    }
1014
1015    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1016    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1017
1018    // 'inreg' on function refers to return value
1019    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1020    if (attr.hasAttribute(Attributes::InReg))
1021      Flags.setInReg();
1022
1023    // Propagate extension type if any
1024    if (attr.hasAttribute(Attributes::SExt))
1025      Flags.setSExt();
1026    else if (attr.hasAttribute(Attributes::ZExt))
1027      Flags.setZExt();
1028
1029    for (unsigned i = 0; i < NumParts; ++i)
1030      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1031  }
1032}
1033
1034/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1035/// function arguments in the caller parameter area.  This is the actual
1036/// alignment, not its logarithm.
1037unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1038  return TD->getCallFrameTypeAlignment(Ty);
1039}
1040
1041/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1042/// current function.  The returned value is a member of the
1043/// MachineJumpTableInfo::JTEntryKind enum.
1044unsigned TargetLowering::getJumpTableEncoding() const {
1045  // In non-pic modes, just use the address of a block.
1046  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1047    return MachineJumpTableInfo::EK_BlockAddress;
1048
1049  // In PIC mode, if the target supports a GPRel32 directive, use it.
1050  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1051    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1052
1053  // Otherwise, use a label difference.
1054  return MachineJumpTableInfo::EK_LabelDifference32;
1055}
1056
1057SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1058                                                 SelectionDAG &DAG) const {
1059  // If our PIC model is GP relative, use the global offset table as the base.
1060  unsigned JTEncoding = getJumpTableEncoding();
1061
1062  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
1063      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
1064    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1065
1066  return Table;
1067}
1068
1069/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1070/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1071/// MCExpr.
1072const MCExpr *
1073TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1074                                             unsigned JTI,MCContext &Ctx) const{
1075  // The normal PIC reloc base is the label at the start of the jump table.
1076  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1077}
1078
1079bool
1080TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1081  // Assume that everything is safe in static mode.
1082  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1083    return true;
1084
1085  // In dynamic-no-pic mode, assume that known defined values are safe.
1086  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1087      GA &&
1088      !GA->getGlobal()->isDeclaration() &&
1089      !GA->getGlobal()->isWeakForLinker())
1090    return true;
1091
1092  // Otherwise assume nothing is safe.
1093  return false;
1094}
1095
1096//===----------------------------------------------------------------------===//
1097//  Optimization Methods
1098//===----------------------------------------------------------------------===//
1099
1100/// ShrinkDemandedConstant - Check to see if the specified operand of the
1101/// specified instruction is a constant integer.  If so, check to see if there
1102/// are any bits set in the constant that are not demanded.  If so, shrink the
1103/// constant and return true.
1104bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1105                                                        const APInt &Demanded) {
1106  DebugLoc dl = Op.getDebugLoc();
1107
1108  // FIXME: ISD::SELECT, ISD::SELECT_CC
1109  switch (Op.getOpcode()) {
1110  default: break;
1111  case ISD::XOR:
1112  case ISD::AND:
1113  case ISD::OR: {
1114    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1115    if (!C) return false;
1116
1117    if (Op.getOpcode() == ISD::XOR &&
1118        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1119      return false;
1120
1121    // if we can expand it to have all bits set, do it
1122    if (C->getAPIntValue().intersects(~Demanded)) {
1123      EVT VT = Op.getValueType();
1124      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1125                                DAG.getConstant(Demanded &
1126                                                C->getAPIntValue(),
1127                                                VT));
1128      return CombineTo(Op, New);
1129    }
1130
1131    break;
1132  }
1133  }
1134
1135  return false;
1136}
1137
1138/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1139/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1140/// cast, but it could be generalized for targets with other types of
1141/// implicit widening casts.
1142bool
1143TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1144                                                    unsigned BitWidth,
1145                                                    const APInt &Demanded,
1146                                                    DebugLoc dl) {
1147  assert(Op.getNumOperands() == 2 &&
1148         "ShrinkDemandedOp only supports binary operators!");
1149  assert(Op.getNode()->getNumValues() == 1 &&
1150         "ShrinkDemandedOp only supports nodes with one result!");
1151
1152  // Don't do this if the node has another user, which may require the
1153  // full value.
1154  if (!Op.getNode()->hasOneUse())
1155    return false;
1156
1157  // Search for the smallest integer type with free casts to and from
1158  // Op's type. For expedience, just check power-of-2 integer types.
1159  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1160  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1161  if (!isPowerOf2_32(SmallVTBits))
1162    SmallVTBits = NextPowerOf2(SmallVTBits);
1163  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1164    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1165    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1166        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1167      // We found a type with free casts.
1168      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1169                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1170                                          Op.getNode()->getOperand(0)),
1171                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1172                                          Op.getNode()->getOperand(1)));
1173      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1174      return CombineTo(Op, Z);
1175    }
1176  }
1177  return false;
1178}
1179
1180/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1181/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1182/// use this information to simplify Op, create a new simplified DAG node and
1183/// return true, returning the original and new nodes in Old and New. Otherwise,
1184/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1185/// the expression (used to simplify the caller).  The KnownZero/One bits may
1186/// only be accurate for those bits in the DemandedMask.
1187bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1188                                          const APInt &DemandedMask,
1189                                          APInt &KnownZero,
1190                                          APInt &KnownOne,
1191                                          TargetLoweringOpt &TLO,
1192                                          unsigned Depth) const {
1193  unsigned BitWidth = DemandedMask.getBitWidth();
1194  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1195         "Mask size mismatches value type size!");
1196  APInt NewMask = DemandedMask;
1197  DebugLoc dl = Op.getDebugLoc();
1198
1199  // Don't know anything.
1200  KnownZero = KnownOne = APInt(BitWidth, 0);
1201
1202  // Other users may use these bits.
1203  if (!Op.getNode()->hasOneUse()) {
1204    if (Depth != 0) {
1205      // If not at the root, Just compute the KnownZero/KnownOne bits to
1206      // simplify things downstream.
1207      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1208      return false;
1209    }
1210    // If this is the root being simplified, allow it to have multiple uses,
1211    // just set the NewMask to all bits.
1212    NewMask = APInt::getAllOnesValue(BitWidth);
1213  } else if (DemandedMask == 0) {
1214    // Not demanding any bits from Op.
1215    if (Op.getOpcode() != ISD::UNDEF)
1216      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1217    return false;
1218  } else if (Depth == 6) {        // Limit search depth.
1219    return false;
1220  }
1221
1222  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1223  switch (Op.getOpcode()) {
1224  case ISD::Constant:
1225    // We know all of the bits for a constant!
1226    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1227    KnownZero = ~KnownOne;
1228    return false;   // Don't fall through, will infinitely loop.
1229  case ISD::AND:
1230    // If the RHS is a constant, check to see if the LHS would be zero without
1231    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1232    // simplify the LHS, here we're using information from the LHS to simplify
1233    // the RHS.
1234    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1235      APInt LHSZero, LHSOne;
1236      // Do not increment Depth here; that can cause an infinite loop.
1237      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1238      // If the LHS already has zeros where RHSC does, this and is dead.
1239      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1240        return TLO.CombineTo(Op, Op.getOperand(0));
1241      // If any of the set bits in the RHS are known zero on the LHS, shrink
1242      // the constant.
1243      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1244        return true;
1245    }
1246
1247    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1248                             KnownOne, TLO, Depth+1))
1249      return true;
1250    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1251    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1252                             KnownZero2, KnownOne2, TLO, Depth+1))
1253      return true;
1254    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1255
1256    // If all of the demanded bits are known one on one side, return the other.
1257    // These bits cannot contribute to the result of the 'and'.
1258    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1259      return TLO.CombineTo(Op, Op.getOperand(0));
1260    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1261      return TLO.CombineTo(Op, Op.getOperand(1));
1262    // If all of the demanded bits in the inputs are known zeros, return zero.
1263    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1264      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1265    // If the RHS is a constant, see if we can simplify it.
1266    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1267      return true;
1268    // If the operation can be done in a smaller type, do so.
1269    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1270      return true;
1271
1272    // Output known-1 bits are only known if set in both the LHS & RHS.
1273    KnownOne &= KnownOne2;
1274    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1275    KnownZero |= KnownZero2;
1276    break;
1277  case ISD::OR:
1278    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1279                             KnownOne, TLO, Depth+1))
1280      return true;
1281    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1283                             KnownZero2, KnownOne2, TLO, Depth+1))
1284      return true;
1285    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1286
1287    // If all of the demanded bits are known zero on one side, return the other.
1288    // These bits cannot contribute to the result of the 'or'.
1289    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1290      return TLO.CombineTo(Op, Op.getOperand(0));
1291    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1292      return TLO.CombineTo(Op, Op.getOperand(1));
1293    // If all of the potentially set bits on one side are known to be set on
1294    // the other side, just use the 'other' side.
1295    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1296      return TLO.CombineTo(Op, Op.getOperand(0));
1297    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1298      return TLO.CombineTo(Op, Op.getOperand(1));
1299    // If the RHS is a constant, see if we can simplify it.
1300    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1301      return true;
1302    // If the operation can be done in a smaller type, do so.
1303    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1304      return true;
1305
1306    // Output known-0 bits are only known if clear in both the LHS & RHS.
1307    KnownZero &= KnownZero2;
1308    // Output known-1 are known to be set if set in either the LHS | RHS.
1309    KnownOne |= KnownOne2;
1310    break;
1311  case ISD::XOR:
1312    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1313                             KnownOne, TLO, Depth+1))
1314      return true;
1315    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1317                             KnownOne2, TLO, Depth+1))
1318      return true;
1319    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1320
1321    // If all of the demanded bits are known zero on one side, return the other.
