TargetLowering.cpp revision 6f0d024a534af18d9e60b3ea757376cd8a3a980e
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
94  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
95  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
96  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
97  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
98  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
99  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
100  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
101  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
102  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
103  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
104  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
105  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
106  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
107  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
108  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
109  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
110  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
111  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
112  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
113  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
114  Names[RTLIB::OEQ_F32] = "__eqsf2";
115  Names[RTLIB::OEQ_F64] = "__eqdf2";
116  Names[RTLIB::UNE_F32] = "__nesf2";
117  Names[RTLIB::UNE_F64] = "__nedf2";
118  Names[RTLIB::OGE_F32] = "__gesf2";
119  Names[RTLIB::OGE_F64] = "__gedf2";
120  Names[RTLIB::OLT_F32] = "__ltsf2";
121  Names[RTLIB::OLT_F64] = "__ltdf2";
122  Names[RTLIB::OLE_F32] = "__lesf2";
123  Names[RTLIB::OLE_F64] = "__ledf2";
124  Names[RTLIB::OGT_F32] = "__gtsf2";
125  Names[RTLIB::OGT_F64] = "__gtdf2";
126  Names[RTLIB::UO_F32] = "__unordsf2";
127  Names[RTLIB::UO_F64] = "__unorddf2";
128  Names[RTLIB::O_F32] = "__unordsf2";
129  Names[RTLIB::O_F64] = "__unorddf2";
130}
131
132/// InitCmpLibcallCCs - Set default comparison libcall CC.
133///
134static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
135  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
136  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
137  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
138  CCs[RTLIB::UNE_F32] = ISD::SETNE;
139  CCs[RTLIB::UNE_F64] = ISD::SETNE;
140  CCs[RTLIB::OGE_F32] = ISD::SETGE;
141  CCs[RTLIB::OGE_F64] = ISD::SETGE;
142  CCs[RTLIB::OLT_F32] = ISD::SETLT;
143  CCs[RTLIB::OLT_F64] = ISD::SETLT;
144  CCs[RTLIB::OLE_F32] = ISD::SETLE;
145  CCs[RTLIB::OLE_F64] = ISD::SETLE;
146  CCs[RTLIB::OGT_F32] = ISD::SETGT;
147  CCs[RTLIB::OGT_F64] = ISD::SETGT;
148  CCs[RTLIB::UO_F32] = ISD::SETNE;
149  CCs[RTLIB::UO_F64] = ISD::SETNE;
150  CCs[RTLIB::O_F32] = ISD::SETEQ;
151  CCs[RTLIB::O_F64] = ISD::SETEQ;
152}
153
154TargetLowering::TargetLowering(TargetMachine &tm)
155  : TM(tm), TD(TM.getTargetData()) {
156  assert(ISD::BUILTIN_OP_END <= 156 &&
157         "Fixed size array in TargetLowering is not large enough!");
158  // All operations default to being supported.
159  memset(OpActions, 0, sizeof(OpActions));
160  memset(LoadXActions, 0, sizeof(LoadXActions));
161  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
162  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
163  memset(ConvertActions, 0, sizeof(ConvertActions));
164
165  // Set default actions for various operations.
166  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
167    // Default all indexed load / store to expand.
168    for (unsigned IM = (unsigned)ISD::PRE_INC;
169         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
170      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
171      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
172    }
173
174    // These operations default to expand.
175    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
176  }
177
178  // Default ISD::TRAP to expand (which turns it into abort).
179  setOperationAction(ISD::TRAP, MVT::Other, Expand);
180
181  IsLittleEndian = TD->isLittleEndian();
182  UsesGlobalOffsetTable = false;
183  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
184  ShiftAmtHandling = Undefined;
185  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
186  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
187  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
188  allowUnalignedMemoryAccesses = false;
189  UseUnderscoreSetJmp = false;
190  UseUnderscoreLongJmp = false;
191  SelectIsExpensive = false;
192  IntDivIsCheap = false;
193  Pow2DivIsCheap = false;
194  StackPointerRegisterToSaveRestore = 0;
195  ExceptionPointerRegister = 0;
196  ExceptionSelectorRegister = 0;
197  SetCCResultContents = UndefinedSetCCResult;
198  SchedPreferenceInfo = SchedulingForLatency;
199  JumpBufSize = 0;
200  JumpBufAlignment = 0;
201  IfCvtBlockSizeLimit = 2;
202
203  InitLibcallNames(LibcallRoutineNames);
204  InitCmpLibcallCCs(CmpLibcallCCs);
205
206  // Tell Legalize whether the assembler supports DEBUG_LOC.
207  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
208    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
209}
210
211TargetLowering::~TargetLowering() {}
212
213
214SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
215  assert(getSubtarget() && "Subtarget not defined");
216  SDOperand ChainOp = Op.getOperand(0);
217  SDOperand DestOp = Op.getOperand(1);
218  SDOperand SourceOp = Op.getOperand(2);
219  SDOperand CountOp = Op.getOperand(3);
220  SDOperand AlignOp = Op.getOperand(4);
221  SDOperand AlwaysInlineOp = Op.getOperand(5);
222
223  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
224  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
225  if (Align == 0) Align = 1;
226
227  // If size is unknown, call memcpy.
228  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
229  if (!I) {
230    assert(!AlwaysInline && "Cannot inline copy of unknown size");
231    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
232  }
233
234  // If not DWORD aligned or if size is more than threshold, then call memcpy.
235  // The libc version is likely to be faster for the following cases. It can
236  // use the address value and run time information about the CPU.
237  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
238  unsigned Size = I->getValue();
239  if (AlwaysInline ||
240      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
241       (Align & 3) == 0))
242    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
243  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
244}
245
246
247SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
248                                          SDOperand Dest,
249                                          SDOperand Source,
250                                          SDOperand Count,
251                                          SelectionDAG &DAG) {
252  MVT::ValueType IntPtr = getPointerTy();
253  TargetLowering::ArgListTy Args;
254  TargetLowering::ArgListEntry Entry;
255  Entry.Ty = getTargetData()->getIntPtrType();
256  Entry.Node = Dest; Args.push_back(Entry);
257  Entry.Node = Source; Args.push_back(Entry);
258  Entry.Node = Count; Args.push_back(Entry);
259  std::pair<SDOperand,SDOperand> CallResult =
260      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
261                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
262  return CallResult.second;
263}
264
265
266/// computeRegisterProperties - Once all of the register classes are added,
267/// this allows us to compute derived properties we expose.
268void TargetLowering::computeRegisterProperties() {
269  assert(MVT::LAST_VALUETYPE <= 32 &&
270         "Too many value types for ValueTypeActions to hold!");
271
272  // Everything defaults to needing one register.
273  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
274    NumRegistersForVT[i] = 1;
275    RegisterTypeForVT[i] = TransformToType[i] = i;
276  }
277  // ...except isVoid, which doesn't need any registers.
278  NumRegistersForVT[MVT::isVoid] = 0;
279
280  // Find the largest integer register class.
281  unsigned LargestIntReg = MVT::i128;
282  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
283    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
284
285  // Every integer value type larger than this largest register takes twice as
286  // many registers to represent as the previous ValueType.
287  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
288       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
289    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
290    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
291    TransformToType[ExpandedReg] = ExpandedReg - 1;
292    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
293  }
294
295  // Inspect all of the ValueType's smaller than the largest integer
296  // register to see which ones need promotion.
