TargetLowering.cpp revision 7667c0bac3cb46249fc14bb2f76111fb1625cdd6
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Target/TargetMachine.h"
17#include "llvm/Target/MRegisterInfo.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/MathExtras.h"
22using namespace llvm;
23
24/// InitLibcallNames - Set default libcall names.
25///
26static void InitLibcallNames(const char **Names) {
27  Names[RTLIB::SHL_I32] = "__ashlsi3";
28  Names[RTLIB::SHL_I64] = "__ashldi3";
29  Names[RTLIB::SRL_I32] = "__lshrsi3";
30  Names[RTLIB::SRL_I64] = "__lshrdi3";
31  Names[RTLIB::SRA_I32] = "__ashrsi3";
32  Names[RTLIB::SRA_I64] = "__ashrdi3";
33  Names[RTLIB::MUL_I32] = "__mulsi3";
34  Names[RTLIB::MUL_I64] = "__muldi3";
35  Names[RTLIB::SDIV_I32] = "__divsi3";
36  Names[RTLIB::SDIV_I64] = "__divdi3";
37  Names[RTLIB::UDIV_I32] = "__udivsi3";
38  Names[RTLIB::UDIV_I64] = "__udivdi3";
39  Names[RTLIB::SREM_I32] = "__modsi3";
40  Names[RTLIB::SREM_I64] = "__moddi3";
41  Names[RTLIB::UREM_I32] = "__umodsi3";
42  Names[RTLIB::UREM_I64] = "__umoddi3";
43  Names[RTLIB::NEG_I32] = "__negsi2";
44  Names[RTLIB::NEG_I64] = "__negdi2";
45  Names[RTLIB::ADD_F32] = "__addsf3";
46  Names[RTLIB::ADD_F64] = "__adddf3";
47  Names[RTLIB::SUB_F32] = "__subsf3";
48  Names[RTLIB::SUB_F64] = "__subdf3";
49  Names[RTLIB::MUL_F32] = "__mulsf3";
50  Names[RTLIB::MUL_F64] = "__muldf3";
51  Names[RTLIB::DIV_F32] = "__divsf3";
52  Names[RTLIB::DIV_F64] = "__divdf3";
53  Names[RTLIB::REM_F32] = "fmodf";
54  Names[RTLIB::REM_F64] = "fmod";
55  Names[RTLIB::NEG_F32] = "__negsf2";
56  Names[RTLIB::NEG_F64] = "__negdf2";
57  Names[RTLIB::POWI_F32] = "__powisf2";
58  Names[RTLIB::POWI_F64] = "__powidf2";
59  Names[RTLIB::SQRT_F32] = "sqrtf";
60  Names[RTLIB::SQRT_F64] = "sqrt";
61  Names[RTLIB::SIN_F32] = "sinf";
62  Names[RTLIB::SIN_F64] = "sin";
63  Names[RTLIB::COS_F32] = "cosf";
64  Names[RTLIB::COS_F64] = "cos";
65  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83  Names[RTLIB::OEQ_F32] = "__eqsf2";
84  Names[RTLIB::OEQ_F64] = "__eqdf2";
85  Names[RTLIB::UNE_F32] = "__nesf2";
86  Names[RTLIB::UNE_F64] = "__nedf2";
87  Names[RTLIB::OGE_F32] = "__gesf2";
88  Names[RTLIB::OGE_F64] = "__gedf2";
89  Names[RTLIB::OLT_F32] = "__ltsf2";
90  Names[RTLIB::OLT_F64] = "__ltdf2";
91  Names[RTLIB::OLE_F32] = "__lesf2";
92  Names[RTLIB::OLE_F64] = "__ledf2";
93  Names[RTLIB::OGT_F32] = "__gtsf2";
94  Names[RTLIB::OGT_F64] = "__gtdf2";
95  Names[RTLIB::UO_F32] = "__unordsf2";
96  Names[RTLIB::UO_F64] = "__unorddf2";
97  Names[RTLIB::O_F32] = "__unordsf2";
98  Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107  CCs[RTLIB::UNE_F32] = ISD::SETNE;
108  CCs[RTLIB::UNE_F64] = ISD::SETNE;
109  CCs[RTLIB::OGE_F32] = ISD::SETGE;
110  CCs[RTLIB::OGE_F64] = ISD::SETGE;
111  CCs[RTLIB::OLT_F32] = ISD::SETLT;
112  CCs[RTLIB::OLT_F64] = ISD::SETLT;
113  CCs[RTLIB::OLE_F32] = ISD::SETLE;
114  CCs[RTLIB::OLE_F64] = ISD::SETLE;
115  CCs[RTLIB::OGT_F32] = ISD::SETGT;
116  CCs[RTLIB::OGT_F64] = ISD::SETGT;
117  CCs[RTLIB::UO_F32] = ISD::SETNE;
118  CCs[RTLIB::UO_F64] = ISD::SETNE;
119  CCs[RTLIB::O_F32] = ISD::SETEQ;
120  CCs[RTLIB::O_F64] = ISD::SETEQ;
121}
122
123TargetLowering::TargetLowering(TargetMachine &tm)
124  : TM(tm), TD(TM.getTargetData()) {
125  assert(ISD::BUILTIN_OP_END <= 156 &&
126         "Fixed size array in TargetLowering is not large enough!");
127  // All operations default to being supported.
128  memset(OpActions, 0, sizeof(OpActions));
129  memset(LoadXActions, 0, sizeof(LoadXActions));
130  memset(&StoreXActions, 0, sizeof(StoreXActions));
131  // Initialize all indexed load / store to expand.
132  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
133    for (unsigned IM = (unsigned)ISD::PRE_INC;
134         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
135      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
136      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
137    }
138  }
139
140  IsLittleEndian = TD->isLittleEndian();
141  UsesGlobalOffsetTable = false;
142  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
143  ShiftAmtHandling = Undefined;
144  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
145  memset(TargetDAGCombineArray, 0,
146         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
147  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
148  allowUnalignedMemoryAccesses = false;
149  UseUnderscoreSetJmp = false;
150  UseUnderscoreLongJmp = false;
151  SelectIsExpensive = false;
152  IntDivIsCheap = false;
153  Pow2DivIsCheap = false;
154  StackPointerRegisterToSaveRestore = 0;
155  ExceptionPointerRegister = 0;
156  ExceptionSelectorRegister = 0;
157  SchedPreferenceInfo = SchedulingForLatency;
158  JumpBufSize = 0;
159  JumpBufAlignment = 0;
160  IfCvtBlockSizeLimit = 2;
161
162  InitLibcallNames(LibcallRoutineNames);
163  InitCmpLibcallCCs(CmpLibcallCCs);
164}
165
166TargetLowering::~TargetLowering() {}
167
168/// setValueTypeAction - Set the action for a particular value type.  This
169/// assumes an action has not already been set for this value type.
170static void SetValueTypeAction(MVT::ValueType VT,
171                               TargetLowering::LegalizeAction Action,
172                               TargetLowering &TLI,
173                               MVT::ValueType *TransformToType,
174                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
175  ValueTypeActions.setTypeAction(VT, Action);
176  if (Action == TargetLowering::Promote) {
177    MVT::ValueType PromoteTo;
178    if (VT == MVT::f32)
179      PromoteTo = MVT::f64;
180    else {
181      unsigned LargerReg = VT+1;
182      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
183        ++LargerReg;
184        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
185               "Nothing to promote to??");
186      }
187      PromoteTo = (MVT::ValueType)LargerReg;
188    }
189
190    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
191           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
192           "Can only promote from int->int or fp->fp!");
193    assert(VT < PromoteTo && "Must promote to a larger type!");
194    TransformToType[VT] = PromoteTo;
195  } else if (Action == TargetLowering::Expand) {
196    // f32 and f64 is each expanded to corresponding integer type of same size.