1322    // These bits cannot contribute to the result of the 'xor'.
1323    if ((KnownZero & NewMask) == NewMask)
1324      return TLO.CombineTo(Op, Op.getOperand(0));
1325    if ((KnownZero2 & NewMask) == NewMask)
1326      return TLO.CombineTo(Op, Op.getOperand(1));
1327    // If the operation can be done in a smaller type, do so.
1328    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1329      return true;
1330
1331    // If all of the unknown bits are known to be zero on one side or the other
1332    // (but not both) turn this into an *inclusive* or.
1333    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1334    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1335      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1336                                               Op.getOperand(0),
1337                                               Op.getOperand(1)));
1338
1339    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1340    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1341    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1342    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1343
1344    // If all of the demanded bits on one side are known, and all of the set
1345    // bits on that side are also known to be set on the other side, turn this
1346    // into an AND, as we know the bits will be cleared.
1347    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1348    // NB: it is okay if more bits are known than are requested
1349    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
1350      if (KnownOne == KnownOne2) { // set bits are the same on both sides
1351        EVT VT = Op.getValueType();
1352        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1353        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1354                                                 Op.getOperand(0), ANDC));
1355      }
1356    }
1357
1358    // If the RHS is a constant, see if we can simplify it.
1359    // for XOR, we prefer to force bits to 1 if they will make a -1.
1360    // if we can't force bits, try to shrink constant
1361    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1362      APInt Expanded = C->getAPIntValue() | (~NewMask);
1363      // if we can expand it to have all bits set, do it
1364      if (Expanded.isAllOnesValue()) {
1365        if (Expanded != C->getAPIntValue()) {
1366          EVT VT = Op.getValueType();
1367          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1368                                          TLO.DAG.getConstant(Expanded, VT));
1369          return TLO.CombineTo(Op, New);
1370        }
1371        // if it already has all the bits set, nothing to change
1372        // but don't shrink either!
1373      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1374        return true;
1375      }
1376    }
1377
1378    KnownZero = KnownZeroOut;
1379    KnownOne  = KnownOneOut;
1380    break;
1381  case ISD::SELECT:
1382    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1383                             KnownOne, TLO, Depth+1))
1384      return true;
1385    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1386                             KnownOne2, TLO, Depth+1))
1387      return true;
1388    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1390
1391    // If the operands are constants, see if we can simplify them.
1392    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1393      return true;
1394
1395    // Only known if known in both the LHS and RHS.
1396    KnownOne &= KnownOne2;
1397    KnownZero &= KnownZero2;
1398    break;
1399  case ISD::SELECT_CC:
1400    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1401                             KnownOne, TLO, Depth+1))
1402      return true;
1403    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1404                             KnownOne2, TLO, Depth+1))
1405      return true;
1406    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1407    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1408
1409    // If the operands are constants, see if we can simplify them.
1410    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1411      return true;
1412
1413    // Only known if known in both the LHS and RHS.
1414    KnownOne &= KnownOne2;
1415    KnownZero &= KnownZero2;
1416    break;
1417  case ISD::SHL:
1418    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1419      unsigned ShAmt = SA->getZExtValue();
1420      SDValue InOp = Op.getOperand(0);
1421
1422      // If the shift count is an invalid immediate, don't do anything.
1423      if (ShAmt >= BitWidth)
1424        break;
1425
1426      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1427      // single shift.  We can do this if the bottom bits (which are shifted
1428      // out) are never demanded.
1429      if (InOp.getOpcode() == ISD::SRL &&
1430          isa<ConstantSDNode>(InOp.getOperand(1))) {
1431        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1432          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1433          unsigned Opc = ISD::SHL;
1434          int Diff = ShAmt-C1;
1435          if (Diff < 0) {
1436            Diff = -Diff;
1437            Opc = ISD::SRL;
1438          }
1439
1440          SDValue NewSA =
1441            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1442          EVT VT = Op.getValueType();
1443          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1444                                                   InOp.getOperand(0), NewSA));
1445        }
1446      }
1447
1448      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1449                               KnownZero, KnownOne, TLO, Depth+1))
1450        return true;
1451
1452      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1453      // are not demanded. This will likely allow the anyext to be folded away.
1454      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1455        SDValue InnerOp = InOp.getNode()->getOperand(0);
1456        EVT InnerVT = InnerOp.getValueType();
1457        unsigned InnerBits = InnerVT.getSizeInBits();
1458        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1459            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1460          EVT ShTy = getShiftAmountTy(InnerVT);
1461          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1462            ShTy = InnerVT;
1463          SDValue NarrowShl =
1464            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1465                            TLO.DAG.getConstant(ShAmt, ShTy));
1466          return
1467            TLO.CombineTo(Op,
1468                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1469                                          NarrowShl));
1470        }
1471      }
1472
1473      KnownZero <<= SA->getZExtValue();
1474      KnownOne  <<= SA->getZExtValue();
1475      // low bits known zero.
1476      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1477    }
1478    break;
1479  case ISD::SRL:
1480    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481      EVT VT = Op.getValueType();
1482      unsigned ShAmt = SA->getZExtValue();
1483      unsigned VTSize = VT.getSizeInBits();
1484      SDValue InOp = Op.getOperand(0);
1485
1486      // If the shift count is an invalid immediate, don't do anything.
1487      if (ShAmt >= BitWidth)
1488        break;
1489
1490      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1491      // single shift.  We can do this if the top bits (which are shifted out)
1492      // are never demanded.
1493      if (InOp.getOpcode() == ISD::SHL &&
1494          isa<ConstantSDNode>(InOp.getOperand(1))) {
1495        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1496          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1497          unsigned Opc = ISD::SRL;
1498          int Diff = ShAmt-C1;
1499          if (Diff < 0) {
1500            Diff = -Diff;
1501            Opc = ISD::SHL;
1502          }
1503
1504          SDValue NewSA =
1505            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1506          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1507                                                   InOp.getOperand(0), NewSA));
1508        }
1509      }
1510
1511      // Compute the new bits that are at the top now.
1512      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1513                               KnownZero, KnownOne, TLO, Depth+1))
1514        return true;
1515      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516      KnownZero = KnownZero.lshr(ShAmt);
1517      KnownOne  = KnownOne.lshr(ShAmt);
1518
1519      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1520      KnownZero |= HighBits;  // High bits known zero.
1521    }
1522    break;
1523  case ISD::SRA:
1524    // If this is an arithmetic shift right and only the low-bit is set, we can
1525    // always convert this into a logical shr, even if the shift amount is
1526    // variable.  The low bit of the shift cannot be an input sign bit unless
1527    // the shift amount is >= the size of the datatype, which is undefined.
1528    if (NewMask == 1)
1529      return TLO.CombineTo(Op,
1530                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1531                                           Op.getOperand(0), Op.getOperand(1)));
1532
1533    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1534      EVT VT = Op.getValueType();
1535      unsigned ShAmt = SA->getZExtValue();
1536
1537      // If the shift count is an invalid immediate, don't do anything.
1538      if (ShAmt >= BitWidth)
1539        break;
1540
1541      APInt InDemandedMask = (NewMask << ShAmt);
1542
1543      // If any of the demanded bits are produced by the sign extension, we also
1544      // demand the input sign bit.
1545      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1546      if (HighBits.intersects(NewMask))
1547        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1548
1549      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1550                               KnownZero, KnownOne, TLO, Depth+1))
1551        return true;
1552      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553      KnownZero = KnownZero.lshr(ShAmt);
1554      KnownOne  = KnownOne.lshr(ShAmt);
1555
1556      // Handle the sign bit, adjusted to where it is now in the mask.
1557      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1558
1559      // If the input sign bit is known to be zero, or if none of the top bits
1560      // are demanded, turn this into an unsigned shift right.
1561      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1562        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1563                                                 Op.getOperand(0),
1564                                                 Op.getOperand(1)));
1565      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1566        KnownOne |= HighBits;
1567      }
1568    }
1569    break;
1570  case ISD::SIGN_EXTEND_INREG: {
1571    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1572
1573    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1574    // If we only care about the highest bit, don't bother shifting right.
1575    if (MsbMask == DemandedMask) {
1576      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1577      SDValue InOp = Op.getOperand(0);
1578
1579      // Compute the correct shift amount type, which must be getShiftAmountTy
1580      // for scalar types after legalization.
1581      EVT ShiftAmtTy = Op.getValueType();
1582      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1583        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1584
1585      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1586      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1587                                            Op.getValueType(), InOp, ShiftAmt));
1588    }
1589
1590    // Sign extension.  Compute the demanded bits in the result that are not
1591    // present in the input.
1592    APInt NewBits =
1593      APInt::getHighBitsSet(BitWidth,
1594                            BitWidth - ExVT.getScalarType().getSizeInBits());
1595
1596    // If none of the extended bits are demanded, eliminate the sextinreg.
1597    if ((NewBits & NewMask) == 0)
1598      return TLO.CombineTo(Op, Op.getOperand(0));
1599
1600    APInt InSignBit =
1601      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1602    APInt InputDemandedBits =
1603      APInt::getLowBitsSet(BitWidth,
1604                           ExVT.getScalarType().getSizeInBits()) &
1605      NewMask;
1606
1607    // Since the sign extended bits are demanded, we know that the sign
1608    // bit is demanded.
1609    InputDemandedBits |= InSignBit;
1610
1611    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1612                             KnownZero, KnownOne, TLO, Depth+1))
1613      return true;
1614    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615
1616    // If the sign bit of the input is known set or clear, then we know the
1617    // top bits of the result.
1618
1619    // If the input sign bit is known zero, convert this into a zero extension.