297  MVT::ValueType LegalIntReg = LargestIntReg;
298  for (MVT::ValueType IntReg = LargestIntReg - 1;
299       IntReg >= MVT::i1; --IntReg) {
300    if (isTypeLegal(IntReg)) {
301      LegalIntReg = IntReg;
302    } else {
303      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
304      ValueTypeActions.setTypeAction(IntReg, Promote);
305    }
306  }
307
308  // ppcf128 type is really two f64's.
309  if (!isTypeLegal(MVT::ppcf128)) {
310    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
311    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
312    TransformToType[MVT::ppcf128] = MVT::f64;
313    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
314  }
315
316  // Decide how to handle f64. If the target does not have native f64 support,
317  // expand it to i64 and we will be generating soft float library calls.
318  if (!isTypeLegal(MVT::f64)) {
319    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
320    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
321    TransformToType[MVT::f64] = MVT::i64;
322    ValueTypeActions.setTypeAction(MVT::f64, Expand);
323  }
324
325  // Decide how to handle f32. If the target does not have native support for
326  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
327  if (!isTypeLegal(MVT::f32)) {
328    if (isTypeLegal(MVT::f64)) {
329      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
330      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
331      TransformToType[MVT::f32] = MVT::f64;
332      ValueTypeActions.setTypeAction(MVT::f32, Promote);
333    } else {
334      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
335      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
336      TransformToType[MVT::f32] = MVT::i32;
337      ValueTypeActions.setTypeAction(MVT::f32, Expand);
338    }
339  }
340
341  // Loop over all of the vector value types to see which need transformations.
342  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
343       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
344    if (!isTypeLegal(i)) {
345      MVT::ValueType IntermediateVT, RegisterVT;
346      unsigned NumIntermediates;
347      NumRegistersForVT[i] =
348        getVectorTypeBreakdown(i,
349                               IntermediateVT, NumIntermediates,
350                               RegisterVT);
351      RegisterTypeForVT[i] = RegisterVT;
352      TransformToType[i] = MVT::Other; // this isn't actually used
353      ValueTypeActions.setTypeAction(i, Expand);
354    }
355  }
356}
357
358const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
359  return NULL;
360}
361
362/// getVectorTypeBreakdown - Vector types are broken down into some number of
363/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
364/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
365/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
366///
367/// This method returns the number of registers needed, and the VT for each
368/// register.  It also returns the VT and quantity of the intermediate values
369/// before they are promoted/expanded.
370///
371unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
372                                                MVT::ValueType &IntermediateVT,
373                                                unsigned &NumIntermediates,
374                                      MVT::ValueType &RegisterVT) const {
375  // Figure out the right, legal destination reg to copy into.
376  unsigned NumElts = MVT::getVectorNumElements(VT);
377  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
378
379  unsigned NumVectorRegs = 1;
380
381  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
382  // could break down into LHS/RHS like LegalizeDAG does.
383  if (!isPowerOf2_32(NumElts)) {
384    NumVectorRegs = NumElts;
385    NumElts = 1;
386  }
387
388  // Divide the input until we get to a supported size.  This will always
389  // end with a scalar if the target doesn't support vectors.
390  while (NumElts > 1 &&
391         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
392    NumElts >>= 1;
393    NumVectorRegs <<= 1;
394  }
395
396  NumIntermediates = NumVectorRegs;
397
398  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
399  if (!isTypeLegal(NewVT))
400    NewVT = EltTy;
401  IntermediateVT = NewVT;
402
403  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
404  RegisterVT = DestVT;
405  if (DestVT < NewVT) {
406    // Value is expanded, e.g. i64 -> i16.
407    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
408  } else {
409    // Otherwise, promotion or legal types use the same number of registers as
410    // the vector decimated to the appropriate level.
411    return NumVectorRegs;
412  }
413
414  return 1;
415}
416
417/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
418/// function arguments in the caller parameter area.
419unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
420  return Log2_32(TD->getCallFrameTypeAlignment(Ty));
421}
422
423SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
424                                                   SelectionDAG &DAG) const {
425  if (usesGlobalOffsetTable())
426    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
427  return Table;
428}
429
430//===----------------------------------------------------------------------===//
431//  Optimization Methods
432//===----------------------------------------------------------------------===//
433
434/// ShrinkDemandedConstant - Check to see if the specified operand of the
435/// specified instruction is a constant integer.  If so, check to see if there
436/// are any bits set in the constant that are not demanded.  If so, shrink the
437/// constant and return true.
438bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
439                                                            uint64_t Demanded) {
440  // FIXME: ISD::SELECT, ISD::SELECT_CC
441  switch(Op.getOpcode()) {
442  default: break;
443  case ISD::AND:
444  case ISD::OR:
445  case ISD::XOR:
446    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
447      if ((~Demanded & C->getValue()) != 0) {
448        MVT::ValueType VT = Op.getValueType();
449        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
450                                    DAG.getConstant(Demanded & C->getValue(),
451                                                    VT));
452        return CombineTo(Op, New);
453      }
454    break;
455  }
456  return false;
457}
458
459/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
460/// DemandedMask bits of the result of Op are ever used downstream.  If we can
461/// use this information to simplify Op, create a new simplified DAG node and
462/// return true, returning the original and new nodes in Old and New. Otherwise,
463/// analyze the expression and return a mask of KnownOne and KnownZero bits for
464/// the expression (used to simplify the caller).  The KnownZero/One bits may
465/// only be accurate for those bits in the DemandedMask.
466bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
467                                          uint64_t &KnownZero,
468                                          uint64_t &KnownOne,
469                                          TargetLoweringOpt &TLO,
470                                          unsigned Depth) const {
471  KnownZero = KnownOne = 0;   // Don't know anything.
472
473  // The masks are not wide enough to represent this type!  Should use APInt.
474  if (Op.getValueType() == MVT::i128)
475    return false;
476
477  // Other users may use these bits.
478  if (!Op.Val->hasOneUse()) {
479    if (Depth != 0) {
480      // If not at the root, Just compute the KnownZero/KnownOne bits to
481      // simplify things downstream.
482      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
483      return false;
484    }
485    // If this is the root being simplified, allow it to have multiple uses,
486    // just set the DemandedMask to all bits.
487    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
488  } else if (DemandedMask == 0) {
489    // Not demanding any bits from Op.
490    if (Op.getOpcode() != ISD::UNDEF)
491      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
492    return false;
493  } else if (Depth == 6) {        // Limit search depth.
494    return false;
495  }
496
497  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
498  switch (Op.getOpcode()) {
499  case ISD::Constant:
500    // We know all of the bits for a constant!
501    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
502    KnownZero = ~KnownOne & DemandedMask;
503    return false;   // Don't fall through, will infinitely loop.
504  case ISD::AND:
505    // If the RHS is a constant, check to see if the LHS would be zero without
506    // using the bits from the RHS.  Below, we use knowledge about the RHS to
507    // simplify the LHS, here we're using information from the LHS to simplify
508    // the RHS.
509    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
510      uint64_t LHSZero, LHSOne;
511      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
512                                LHSZero, LHSOne, Depth+1);
513      // If the LHS already has zeros where RHSC does, this and is dead.
514      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
515        return TLO.CombineTo(Op, Op.getOperand(0));
516      // If any of the set bits in the RHS are known zero on the LHS, shrink
517      // the constant.