197    if (VT == MVT::f32)
198      TransformToType[VT] = MVT::i32;
199    else if (VT == MVT::f64)
200      TransformToType[VT] = MVT::i64;
201    else {
202      assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
203             "Cannot expand this type: target must support SOME integer reg!");
204      // Expand to the next smaller integer type!
205      TransformToType[VT] = (MVT::ValueType)(VT-1);
206    }
207  }
208}
209
210
211/// computeRegisterProperties - Once all of the register classes are added,
212/// this allows us to compute derived properties we expose.
213void TargetLowering::computeRegisterProperties() {
214  assert(MVT::LAST_VALUETYPE <= 32 &&
215         "Too many value types for ValueTypeActions to hold!");
216
217  // Everything defaults to one.
218  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
219    NumElementsForVT[i] = 1;
220
221  // Find the largest integer register class.
222  unsigned LargestIntReg = MVT::i128;
223  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
224    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
225
226  // Every integer value type larger than this largest register takes twice as
227  // many registers to represent as the previous ValueType.
228  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
229  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
230    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
231
232  // Inspect all of the ValueType's possible, deciding how to process them.
233  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
234    // If we are expanding this type, expand it!
235    if (getNumElements((MVT::ValueType)IntReg) != 1)
236      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
237                         ValueTypeActions);
238    else if (!isTypeLegal((MVT::ValueType)IntReg))
239      // Otherwise, if we don't have native support, we must promote to a
240      // larger type.
241      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
242                         TransformToType, ValueTypeActions);
243    else
244      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
245
246  // If the target does not have native F64 support, expand it to I64. We will
247  // be generating soft float library calls. If the target does not have native
248  // support for F32, promote it to F64 if it is legal. Otherwise, expand it to
249  // I32.
250  if (isTypeLegal(MVT::f64))
251    TransformToType[MVT::f64] = MVT::f64;
252  else {
253    NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64];
254    SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
255                       ValueTypeActions);
256  }
257  if (isTypeLegal(MVT::f32))
258    TransformToType[MVT::f32] = MVT::f32;
259  else if (isTypeLegal(MVT::f64))
260    SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
261                       ValueTypeActions);
262  else {
263    NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32];
264    SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
265                       ValueTypeActions);
266  }
267
268  // Set MVT::Vector to always be Expanded
269  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
270                     ValueTypeActions);
271
272  // Loop over all of the legal vector value types, specifying an identity type
273  // transformation.
274  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
275       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
276    if (isTypeLegal((MVT::ValueType)i))
277      TransformToType[i] = (MVT::ValueType)i;
278  }
279}
280
281const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
282  return NULL;
283}
284
285/// getVectorTypeBreakdown - Packed types are broken down into some number of
286/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
287/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
288///
289/// This method returns the number and type of the resultant breakdown.
290///
291unsigned TargetLowering::getVectorTypeBreakdown(const VectorType *PTy,
292                                                MVT::ValueType &PTyElementVT,
293                                      MVT::ValueType &PTyLegalElementVT) const {
294  // Figure out the right, legal destination reg to copy into.
295  unsigned NumElts = PTy->getNumElements();
296  MVT::ValueType EltTy = getValueType(PTy->getElementType());
297
298  unsigned NumVectorRegs = 1;
299
300  // Divide the input until we get to a supported size.  This will always
301  // end with a scalar if the target doesn't support vectors.
302  while (NumElts > 1 && !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
303    NumElts >>= 1;
304    NumVectorRegs <<= 1;
305  }
306
307  MVT::ValueType VT = MVT::getVectorType(EltTy, NumElts);
308  if (!isTypeLegal(VT))
309    VT = EltTy;
310  PTyElementVT = VT;
311
312  MVT::ValueType DestVT = getTypeToTransformTo(VT);
313  PTyLegalElementVT = DestVT;
314  if (DestVT < VT) {
315    // Value is expanded, e.g. i64 -> i16.
316    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
317  } else {
318    // Otherwise, promotion or legal types use the same number of registers as
319    // the vector decimated to the appropriate level.
320    return NumVectorRegs;
321  }
322
323  return 1;
324}
325
326//===----------------------------------------------------------------------===//
327//  Optimization Methods
328//===----------------------------------------------------------------------===//
329
330/// ShrinkDemandedConstant - Check to see if the specified operand of the
331/// specified instruction is a constant integer.  If so, check to see if there
332/// are any bits set in the constant that are not demanded.  If so, shrink the
333/// constant and return true.
334bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
335                                                            uint64_t Demanded) {
336  // FIXME: ISD::SELECT, ISD::SELECT_CC
337  switch(Op.getOpcode()) {
338  default: break;
339  case ISD::AND:
340  case ISD::OR:
341  case ISD::XOR:
342    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
343      if ((~Demanded & C->getValue()) != 0) {
344        MVT::ValueType VT = Op.getValueType();
345        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
346                                    DAG.getConstant(Demanded & C->getValue(),
347                                                    VT));
348        return CombineTo(Op, New);
349      }
350    break;
351  }
352  return false;
353}
354
355/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
356/// DemandedMask bits of the result of Op are ever used downstream.  If we can
357/// use this information to simplify Op, create a new simplified DAG node and
358/// return true, returning the original and new nodes in Old and New. Otherwise,
359/// analyze the expression and return a mask of KnownOne and KnownZero bits for
360/// the expression (used to simplify the caller).  The KnownZero/One bits may
361/// only be accurate for those bits in the DemandedMask.
362bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
363                                          uint64_t &KnownZero,
364                                          uint64_t &KnownOne,
365                                          TargetLoweringOpt &TLO,
366                                          unsigned Depth) const {
367  KnownZero = KnownOne = 0;   // Don't know anything.
368
369  // The masks are not wide enough to represent this type!  Should use APInt.
370  if (Op.getValueType() == MVT::i128)
371    return false;
372
373  // Other users may use these bits.
374  if (!Op.Val->hasOneUse()) {
375    if (Depth != 0) {
376      // If not at the root, Just compute the KnownZero/KnownOne bits to
377      // simplify things downstream.
378      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
379      return false;
380    }
381    // If this is the root being simplified, allow it to have multiple uses,
382    // just set the DemandedMask to all bits.
383    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
384  } else if (DemandedMask == 0) {
385    // Not demanding any bits from Op.
386    if (Op.getOpcode() != ISD::UNDEF)
387      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
388    return false;
389  } else if (Depth == 6) {        // Limit search depth.
390    return false;
391  }
392
393  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
394  switch (Op.getOpcode()) {
395  case ISD::Constant:
396    // We know all of the bits for a constant!
397    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
398    KnownZero = ~KnownOne & DemandedMask;
399    return false;   // Don't fall through, will infinitely loop.
400  case ISD::AND:
401    // If the RHS is a constant, check to see if the LHS would be zero without
402    // using the bits from the RHS.  Below, we use knowledge about the RHS to
403    // simplify the LHS, here we're using information from the LHS to simplify
404    // the RHS.
405    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
406      uint64_t LHSZero, LHSOne;
407      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
408                        LHSZero, LHSOne, Depth+1);
409      // If the LHS already has zeros where RHSC does, this and is dead.
410      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
411        return TLO.CombineTo(Op, Op.getOperand(0));
412      // If any of the set bits in the RHS are known zero on the LHS, shrink
413      // the constant.