1620    if (KnownZero.intersects(InSignBit))
1621      return TLO.CombineTo(Op,
1622                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1623
1624    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1625      KnownOne |= NewBits;
1626      KnownZero &= ~NewBits;
1627    } else {                       // Input sign bit unknown
1628      KnownZero &= ~NewBits;
1629      KnownOne &= ~NewBits;
1630    }
1631    break;
1632  }
1633  case ISD::ZERO_EXTEND: {
1634    unsigned OperandBitWidth =
1635      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636    APInt InMask = NewMask.trunc(OperandBitWidth);
1637
1638    // If none of the top bits are demanded, convert this into an any_extend.
1639    APInt NewBits =
1640      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1641    if (!NewBits.intersects(NewMask))
1642      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1643                                               Op.getValueType(),
1644                                               Op.getOperand(0)));
1645
1646    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1647                             KnownZero, KnownOne, TLO, Depth+1))
1648      return true;
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    KnownZero = KnownZero.zext(BitWidth);
1651    KnownOne = KnownOne.zext(BitWidth);
1652    KnownZero |= NewBits;
1653    break;
1654  }
1655  case ISD::SIGN_EXTEND: {
1656    EVT InVT = Op.getOperand(0).getValueType();
1657    unsigned InBits = InVT.getScalarType().getSizeInBits();
1658    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1659    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1660    APInt NewBits   = ~InMask & NewMask;
1661
1662    // If none of the top bits are demanded, convert this into an any_extend.
1663    if (NewBits == 0)
1664      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1665                                              Op.getValueType(),
1666                                              Op.getOperand(0)));
1667
1668    // Since some of the sign extended bits are demanded, we know that the sign
1669    // bit is demanded.
1670    APInt InDemandedBits = InMask & NewMask;
1671    InDemandedBits |= InSignBit;
1672    InDemandedBits = InDemandedBits.trunc(InBits);
1673
1674    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1675                             KnownOne, TLO, Depth+1))
1676      return true;
1677    KnownZero = KnownZero.zext(BitWidth);
1678    KnownOne = KnownOne.zext(BitWidth);
1679
1680    // If the sign bit is known zero, convert this to a zero extend.
1681    if (KnownZero.intersects(InSignBit))
1682      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1683                                               Op.getValueType(),
1684                                               Op.getOperand(0)));
1685
1686    // If the sign bit is known one, the top bits match.
1687    if (KnownOne.intersects(InSignBit)) {
1688      KnownOne |= NewBits;
1689      assert((KnownZero & NewBits) == 0);
1690    } else {   // Otherwise, top bits aren't known.
1691      assert((KnownOne & NewBits) == 0);
1692      assert((KnownZero & NewBits) == 0);
1693    }
1694    break;
1695  }
1696  case ISD::ANY_EXTEND: {
1697    unsigned OperandBitWidth =
1698      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1699    APInt InMask = NewMask.trunc(OperandBitWidth);
1700    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1701                             KnownZero, KnownOne, TLO, Depth+1))
1702      return true;
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    KnownZero = KnownZero.zext(BitWidth);
1705    KnownOne = KnownOne.zext(BitWidth);
1706    break;
1707  }
1708  case ISD::TRUNCATE: {
1709    // Simplify the input, using demanded bit information, and compute the known
1710    // zero/one bits live out.
1711    unsigned OperandBitWidth =
1712      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1713    APInt TruncMask = NewMask.zext(OperandBitWidth);
1714    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1715                             KnownZero, KnownOne, TLO, Depth+1))
1716      return true;
1717    KnownZero = KnownZero.trunc(BitWidth);
1718    KnownOne = KnownOne.trunc(BitWidth);
1719
1720    // If the input is only used by this truncate, see if we can shrink it based
1721    // on the known demanded bits.
1722    if (Op.getOperand(0).getNode()->hasOneUse()) {
1723      SDValue In = Op.getOperand(0);
1724      switch (In.getOpcode()) {
1725      default: break;
1726      case ISD::SRL:
1727        // Shrink SRL by a constant if none of the high bits shifted in are
1728        // demanded.
1729        if (TLO.LegalTypes() &&
1730            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1731          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1732          // undesirable.
1733          break;
1734        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1735        if (!ShAmt)
1736          break;
1737        SDValue Shift = In.getOperand(1);
1738        if (TLO.LegalTypes()) {
1739          uint64_t ShVal = ShAmt->getZExtValue();
1740          Shift =
1741            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1742        }
1743
1744        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1745                                               OperandBitWidth - BitWidth);
1746        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1747
1748        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1749          // None of the shifted in bits are needed.  Add a truncate of the
1750          // shift input, then shift it.
1751          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1752                                             Op.getValueType(),
1753                                             In.getOperand(0));
1754          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1755                                                   Op.getValueType(),
1756                                                   NewTrunc,
1757                                                   Shift));
1758        }
1759        break;
1760      }
1761    }
1762
1763    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1764    break;
1765  }
1766  case ISD::AssertZext: {
1767    // AssertZext demands all of the high bits, plus any of the low bits
1768    // demanded by its users.
1769    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1770    APInt InMask = APInt::getLowBitsSet(BitWidth,
1771                                        VT.getSizeInBits());
1772    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1773                             KnownZero, KnownOne, TLO, Depth+1))
1774      return true;
1775    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1776
1777    KnownZero |= ~InMask & NewMask;
1778    break;
1779  }
1780  case ISD::BITCAST:
1781    // If this is an FP->Int bitcast and if the sign bit is the only
1782    // thing demanded, turn this into a FGETSIGN.
1783    if (!TLO.LegalOperations() &&
1784        !Op.getValueType().isVector() &&
1785        !Op.getOperand(0).getValueType().isVector() &&
1786        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1787        Op.getOperand(0).getValueType().isFloatingPoint()) {
1788      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1789      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1790      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1791        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1792        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1793        // place.  We expect the SHL to be eliminated by other optimizations.
1794        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1795        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1796        if (!OpVTLegal && OpVTSizeInBits > 32)
1797          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1798        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1799        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1800        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1801                                                 Op.getValueType(),
1802                                                 Sign, ShAmt));
1803      }
1804    }
1805    break;
1806  case ISD::ADD:
1807  case ISD::MUL:
1808  case ISD::SUB: {
1809    // Add, Sub, and Mul don't demand any bits in positions beyond that
1810    // of the highest bit demanded of them.
1811    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1812                                        BitWidth - NewMask.countLeadingZeros());
1813    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1814                             KnownOne2, TLO, Depth+1))
1815      return true;
1816    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1817                             KnownOne2, TLO, Depth+1))
1818      return true;
1819    // See if the operation should be performed at a smaller bit width.
1820    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1821      return true;
1822  }
1823  // FALL THROUGH
1824  default:
1825    // Just use ComputeMaskedBits to compute output bits.
1826    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1827    break;
1828  }
1829
1830  // If we know the value of all of the demanded bits, return this as a
1831  // constant.
1832  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1833    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1834
1835  return false;
1836}
1837
1838/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1839/// in Mask are known to be either zero or one and return them in the
1840/// KnownZero/KnownOne bitsets.
1841void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1842                                                    APInt &KnownZero,
1843                                                    APInt &KnownOne,
1844                                                    const SelectionDAG &DAG,
1845                                                    unsigned Depth) const {
1846  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1847          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1848          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1849          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1850         "Should use MaskedValueIsZero if you don't know whether Op"
1851         " is a target node!");
1852  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1853}
1854
1855/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1856/// targets that want to expose additional information about sign bits to the
1857/// DAG Combiner.
1858unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1859                                                         unsigned Depth) const {
1860  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1861          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1862          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1863          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1864         "Should use ComputeNumSignBits if you don't know whether Op"
1865         " is a target node!");
1866  return 1;
1867}
1868
1869/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1870/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1871/// determine which bit is set.
1872///
1873static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1874  // A left-shift of a constant one will have exactly one bit set, because
1875  // shifting the bit off the end is undefined.
1876  if (Val.getOpcode() == ISD::SHL)
1877    if (ConstantSDNode *C =
1878         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1879      if (C->getAPIntValue() == 1)
1880        return true;
1881
1882  // Similarly, a right-shift of a constant sign-bit will have exactly
1883  // one bit set.
1884  if (Val.getOpcode() == ISD::SRL)
1885    if (ConstantSDNode *C =
1886         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1887      if (C->getAPIntValue().isSignBit())
1888        return true;
1889
1890  // More could be done here, though the above checks are enough
1891  // to handle some common cases.
1892
1893  // Fall back to ComputeMaskedBits to catch other known cases.
1894  EVT OpVT = Val.getValueType();
1895  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1896  APInt KnownZero, KnownOne;
1897  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1898  return (KnownZero.countPopulation() == BitWidth - 1) &&
1899         (KnownOne.countPopulation() == 1);
1900}
1901
1902/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1903/// and cc. If it is unable to simplify it, return a null SDValue.
1904SDValue
1905TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1906                              ISD::CondCode Cond, bool foldBooleans,
1907                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1908  SelectionDAG &DAG = DCI.DAG;
1909
1910  // These setcc operations always fold.
1911  switch (Cond) {
1912  default: break;
1913  case ISD::SETFALSE:
1914  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1915  case ISD::SETTRUE:
1916  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1917  }
1918
1919  // Ensure that the constant occurs on the RHS, and fold constant
1920  // comparisons.
1921  if (isa<ConstantSDNode>(N0.getNode()))
1922    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1923
1924  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1925    const APInt &C1 = N1C->getAPIntValue();
1926
1927    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1928    // equality comparison, then we're just comparing whether X itself is
1929    // zero.