518      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
519        return true;
520    }
521
522    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
523                             KnownOne, TLO, Depth+1))
524      return true;
525    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
526    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
527                             KnownZero2, KnownOne2, TLO, Depth+1))
528      return true;
529    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
530
531    // If all of the demanded bits are known one on one side, return the other.
532    // These bits cannot contribute to the result of the 'and'.
533    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
534      return TLO.CombineTo(Op, Op.getOperand(0));
535    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
536      return TLO.CombineTo(Op, Op.getOperand(1));
537    // If all of the demanded bits in the inputs are known zeros, return zero.
538    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
539      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
540    // If the RHS is a constant, see if we can simplify it.
541    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
542      return true;
543
544    // Output known-1 bits are only known if set in both the LHS & RHS.
545    KnownOne &= KnownOne2;
546    // Output known-0 are known to be clear if zero in either the LHS | RHS.
547    KnownZero |= KnownZero2;
548    break;
549  case ISD::OR:
550    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
551                             KnownOne, TLO, Depth+1))
552      return true;
553    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
555                             KnownZero2, KnownOne2, TLO, Depth+1))
556      return true;
557    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
558
559    // If all of the demanded bits are known zero on one side, return the other.
560    // These bits cannot contribute to the result of the 'or'.
561    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
562      return TLO.CombineTo(Op, Op.getOperand(0));
563    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
564      return TLO.CombineTo(Op, Op.getOperand(1));
565    // If all of the potentially set bits on one side are known to be set on
566    // the other side, just use the 'other' side.
567    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
568        (DemandedMask & (~KnownZero)))
569      return TLO.CombineTo(Op, Op.getOperand(0));
570    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
571        (DemandedMask & (~KnownZero2)))
572      return TLO.CombineTo(Op, Op.getOperand(1));
573    // If the RHS is a constant, see if we can simplify it.
574    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
575      return true;
576
577    // Output known-0 bits are only known if clear in both the LHS & RHS.
578    KnownZero &= KnownZero2;
579    // Output known-1 are known to be set if set in either the LHS | RHS.
580    KnownOne |= KnownOne2;
581    break;
582  case ISD::XOR:
583    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
584                             KnownOne, TLO, Depth+1))
585      return true;
586    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
587    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
588                             KnownOne2, TLO, Depth+1))
589      return true;
590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
591
592    // If all of the demanded bits are known zero on one side, return the other.
593    // These bits cannot contribute to the result of the 'xor'.
594    if ((DemandedMask & KnownZero) == DemandedMask)
595      return TLO.CombineTo(Op, Op.getOperand(0));
596    if ((DemandedMask & KnownZero2) == DemandedMask)
597      return TLO.CombineTo(Op, Op.getOperand(1));
598
599    // If all of the unknown bits are known to be zero on one side or the other
600    // (but not both) turn this into an *inclusive* or.
601    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
602    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
603      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
604                                               Op.getOperand(0),
605                                               Op.getOperand(1)));
606
607    // Output known-0 bits are known if clear or set in both the LHS & RHS.
608    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
609    // Output known-1 are known to be set if set in only one of the LHS, RHS.
610    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
611
612    // If all of the demanded bits on one side are known, and all of the set
613    // bits on that side are also known to be set on the other side, turn this
614    // into an AND, as we know the bits will be cleared.
615    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
616    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
617      if ((KnownOne & KnownOne2) == KnownOne) {
618        MVT::ValueType VT = Op.getValueType();
619        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
620        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
621                                                 ANDC));
622      }
623    }
624
625    // If the RHS is a constant, see if we can simplify it.
626    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
627    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
628      return true;
629
630    KnownZero = KnownZeroOut;
631    KnownOne  = KnownOneOut;
632    break;
633  case ISD::SETCC:
634    // If we know the result of a setcc has the top bits zero, use this info.
635    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
636      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
637    break;
638  case ISD::SELECT:
639    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
640                             KnownOne, TLO, Depth+1))
641      return true;
642    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
643                             KnownOne2, TLO, Depth+1))
644      return true;
645    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
646    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
647
648    // If the operands are constants, see if we can simplify them.
649    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
650      return true;
651
652    // Only known if known in both the LHS and RHS.
653    KnownOne &= KnownOne2;
654    KnownZero &= KnownZero2;
655    break;
656  case ISD::SELECT_CC:
657    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
658                             KnownOne, TLO, Depth+1))
659      return true;
660    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
661                             KnownOne2, TLO, Depth+1))
662      return true;
663    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
664    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
665
666    // If the operands are constants, see if we can simplify them.
667    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
668      return true;
669
670    // Only known if known in both the LHS and RHS.
671    KnownOne &= KnownOne2;
672    KnownZero &= KnownZero2;
673    break;
674  case ISD::SHL:
675    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
676      unsigned ShAmt = SA->getValue();
677      SDOperand InOp = Op.getOperand(0);
678
679      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
680      // single shift.  We can do this if the bottom bits (which are shifted
681      // out) are never demanded.
682      if (InOp.getOpcode() == ISD::SRL &&
683          isa<ConstantSDNode>(InOp.getOperand(1))) {
684        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
685          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
686          unsigned Opc = ISD::SHL;
687          int Diff = ShAmt-C1;
688          if (Diff < 0) {
689            Diff = -Diff;
690            Opc = ISD::SRL;
691          }
692
693          SDOperand NewSA =
694            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
695          MVT::ValueType VT = Op.getValueType();
696          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
697                                                   InOp.getOperand(0), NewSA));
698        }
699      }
700
701      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
702                               KnownZero, KnownOne, TLO, Depth+1))
703        return true;
704      KnownZero <<= SA->getValue();
705      KnownOne  <<= SA->getValue();
706      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
707    }
708    break;
709  case ISD::SRL:
710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
711      MVT::ValueType VT = Op.getValueType();
712      unsigned ShAmt = SA->getValue();
713      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
714      unsigned VTSize = MVT::getSizeInBits(VT);
715      SDOperand InOp = Op.getOperand(0);
716
717      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
718      // single shift.  We can do this if the top bits (which are shifted out)
719      // are never demanded.
720      if (InOp.getOpcode() == ISD::SHL &&
721          isa<ConstantSDNode>(InOp.getOperand(1))) {
722        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
723          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
724          unsigned Opc = ISD::SRL;
725          int Diff = ShAmt-C1;
726          if (Diff < 0) {
727            Diff = -Diff;
728            Opc = ISD::SHL;
729          }
730
731          SDOperand NewSA =
732            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
733          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
734                                                   InOp.getOperand(0), NewSA));
735        }
736      }
737
738      // Compute the new bits that are at the top now.
739      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
740                               KnownZero, KnownOne, TLO, Depth+1))
741        return true;
742      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
743      KnownZero &= TypeMask;
744      KnownOne  &= TypeMask;
745      KnownZero >>= ShAmt;
746      KnownOne  >>= ShAmt;
747
748      uint64_t HighBits = (1ULL << ShAmt)-1;
749      HighBits <<= VTSize - ShAmt;
750      KnownZero |= HighBits;  // High bits known zero.
751    }
752    break;
753  case ISD::SRA:
754    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
755      MVT::ValueType VT = Op.getValueType();
756      unsigned ShAmt = SA->getValue();
757
758      // Compute the new bits that are at the top now.