414      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
415        return true;
416    }
417
418    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
419                             KnownOne, TLO, Depth+1))
420      return true;
421    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
422    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
423                             KnownZero2, KnownOne2, TLO, Depth+1))
424      return true;
425    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
426
427    // If all of the demanded bits are known one on one side, return the other.
428    // These bits cannot contribute to the result of the 'and'.
429    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
430      return TLO.CombineTo(Op, Op.getOperand(0));
431    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
432      return TLO.CombineTo(Op, Op.getOperand(1));
433    // If all of the demanded bits in the inputs are known zeros, return zero.
434    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
435      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
436    // If the RHS is a constant, see if we can simplify it.
437    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
438      return true;
439
440    // Output known-1 bits are only known if set in both the LHS & RHS.
441    KnownOne &= KnownOne2;
442    // Output known-0 are known to be clear if zero in either the LHS | RHS.
443    KnownZero |= KnownZero2;
444    break;
445  case ISD::OR:
446    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
447                             KnownOne, TLO, Depth+1))
448      return true;
449    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
450    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
451                             KnownZero2, KnownOne2, TLO, Depth+1))
452      return true;
453    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
454
455    // If all of the demanded bits are known zero on one side, return the other.
456    // These bits cannot contribute to the result of the 'or'.
457    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
458      return TLO.CombineTo(Op, Op.getOperand(0));
459    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
460      return TLO.CombineTo(Op, Op.getOperand(1));
461    // If all of the potentially set bits on one side are known to be set on
462    // the other side, just use the 'other' side.
463    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
464        (DemandedMask & (~KnownZero)))
465      return TLO.CombineTo(Op, Op.getOperand(0));
466    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
467        (DemandedMask & (~KnownZero2)))
468      return TLO.CombineTo(Op, Op.getOperand(1));
469    // If the RHS is a constant, see if we can simplify it.
470    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
471      return true;
472
473    // Output known-0 bits are only known if clear in both the LHS & RHS.
474    KnownZero &= KnownZero2;
475    // Output known-1 are known to be set if set in either the LHS | RHS.
476    KnownOne |= KnownOne2;
477    break;
478  case ISD::XOR:
479    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
480                             KnownOne, TLO, Depth+1))
481      return true;
482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
483    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
484                             KnownOne2, TLO, Depth+1))
485      return true;
486    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
487
488    // If all of the demanded bits are known zero on one side, return the other.
489    // These bits cannot contribute to the result of the 'xor'.
490    if ((DemandedMask & KnownZero) == DemandedMask)
491      return TLO.CombineTo(Op, Op.getOperand(0));
492    if ((DemandedMask & KnownZero2) == DemandedMask)
493      return TLO.CombineTo(Op, Op.getOperand(1));
494
495    // If all of the unknown bits are known to be zero on one side or the other
496    // (but not both) turn this into an *inclusive* or.
497    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
498    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
499      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
500                                               Op.getOperand(0),
501                                               Op.getOperand(1)));
502
503    // Output known-0 bits are known if clear or set in both the LHS & RHS.
504    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
505    // Output known-1 are known to be set if set in only one of the LHS, RHS.
506    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
507
508    // If all of the demanded bits on one side are known, and all of the set
509    // bits on that side are also known to be set on the other side, turn this
510    // into an AND, as we know the bits will be cleared.
511    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
512    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
513      if ((KnownOne & KnownOne2) == KnownOne) {
514        MVT::ValueType VT = Op.getValueType();
515        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
516        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
517                                                 ANDC));
518      }
519    }
520
521    // If the RHS is a constant, see if we can simplify it.
522    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
523    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
524      return true;
525
526    KnownZero = KnownZeroOut;
527    KnownOne  = KnownOneOut;
528    break;
529  case ISD::SETCC:
530    // If we know the result of a setcc has the top bits zero, use this info.
531    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
532      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
533    break;
534  case ISD::SELECT:
535    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
536                             KnownOne, TLO, Depth+1))
537      return true;
538    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
539                             KnownOne2, TLO, Depth+1))
540      return true;
541    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
542    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
543
544    // If the operands are constants, see if we can simplify them.
545    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
546      return true;
547
548    // Only known if known in both the LHS and RHS.
549    KnownOne &= KnownOne2;
550    KnownZero &= KnownZero2;
551    break;
552  case ISD::SELECT_CC:
553    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
554                             KnownOne, TLO, Depth+1))
555      return true;
556    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
557                             KnownOne2, TLO, Depth+1))
558      return true;
559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
560    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
561
562    // If the operands are constants, see if we can simplify them.
563    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
564      return true;
565
566    // Only known if known in both the LHS and RHS.
567    KnownOne &= KnownOne2;
568    KnownZero &= KnownZero2;
569    break;
570  case ISD::SHL:
571    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
572      unsigned ShAmt = SA->getValue();
573      SDOperand InOp = Op.getOperand(0);
574
575      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
576      // single shift.  We can do this if the bottom bits (which are shifted
577      // out) are never demanded.
578      if (InOp.getOpcode() == ISD::SRL &&
579          isa<ConstantSDNode>(InOp.getOperand(1))) {
580        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
581          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
582          unsigned Opc = ISD::SHL;
583          int Diff = ShAmt-C1;
584          if (Diff < 0) {
585            Diff = -Diff;
586            Opc = ISD::SRL;
587          }
588
589          SDOperand NewSA =
590            TLO.DAG.getConstant(ShAmt-C1, Op.getOperand(1).getValueType());
591          MVT::ValueType VT = Op.getValueType();
592          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
593                                                   InOp.getOperand(0), NewSA));
594        }
595      }
596
597      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
598                               KnownZero, KnownOne, TLO, Depth+1))
599        return true;
600      KnownZero <<= SA->getValue();
601      KnownOne  <<= SA->getValue();
602      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
603    }
604    break;
605  case ISD::SRL:
606    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
607      MVT::ValueType VT = Op.getValueType();
608      unsigned ShAmt = SA->getValue();
609      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
610      unsigned VTSize = MVT::getSizeInBits(VT);
611      SDOperand InOp = Op.getOperand(0);
612
613      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
614      // single shift.  We can do this if the top bits (which are shifted out)
615      // are never demanded.
616      if (InOp.getOpcode() == ISD::SHL &&
617          isa<ConstantSDNode>(InOp.getOperand(1))) {
618        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
619          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
620          unsigned Opc = ISD::SRL;
621          int Diff = ShAmt-C1;
622          if (Diff < 0) {
623            Diff = -Diff;
624            Opc = ISD::SHL;
625          }
626
627          SDOperand NewSA =
628            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
629          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
630                                                   InOp.getOperand(0), NewSA));
631        }
632      }
633
634      // Compute the new bits that are at the top now.
635      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
636                               KnownZero, KnownOne, TLO, Depth+1))
637        return true;
638      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
639      KnownZero &= TypeMask;
640      KnownOne  &= TypeMask;
641      KnownZero >>= ShAmt;
642      KnownOne  >>= ShAmt;
643
644      uint64_t HighBits = (1ULL << ShAmt)-1;
645      HighBits <<= VTSize - ShAmt;
646      KnownZero |= HighBits;  // High bits known zero.
647    }
648    break;
649  case ISD::SRA:
650    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
651      MVT::ValueType VT = Op.getValueType();
652      unsigned ShAmt = SA->getValue();
653
654      // Compute the new bits that are at the top now.
655      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
656
657      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
658
659      // If any of the demanded bits are produced by the sign extension, we also
660      // demand the input sign bit.