1930    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1931        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1932        N0.getOperand(1).getOpcode() == ISD::Constant) {
1933      const APInt &ShAmt
1934        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1935      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1936          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1937        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1938          // (srl (ctlz x), 5) == 0  -> X != 0
1939          // (srl (ctlz x), 5) != 1  -> X != 0
1940          Cond = ISD::SETNE;
1941        } else {
1942          // (srl (ctlz x), 5) != 0  -> X == 0
1943          // (srl (ctlz x), 5) == 1  -> X == 0
1944          Cond = ISD::SETEQ;
1945        }
1946        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1947        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1948                            Zero, Cond);
1949      }
1950    }
1951
1952    SDValue CTPOP = N0;
1953    // Look through truncs that don't change the value of a ctpop.
1954    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1955      CTPOP = N0.getOperand(0);
1956
1957    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1958        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1959                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1960      EVT CTVT = CTPOP.getValueType();
1961      SDValue CTOp = CTPOP.getOperand(0);
1962
1963      // (ctpop x) u< 2 -> (x & x-1) == 0
1964      // (ctpop x) u> 1 -> (x & x-1) != 0
1965      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1966        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1967                                  DAG.getConstant(1, CTVT));
1968        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1969        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1970        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1971      }
1972
1973      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1974    }
1975
1976    // (zext x) == C --> x == (trunc C)
1977    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1978        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1979      unsigned MinBits = N0.getValueSizeInBits();
1980      SDValue PreZExt;
1981      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1982        // ZExt
1983        MinBits = N0->getOperand(0).getValueSizeInBits();
1984        PreZExt = N0->getOperand(0);
1985      } else if (N0->getOpcode() == ISD::AND) {
1986        // DAGCombine turns costly ZExts into ANDs
1987        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1988          if ((C->getAPIntValue()+1).isPowerOf2()) {
1989            MinBits = C->getAPIntValue().countTrailingOnes();
1990            PreZExt = N0->getOperand(0);
1991          }
1992      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1993        // ZEXTLOAD
1994        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1995          MinBits = LN0->getMemoryVT().getSizeInBits();
1996          PreZExt = N0;
1997        }
1998      }
1999
2000      // Make sure we're not losing bits from the constant.
2001      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2002        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2003        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2004          // Will get folded away.
2005          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2006          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2007          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2008        }
2009      }
2010    }
2011
2012    // If the LHS is '(and load, const)', the RHS is 0,
2013    // the test is for equality or unsigned, and all 1 bits of the const are
2014    // in the same partial word, see if we can shorten the load.
2015    if (DCI.isBeforeLegalize() &&
2016        N0.getOpcode() == ISD::AND && C1 == 0 &&
2017        N0.getNode()->hasOneUse() &&
2018        isa<LoadSDNode>(N0.getOperand(0)) &&
2019        N0.getOperand(0).getNode()->hasOneUse() &&
2020        isa<ConstantSDNode>(N0.getOperand(1))) {
2021      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2022      APInt bestMask;
2023      unsigned bestWidth = 0, bestOffset = 0;
2024      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2025        unsigned origWidth = N0.getValueType().getSizeInBits();
2026        unsigned maskWidth = origWidth;
2027        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2028        // 8 bits, but have to be careful...
2029        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2030          origWidth = Lod->getMemoryVT().getSizeInBits();
2031        const APInt &Mask =
2032          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2033        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2034          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2035          for (unsigned offset=0; offset<origWidth/width; offset++) {
2036            if ((newMask & Mask) == Mask) {
2037              if (!TD->isLittleEndian())
2038                bestOffset = (origWidth/width - offset - 1) * (width/8);
2039              else
2040                bestOffset = (uint64_t)offset * (width/8);
2041              bestMask = Mask.lshr(offset * (width/8) * 8);
2042              bestWidth = width;
2043              break;
2044            }
2045            newMask = newMask << width;
2046          }
2047        }
2048      }
2049      if (bestWidth) {
2050        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2051        if (newVT.isRound()) {
2052          EVT PtrType = Lod->getOperand(1).getValueType();
2053          SDValue Ptr = Lod->getBasePtr();
2054          if (bestOffset != 0)
2055            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2056                              DAG.getConstant(bestOffset, PtrType));
2057          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2058          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2059                                Lod->getPointerInfo().getWithOffset(bestOffset),
2060                                        false, false, false, NewAlign);
2061          return DAG.getSetCC(dl, VT,
2062                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2063                                      DAG.getConstant(bestMask.trunc(bestWidth),
2064                                                      newVT)),
2065                              DAG.getConstant(0LL, newVT), Cond);
2066        }
2067      }
2068    }
2069
2070    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2071    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2072      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2073
2074      // If the comparison constant has bits in the upper part, the
2075      // zero-extended value could never match.
2076      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2077                                              C1.getBitWidth() - InSize))) {
2078        switch (Cond) {
2079        case ISD::SETUGT:
2080        case ISD::SETUGE:
2081        case ISD::SETEQ: return DAG.getConstant(0, VT);
2082        case ISD::SETULT:
2083        case ISD::SETULE:
2084        case ISD::SETNE: return DAG.getConstant(1, VT);
2085        case ISD::SETGT:
2086        case ISD::SETGE:
2087          // True if the sign bit of C1 is set.
2088          return DAG.getConstant(C1.isNegative(), VT);
2089        case ISD::SETLT:
2090        case ISD::SETLE:
2091          // True if the sign bit of C1 isn't set.
2092          return DAG.getConstant(C1.isNonNegative(), VT);
2093        default:
2094          break;
2095        }
2096      }
2097
2098      // Otherwise, we can perform the comparison with the low bits.
2099      switch (Cond) {
2100      case ISD::SETEQ:
2101      case ISD::SETNE:
2102      case ISD::SETUGT:
2103      case ISD::SETUGE:
2104      case ISD::SETULT:
2105      case ISD::SETULE: {
2106        EVT newVT = N0.getOperand(0).getValueType();
2107        if (DCI.isBeforeLegalizeOps() ||
2108            (isOperationLegal(ISD::SETCC, newVT) &&
2109              getCondCodeAction(Cond, newVT)==Legal))
2110          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2111                              DAG.getConstant(C1.trunc(InSize), newVT),
2112                              Cond);
2113        break;
2114      }
2115      default:
2116        break;   // todo, be more careful with signed comparisons
2117      }
2118    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2119               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2120      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2121      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2122      EVT ExtDstTy = N0.getValueType();
2123      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2124
2125      // If the constant doesn't fit into the number of bits for the source of
2126      // the sign extension, it is impossible for both sides to be equal.
2127      if (C1.getMinSignedBits() > ExtSrcTyBits)
2128        return DAG.getConstant(Cond == ISD::SETNE, VT);
2129
2130      SDValue ZextOp;
2131      EVT Op0Ty = N0.getOperand(0).getValueType();
2132      if (Op0Ty == ExtSrcTy) {
2133        ZextOp = N0.getOperand(0);
2134      } else {
2135        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2136        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2137                              DAG.getConstant(Imm, Op0Ty));
2138      }
2139      if (!DCI.isCalledByLegalizer())
2140        DCI.AddToWorklist(ZextOp.getNode());
2141      // Otherwise, make this a use of a zext.
2142      return DAG.getSetCC(dl, VT, ZextOp,
2143                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2144                                                              ExtDstTyBits,
2145                                                              ExtSrcTyBits),
2146                                          ExtDstTy),
2147                          Cond);
2148    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2149                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2150      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2151      if (N0.getOpcode() == ISD::SETCC &&
2152          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2153        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2154        if (TrueWhenTrue)
2155          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2156        // Invert the condition.
2157        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2158        CC = ISD::getSetCCInverse(CC,
2159                                  N0.getOperand(0).getValueType().isInteger());
2160        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2161      }
2162
2163      if ((N0.getOpcode() == ISD::XOR ||
2164           (N0.getOpcode() == ISD::AND &&
2165            N0.getOperand(0).getOpcode() == ISD::XOR &&
2166            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2167          isa<ConstantSDNode>(N0.getOperand(1)) &&
2168          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2169        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2170        // can only do this if the top bits are known zero.
2171        unsigned BitWidth = N0.getValueSizeInBits();
2172        if (DAG.MaskedValueIsZero(N0,
2173                                  APInt::getHighBitsSet(BitWidth,
2174                                                        BitWidth-1))) {
2175          // Okay, get the un-inverted input value.