759      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
760
761      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
762
763      // If any of the demanded bits are produced by the sign extension, we also
764      // demand the input sign bit.
765      uint64_t HighBits = (1ULL << ShAmt)-1;
766      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
767      if (HighBits & DemandedMask)
768        InDemandedMask |= MVT::getIntVTSignBit(VT);
769
770      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
771                               KnownZero, KnownOne, TLO, Depth+1))
772        return true;
773      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
774      KnownZero &= TypeMask;
775      KnownOne  &= TypeMask;
776      KnownZero >>= ShAmt;
777      KnownOne  >>= ShAmt;
778
779      // Handle the sign bits.
780      uint64_t SignBit = MVT::getIntVTSignBit(VT);
781      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
782
783      // If the input sign bit is known to be zero, or if none of the top bits
784      // are demanded, turn this into an unsigned shift right.
785      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
786        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
787                                                 Op.getOperand(1)));
788      } else if (KnownOne & SignBit) { // New bits are known one.
789        KnownOne |= HighBits;
790      }
791    }
792    break;
793  case ISD::SIGN_EXTEND_INREG: {
794    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
795
796    // Sign extension.  Compute the demanded bits in the result that are not
797    // present in the input.
798    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
799
800    // If none of the extended bits are demanded, eliminate the sextinreg.
801    if (NewBits == 0)
802      return TLO.CombineTo(Op, Op.getOperand(0));
803
804    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
805    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
806
807    // Since the sign extended bits are demanded, we know that the sign
808    // bit is demanded.
809    InputDemandedBits |= InSignBit;
810
811    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
812                             KnownZero, KnownOne, TLO, Depth+1))
813      return true;
814    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
815
816    // If the sign bit of the input is known set or clear, then we know the
817    // top bits of the result.
818
819    // If the input sign bit is known zero, convert this into a zero extension.
820    if (KnownZero & InSignBit)
821      return TLO.CombineTo(Op,
822                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
823
824    if (KnownOne & InSignBit) {    // Input sign bit known set
825      KnownOne |= NewBits;
826      KnownZero &= ~NewBits;
827    } else {                       // Input sign bit unknown
828      KnownZero &= ~NewBits;
829      KnownOne &= ~NewBits;
830    }
831    break;
832  }
833  case ISD::CTTZ:
834  case ISD::CTLZ:
835  case ISD::CTPOP: {
836    MVT::ValueType VT = Op.getValueType();
837    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
838    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
839    KnownOne  = 0;
840    break;
841  }
842  case ISD::LOAD: {
843    if (ISD::isZEXTLoad(Op.Val)) {
844      LoadSDNode *LD = cast<LoadSDNode>(Op);
845      MVT::ValueType VT = LD->getMemoryVT();
846      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
847    }
848    break;
849  }
850  case ISD::ZERO_EXTEND: {
851    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
852
853    // If none of the top bits are demanded, convert this into an any_extend.
854    uint64_t NewBits = (~InMask) & DemandedMask;
855    if (NewBits == 0)
856      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
857                                               Op.getValueType(),
858                                               Op.getOperand(0)));
859
860    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
861                             KnownZero, KnownOne, TLO, Depth+1))
862      return true;
863    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
864    KnownZero |= NewBits;
865    break;
866  }
867  case ISD::SIGN_EXTEND: {
868    MVT::ValueType InVT = Op.getOperand(0).getValueType();
869    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
870    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
871    uint64_t NewBits   = (~InMask) & DemandedMask;
872
873    // If none of the top bits are demanded, convert this into an any_extend.
874    if (NewBits == 0)
875      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
876                                           Op.getOperand(0)));
877
878    // Since some of the sign extended bits are demanded, we know that the sign
879    // bit is demanded.
880    uint64_t InDemandedBits = DemandedMask & InMask;
881    InDemandedBits |= InSignBit;
882
883    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
884                             KnownOne, TLO, Depth+1))
885      return true;
886
887    // If the sign bit is known zero, convert this to a zero extend.
888    if (KnownZero & InSignBit)
889      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
890                                               Op.getValueType(),
891                                               Op.getOperand(0)));
892
893    // If the sign bit is known one, the top bits match.
894    if (KnownOne & InSignBit) {
895      KnownOne  |= NewBits;
896      KnownZero &= ~NewBits;
897    } else {   // Otherwise, top bits aren't known.
898      KnownOne  &= ~NewBits;
899      KnownZero &= ~NewBits;
900    }
901    break;
902  }
903  case ISD::ANY_EXTEND: {
904    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
905    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
906                             KnownZero, KnownOne, TLO, Depth+1))
907      return true;
908    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
909    break;
910  }
911  case ISD::TRUNCATE: {
912    // Simplify the input, using demanded bit information, and compute the known
913    // zero/one bits live out.
914    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
915                             KnownZero, KnownOne, TLO, Depth+1))
916      return true;
917
918    // If the input is only used by this truncate, see if we can shrink it based
919    // on the known demanded bits.
920    if (Op.getOperand(0).Val->hasOneUse()) {
921      SDOperand In = Op.getOperand(0);
922      switch (In.getOpcode()) {
923      default: break;
924      case ISD::SRL:
925        // Shrink SRL by a constant if none of the high bits shifted in are
926        // demanded.
927        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
928          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
929          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
930          HighBits >>= ShAmt->getValue();
931
932          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
933              (DemandedMask & HighBits) == 0) {
934            // None of the shifted in bits are needed.  Add a truncate of the
935            // shift input, then shift it.
936            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
937                                                 Op.getValueType(),
938                                                 In.getOperand(0));
939            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
940                                                   NewTrunc, In.getOperand(1)));
941          }
942        }
943        break;
944      }
945    }
946
947    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
948    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
949    KnownZero &= OutMask;
950    KnownOne &= OutMask;
951    break;
952  }
953  case ISD::AssertZext: {
954    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
955    uint64_t InMask = MVT::getIntVTBitMask(VT);
956    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
957                             KnownZero, KnownOne, TLO, Depth+1))
958      return true;
959    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
960    KnownZero |= ~InMask & DemandedMask;
961    break;
962  }
963  case ISD::FGETSIGN:
964    // All bits are zero except the low bit.
965    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
966    break;
967  case ISD::BIT_CONVERT:
968#if 0
969    // If this is an FP->Int bitcast and if the sign bit is the only thing that
970    // is demanded, turn this into a FGETSIGN.
971    if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
972        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
973        !MVT::isVector(Op.getOperand(0).getValueType())) {
974      // Only do this xform if FGETSIGN is valid or if before legalize.
975      if (!TLO.AfterLegalize ||
976          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
977        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
978        // place.  We expect the SHL to be eliminated by other optimizations.
979        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
980                                         Op.getOperand(0));
981        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
982        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
983        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
984                                                 Sign, ShAmt));
985      }
986    }
987#endif
988    break;
989  case ISD::ADD:
990  case ISD::SUB:
991  case ISD::INTRINSIC_WO_CHAIN:
992  case ISD::INTRINSIC_W_CHAIN:
993  case ISD::INTRINSIC_VOID:
994    // Just use ComputeMaskedBits to compute output bits.
995    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
996    break;
997  }
998
999  // If we know the value of all of the demanded bits, return this as a
1000  // constant.
1001  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1002    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1003
1004  return false;
1005}
1006
1007/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1008/// in Mask are known to be either zero or one and return them in the
1009/// KnownZero/KnownOne bitsets.