661      uint64_t HighBits = (1ULL << ShAmt)-1;
662      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
663      if (HighBits & DemandedMask)
664        InDemandedMask |= MVT::getIntVTSignBit(VT);
665
666      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
667                               KnownZero, KnownOne, TLO, Depth+1))
668        return true;
669      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
670      KnownZero &= TypeMask;
671      KnownOne  &= TypeMask;
672      KnownZero >>= ShAmt;
673      KnownOne  >>= ShAmt;
674
675      // Handle the sign bits.
676      uint64_t SignBit = MVT::getIntVTSignBit(VT);
677      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
678
679      // If the input sign bit is known to be zero, or if none of the top bits
680      // are demanded, turn this into an unsigned shift right.
681      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
682        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
683                                                 Op.getOperand(1)));
684      } else if (KnownOne & SignBit) { // New bits are known one.
685        KnownOne |= HighBits;
686      }
687    }
688    break;
689  case ISD::SIGN_EXTEND_INREG: {
690    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
691
692    // Sign extension.  Compute the demanded bits in the result that are not
693    // present in the input.
694    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
695
696    // If none of the extended bits are demanded, eliminate the sextinreg.
697    if (NewBits == 0)
698      return TLO.CombineTo(Op, Op.getOperand(0));
699
700    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
701    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
702
703    // Since the sign extended bits are demanded, we know that the sign
704    // bit is demanded.
705    InputDemandedBits |= InSignBit;
706
707    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
708                             KnownZero, KnownOne, TLO, Depth+1))
709      return true;
710    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
711
712    // If the sign bit of the input is known set or clear, then we know the
713    // top bits of the result.
714
715    // If the input sign bit is known zero, convert this into a zero extension.
716    if (KnownZero & InSignBit)
717      return TLO.CombineTo(Op,
718                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
719
720    if (KnownOne & InSignBit) {    // Input sign bit known set
721      KnownOne |= NewBits;
722      KnownZero &= ~NewBits;
723    } else {                       // Input sign bit unknown
724      KnownZero &= ~NewBits;
725      KnownOne &= ~NewBits;
726    }
727    break;
728  }
729  case ISD::CTTZ:
730  case ISD::CTLZ:
731  case ISD::CTPOP: {
732    MVT::ValueType VT = Op.getValueType();
733    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
734    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
735    KnownOne  = 0;
736    break;
737  }
738  case ISD::LOAD: {
739    if (ISD::isZEXTLoad(Op.Val)) {
740      LoadSDNode *LD = cast<LoadSDNode>(Op);
741      MVT::ValueType VT = LD->getLoadedVT();
742      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
743    }
744    break;
745  }
746  case ISD::ZERO_EXTEND: {
747    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
748
749    // If none of the top bits are demanded, convert this into an any_extend.
750    uint64_t NewBits = (~InMask) & DemandedMask;
751    if (NewBits == 0)
752      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
753                                               Op.getValueType(),
754                                               Op.getOperand(0)));
755
756    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
757                             KnownZero, KnownOne, TLO, Depth+1))
758      return true;
759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
760    KnownZero |= NewBits;
761    break;
762  }
763  case ISD::SIGN_EXTEND: {
764    MVT::ValueType InVT = Op.getOperand(0).getValueType();
765    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
766    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
767    uint64_t NewBits   = (~InMask) & DemandedMask;
768
769    // If none of the top bits are demanded, convert this into an any_extend.
770    if (NewBits == 0)
771      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
772                                           Op.getOperand(0)));
773
774    // Since some of the sign extended bits are demanded, we know that the sign
775    // bit is demanded.
776    uint64_t InDemandedBits = DemandedMask & InMask;
777    InDemandedBits |= InSignBit;
778
779    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
780                             KnownOne, TLO, Depth+1))
781      return true;
782
783    // If the sign bit is known zero, convert this to a zero extend.
784    if (KnownZero & InSignBit)
785      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
786                                               Op.getValueType(),
787                                               Op.getOperand(0)));
788
789    // If the sign bit is known one, the top bits match.
790    if (KnownOne & InSignBit) {
791      KnownOne  |= NewBits;
792      KnownZero &= ~NewBits;
793    } else {   // Otherwise, top bits aren't known.
794      KnownOne  &= ~NewBits;
795      KnownZero &= ~NewBits;
796    }
797    break;
798  }
799  case ISD::ANY_EXTEND: {
800    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
801    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
802                             KnownZero, KnownOne, TLO, Depth+1))
803      return true;
804    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
805    break;
806  }
807  case ISD::TRUNCATE: {
808    // Simplify the input, using demanded bit information, and compute the known
809    // zero/one bits live out.
810    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
811                             KnownZero, KnownOne, TLO, Depth+1))
812      return true;
813
814    // If the input is only used by this truncate, see if we can shrink it based
815    // on the known demanded bits.
816    if (Op.getOperand(0).Val->hasOneUse()) {
817      SDOperand In = Op.getOperand(0);
818      switch (In.getOpcode()) {
819      default: break;
820      case ISD::SRL:
821        // Shrink SRL by a constant if none of the high bits shifted in are
822        // demanded.
823        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
824          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
825          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
826          HighBits >>= ShAmt->getValue();
827
828          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
829              (DemandedMask & HighBits) == 0) {
830            // None of the shifted in bits are needed.  Add a truncate of the
831            // shift input, then shift it.
832            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
833                                                 Op.getValueType(),
834                                                 In.getOperand(0));
835            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
836                                                   NewTrunc, In.getOperand(1)));
837          }
838        }
839        break;
840      }
841    }
842
843    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
845    KnownZero &= OutMask;
846    KnownOne &= OutMask;
847    break;
848  }
849  case ISD::AssertZext: {
850    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
851    uint64_t InMask = MVT::getIntVTBitMask(VT);
852    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
853                             KnownZero, KnownOne, TLO, Depth+1))
854      return true;
855    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
856    KnownZero |= ~InMask & DemandedMask;
857    break;
858  }
859  case ISD::ADD:
860  case ISD::SUB:
861  case ISD::INTRINSIC_WO_CHAIN:
862  case ISD::INTRINSIC_W_CHAIN:
863  case ISD::INTRINSIC_VOID:
864    // Just use ComputeMaskedBits to compute output bits.
865    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
866    break;
867  }
868
869  // If we know the value of all of the demanded bits, return this as a
870  // constant.
871  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
872    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
873
874  return false;
875}
876
877/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
878/// this predicate to simplify operations downstream.  Mask is known to be zero
879/// for bits that V cannot have.
880bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
881                                       unsigned Depth) const {
882  // The masks are not wide enough to represent this type!  Should use APInt.
883  if (Op.getValueType() == MVT::i128)
884    return false;
885
886  uint64_t KnownZero, KnownOne;
887  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
888  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
889  return (KnownZero & Mask) == Mask;
890}
891
892/// ComputeMaskedBits - Determine which of the bits specified in Mask are
893/// known to be either zero or one and return them in the KnownZero/KnownOne
894/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
895/// processing.
896void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
897                                       uint64_t &KnownZero, uint64_t &KnownOne,
898                                       unsigned Depth) const {
899  KnownZero = KnownOne = 0;   // Don't know anything.
900  if (Depth == 6 || Mask == 0)
901    return;  // Limit search depth.
902
903  // The masks are not wide enough to represent this type!  Should use APInt.
904  if (Op.getValueType() == MVT::i128)
905    return;
906
907  uint64_t KnownZero2, KnownOne2;
908
909  switch (Op.getOpcode()) {
910  case ISD::Constant:
911    // We know all of the bits for a constant!
912    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
913    KnownZero = ~KnownOne & Mask;
914    return;
915  case ISD::AND:
916    // If either the LHS or the RHS are Zero, the result is zero.
917    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
918    Mask &= ~KnownZero;
919    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
920    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
921    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
922
923    // Output known-1 bits are only known if set in both the LHS & RHS.