2176          SDValue Val;
2177          if (N0.getOpcode() == ISD::XOR)
2178            Val = N0.getOperand(0);
2179          else {
2180            assert(N0.getOpcode() == ISD::AND &&
2181                    N0.getOperand(0).getOpcode() == ISD::XOR);
2182            // ((X^1)&1)^1 -> X & 1
2183            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2184                              N0.getOperand(0).getOperand(0),
2185                              N0.getOperand(1));
2186          }
2187
2188          return DAG.getSetCC(dl, VT, Val, N1,
2189                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2190        }
2191      } else if (N1C->getAPIntValue() == 1 &&
2192                 (VT == MVT::i1 ||
2193                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2194        SDValue Op0 = N0;
2195        if (Op0.getOpcode() == ISD::TRUNCATE)
2196          Op0 = Op0.getOperand(0);
2197
2198        if ((Op0.getOpcode() == ISD::XOR) &&
2199            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2200            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2201          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2202          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2203          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2204                              Cond);
2205        } else if (Op0.getOpcode() == ISD::AND &&
2206                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2207                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2208          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2209          if (Op0.getValueType().bitsGT(VT))
2210            Op0 = DAG.getNode(ISD::AND, dl, VT,
2211                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2212                          DAG.getConstant(1, VT));
2213          else if (Op0.getValueType().bitsLT(VT))
2214            Op0 = DAG.getNode(ISD::AND, dl, VT,
2215                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2216                        DAG.getConstant(1, VT));
2217
2218          return DAG.getSetCC(dl, VT, Op0,
2219                              DAG.getConstant(0, Op0.getValueType()),
2220                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2221        }
2222      }
2223    }
2224
2225    APInt MinVal, MaxVal;
2226    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2227    if (ISD::isSignedIntSetCC(Cond)) {
2228      MinVal = APInt::getSignedMinValue(OperandBitSize);
2229      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2230    } else {
2231      MinVal = APInt::getMinValue(OperandBitSize);
2232      MaxVal = APInt::getMaxValue(OperandBitSize);
2233    }
2234
2235    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2236    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2237      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2238      // X >= C0 --> X > (C0-1)
2239      return DAG.getSetCC(dl, VT, N0,
2240                          DAG.getConstant(C1-1, N1.getValueType()),
2241                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2242    }
2243
2244    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2245      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2246      // X <= C0 --> X < (C0+1)
2247      return DAG.getSetCC(dl, VT, N0,
2248                          DAG.getConstant(C1+1, N1.getValueType()),
2249                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2250    }
2251
2252    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2253      return DAG.getConstant(0, VT);      // X < MIN --> false
2254    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2255      return DAG.getConstant(1, VT);      // X >= MIN --> true
2256    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2257      return DAG.getConstant(0, VT);      // X > MAX --> false
2258    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2259      return DAG.getConstant(1, VT);      // X <= MAX --> true
2260
2261    // Canonicalize setgt X, Min --> setne X, Min
2262    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2263      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2264    // Canonicalize setlt X, Max --> setne X, Max
2265    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2266      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2267
2268    // If we have setult X, 1, turn it into seteq X, 0
2269    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2270      return DAG.getSetCC(dl, VT, N0,
2271                          DAG.getConstant(MinVal, N0.getValueType()),
2272                          ISD::SETEQ);
2273    // If we have setugt X, Max-1, turn it into seteq X, Max
2274    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2275      return DAG.getSetCC(dl, VT, N0,
2276                          DAG.getConstant(MaxVal, N0.getValueType()),
2277                          ISD::SETEQ);
2278
2279    // If we have "setcc X, C0", check to see if we can shrink the immediate
2280    // by changing cc.
2281
2282    // SETUGT X, SINTMAX  -> SETLT X, 0
2283    if (Cond == ISD::SETUGT &&
2284        C1 == APInt::getSignedMaxValue(OperandBitSize))
2285      return DAG.getSetCC(dl, VT, N0,
2286                          DAG.getConstant(0, N1.getValueType()),
2287                          ISD::SETLT);
2288
2289    // SETULT X, SINTMIN  -> SETGT X, -1
2290    if (Cond == ISD::SETULT &&
2291        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2292      SDValue ConstMinusOne =
2293          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2294                          N1.getValueType());
2295      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2296    }
2297
2298    // Fold bit comparisons when we can.
2299    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2300        (VT == N0.getValueType() ||
2301         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2302        N0.getOpcode() == ISD::AND)
2303      if (ConstantSDNode *AndRHS =
2304                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2305        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2306          getPointerTy() : getShiftAmountTy(N0.getValueType());
2307        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2308          // Perform the xform if the AND RHS is a single bit.
2309          if (AndRHS->getAPIntValue().isPowerOf2()) {
2310            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2311                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2312                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2313          }
2314        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2315          // (X & 8) == 8  -->  (X & 8) >> 3
2316          // Perform the xform if C1 is a single bit.
2317          if (C1.isPowerOf2()) {
2318            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2319                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2320                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2321          }
2322        }
2323      }
2324
2325    if (C1.getMinSignedBits() <= 64 &&
2326        !isLegalICmpImmediate(C1.getSExtValue())) {
2327      // (X & -256) == 256 -> (X >> 8) == 1
2328      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2329          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2330        if (ConstantSDNode *AndRHS =
2331            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2332          const APInt &AndRHSC = AndRHS->getAPIntValue();
2333          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2334            unsigned ShiftBits = AndRHSC.countTrailingZeros();
2335            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2336              getPointerTy() : getShiftAmountTy(N0.getValueType());
2337            EVT CmpTy = N0.getValueType();
2338            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2339                                        DAG.getConstant(ShiftBits, ShiftTy));
2340            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
2341            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2342          }
2343        }
2344      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2345                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2346        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2347        // X <  0x100000000 -> (X >> 32) <  1
2348        // X >= 0x100000000 -> (X >> 32) >= 1
2349        // X <= 0x0ffffffff -> (X >> 32) <  1
2350        // X >  0x0ffffffff -> (X >> 32) >= 1
2351        unsigned ShiftBits;
2352        APInt NewC = C1;
2353        ISD::CondCode NewCond = Cond;
2354        if (AdjOne) {
2355          ShiftBits = C1.countTrailingOnes();
2356          NewC = NewC + 1;
2357          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2358        } else {
2359          ShiftBits = C1.countTrailingZeros();
2360        }
2361        NewC = NewC.lshr(ShiftBits);
2362        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
2363          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2364            getPointerTy() : getShiftAmountTy(N0.getValueType());
2365          EVT CmpTy = N0.getValueType();
2366          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2367                                      DAG.getConstant(ShiftBits, ShiftTy));
2368          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
2369          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2370        }
2371      }
2372    }
2373  }
2374
2375  if (isa<ConstantFPSDNode>(N0.getNode())) {
2376    // Constant fold or commute setcc.
2377    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2378    if (O.getNode()) return O;
2379  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2380    // If the RHS of an FP comparison is a constant, simplify it away in
2381    // some cases.
2382    if (CFP->getValueAPF().isNaN()) {
2383      // If an operand is known to be a nan, we can fold it.
2384      switch (ISD::getUnorderedFlavor(Cond)) {
2385      default: llvm_unreachable("Unknown flavor!");
2386      case 0:  // Known false.
2387        return DAG.getConstant(0, VT);
2388      case 1:  // Known true.
2389        return DAG.getConstant(1, VT);
2390      case 2:  // Undefined.
2391        return DAG.getUNDEF(VT);
2392      }
2393    }
2394
2395    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2396    // constant if knowing that the operand is non-nan is enough.  We prefer to
2397    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2398    // materialize 0.0.
2399    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2400      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2401
2402    // If the condition is not legal, see if we can find an equivalent one
2403    // which is legal.
2404    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2405      // If the comparison was an awkward floating-point == or != and one of
2406      // the comparison operands is infinity or negative infinity, convert the
2407      // condition to a less-awkward <= or >=.
2408      if (CFP->getValueAPF().isInfinity()) {
2409        if (CFP->getValueAPF().isNegative()) {
2410          if (Cond == ISD::SETOEQ &&
2411              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2412            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2413          if (Cond == ISD::SETUEQ &&
2414              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2415            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2416          if (Cond == ISD::SETUNE &&
2417              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2418            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2419          if (Cond == ISD::SETONE &&
2420              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2421            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2422        } else {
2423          if (Cond == ISD::SETOEQ &&
2424              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2425            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2426          if (Cond == ISD::SETUEQ &&
2427              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2428            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2429          if (Cond == ISD::SETUNE &&
2430              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2431            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2432          if (Cond == ISD::SETONE &&
2433              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2434            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2435        }
2436      }
2437    }
2438  }
2439
2440  if (N0 == N1) {
2441    // The sext(setcc()) => setcc() optimization relies on the appropriate
2442    // constant being emitted.
2443    uint64_t EqVal = 0;
2444    switch (getBooleanContents(N0.getValueType().isVector())) {
2445    case UndefinedBooleanContent:
2446    case ZeroOrOneBooleanContent:
2447      EqVal = ISD::isTrueWhenEqual(Cond);
2448      break;
2449    case ZeroOrNegativeOneBooleanContent:
2450      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2451      break;
2452    }
2453
2454    // We can always fold X == X for integer setcc's.
2455    if (N0.getValueType().isInteger()) {
2456      return DAG.getConstant(EqVal, VT);
2457    }
2458    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2459    if (UOF == 2)   // FP operators that are undefined on NaNs.
2460      return DAG.getConstant(EqVal, VT);
2461    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2462      return DAG.getConstant(EqVal, VT);
2463    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2464    // if it is not already.
2465    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2466    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2467          getCondCodeAction(NewCond, N0.getValueType()) == Legal))
2468      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2469  }
2470
2471  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2472      N0.getValueType().isInteger()) {
2473    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2474        N0.getOpcode() == ISD::XOR) {
2475      // Simplify (X+Y) == (X+Z) -->  Y == Z
2476      if (N0.getOpcode() == N1.getOpcode()) {
2477        if (N0.getOperand(0) == N1.getOperand(0))
2478          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2479        if (N0.getOperand(1) == N1.getOperand(1))
2480          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2481        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2482          // If X op Y == Y op X, try other combinations.
2483          if (N0.getOperand(0) == N1.getOperand(1))
2484            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2485                                Cond);
2486          if (N0.getOperand(1) == N1.getOperand(0))
2487            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2488                                Cond);
2489        }
2490      }
2491
2492      // If RHS is a legal immediate value for a compare instruction, we need
2493      // to be careful about increasing register pressure needlessly.
2494      bool LegalRHSImm = false;
2495
2496      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2497        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2498          // Turn (X+C1) == C2 --> X == C2-C1
2499          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2500            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2501                                DAG.getConstant(RHSC->getAPIntValue()-
2502                                                LHSR->getAPIntValue(),
2503                                N0.getValueType()), Cond);
2504          }
2505
2506          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2507          if (N0.getOpcode() == ISD::XOR)
2508            // If we know that all of the inverted bits are zero, don't bother
2509            // performing the inversion.