1010void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1011                                                    uint64_t Mask,
1012                                                    uint64_t &KnownZero,
1013                                                    uint64_t &KnownOne,
1014                                                    const SelectionDAG &DAG,
1015                                                    unsigned Depth) const {
1016  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1017          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1018          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1019          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1020         "Should use MaskedValueIsZero if you don't know whether Op"
1021         " is a target node!");
1022  KnownZero = 0;
1023  KnownOne = 0;
1024}
1025
1026/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1027/// targets that want to expose additional information about sign bits to the
1028/// DAG Combiner.
1029unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1030                                                         unsigned Depth) const {
1031  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1032          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1033          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1034          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1035         "Should use ComputeNumSignBits if you don't know whether Op"
1036         " is a target node!");
1037  return 1;
1038}
1039
1040
1041/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1042/// and cc. If it is unable to simplify it, return a null SDOperand.
1043SDOperand
1044TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1045                              ISD::CondCode Cond, bool foldBooleans,
1046                              DAGCombinerInfo &DCI) const {
1047  SelectionDAG &DAG = DCI.DAG;
1048
1049  // These setcc operations always fold.
1050  switch (Cond) {
1051  default: break;
1052  case ISD::SETFALSE:
1053  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1054  case ISD::SETTRUE:
1055  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1056  }
1057
1058  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1059    uint64_t C1 = N1C->getValue();
1060    if (isa<ConstantSDNode>(N0.Val)) {
1061      return DAG.FoldSetCC(VT, N0, N1, Cond);
1062    } else {
1063      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1064      // equality comparison, then we're just comparing whether X itself is
1065      // zero.
1066      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1067          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1068          N0.getOperand(1).getOpcode() == ISD::Constant) {
1069        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1070        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1071            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1072          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1073            // (srl (ctlz x), 5) == 0  -> X != 0
1074            // (srl (ctlz x), 5) != 1  -> X != 0
1075            Cond = ISD::SETNE;
1076          } else {
1077            // (srl (ctlz x), 5) != 0  -> X == 0
1078            // (srl (ctlz x), 5) == 1  -> X == 0
1079            Cond = ISD::SETEQ;
1080          }
1081          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1082          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1083                              Zero, Cond);
1084        }
1085      }
1086
1087      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1088      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1089        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1090
1091        // If the comparison constant has bits in the upper part, the
1092        // zero-extended value could never match.
1093        if (C1 & (~0ULL << InSize)) {
1094          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1095          switch (Cond) {
1096          case ISD::SETUGT:
1097          case ISD::SETUGE:
1098          case ISD::SETEQ: return DAG.getConstant(0, VT);
1099          case ISD::SETULT:
1100          case ISD::SETULE:
1101          case ISD::SETNE: return DAG.getConstant(1, VT);
1102          case ISD::SETGT:
1103          case ISD::SETGE:
1104            // True if the sign bit of C1 is set.
1105            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1106          case ISD::SETLT:
1107          case ISD::SETLE:
1108            // True if the sign bit of C1 isn't set.
1109            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1110          default:
1111            break;
1112          }
1113        }
1114
1115        // Otherwise, we can perform the comparison with the low bits.
1116        switch (Cond) {
1117        case ISD::SETEQ:
1118        case ISD::SETNE:
1119        case ISD::SETUGT:
1120        case ISD::SETUGE:
1121        case ISD::SETULT:
1122        case ISD::SETULE:
1123          return DAG.getSetCC(VT, N0.getOperand(0),
1124                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1125                          Cond);
1126        default:
1127          break;   // todo, be more careful with signed comparisons
1128        }
1129      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1130                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1131        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1132        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1133        MVT::ValueType ExtDstTy = N0.getValueType();
1134        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1135
1136        // If the extended part has any inconsistent bits, it cannot ever
1137        // compare equal.  In other words, they have to be all ones or all
1138        // zeros.
1139        uint64_t ExtBits =
1140          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1141        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1142          return DAG.getConstant(Cond == ISD::SETNE, VT);
1143
1144        SDOperand ZextOp;
1145        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1146        if (Op0Ty == ExtSrcTy) {
1147          ZextOp = N0.getOperand(0);
1148        } else {
1149          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1150          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1151                               DAG.getConstant(Imm, Op0Ty));
1152        }
1153        if (!DCI.isCalledByLegalizer())
1154          DCI.AddToWorklist(ZextOp.Val);
1155        // Otherwise, make this a use of a zext.
1156        return DAG.getSetCC(VT, ZextOp,
1157                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1158                                            ExtDstTy),
1159                            Cond);
1160      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1161                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1162
1163        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1164        if (N0.getOpcode() == ISD::SETCC) {
1165          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1166          if (TrueWhenTrue)
1167            return N0;
1168
1169          // Invert the condition.
1170          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1171          CC = ISD::getSetCCInverse(CC,
1172                               MVT::isInteger(N0.getOperand(0).getValueType()));
1173          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1174        }
1175
1176        if ((N0.getOpcode() == ISD::XOR ||
1177             (N0.getOpcode() == ISD::AND &&
1178              N0.getOperand(0).getOpcode() == ISD::XOR &&
1179              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1180            isa<ConstantSDNode>(N0.getOperand(1)) &&
1181            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1182          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1183          // can only do this if the top bits are known zero.
1184          if (DAG.MaskedValueIsZero(N0,
1185                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1186            // Okay, get the un-inverted input value.
1187            SDOperand Val;
1188            if (N0.getOpcode() == ISD::XOR)
1189              Val = N0.getOperand(0);
1190            else {
1191              assert(N0.getOpcode() == ISD::AND &&
1192                     N0.getOperand(0).getOpcode() == ISD::XOR);
1193              // ((X^1)&1)^1 -> X & 1
1194              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1195                                N0.getOperand(0).getOperand(0),
1196                                N0.getOperand(1));
1197            }
1198            return DAG.getSetCC(VT, Val, N1,
1199                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1200          }
1201        }
1202      }
1203
1204      uint64_t MinVal, MaxVal;
1205      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1206      if (ISD::isSignedIntSetCC(Cond)) {
1207        MinVal = 1ULL << (OperandBitSize-1);
1208        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1209          MaxVal = ~0ULL >> (65-OperandBitSize);
1210        else
1211          MaxVal = 0;
1212      } else {
1213        MinVal = 0;
1214        MaxVal = ~0ULL >> (64-OperandBitSize);
1215      }
1216
1217      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1218      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1219        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1220        --C1;                                          // X >= C0 --> X > (C0-1)
1221        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1222                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1223      }
1224
1225      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1226        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1227        ++C1;                                          // X <= C0 --> X < (C0+1)
1228        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1229                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1230      }
1231
1232      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1233        return DAG.getConstant(0, VT);      // X < MIN --> false
1234      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1235        return DAG.getConstant(1, VT);      // X >= MIN --> true
1236      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1237        return DAG.getConstant(0, VT);      // X > MAX --> false
1238      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1239        return DAG.getConstant(1, VT);      // X <= MAX --> true
1240
1241      // Canonicalize setgt X, Min --> setne X, Min
1242      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1243        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1244      // Canonicalize setlt X, Max --> setne X, Max
1245      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1246        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1247
1248      // If we have setult X, 1, turn it into seteq X, 0
1249      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1250        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1251                        ISD::SETEQ);
1252      // If we have setugt X, Max-1, turn it into seteq X, Max
1253      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1254        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1255                        ISD::SETEQ);
1256
1257      // If we have "setcc X, C0", check to see if we can shrink the immediate
1258      // by changing cc.