924    KnownOne &= KnownOne2;
925    // Output known-0 are known to be clear if zero in either the LHS | RHS.
926    KnownZero |= KnownZero2;
927    return;
928  case ISD::OR:
929    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
930    Mask &= ~KnownOne;
931    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
932    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
933    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
934
935    // Output known-0 bits are only known if clear in both the LHS & RHS.
936    KnownZero &= KnownZero2;
937    // Output known-1 are known to be set if set in either the LHS | RHS.
938    KnownOne |= KnownOne2;
939    return;
940  case ISD::XOR: {
941    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
942    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
943    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
945
946    // Output known-0 bits are known if clear or set in both the LHS & RHS.
947    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
948    // Output known-1 are known to be set if set in only one of the LHS, RHS.
949    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
950    KnownZero = KnownZeroOut;
951    return;
952  }
953  case ISD::SELECT:
954    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
955    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
956    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
957    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
958
959    // Only known if known in both the LHS and RHS.
960    KnownOne &= KnownOne2;
961    KnownZero &= KnownZero2;
962    return;
963  case ISD::SELECT_CC:
964    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
965    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
966    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
967    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
968
969    // Only known if known in both the LHS and RHS.
970    KnownOne &= KnownOne2;
971    KnownZero &= KnownZero2;
972    return;
973  case ISD::SETCC:
974    // If we know the result of a setcc has the top bits zero, use this info.
975    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
976      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
977    return;
978  case ISD::SHL:
979    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
980    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
981      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
982                        KnownZero, KnownOne, Depth+1);
983      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
984      KnownZero <<= SA->getValue();
985      KnownOne  <<= SA->getValue();
986      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
987    }
988    return;
989  case ISD::SRL:
990    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
991    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
992      MVT::ValueType VT = Op.getValueType();
993      unsigned ShAmt = SA->getValue();
994
995      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
996      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
997                        KnownZero, KnownOne, Depth+1);
998      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
999      KnownZero &= TypeMask;
1000      KnownOne  &= TypeMask;
1001      KnownZero >>= ShAmt;
1002      KnownOne  >>= ShAmt;
1003
1004      uint64_t HighBits = (1ULL << ShAmt)-1;
1005      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1006      KnownZero |= HighBits;  // High bits known zero.
1007    }
1008    return;
1009  case ISD::SRA:
1010    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1011      MVT::ValueType VT = Op.getValueType();
1012      unsigned ShAmt = SA->getValue();
1013
1014      // Compute the new bits that are at the top now.
1015      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1016
1017      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1018      // If any of the demanded bits are produced by the sign extension, we also
1019      // demand the input sign bit.
1020      uint64_t HighBits = (1ULL << ShAmt)-1;
1021      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1022      if (HighBits & Mask)
1023        InDemandedMask |= MVT::getIntVTSignBit(VT);
1024
1025      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1026                        Depth+1);
1027      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1028      KnownZero &= TypeMask;
1029      KnownOne  &= TypeMask;
1030      KnownZero >>= ShAmt;
1031      KnownOne  >>= ShAmt;
1032
1033      // Handle the sign bits.
1034      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1035      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1036
1037      if (KnownZero & SignBit) {
1038        KnownZero |= HighBits;  // New bits are known zero.
1039      } else if (KnownOne & SignBit) {
1040        KnownOne  |= HighBits;  // New bits are known one.
1041      }
1042    }
1043    return;
1044  case ISD::SIGN_EXTEND_INREG: {
1045    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1046
1047    // Sign extension.  Compute the demanded bits in the result that are not
1048    // present in the input.
1049    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1050
1051    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1052    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1053
1054    // If the sign extended bits are demanded, we know that the sign
1055    // bit is demanded.
1056    if (NewBits)
1057      InputDemandedBits |= InSignBit;
1058
1059    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1060                      KnownZero, KnownOne, Depth+1);
1061    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1062
1063    // If the sign bit of the input is known set or clear, then we know the
1064    // top bits of the result.
1065    if (KnownZero & InSignBit) {          // Input sign bit known clear
1066      KnownZero |= NewBits;
1067      KnownOne  &= ~NewBits;
1068    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1069      KnownOne  |= NewBits;
1070      KnownZero &= ~NewBits;
1071    } else {                              // Input sign bit unknown
1072      KnownZero &= ~NewBits;
1073      KnownOne  &= ~NewBits;
1074    }
1075    return;
1076  }
1077  case ISD::CTTZ:
1078  case ISD::CTLZ:
1079  case ISD::CTPOP: {
1080    MVT::ValueType VT = Op.getValueType();
1081    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1082    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1083    KnownOne  = 0;
1084    return;
1085  }
1086  case ISD::LOAD: {
1087    if (ISD::isZEXTLoad(Op.Val)) {
1088      LoadSDNode *LD = cast<LoadSDNode>(Op);
1089      MVT::ValueType VT = LD->getLoadedVT();
1090      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1091    }
1092    return;
1093  }
1094  case ISD::ZERO_EXTEND: {
1095    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1096    uint64_t NewBits = (~InMask) & Mask;
1097    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1098                      KnownOne, Depth+1);
1099    KnownZero |= NewBits & Mask;
1100    KnownOne  &= ~NewBits;
1101    return;
1102  }
1103  case ISD::SIGN_EXTEND: {
1104    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1105    unsigned InBits    = MVT::getSizeInBits(InVT);
1106    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1107    uint64_t InSignBit = 1ULL << (InBits-1);
1108    uint64_t NewBits   = (~InMask) & Mask;
1109    uint64_t InDemandedBits = Mask & InMask;
1110
1111    // If any of the sign extended bits are demanded, we know that the sign
1112    // bit is demanded.
1113    if (NewBits & Mask)
1114      InDemandedBits |= InSignBit;
1115
1116    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1117                      KnownOne, Depth+1);
1118    // If the sign bit is known zero or one, the  top bits match.
1119    if (KnownZero & InSignBit) {
1120      KnownZero |= NewBits;
1121      KnownOne  &= ~NewBits;
1122    } else if (KnownOne & InSignBit) {
1123      KnownOne  |= NewBits;
1124      KnownZero &= ~NewBits;
1125    } else {   // Otherwise, top bits aren't known.
1126      KnownOne  &= ~NewBits;
1127      KnownZero &= ~NewBits;
1128    }
1129    return;
1130  }
1131  case ISD::ANY_EXTEND: {
1132    MVT::ValueType VT = Op.getOperand(0).getValueType();
1133    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1134                      KnownZero, KnownOne, Depth+1);
1135    return;
1136  }
1137  case ISD::TRUNCATE: {
1138    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1139    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1141    KnownZero &= OutMask;
1142    KnownOne &= OutMask;
1143    break;
1144  }
1145  case ISD::AssertZext: {
1146    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1147    uint64_t InMask = MVT::getIntVTBitMask(VT);
1148    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1149                      KnownOne, Depth+1);
1150    KnownZero |= (~InMask) & Mask;
1151    return;
1152  }
1153  case ISD::ADD: {
1154    // If either the LHS or the RHS are Zero, the result is zero.
1155    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1156    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1157    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1159
1160    // Output known-0 bits are known if clear or set in both the low clear bits
1161    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1162    // low 3 bits clear.
1163    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1164                                     CountTrailingZeros_64(~KnownZero2));
1165
1166    KnownZero = (1ULL << KnownZeroOut) - 1;
1167    KnownOne = 0;
1168    return;
1169  }
1170  case ISD::SUB: {
1171    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1172    if (!CLHS) return;
1173
1174    // We know that the top bits of C-X are clear if X contains less bits
1175    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1176    // positive if we can prove that X is >= 0 and < 16.