2510            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2511              return
2512                DAG.getSetCC(dl, VT, N0.getOperand(0),
2513                             DAG.getConstant(LHSR->getAPIntValue() ^
2514                                               RHSC->getAPIntValue(),
2515                                             N0.getValueType()),
2516                             Cond);
2517        }
2518
2519        // Turn (C1-X) == C2 --> X == C1-C2
2520        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2521          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2522            return
2523              DAG.getSetCC(dl, VT, N0.getOperand(1),
2524                           DAG.getConstant(SUBC->getAPIntValue() -
2525                                             RHSC->getAPIntValue(),
2526                                           N0.getValueType()),
2527                           Cond);
2528          }
2529        }
2530
2531        // Could RHSC fold directly into a compare?
2532        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2533          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2534      }
2535
2536      // Simplify (X+Z) == X -->  Z == 0
2537      // Don't do this if X is an immediate that can fold into a cmp
2538      // instruction and X+Z has other uses. It could be an induction variable
2539      // chain, and the transform would increase register pressure.
2540      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2541        if (N0.getOperand(0) == N1)
2542          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2543                              DAG.getConstant(0, N0.getValueType()), Cond);
2544        if (N0.getOperand(1) == N1) {
2545          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2546            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2547                                DAG.getConstant(0, N0.getValueType()), Cond);
2548          else if (N0.getNode()->hasOneUse()) {
2549            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2550            // (Z-X) == X  --> Z == X<<1
2551            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2552                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2553            if (!DCI.isCalledByLegalizer())
2554              DCI.AddToWorklist(SH.getNode());
2555            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2556          }
2557        }
2558      }
2559    }
2560
2561    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2562        N1.getOpcode() == ISD::XOR) {
2563      // Simplify  X == (X+Z) -->  Z == 0
2564      if (N1.getOperand(0) == N0) {
2565        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2566                        DAG.getConstant(0, N1.getValueType()), Cond);
2567      } else if (N1.getOperand(1) == N0) {
2568        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2569          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2570                          DAG.getConstant(0, N1.getValueType()), Cond);
2571        } else if (N1.getNode()->hasOneUse()) {
2572          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2573          // X == (Z-X)  --> X<<1 == Z
2574          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2575                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2576          if (!DCI.isCalledByLegalizer())
2577            DCI.AddToWorklist(SH.getNode());
2578          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2579        }
2580      }
2581    }
2582
2583    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2584    // Note that where y is variable and is known to have at most
2585    // one bit set (for example, if it is z&1) we cannot do this;
2586    // the expressions are not equivalent when y==0.
2587    if (N0.getOpcode() == ISD::AND)
2588      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2589        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2590          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2591          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2592          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2593        }
2594      }
2595    if (N1.getOpcode() == ISD::AND)
2596      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2597        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2598          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2599          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2600          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2601        }
2602      }
2603  }
2604
2605  // Fold away ALL boolean setcc's.
2606  SDValue Temp;
2607  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2608    switch (Cond) {
2609    default: llvm_unreachable("Unknown integer setcc!");
2610    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2611      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2612      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2613      if (!DCI.isCalledByLegalizer())
2614        DCI.AddToWorklist(Temp.getNode());
2615      break;
2616    case ISD::SETNE:  // X != Y   -->  (X^Y)
2617      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2618      break;
2619    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2620    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2621      Temp = DAG.getNOT(dl, N0, MVT::i1);
2622      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2623      if (!DCI.isCalledByLegalizer())
2624        DCI.AddToWorklist(Temp.getNode());
2625      break;
2626    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2627    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2628      Temp = DAG.getNOT(dl, N1, MVT::i1);
2629      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2630      if (!DCI.isCalledByLegalizer())
2631        DCI.AddToWorklist(Temp.getNode());
2632      break;
2633    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2634    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2635      Temp = DAG.getNOT(dl, N0, MVT::i1);
2636      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2637      if (!DCI.isCalledByLegalizer())
2638        DCI.AddToWorklist(Temp.getNode());
2639      break;
2640    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2641    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2642      Temp = DAG.getNOT(dl, N1, MVT::i1);
2643      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2644      break;
2645    }
2646    if (VT != MVT::i1) {
2647      if (!DCI.isCalledByLegalizer())
2648        DCI.AddToWorklist(N0.getNode());
2649      // FIXME: If running after legalize, we probably can't do this.
2650      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2651    }
2652    return N0;
2653  }
2654
2655  // Could not fold it.
2656  return SDValue();
2657}
2658
2659/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2660/// node is a GlobalAddress + offset.
2661bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2662                                    int64_t &Offset) const {
2663  if (isa<GlobalAddressSDNode>(N)) {
2664    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2665    GA = GASD->getGlobal();
2666    Offset += GASD->getOffset();
2667    return true;
2668  }
2669
2670  if (N->getOpcode() == ISD::ADD) {
2671    SDValue N1 = N->getOperand(0);
2672    SDValue N2 = N->getOperand(1);
2673    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2674      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2675      if (V) {
2676        Offset += V->getSExtValue();
2677        return true;
2678      }
2679    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2680      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2681      if (V) {
2682        Offset += V->getSExtValue();
2683        return true;
2684      }
2685    }
2686  }
2687
2688  return false;
2689}
2690
2691
2692SDValue TargetLowering::
2693PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2694  // Default implementation: no optimization.
2695  return SDValue();
2696}
2697
2698//===----------------------------------------------------------------------===//
2699//  Inline Assembler Implementation Methods
2700//===----------------------------------------------------------------------===//
2701
2702
2703TargetLowering::ConstraintType
2704TargetLowering::getConstraintType(const std::string &Constraint) const {
2705  if (Constraint.size() == 1) {
2706    switch (Constraint[0]) {
2707    default: break;
2708    case 'r': return C_RegisterClass;
2709    case 'm':    // memory
2710    case 'o':    // offsetable
2711    case 'V':    // not offsetable
2712      return C_Memory;
2713    case 'i':    // Simple Integer or Relocatable Constant
2714    case 'n':    // Simple Integer
2715    case 'E':    // Floating Point Constant
2716    case 'F':    // Floating Point Constant
2717    case 's':    // Relocatable Constant
2718    case 'p':    // Address.
2719    case 'X':    // Allow ANY value.
2720    case 'I':    // Target registers.
2721    case 'J':
2722    case 'K':
2723    case 'L':
2724    case 'M':
2725    case 'N':
2726    case 'O':
2727    case 'P':
2728    case '<':
2729    case '>':
2730      return C_Other;
2731    }
2732  }
2733
2734  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2735      Constraint[Constraint.size()-1] == '}')
2736    return C_Register;
2737  return C_Unknown;
2738}
2739
2740/// LowerXConstraint - try to replace an X constraint, which matches anything,
2741/// with another that has more specific requirements based on the type of the
2742/// corresponding operand.
2743const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2744  if (ConstraintVT.isInteger())
2745    return "r";
2746  if (ConstraintVT.isFloatingPoint())
2747    return "f";      // works for many targets
2748  return 0;
2749}
2750
2751/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2752/// vector.  If it is invalid, don't add anything to Ops.
2753void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2754                                                  std::string &Constraint,
2755                                                  std::vector<SDValue> &Ops,
2756                                                  SelectionDAG &DAG) const {
2757
2758  if (Constraint.length() > 1) return;
2759
2760  char ConstraintLetter = Constraint[0];
2761  switch (ConstraintLetter) {
2762  default: break;
2763  case 'X':     // Allows any operand; labels (basic block) use this.
2764    if (Op.getOpcode() == ISD::BasicBlock) {
2765      Ops.push_back(Op);
2766      return;
2767    }
2768    // fall through
2769  case 'i':    // Simple Integer or Relocatable Constant
2770  case 'n':    // Simple Integer
2771  case 's': {  // Relocatable Constant
2772    // These operands are interested in values of the form (GV+C), where C may
2773    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2774    // is possible and fine if either GV or C are missing.
2775    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2776    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2777
2778    // If we have "(add GV, C)", pull out GV/C
2779    if (Op.getOpcode() == ISD::ADD) {
2780      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2781      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2782      if (C == 0 || GA == 0) {
2783        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2784        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2785      }
2786      if (C == 0 || GA == 0)
2787        C = 0, GA = 0;
2788    }
2789
2790    // If we find a valid operand, map to the TargetXXX version so that the
2791    // value itself doesn't get selected.
2792    if (GA) {   // Either &GV   or   &GV+C
2793      if (ConstraintLetter != 'n') {
2794        int64_t Offs = GA->getOffset();
2795        if (C) Offs += C->getZExtValue();
2796        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2797                                                 C ? C->getDebugLoc() : DebugLoc(),
2798                                                 Op.getValueType(), Offs));
2799        return;
2800      }
2801    }
2802    if (C) {   // just C, no GV.
2803      // Simple constants are not allowed for 's'.
2804      if (ConstraintLetter != 's') {
2805        // gcc prints these as sign extended.  Sign extend value to 64 bits
2806        // now; without this it would get ZExt'd later in
2807        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2808        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2809                                            MVT::i64));
2810        return;
2811      }
2812    }
2813    break;
2814  }
2815  }
2816}
2817
2818std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2819getRegForInlineAsmConstraint(const std::string &Constraint,
2820                             EVT VT) const {
2821  if (Constraint[0] != '{')
2822    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2823  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2824
2825  // Remove the braces from around the name.
2826  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2827
2828  // Figure out which register class contains this reg.
2829  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2830  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2831       E = RI->regclass_end(); RCI != E; ++RCI) {
2832    const TargetRegisterClass *RC = *RCI;
2833
2834    // If none of the value types for this register class are valid, we
2835    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2836    if (!isLegalRC(RC))
2837      continue;
2838
2839    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2840         I != E; ++I) {
2841      if (RegName.equals_lower(RI->getName(*I)))
2842        return std::make_pair(*I, RC);
2843    }
2844  }
2845
2846  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2847}
2848
2849//===----------------------------------------------------------------------===//
2850// Constraint Selection.