1259
1260      // SETUGT X, SINTMAX  -> SETLT X, 0
1261      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1262          C1 == (~0ULL >> (65-OperandBitSize)))
1263        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1264                            ISD::SETLT);
1265
1266      // FIXME: Implement the rest of these.
1267
1268      // Fold bit comparisons when we can.
1269      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1270          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1271        if (ConstantSDNode *AndRHS =
1272                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1273          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1274            // Perform the xform if the AND RHS is a single bit.
1275            if (isPowerOf2_64(AndRHS->getValue())) {
1276              return DAG.getNode(ISD::SRL, VT, N0,
1277                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1278                                             getShiftAmountTy()));
1279            }
1280          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1281            // (X & 8) == 8  -->  (X & 8) >> 3
1282            // Perform the xform if C1 is a single bit.
1283            if (isPowerOf2_64(C1)) {
1284              return DAG.getNode(ISD::SRL, VT, N0,
1285                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1286            }
1287          }
1288        }
1289    }
1290  } else if (isa<ConstantSDNode>(N0.Val)) {
1291      // Ensure that the constant occurs on the RHS.
1292    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1293  }
1294
1295  if (isa<ConstantFPSDNode>(N0.Val)) {
1296    // Constant fold or commute setcc.
1297    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1298    if (O.Val) return O;
1299  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1300    // If the RHS of an FP comparison is a constant, simplify it away in
1301    // some cases.
1302    if (CFP->getValueAPF().isNaN()) {
1303      // If an operand is known to be a nan, we can fold it.
1304      switch (ISD::getUnorderedFlavor(Cond)) {
1305      default: assert(0 && "Unknown flavor!");
1306      case 0:  // Known false.
1307        return DAG.getConstant(0, VT);
1308      case 1:  // Known true.
1309        return DAG.getConstant(1, VT);
1310      case 2:  // Undefined.
1311        return DAG.getNode(ISD::UNDEF, VT);
1312      }
1313    }
1314
1315    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1316    // constant if knowing that the operand is non-nan is enough.  We prefer to
1317    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1318    // materialize 0.0.
1319    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1320      return DAG.getSetCC(VT, N0, N0, Cond);
1321  }
1322
1323  if (N0 == N1) {
1324    // We can always fold X == X for integer setcc's.
1325    if (MVT::isInteger(N0.getValueType()))
1326      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1327    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1328    if (UOF == 2)   // FP operators that are undefined on NaNs.
1329      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1330    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1331      return DAG.getConstant(UOF, VT);
1332    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1333    // if it is not already.
1334    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1335    if (NewCond != Cond)
1336      return DAG.getSetCC(VT, N0, N1, NewCond);
1337  }
1338
1339  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1340      MVT::isInteger(N0.getValueType())) {
1341    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1342        N0.getOpcode() == ISD::XOR) {
1343      // Simplify (X+Y) == (X+Z) -->  Y == Z
1344      if (N0.getOpcode() == N1.getOpcode()) {
1345        if (N0.getOperand(0) == N1.getOperand(0))
1346          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1347        if (N0.getOperand(1) == N1.getOperand(1))
1348          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1349        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1350          // If X op Y == Y op X, try other combinations.
1351          if (N0.getOperand(0) == N1.getOperand(1))
1352            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1353          if (N0.getOperand(1) == N1.getOperand(0))
1354            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1355        }
1356      }
1357
1358      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1359        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1360          // Turn (X+C1) == C2 --> X == C2-C1
1361          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1362            return DAG.getSetCC(VT, N0.getOperand(0),
1363                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1364                                N0.getValueType()), Cond);
1365          }
1366
1367          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1368          if (N0.getOpcode() == ISD::XOR)
1369            // If we know that all of the inverted bits are zero, don't bother
1370            // performing the inversion.
1371            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1372              return DAG.getSetCC(VT, N0.getOperand(0),
1373                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1374                                              N0.getValueType()), Cond);
1375        }
1376
1377        // Turn (C1-X) == C2 --> X == C1-C2
1378        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1379          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1380            return DAG.getSetCC(VT, N0.getOperand(1),
1381                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1382                                             N0.getValueType()), Cond);
1383          }
1384        }
1385      }
1386
1387      // Simplify (X+Z) == X -->  Z == 0
1388      if (N0.getOperand(0) == N1)
1389        return DAG.getSetCC(VT, N0.getOperand(1),
1390                        DAG.getConstant(0, N0.getValueType()), Cond);
1391      if (N0.getOperand(1) == N1) {
1392        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1393          return DAG.getSetCC(VT, N0.getOperand(0),
1394                          DAG.getConstant(0, N0.getValueType()), Cond);
1395        else if (N0.Val->hasOneUse()) {
1396          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1397          // (Z-X) == X  --> Z == X<<1
1398          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1399                                     N1,
1400                                     DAG.getConstant(1, getShiftAmountTy()));
1401          if (!DCI.isCalledByLegalizer())
1402            DCI.AddToWorklist(SH.Val);
1403          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1404        }
1405      }
1406    }
1407
1408    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1409        N1.getOpcode() == ISD::XOR) {
1410      // Simplify  X == (X+Z) -->  Z == 0
1411      if (N1.getOperand(0) == N0) {
1412        return DAG.getSetCC(VT, N1.getOperand(1),
1413                        DAG.getConstant(0, N1.getValueType()), Cond);
1414      } else if (N1.getOperand(1) == N0) {
1415        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1416          return DAG.getSetCC(VT, N1.getOperand(0),
1417                          DAG.getConstant(0, N1.getValueType()), Cond);
1418        } else if (N1.Val->hasOneUse()) {
1419          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1420          // X == (Z-X)  --> X<<1 == Z
1421          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1422                                     DAG.getConstant(1, getShiftAmountTy()));
1423          if (!DCI.isCalledByLegalizer())
1424            DCI.AddToWorklist(SH.Val);
1425          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1426        }
1427      }
1428    }
1429  }
1430
1431  // Fold away ALL boolean setcc's.
1432  SDOperand Temp;
1433  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1434    switch (Cond) {
1435    default: assert(0 && "Unknown integer setcc!");
1436    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1437      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1438      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1439      if (!DCI.isCalledByLegalizer())
1440        DCI.AddToWorklist(Temp.Val);
1441      break;
1442    case ISD::SETNE:  // X != Y   -->  (X^Y)
1443      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1444      break;
1445    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1446    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1447      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1448      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1449      if (!DCI.isCalledByLegalizer())
1450        DCI.AddToWorklist(Temp.Val);
1451      break;
1452    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1453    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1454      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1455      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1456      if (!DCI.isCalledByLegalizer())
1457        DCI.AddToWorklist(Temp.Val);
1458      break;
1459    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1460    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1461      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1462      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1463      if (!DCI.isCalledByLegalizer())
1464        DCI.AddToWorklist(Temp.Val);
1465      break;
1466    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1467    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1468      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1469      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1470      break;
1471    }
1472    if (VT != MVT::i1) {
1473      if (!DCI.isCalledByLegalizer())
1474        DCI.AddToWorklist(N0.Val);
1475      // FIXME: If running after legalize, we probably can't do this.