1177    MVT::ValueType VT = CLHS->getValueType(0);
1178    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1179      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1180      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1181      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1182      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1183
1184      // If all of the MaskV bits are known to be zero, then we know the output
1185      // top bits are zero, because we now know that the output is from [0-C].
1186      if ((KnownZero & MaskV) == MaskV) {
1187        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1188        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1189        KnownOne = 0;   // No one bits known.
1190      } else {
1191        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1192      }
1193    }
1194    return;
1195  }
1196  default:
1197    // Allow the target to implement this method for its nodes.
1198    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1199  case ISD::INTRINSIC_WO_CHAIN:
1200  case ISD::INTRINSIC_W_CHAIN:
1201  case ISD::INTRINSIC_VOID:
1202      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
1203    }
1204    return;
1205  }
1206}
1207
1208/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1209/// in Mask are known to be either zero or one and return them in the
1210/// KnownZero/KnownOne bitsets.
1211void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1212                                                    uint64_t Mask,
1213                                                    uint64_t &KnownZero,
1214                                                    uint64_t &KnownOne,
1215                                                    unsigned Depth) const {
1216  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1217          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1218          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1219          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1220         "Should use MaskedValueIsZero if you don't know whether Op"
1221         " is a target node!");
1222  KnownZero = 0;
1223  KnownOne = 0;
1224}
1225
1226/// ComputeNumSignBits - Return the number of times the sign bit of the
1227/// register is replicated into the other bits.  We know that at least 1 bit
1228/// is always equal to the sign bit (itself), but other cases can give us
1229/// information.  For example, immediately after an "SRA X, 2", we know that
1230/// the top 3 bits are all equal to each other, so we return 3.
1231unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1232  MVT::ValueType VT = Op.getValueType();
1233  assert(MVT::isInteger(VT) && "Invalid VT!");
1234  unsigned VTBits = MVT::getSizeInBits(VT);
1235  unsigned Tmp, Tmp2;
1236
1237  if (Depth == 6)
1238    return 1;  // Limit search depth.
1239
1240  switch (Op.getOpcode()) {
1241  default: break;
1242  case ISD::AssertSext:
1243    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1244    return VTBits-Tmp+1;
1245  case ISD::AssertZext:
1246    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1247    return VTBits-Tmp;
1248
1249  case ISD::Constant: {
1250    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1251    // If negative, invert the bits, then look at it.
1252    if (Val & MVT::getIntVTSignBit(VT))
1253      Val = ~Val;
1254
1255    // Shift the bits so they are the leading bits in the int64_t.
1256    Val <<= 64-VTBits;
1257
1258    // Return # leading zeros.  We use 'min' here in case Val was zero before
1259    // shifting.  We don't want to return '64' as for an i32 "0".
1260    return std::min(VTBits, CountLeadingZeros_64(Val));
1261  }
1262
1263  case ISD::SIGN_EXTEND:
1264    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1265    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1266
1267  case ISD::SIGN_EXTEND_INREG:
1268    // Max of the input and what this extends.
1269    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1270    Tmp = VTBits-Tmp+1;
1271
1272    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1273    return std::max(Tmp, Tmp2);
1274
1275  case ISD::SRA:
1276    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1277    // SRA X, C   -> adds C sign bits.
1278    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1279      Tmp += C->getValue();
1280      if (Tmp > VTBits) Tmp = VTBits;
1281    }
1282    return Tmp;
1283  case ISD::SHL:
1284    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1285      // shl destroys sign bits.
1286      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1287      if (C->getValue() >= VTBits ||      // Bad shift.
1288          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1289      return Tmp - C->getValue();
1290    }
1291    break;
1292  case ISD::AND:
1293  case ISD::OR:
1294  case ISD::XOR:    // NOT is handled here.
1295    // Logical binary ops preserve the number of sign bits.
1296    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1297    if (Tmp == 1) return 1;  // Early out.
1298    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1299    return std::min(Tmp, Tmp2);
1300
1301  case ISD::SELECT:
1302    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1303    if (Tmp == 1) return 1;  // Early out.
1304    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1305    return std::min(Tmp, Tmp2);
1306
1307  case ISD::SETCC:
1308    // If setcc returns 0/-1, all bits are sign bits.
1309    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1310      return VTBits;
1311    break;
1312  case ISD::ROTL:
1313  case ISD::ROTR:
1314    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1315      unsigned RotAmt = C->getValue() & (VTBits-1);
1316
1317      // Handle rotate right by N like a rotate left by 32-N.
1318      if (Op.getOpcode() == ISD::ROTR)
1319        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1320
1321      // If we aren't rotating out all of the known-in sign bits, return the
1322      // number that are left.  This handles rotl(sext(x), 1) for example.
1323      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1324      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1325    }
1326    break;
1327  case ISD::ADD:
1328    // Add can have at most one carry bit.  Thus we know that the output
1329    // is, at worst, one more bit than the inputs.
1330    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1331    if (Tmp == 1) return 1;  // Early out.
1332
1333    // Special case decrementing a value (ADD X, -1):
1334    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1335      if (CRHS->isAllOnesValue()) {
1336        uint64_t KnownZero, KnownOne;
1337        uint64_t Mask = MVT::getIntVTBitMask(VT);
1338        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1339
1340        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1341        // sign bits set.
1342        if ((KnownZero|1) == Mask)
1343          return VTBits;
1344
1345        // If we are subtracting one from a positive number, there is no carry
1346        // out of the result.
1347        if (KnownZero & MVT::getIntVTSignBit(VT))
1348          return Tmp;
1349      }
1350
1351    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1352    if (Tmp2 == 1) return 1;
1353      return std::min(Tmp, Tmp2)-1;
1354    break;
1355
1356  case ISD::SUB:
1357    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1358    if (Tmp2 == 1) return 1;
1359
1360    // Handle NEG.
1361    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1362      if (CLHS->getValue() == 0) {
1363        uint64_t KnownZero, KnownOne;
1364        uint64_t Mask = MVT::getIntVTBitMask(VT);
1365        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1366        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1367        // sign bits set.
1368        if ((KnownZero|1) == Mask)
1369          return VTBits;
1370
1371        // If the input is known to be positive (the sign bit is known clear),
1372        // the output of the NEG has the same number of sign bits as the input.
1373        if (KnownZero & MVT::getIntVTSignBit(VT))
1374          return Tmp2;
1375
1376        // Otherwise, we treat this like a SUB.
1377      }
1378
1379    // Sub can have at most one carry bit.  Thus we know that the output
1380    // is, at worst, one more bit than the inputs.
1381    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1382    if (Tmp == 1) return 1;  // Early out.
1383      return std::min(Tmp, Tmp2)-1;
1384    break;
1385  case ISD::TRUNCATE:
1386    // FIXME: it's tricky to do anything useful for this, but it is an important
1387    // case for targets like X86.
1388    break;
1389  }
1390
1391  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1392  if (Op.getOpcode() == ISD::LOAD) {
1393    LoadSDNode *LD = cast<LoadSDNode>(Op);
1394    unsigned ExtType = LD->getExtensionType();
1395    switch (ExtType) {
1396    default: break;
1397    case ISD::SEXTLOAD:    // '17' bits known
1398      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1399      return VTBits-Tmp+1;
1400    case ISD::ZEXTLOAD:    // '16' bits known
1401      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1402      return VTBits-Tmp;
1403    }
1404  }
1405
1406  // Allow the target to implement this method for its nodes.
1407  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1408      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1409      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1410      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1411    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1412    if (NumBits > 1) return NumBits;
1413  }
1414
1415  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1416  // use this information.