2851
2852/// isMatchingInputConstraint - Return true of this is an input operand that is
2853/// a matching constraint like "4".
2854bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2855  assert(!ConstraintCode.empty() && "No known constraint!");
2856  return isdigit(ConstraintCode[0]);
2857}
2858
2859/// getMatchedOperand - If this is an input matching constraint, this method
2860/// returns the output operand it matches.
2861unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2862  assert(!ConstraintCode.empty() && "No known constraint!");
2863  return atoi(ConstraintCode.c_str());
2864}
2865
2866
2867/// ParseConstraints - Split up the constraint string from the inline
2868/// assembly value into the specific constraints and their prefixes,
2869/// and also tie in the associated operand values.
2870/// If this returns an empty vector, and if the constraint string itself
2871/// isn't empty, there was an error parsing.
2872TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2873    ImmutableCallSite CS) const {
2874  /// ConstraintOperands - Information about all of the constraints.
2875  AsmOperandInfoVector ConstraintOperands;
2876  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2877  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2878
2879  // Do a prepass over the constraints, canonicalizing them, and building up the
2880  // ConstraintOperands list.
2881  InlineAsm::ConstraintInfoVector
2882    ConstraintInfos = IA->ParseConstraints();
2883
2884  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2885  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2886
2887  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2888    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2889    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2890
2891    // Update multiple alternative constraint count.
2892    if (OpInfo.multipleAlternatives.size() > maCount)
2893      maCount = OpInfo.multipleAlternatives.size();
2894
2895    OpInfo.ConstraintVT = MVT::Other;
2896
2897    // Compute the value type for each operand.
2898    switch (OpInfo.Type) {
2899    case InlineAsm::isOutput:
2900      // Indirect outputs just consume an argument.
2901      if (OpInfo.isIndirect) {
2902        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2903        break;
2904      }
2905
2906      // The return value of the call is this value.  As such, there is no
2907      // corresponding argument.
2908      assert(!CS.getType()->isVoidTy() &&
2909             "Bad inline asm!");
2910      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2911        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2912      } else {
2913        assert(ResNo == 0 && "Asm only has one result!");
2914        OpInfo.ConstraintVT = getValueType(CS.getType());
2915      }
2916      ++ResNo;
2917      break;
2918    case InlineAsm::isInput:
2919      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2920      break;
2921    case InlineAsm::isClobber:
2922      // Nothing to do.
2923      break;
2924    }
2925
2926    if (OpInfo.CallOperandVal) {
2927      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2928      if (OpInfo.isIndirect) {
2929        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2930        if (!PtrTy)
2931          report_fatal_error("Indirect operand for inline asm not a pointer!");
2932        OpTy = PtrTy->getElementType();
2933      }
2934
2935      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2936      if (StructType *STy = dyn_cast<StructType>(OpTy))
2937        if (STy->getNumElements() == 1)
2938          OpTy = STy->getElementType(0);
2939
2940      // If OpTy is not a single value, it may be a struct/union that we
2941      // can tile with integers.
2942      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2943        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2944        switch (BitSize) {
2945        default: break;
2946        case 1:
2947        case 8:
2948        case 16:
2949        case 32:
2950        case 64:
2951        case 128:
2952          OpInfo.ConstraintVT =
2953              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2954          break;
2955        }
2956      } else if (dyn_cast<PointerType>(OpTy)) {
2957        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2958      } else {
2959        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2960      }
2961    }
2962  }
2963
2964  // If we have multiple alternative constraints, select the best alternative.
2965  if (ConstraintInfos.size()) {
2966    if (maCount) {
2967      unsigned bestMAIndex = 0;
2968      int bestWeight = -1;
2969      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2970      int weight = -1;
2971      unsigned maIndex;
2972      // Compute the sums of the weights for each alternative, keeping track
2973      // of the best (highest weight) one so far.
2974      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2975        int weightSum = 0;
2976        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2977            cIndex != eIndex; ++cIndex) {
2978          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2979          if (OpInfo.Type == InlineAsm::isClobber)
2980            continue;
2981
2982          // If this is an output operand with a matching input operand,
2983          // look up the matching input. If their types mismatch, e.g. one
2984          // is an integer, the other is floating point, or their sizes are
2985          // different, flag it as an maCantMatch.
2986          if (OpInfo.hasMatchingInput()) {
2987            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2988            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2989              if ((OpInfo.ConstraintVT.isInteger() !=
2990                   Input.ConstraintVT.isInteger()) ||
2991                  (OpInfo.ConstraintVT.getSizeInBits() !=
2992                   Input.ConstraintVT.getSizeInBits())) {
2993                weightSum = -1;  // Can't match.
2994                break;
2995              }
2996            }
2997          }
2998          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2999          if (weight == -1) {
3000            weightSum = -1;
3001            break;
3002          }
3003          weightSum += weight;
3004        }
3005        // Update best.
3006        if (weightSum > bestWeight) {
3007          bestWeight = weightSum;
3008          bestMAIndex = maIndex;
3009        }
3010      }
3011
3012      // Now select chosen alternative in each constraint.
3013      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3014          cIndex != eIndex; ++cIndex) {
3015        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3016        if (cInfo.Type == InlineAsm::isClobber)
3017          continue;
3018        cInfo.selectAlternative(bestMAIndex);
3019      }
3020    }
3021  }
3022
3023  // Check and hook up tied operands, choose constraint code to use.
3024  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3025      cIndex != eIndex; ++cIndex) {
3026    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3027
3028    // If this is an output operand with a matching input operand, look up the
3029    // matching input. If their types mismatch, e.g. one is an integer, the
3030    // other is floating point, or their sizes are different, flag it as an
3031    // error.
3032    if (OpInfo.hasMatchingInput()) {
3033      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3034
3035      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3036        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
3037          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3038                                       OpInfo.ConstraintVT);
3039        std::pair<unsigned, const TargetRegisterClass*> InputRC =
3040          getRegForInlineAsmConstraint(Input.ConstraintCode,
3041                                       Input.ConstraintVT);
3042        if ((OpInfo.ConstraintVT.isInteger() !=
3043             Input.ConstraintVT.isInteger()) ||
3044            (MatchRC.second != InputRC.second)) {
3045          report_fatal_error("Unsupported asm: input constraint"
3046                             " with a matching output constraint of"
3047                             " incompatible type!");
3048        }
3049      }
3050
3051    }
3052  }
3053
3054  return ConstraintOperands;
3055}
3056
3057
3058/// getConstraintGenerality - Return an integer indicating how general CT
3059/// is.
3060static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3061  switch (CT) {
3062  case TargetLowering::C_Other:
3063  case TargetLowering::C_Unknown:
3064    return 0;
3065  case TargetLowering::C_Register:
3066    return 1;
3067  case TargetLowering::C_RegisterClass:
3068    return 2;
3069  case TargetLowering::C_Memory:
3070    return 3;
3071  }
3072  llvm_unreachable("Invalid constraint type");
3073}
3074
3075/// Examine constraint type and operand type and determine a weight value.
3076/// This object must already have been set up with the operand type
3077/// and the current alternative constraint selected.
3078TargetLowering::ConstraintWeight
3079  TargetLowering::getMultipleConstraintMatchWeight(
3080    AsmOperandInfo &info, int maIndex) const {
3081  InlineAsm::ConstraintCodeVector *rCodes;
3082  if (maIndex >= (int)info.multipleAlternatives.size())
3083    rCodes = &info.Codes;
3084  else
3085    rCodes = &info.multipleAlternatives[maIndex].Codes;
3086  ConstraintWeight BestWeight = CW_Invalid;
3087
3088  // Loop over the options, keeping track of the most general one.
3089  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3090    ConstraintWeight weight =
3091      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3092    if (weight > BestWeight)
3093      BestWeight = weight;
3094  }
3095
3096  return BestWeight;
3097}
3098
3099/// Examine constraint type and operand type and determine a weight value.
3100/// This object must already have been set up with the operand type
3101/// and the current alternative constraint selected.
3102TargetLowering::ConstraintWeight
3103  TargetLowering::getSingleConstraintMatchWeight(
3104    AsmOperandInfo &info, const char *constraint) const {
3105  ConstraintWeight weight = CW_Invalid;
3106  Value *CallOperandVal = info.CallOperandVal;
3107    // If we don't have a value, we can't do a match,
3108    // but allow it at the lowest weight.
3109  if (CallOperandVal == NULL)
3110    return CW_Default;
3111  // Look at the constraint type.
3112  switch (*constraint) {
3113    case 'i': // immediate integer.
3114    case 'n': // immediate integer with a known value.
3115      if (isa<ConstantInt>(CallOperandVal))
3116        weight = CW_Constant;
3117      break;
3118    case 's': // non-explicit intregal immediate.
3119      if (isa<GlobalValue>(CallOperandVal))
3120        weight = CW_Constant;
3121      break;
3122    case 'E': // immediate float if host format.
3123    case 'F': // immediate float.
3124      if (isa<ConstantFP>(CallOperandVal))
3125        weight = CW_Constant;
3126      break;
3127    case '<': // memory operand with autodecrement.
3128    case '>': // memory operand with autoincrement.
3129    case 'm': // memory operand.
3130    case 'o': // offsettable memory operand
3131    case 'V': // non-offsettable memory operand
3132      weight = CW_Memory;
3133      break;
3134    case 'r': // general register.
3135    case 'g': // general register, memory operand or immediate integer.
3136              // note: Clang converts "g" to "imr".