1476      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1477    }
1478    return N0;
1479  }
1480
1481  // Could not fold it.
1482  return SDOperand();
1483}
1484
1485SDOperand TargetLowering::
1486PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1487  // Default implementation: no optimization.
1488  return SDOperand();
1489}
1490
1491//===----------------------------------------------------------------------===//
1492//  Inline Assembler Implementation Methods
1493//===----------------------------------------------------------------------===//
1494
1495TargetLowering::ConstraintType
1496TargetLowering::getConstraintType(const std::string &Constraint) const {
1497  // FIXME: lots more standard ones to handle.
1498  if (Constraint.size() == 1) {
1499    switch (Constraint[0]) {
1500    default: break;
1501    case 'r': return C_RegisterClass;
1502    case 'm':    // memory
1503    case 'o':    // offsetable
1504    case 'V':    // not offsetable
1505      return C_Memory;
1506    case 'i':    // Simple Integer or Relocatable Constant
1507    case 'n':    // Simple Integer
1508    case 's':    // Relocatable Constant
1509    case 'X':    // Allow ANY value.
1510    case 'I':    // Target registers.
1511    case 'J':
1512    case 'K':
1513    case 'L':
1514    case 'M':
1515    case 'N':
1516    case 'O':
1517    case 'P':
1518      return C_Other;
1519    }
1520  }
1521
1522  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1523      Constraint[Constraint.size()-1] == '}')
1524    return C_Register;
1525  return C_Unknown;
1526}
1527
1528/// LowerXConstraint - try to replace an X constraint, which matches anything,
1529/// with another that has more specific requirements based on the type of the
1530/// corresponding operand.
1531void TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
1532                                      std::string& s) const {
1533  if (MVT::isInteger(ConstraintVT))
1534    s = "r";
1535  else if (MVT::isFloatingPoint(ConstraintVT))
1536    s = "f";      // works for many targets
1537  else
1538    s = "";
1539}
1540
1541/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1542/// vector.  If it is invalid, don't add anything to Ops.
1543void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1544                                                  char ConstraintLetter,
1545                                                  std::vector<SDOperand> &Ops,
1546                                                  SelectionDAG &DAG) {
1547  switch (ConstraintLetter) {
1548  default: break;
1549  case 'X':     // Allows any operand; labels (basic block) use this.
1550    if (Op.getOpcode() == ISD::BasicBlock) {
1551      Ops.push_back(Op);
1552      return;
1553    }
1554    // fall through
1555  case 'i':    // Simple Integer or Relocatable Constant
1556  case 'n':    // Simple Integer
1557  case 's': {  // Relocatable Constant
1558    // These operands are interested in values of the form (GV+C), where C may
1559    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1560    // is possible and fine if either GV or C are missing.
1561    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1562    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1563
1564    // If we have "(add GV, C)", pull out GV/C
1565    if (Op.getOpcode() == ISD::ADD) {
1566      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1567      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1568      if (C == 0 || GA == 0) {
1569        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1570        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1571      }
1572      if (C == 0 || GA == 0)
1573        C = 0, GA = 0;
1574    }
1575
1576    // If we find a valid operand, map to the TargetXXX version so that the
1577    // value itself doesn't get selected.
1578    if (GA) {   // Either &GV   or   &GV+C
1579      if (ConstraintLetter != 'n') {
1580        int64_t Offs = GA->getOffset();
1581        if (C) Offs += C->getValue();
1582        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1583                                                 Op.getValueType(), Offs));
1584        return;
1585      }
1586    }
1587    if (C) {   // just C, no GV.
1588      // Simple constants are not allowed for 's'.
1589      if (ConstraintLetter != 's') {
1590        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1591        return;
1592      }
1593    }
1594    break;
1595  }
1596  }
1597}
1598
1599std::vector<unsigned> TargetLowering::
1600getRegClassForInlineAsmConstraint(const std::string &Constraint,
1601                                  MVT::ValueType VT) const {
1602  return std::vector<unsigned>();
1603}
1604
1605
1606std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1607getRegForInlineAsmConstraint(const std::string &Constraint,
1608                             MVT::ValueType VT) const {
1609  if (Constraint[0] != '{')
1610    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1611  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1612
1613  // Remove the braces from around the name.
1614  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1615
1616  // Figure out which register class contains this reg.
1617  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1618  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1619       E = RI->regclass_end(); RCI != E; ++RCI) {
1620    const TargetRegisterClass *RC = *RCI;
1621
1622    // If none of the the value types for this register class are valid, we
1623    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1624    bool isLegal = false;
1625    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1626         I != E; ++I) {
1627      if (isTypeLegal(*I)) {
1628        isLegal = true;
1629        break;
1630      }
1631    }
1632
1633    if (!isLegal) continue;
1634
1635    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1636         I != E; ++I) {
1637      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1638        return std::make_pair(*I, RC);
1639    }
1640  }
1641
1642  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1643}
1644
1645//===----------------------------------------------------------------------===//
1646//  Loop Strength Reduction hooks
1647//===----------------------------------------------------------------------===//
1648
1649/// isLegalAddressingMode - Return true if the addressing mode represented
1650/// by AM is legal for this target, for a load/store of the specified type.
1651bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1652                                           const Type *Ty) const {
1653  // The default implementation of this implements a conservative RISCy, r+r and
1654  // r+i addr mode.
1655
1656  // Allows a sign-extended 16-bit immediate field.
1657  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1658    return false;
1659
1660  // No global is ever allowed as a base.
1661  if (AM.BaseGV)
1662    return false;
1663
1664  // Only support r+r,
1665  switch (AM.Scale) {
1666  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1667    break;
1668  case 1:
1669    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1670      return false;
1671    // Otherwise we have r+r or r+i.
1672    break;
1673  case 2:
1674    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1675      return false;
1676    // Allow 2*r as r+r.
1677    break;
1678  }
1679
1680  return true;
1681}
1682
1683// Magic for divide replacement
1684
1685struct ms {
1686  int64_t m;  // magic number
1687  int64_t s;  // shift amount
1688};
1689
1690struct mu {
1691  uint64_t m; // magic number
1692  int64_t a;  // add indicator
1693  int64_t s;  // shift amount
1694};
1695
1696/// magic - calculate the magic numbers required to codegen an integer sdiv as
1697/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1698/// or -1.