1417  uint64_t KnownZero, KnownOne;
1418  uint64_t Mask = MVT::getIntVTBitMask(VT);
1419  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1420
1421  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1422  if (KnownZero & SignBit) {        // SignBit is 0
1423    Mask = KnownZero;
1424  } else if (KnownOne & SignBit) {  // SignBit is 1;
1425    Mask = KnownOne;
1426  } else {
1427    // Nothing known.
1428    return 1;
1429  }
1430
1431  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1432  // the number of identical bits in the top of the input value.
1433  Mask ^= ~0ULL;
1434  Mask <<= 64-VTBits;
1435  // Return # leading zeros.  We use 'min' here in case Val was zero before
1436  // shifting.  We don't want to return '64' as for an i32 "0".
1437  return std::min(VTBits, CountLeadingZeros_64(Mask));
1438}
1439
1440
1441
1442/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1443/// targets that want to expose additional information about sign bits to the
1444/// DAG Combiner.
1445unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1446                                                         unsigned Depth) const {
1447  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1448          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1449          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1450          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1451         "Should use ComputeNumSignBits if you don't know whether Op"
1452         " is a target node!");
1453  return 1;
1454}
1455
1456
1457/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1458/// and cc. If it is unable to simplify it, return a null SDOperand.
1459SDOperand
1460TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1461                              ISD::CondCode Cond, bool foldBooleans,
1462                              DAGCombinerInfo &DCI) const {
1463  SelectionDAG &DAG = DCI.DAG;
1464
1465  // These setcc operations always fold.
1466  switch (Cond) {
1467  default: break;
1468  case ISD::SETFALSE:
1469  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1470  case ISD::SETTRUE:
1471  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1472  }
1473
1474  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1475    uint64_t C1 = N1C->getValue();
1476    if (isa<ConstantSDNode>(N0.Val)) {
1477      return DAG.FoldSetCC(VT, N0, N1, Cond);
1478    } else {
1479      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1480      // equality comparison, then we're just comparing whether X itself is
1481      // zero.
1482      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1483          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1484          N0.getOperand(1).getOpcode() == ISD::Constant) {
1485        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1486        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1487            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1488          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1489            // (srl (ctlz x), 5) == 0  -> X != 0
1490            // (srl (ctlz x), 5) != 1  -> X != 0
1491            Cond = ISD::SETNE;
1492          } else {
1493            // (srl (ctlz x), 5) != 0  -> X == 0
1494            // (srl (ctlz x), 5) == 1  -> X == 0
1495            Cond = ISD::SETEQ;
1496          }
1497          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1498          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1499                              Zero, Cond);
1500        }
1501      }
1502
1503      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1504      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1505        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1506
1507        // If the comparison constant has bits in the upper part, the
1508        // zero-extended value could never match.
1509        if (C1 & (~0ULL << InSize)) {
1510          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1511          switch (Cond) {
1512          case ISD::SETUGT:
1513          case ISD::SETUGE:
1514          case ISD::SETEQ: return DAG.getConstant(0, VT);
1515          case ISD::SETULT:
1516          case ISD::SETULE:
1517          case ISD::SETNE: return DAG.getConstant(1, VT);
1518          case ISD::SETGT:
1519          case ISD::SETGE:
1520            // True if the sign bit of C1 is set.
1521            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1522          case ISD::SETLT:
1523          case ISD::SETLE:
1524            // True if the sign bit of C1 isn't set.
1525            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1526          default:
1527            break;
1528          }
1529        }
1530
1531        // Otherwise, we can perform the comparison with the low bits.
1532        switch (Cond) {
1533        case ISD::SETEQ:
1534        case ISD::SETNE:
1535        case ISD::SETUGT:
1536        case ISD::SETUGE:
1537        case ISD::SETULT:
1538        case ISD::SETULE:
1539          return DAG.getSetCC(VT, N0.getOperand(0),
1540                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1541                          Cond);
1542        default:
1543          break;   // todo, be more careful with signed comparisons
1544        }
1545      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1546                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1547        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1548        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1549        MVT::ValueType ExtDstTy = N0.getValueType();
1550        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1551
1552        // If the extended part has any inconsistent bits, it cannot ever
1553        // compare equal.  In other words, they have to be all ones or all
1554        // zeros.
1555        uint64_t ExtBits =
1556          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1557        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1558          return DAG.getConstant(Cond == ISD::SETNE, VT);
1559
1560        SDOperand ZextOp;
1561        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1562        if (Op0Ty == ExtSrcTy) {
1563          ZextOp = N0.getOperand(0);
1564        } else {
1565          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1566          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1567                               DAG.getConstant(Imm, Op0Ty));
1568        }
1569        if (!DCI.isCalledByLegalizer())
1570          DCI.AddToWorklist(ZextOp.Val);
1571        // Otherwise, make this a use of a zext.
1572        return DAG.getSetCC(VT, ZextOp,
1573                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1574                                            ExtDstTy),
1575                            Cond);
1576      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1577                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1578
1579        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1580        if (N0.getOpcode() == ISD::SETCC) {
1581          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1582          if (TrueWhenTrue)
1583            return N0;
1584
1585          // Invert the condition.
1586          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1587          CC = ISD::getSetCCInverse(CC,
1588                               MVT::isInteger(N0.getOperand(0).getValueType()));
1589          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1590        }
1591
1592        if ((N0.getOpcode() == ISD::XOR ||
1593             (N0.getOpcode() == ISD::AND &&
1594              N0.getOperand(0).getOpcode() == ISD::XOR &&
1595              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1596            isa<ConstantSDNode>(N0.getOperand(1)) &&
1597            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1598          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1599          // can only do this if the top bits are known zero.
1600          if (MaskedValueIsZero(N0, MVT::getIntVTBitMask(N0.getValueType())-1)){
1601            // Okay, get the un-inverted input value.
1602            SDOperand Val;
1603            if (N0.getOpcode() == ISD::XOR)
1604              Val = N0.getOperand(0);
1605            else {
1606              assert(N0.getOpcode() == ISD::AND &&
1607                     N0.getOperand(0).getOpcode() == ISD::XOR);
1608              // ((X^1)&1)^1 -> X & 1
1609              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1610                                N0.getOperand(0).getOperand(0),
1611                                N0.getOperand(1));
1612            }
1613            return DAG.getSetCC(VT, Val, N1,
1614                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1615          }
1616        }
1617      }
1618
1619      uint64_t MinVal, MaxVal;
1620      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1621      if (ISD::isSignedIntSetCC(Cond)) {
1622        MinVal = 1ULL << (OperandBitSize-1);
1623        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1624          MaxVal = ~0ULL >> (65-OperandBitSize);
1625        else
1626          MaxVal = 0;
1627      } else {
1628        MinVal = 0;
1629        MaxVal = ~0ULL >> (64-OperandBitSize);
1630      }
1631
1632      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1633      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1634        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1635        --C1;                                          // X >= C0 --> X > (C0-1)
1636        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1637                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1638      }
1639
1640      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1641        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1642        ++C1;                                          // X <= C0 --> X < (C0+1)
1643        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1644                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1645      }
1646
1647      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1648        return DAG.getConstant(0, VT);      // X < MIN --> false
1649      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1650        return DAG.getConstant(1, VT);      // X >= MIN --> true
1651      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1652        return DAG.getConstant(0, VT);      // X > MAX --> false
1653      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1654        return DAG.getConstant(1, VT);      // X <= MAX --> true
1655
1656      // Canonicalize setgt X, Min --> setne X, Min
1657      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1658        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1659      // Canonicalize setlt X, Max --> setne X, Max
1660      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1661        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1662
1663      // If we have setult X, 1, turn it into seteq X, 0
1664      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1665        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1666                        ISD::SETEQ);
1667      // If we have setugt X, Max-1, turn it into seteq X, Max
1668      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1669        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1670                        ISD::SETEQ);
1671
1672      // If we have "setcc X, C0", check to see if we can shrink the immediate
1673      // by changing cc.