3137      if (CallOperandVal->getType()->isIntegerTy())
3138        weight = CW_Register;
3139      break;
3140    case 'X': // any operand.
3141    default:
3142      weight = CW_Default;
3143      break;
3144  }
3145  return weight;
3146}
3147
3148/// ChooseConstraint - If there are multiple different constraints that we
3149/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3150/// This is somewhat tricky: constraints fall into four classes:
3151///    Other         -> immediates and magic values
3152///    Register      -> one specific register
3153///    RegisterClass -> a group of regs
3154///    Memory        -> memory
3155/// Ideally, we would pick the most specific constraint possible: if we have
3156/// something that fits into a register, we would pick it.  The problem here
3157/// is that if we have something that could either be in a register or in
3158/// memory that use of the register could cause selection of *other*
3159/// operands to fail: they might only succeed if we pick memory.  Because of
3160/// this the heuristic we use is:
3161///
3162///  1) If there is an 'other' constraint, and if the operand is valid for
3163///     that constraint, use it.  This makes us take advantage of 'i'
3164///     constraints when available.
3165///  2) Otherwise, pick the most general constraint present.  This prefers
3166///     'm' over 'r', for example.
3167///
3168static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3169                             const TargetLowering &TLI,
3170                             SDValue Op, SelectionDAG *DAG) {
3171  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3172  unsigned BestIdx = 0;
3173  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3174  int BestGenerality = -1;
3175
3176  // Loop over the options, keeping track of the most general one.
3177  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3178    TargetLowering::ConstraintType CType =
3179      TLI.getConstraintType(OpInfo.Codes[i]);
3180
3181    // If this is an 'other' constraint, see if the operand is valid for it.
3182    // For example, on X86 we might have an 'rI' constraint.  If the operand
3183    // is an integer in the range [0..31] we want to use I (saving a load
3184    // of a register), otherwise we must use 'r'.
3185    if (CType == TargetLowering::C_Other && Op.getNode()) {
3186      assert(OpInfo.Codes[i].size() == 1 &&
3187             "Unhandled multi-letter 'other' constraint");
3188      std::vector<SDValue> ResultOps;
3189      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3190                                       ResultOps, *DAG);
3191      if (!ResultOps.empty()) {
3192        BestType = CType;
3193        BestIdx = i;
3194        break;
3195      }
3196    }
3197
3198    // Things with matching constraints can only be registers, per gcc
3199    // documentation.  This mainly affects "g" constraints.
3200    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3201      continue;
3202
3203    // This constraint letter is more general than the previous one, use it.
3204    int Generality = getConstraintGenerality(CType);
3205    if (Generality > BestGenerality) {
3206      BestType = CType;
3207      BestIdx = i;
3208      BestGenerality = Generality;
3209    }
3210  }
3211
3212  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3213  OpInfo.ConstraintType = BestType;
3214}
3215
3216/// ComputeConstraintToUse - Determines the constraint code and constraint
3217/// type to use for the specific AsmOperandInfo, setting
3218/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3219void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3220                                            SDValue Op,
3221                                            SelectionDAG *DAG) const {
3222  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3223
3224  // Single-letter constraints ('r') are very common.
3225  if (OpInfo.Codes.size() == 1) {
3226    OpInfo.ConstraintCode = OpInfo.Codes[0];
3227    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3228  } else {
3229    ChooseConstraint(OpInfo, *this, Op, DAG);
3230  }
3231
3232  // 'X' matches anything.
3233  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3234    // Labels and constants are handled elsewhere ('X' is the only thing
3235    // that matches labels).  For Functions, the type here is the type of
3236    // the result, which is not what we want to look at; leave them alone.
3237    Value *v = OpInfo.CallOperandVal;
3238    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3239      OpInfo.CallOperandVal = v;
3240      return;
3241    }
3242
3243    // Otherwise, try to resolve it to something we know about by looking at
3244    // the actual operand type.
3245    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3246      OpInfo.ConstraintCode = Repl;
3247      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3248    }
3249  }
3250}
3251
3252//===----------------------------------------------------------------------===//
3253//  Loop Strength Reduction hooks
3254//===----------------------------------------------------------------------===//
3255
3256/// isLegalAddressingMode - Return true if the addressing mode represented
3257/// by AM is legal for this target, for a load/store of the specified type.
3258bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3259                                           Type *Ty) const {
3260  // The default implementation of this implements a conservative RISCy, r+r and
3261  // r+i addr mode.
3262
3263  // Allows a sign-extended 16-bit immediate field.
3264  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3265    return false;
3266
3267  // No global is ever allowed as a base.
3268  if (AM.BaseGV)
3269    return false;
3270
3271  // Only support r+r,
3272  switch (AM.Scale) {
3273  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3274    break;
3275  case 1:
3276    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3277      return false;
3278    // Otherwise we have r+r or r+i.
3279    break;
3280  case 2:
3281    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3282      return false;
3283    // Allow 2*r as r+r.
3284    break;
3285  }
3286
3287  return true;
3288}
3289
3290/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3291/// with the multiplicative inverse of the constant.
3292SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3293                                       SelectionDAG &DAG) const {
3294  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3295  APInt d = C->getAPIntValue();
3296  assert(d != 0 && "Division by zero!");
3297
3298  // Shift the value upfront if it is even, so the LSB is one.
3299  unsigned ShAmt = d.countTrailingZeros();
3300  if (ShAmt) {
3301    // TODO: For UDIV use SRL instead of SRA.
3302    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3303    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3304    d = d.ashr(ShAmt);
3305  }
3306
3307  // Calculate the multiplicative inverse, using Newton's method.
3308  APInt t, xn = d;
3309  while ((t = d*xn) != 1)
3310    xn *= APInt(d.getBitWidth(), 2) - t;
3311
3312  Op2 = DAG.getConstant(xn, Op1.getValueType());
3313  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3314}
3315
3316/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3317/// return a DAG expression to select that will generate the same value by
3318/// multiplying by a magic number.  See:
3319/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3320SDValue TargetLowering::
3321BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3322          std::vector<SDNode*>* Created) const {
3323  EVT VT = N->getValueType(0);
3324  DebugLoc dl= N->getDebugLoc();
3325
3326  // Check to see if we can do this.
3327  // FIXME: We should be more aggressive here.
3328  if (!isTypeLegal(VT))
3329    return SDValue();
3330
3331  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3332  APInt::ms magics = d.magic();
3333
3334  // Multiply the numerator (operand 0) by the magic value
3335  // FIXME: We should support doing a MUL in a wider type
3336  SDValue Q;
3337  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3338                            isOperationLegalOrCustom(ISD::MULHS, VT))
3339    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3340                    DAG.getConstant(magics.m, VT));
3341  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3342                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3343    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3344                              N->getOperand(0),
3345                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3346  else
3347    return SDValue();       // No mulhs or equvialent
3348  // If d > 0 and m < 0, add the numerator
3349  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3350    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3351    if (Created)
3352      Created->push_back(Q.getNode());
3353  }
3354  // If d < 0 and m > 0, subtract the numerator.
3355  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3356    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3357    if (Created)
3358      Created->push_back(Q.getNode());
3359  }
3360  // Shift right algebraic if shift value is nonzero
3361  if (magics.s > 0) {
3362    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3363                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3364    if (Created)
3365      Created->push_back(Q.getNode());
3366  }
3367  // Extract the sign bit and add it to the quotient
3368  SDValue T =
3369    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3370                                           getShiftAmountTy(Q.getValueType())));
3371  if (Created)
3372    Created->push_back(T.getNode());
3373  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3374}
3375
3376/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3377/// return a DAG expression to select that will generate the same value by
3378/// multiplying by a magic number.  See:
3379/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3380SDValue TargetLowering::
3381BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3382          std::vector<SDNode*>* Created) const {
3383  EVT VT = N->getValueType(0);
3384  DebugLoc dl = N->getDebugLoc();
3385
3386  // Check to see if we can do this.
3387  // FIXME: We should be more aggressive here.
3388  if (!isTypeLegal(VT))
3389    return SDValue();
3390
3391  // FIXME: We should use a narrower constant when the upper
3392  // bits are known to be zero.
3393  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3394  APInt::mu magics = N1C.magicu();
3395
3396  SDValue Q = N->getOperand(0);
3397
3398  // If the divisor is even, we can avoid using the expensive fixup by shifting
3399  // the divided value upfront.
3400  if (magics.a != 0 && !N1C[0]) {
3401    unsigned Shift = N1C.countTrailingZeros();
3402    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3403                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3404    if (Created)
3405      Created->push_back(Q.getNode());
3406
3407    // Get magic number for the shifted divisor.
3408    magics = N1C.lshr(Shift).magicu(Shift);
3409    assert(magics.a == 0 && "Should use cheap fixup now");
3410  }
3411
3412  // Multiply the numerator (operand 0) by the magic value
3413  // FIXME: We should support doing a MUL in a wider type
3414  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3415                            isOperationLegalOrCustom(ISD::MULHU, VT))
3416    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3417  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3418                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3419    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3420                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3421  else
3422    return SDValue();       // No mulhu or equvialent
3423  if (Created)
3424    Created->push_back(Q.getNode());
3425
3426  if (magics.a == 0) {
3427    assert(magics.s < N1C.getBitWidth() &&
3428           "We shouldn't generate an undefined shift!");
3429    return DAG.getNode(ISD::SRL, dl, VT, Q,
3430                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3431  } else {
3432    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3433    if (Created)
3434      Created->push_back(NPQ.getNode());
3435    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3436                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3437    if (Created)
3438      Created->push_back(NPQ.getNode());
3439    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3440    if (Created)
3441      Created->push_back(NPQ.getNode());
3442    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3443             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3444  }
3445}
3446