1699static ms magic32(int32_t d) {
1700  int32_t p;
1701  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1702  const uint32_t two31 = 0x80000000U;
1703  struct ms mag;
1704
1705  ad = abs(d);
1706  t = two31 + ((uint32_t)d >> 31);
1707  anc = t - 1 - t%ad;   // absolute value of nc
1708  p = 31;               // initialize p
1709  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1710  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1711  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1712  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1713  do {
1714    p = p + 1;
1715    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1716    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1717    if (r1 >= anc) {  // must be unsigned comparison
1718      q1 = q1 + 1;
1719      r1 = r1 - anc;
1720    }
1721    q2 = 2*q2;        // update q2 = 2p/abs(d)
1722    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1723    if (r2 >= ad) {   // must be unsigned comparison
1724      q2 = q2 + 1;
1725      r2 = r2 - ad;
1726    }
1727    delta = ad - r2;
1728  } while (q1 < delta || (q1 == delta && r1 == 0));
1729
1730  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1731  if (d < 0) mag.m = -mag.m; // resulting magic number
1732  mag.s = p - 32;            // resulting shift
1733  return mag;
1734}
1735
1736/// magicu - calculate the magic numbers required to codegen an integer udiv as
1737/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1738static mu magicu32(uint32_t d) {
1739  int32_t p;
1740  uint32_t nc, delta, q1, r1, q2, r2;
1741  struct mu magu;
1742  magu.a = 0;               // initialize "add" indicator
1743  nc = - 1 - (-d)%d;
1744  p = 31;                   // initialize p
1745  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1746  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1747  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1748  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1749  do {
1750    p = p + 1;
1751    if (r1 >= nc - r1 ) {
1752      q1 = 2*q1 + 1;  // update q1
1753      r1 = 2*r1 - nc; // update r1
1754    }
1755    else {
1756      q1 = 2*q1; // update q1
1757      r1 = 2*r1; // update r1
1758    }
1759    if (r2 + 1 >= d - r2) {
1760      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1761      q2 = 2*q2 + 1;     // update q2
1762      r2 = 2*r2 + 1 - d; // update r2
1763    }
1764    else {
1765      if (q2 >= 0x80000000) magu.a = 1;
1766      q2 = 2*q2;     // update q2
1767      r2 = 2*r2 + 1; // update r2
1768    }
1769    delta = d - 1 - r2;
1770  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1771  magu.m = q2 + 1; // resulting magic number
1772  magu.s = p - 32;  // resulting shift
1773  return magu;
1774}
1775
1776/// magic - calculate the magic numbers required to codegen an integer sdiv as
1777/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1778/// or -1.
1779static ms magic64(int64_t d) {
1780  int64_t p;
1781  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1782  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1783  struct ms mag;
1784
1785  ad = d >= 0 ? d : -d;
1786  t = two63 + ((uint64_t)d >> 63);
1787  anc = t - 1 - t%ad;   // absolute value of nc
1788  p = 63;               // initialize p
1789  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1790  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1791  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1792  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1793  do {
1794    p = p + 1;
1795    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1796    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1797    if (r1 >= anc) {  // must be unsigned comparison
1798      q1 = q1 + 1;
1799      r1 = r1 - anc;
1800    }
1801    q2 = 2*q2;        // update q2 = 2p/abs(d)
1802    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1803    if (r2 >= ad) {   // must be unsigned comparison
1804      q2 = q2 + 1;
1805      r2 = r2 - ad;
1806    }
1807    delta = ad - r2;
1808  } while (q1 < delta || (q1 == delta && r1 == 0));
1809
1810  mag.m = q2 + 1;
1811  if (d < 0) mag.m = -mag.m; // resulting magic number
1812  mag.s = p - 64;            // resulting shift
1813  return mag;
1814}
1815
1816/// magicu - calculate the magic numbers required to codegen an integer udiv as
1817/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1818static mu magicu64(uint64_t d)
1819{
1820  int64_t p;
1821  uint64_t nc, delta, q1, r1, q2, r2;
1822  struct mu magu;
1823  magu.a = 0;               // initialize "add" indicator
1824  nc = - 1 - (-d)%d;
1825  p = 63;                   // initialize p
1826  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1827  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1828  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1829  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1830  do {
1831    p = p + 1;
1832    if (r1 >= nc - r1 ) {
1833      q1 = 2*q1 + 1;  // update q1
1834      r1 = 2*r1 - nc; // update r1
1835    }
1836    else {
1837      q1 = 2*q1; // update q1
1838      r1 = 2*r1; // update r1
1839    }
1840    if (r2 + 1 >= d - r2) {
1841      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1842      q2 = 2*q2 + 1;     // update q2
1843      r2 = 2*r2 + 1 - d; // update r2
1844    }
1845    else {
1846      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1847      q2 = 2*q2;     // update q2
1848      r2 = 2*r2 + 1; // update r2
1849    }
1850    delta = d - 1 - r2;
1851  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1852  magu.m = q2 + 1; // resulting magic number
1853  magu.s = p - 64;  // resulting shift
1854  return magu;
1855}
1856
1857/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1858/// return a DAG expression to select that will generate the same value by
1859/// multiplying by a magic number.  See:
1860/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1861SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1862                                    std::vector<SDNode*>* Created) const {
1863  MVT::ValueType VT = N->getValueType(0);
1864
1865  // Check to see if we can do this.
1866  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1867    return SDOperand();       // BuildSDIV only operates on i32 or i64
1868
1869  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1870  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1871
1872  // Multiply the numerator (operand 0) by the magic value
1873  SDOperand Q;
1874  if (isOperationLegal(ISD::MULHS, VT))
1875    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1876                    DAG.getConstant(magics.m, VT));
1877  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1878    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1879                              N->getOperand(0),
1880                              DAG.getConstant(magics.m, VT)).Val, 1);
1881  else
1882    return SDOperand();       // No mulhs or equvialent
1883  // If d > 0 and m < 0, add the numerator
1884  if (d > 0 && magics.m < 0) {
1885    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1886    if (Created)
1887      Created->push_back(Q.Val);
1888  }
1889  // If d < 0 and m > 0, subtract the numerator.
1890  if (d < 0 && magics.m > 0) {
1891    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1892    if (Created)
1893      Created->push_back(Q.Val);
1894  }
1895  // Shift right algebraic if shift value is nonzero
1896  if (magics.s > 0) {
1897    Q = DAG.getNode(ISD::SRA, VT, Q,
1898                    DAG.getConstant(magics.s, getShiftAmountTy()));
1899    if (Created)
1900      Created->push_back(Q.Val);
1901  }
1902  // Extract the sign bit and add it to the quotient
1903  SDOperand T =
1904    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1905                                                 getShiftAmountTy()));
1906  if (Created)
1907    Created->push_back(T.Val);
1908  return DAG.getNode(ISD::ADD, VT, Q, T);
1909}
1910
1911/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1912/// return a DAG expression to select that will generate the same value by
1913/// multiplying by a magic number.  See:
1914/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1915SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1916                                    std::vector<SDNode*>* Created) const {
1917  MVT::ValueType VT = N->getValueType(0);
1918
1919  // Check to see if we can do this.
1920  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1921    return SDOperand();       // BuildUDIV only operates on i32 or i64
1922
1923  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1924  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1925
1926  // Multiply the numerator (operand 0) by the magic value
1927  SDOperand Q;
1928  if (isOperationLegal(ISD::MULHU, VT))
1929    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1930                    DAG.getConstant(magics.m, VT));
1931  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1932    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1933                              N->getOperand(0),
1934                              DAG.getConstant(magics.m, VT)).Val, 1);
1935  else
1936    return SDOperand();       // No mulhu or equvialent
1937  if (Created)
1938    Created->push_back(Q.Val);
1939
1940  if (magics.a == 0) {
1941    return DAG.getNode(ISD::SRL, VT, Q,
1942                       DAG.getConstant(magics.s, getShiftAmountTy()));
1943  } else {
1944    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1945    if (Created)
1946      Created->push_back(NPQ.Val);
1947    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1948                      DAG.getConstant(1, getShiftAmountTy()));
1949    if (Created)
1950      Created->push_back(NPQ.Val);
1951    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1952    if (Created)
1953      Created->push_back(NPQ.Val);
1954    return DAG.getNode(ISD::SRL, VT, NPQ,
1955                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1956  }
1957}
1958