1674
1675      // SETUGT X, SINTMAX  -> SETLT X, 0
1676      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1677          C1 == (~0ULL >> (65-OperandBitSize)))
1678        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1679                            ISD::SETLT);
1680
1681      // FIXME: Implement the rest of these.
1682
1683      // Fold bit comparisons when we can.
1684      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1685          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1686        if (ConstantSDNode *AndRHS =
1687                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1688          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1689            // Perform the xform if the AND RHS is a single bit.
1690            if (isPowerOf2_64(AndRHS->getValue())) {
1691              return DAG.getNode(ISD::SRL, VT, N0,
1692                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1693                                             getShiftAmountTy()));
1694            }
1695          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1696            // (X & 8) == 8  -->  (X & 8) >> 3
1697            // Perform the xform if C1 is a single bit.
1698            if (isPowerOf2_64(C1)) {
1699              return DAG.getNode(ISD::SRL, VT, N0,
1700                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1701            }
1702          }
1703        }
1704    }
1705  } else if (isa<ConstantSDNode>(N0.Val)) {
1706      // Ensure that the constant occurs on the RHS.
1707    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1708  }
1709
1710  if (isa<ConstantFPSDNode>(N0.Val)) {
1711    // Constant fold or commute setcc.
1712    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1713    if (O.Val) return O;
1714  }
1715
1716  if (N0 == N1) {
1717    // We can always fold X == X for integer setcc's.
1718    if (MVT::isInteger(N0.getValueType()))
1719      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1720    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1721    if (UOF == 2)   // FP operators that are undefined on NaNs.
1722      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1723    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1724      return DAG.getConstant(UOF, VT);
1725    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1726    // if it is not already.
1727    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1728    if (NewCond != Cond)
1729      return DAG.getSetCC(VT, N0, N1, NewCond);
1730  }
1731
1732  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1733      MVT::isInteger(N0.getValueType())) {
1734    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1735        N0.getOpcode() == ISD::XOR) {
1736      // Simplify (X+Y) == (X+Z) -->  Y == Z
1737      if (N0.getOpcode() == N1.getOpcode()) {
1738        if (N0.getOperand(0) == N1.getOperand(0))
1739          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1740        if (N0.getOperand(1) == N1.getOperand(1))
1741          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1742        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1743          // If X op Y == Y op X, try other combinations.
1744          if (N0.getOperand(0) == N1.getOperand(1))
1745            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1746          if (N0.getOperand(1) == N1.getOperand(0))
1747            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1748        }
1749      }
1750
1751      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1752        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1753          // Turn (X+C1) == C2 --> X == C2-C1
1754          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1755            return DAG.getSetCC(VT, N0.getOperand(0),
1756                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1757                                N0.getValueType()), Cond);
1758          }
1759
1760          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1761          if (N0.getOpcode() == ISD::XOR)
1762            // If we know that all of the inverted bits are zero, don't bother
1763            // performing the inversion.
1764            if (MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1765              return DAG.getSetCC(VT, N0.getOperand(0),
1766                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1767                                              N0.getValueType()), Cond);
1768        }
1769
1770        // Turn (C1-X) == C2 --> X == C1-C2
1771        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1772          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1773            return DAG.getSetCC(VT, N0.getOperand(1),
1774                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1775                                             N0.getValueType()), Cond);
1776          }
1777        }
1778      }
1779
1780      // Simplify (X+Z) == X -->  Z == 0
1781      if (N0.getOperand(0) == N1)
1782        return DAG.getSetCC(VT, N0.getOperand(1),
1783                        DAG.getConstant(0, N0.getValueType()), Cond);
1784      if (N0.getOperand(1) == N1) {
1785        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1786          return DAG.getSetCC(VT, N0.getOperand(0),
1787                          DAG.getConstant(0, N0.getValueType()), Cond);
1788        else if (N0.Val->hasOneUse()) {
1789          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1790          // (Z-X) == X  --> Z == X<<1
1791          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1792                                     N1,
1793                                     DAG.getConstant(1, getShiftAmountTy()));
1794          if (!DCI.isCalledByLegalizer())
1795            DCI.AddToWorklist(SH.Val);
1796          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1797        }
1798      }
1799    }
1800
1801    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1802        N1.getOpcode() == ISD::XOR) {
1803      // Simplify  X == (X+Z) -->  Z == 0
1804      if (N1.getOperand(0) == N0) {
1805        return DAG.getSetCC(VT, N1.getOperand(1),
1806                        DAG.getConstant(0, N1.getValueType()), Cond);
1807      } else if (N1.getOperand(1) == N0) {
1808        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1809          return DAG.getSetCC(VT, N1.getOperand(0),
1810                          DAG.getConstant(0, N1.getValueType()), Cond);
1811        } else if (N1.Val->hasOneUse()) {
1812          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1813          // X == (Z-X)  --> X<<1 == Z
1814          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1815                                     DAG.getConstant(1, getShiftAmountTy()));
1816          if (!DCI.isCalledByLegalizer())
1817            DCI.AddToWorklist(SH.Val);
1818          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1819        }
1820      }
1821    }
1822  }
1823
1824  // Fold away ALL boolean setcc's.
1825  SDOperand Temp;
1826  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1827    switch (Cond) {
1828    default: assert(0 && "Unknown integer setcc!");
1829    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1830      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1831      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1832      if (!DCI.isCalledByLegalizer())
1833        DCI.AddToWorklist(Temp.Val);
1834      break;
1835    case ISD::SETNE:  // X != Y   -->  (X^Y)
1836      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1837      break;
1838    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1839    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1840      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1841      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1842      if (!DCI.isCalledByLegalizer())
1843        DCI.AddToWorklist(Temp.Val);
1844      break;
1845    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1846    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1847      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1848      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1849      if (!DCI.isCalledByLegalizer())
1850        DCI.AddToWorklist(Temp.Val);
1851      break;
1852    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1853    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1854      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1855      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1856      if (!DCI.isCalledByLegalizer())
1857        DCI.AddToWorklist(Temp.Val);
1858      break;
1859    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1860    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1861      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1862      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1863      break;
1864    }
1865    if (VT != MVT::i1) {
1866      if (!DCI.isCalledByLegalizer())
1867        DCI.AddToWorklist(N0.Val);
1868      // FIXME: If running after legalize, we probably can't do this.
1869      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1870    }
1871    return N0;
1872  }
1873
1874  // Could not fold it.
1875  return SDOperand();
1876}
1877
1878SDOperand TargetLowering::
1879PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1880  // Default implementation: no optimization.
1881  return SDOperand();
1882}
1883
1884//===----------------------------------------------------------------------===//
1885//  Inline Assembler Implementation Methods
1886//===----------------------------------------------------------------------===//
1887
1888TargetLowering::ConstraintType
1889TargetLowering::getConstraintType(const std::string &Constraint) const {
1890  // FIXME: lots more standard ones to handle.
1891  if (Constraint.size() == 1) {
1892    switch (Constraint[0]) {
1893    default: break;
1894    case 'r': return C_RegisterClass;
1895    case 'm':    // memory
1896    case 'o':    // offsetable
1897    case 'V':    // not offsetable
1898      return C_Memory;
1899    case 'i':    // Simple Integer or Relocatable Constant
1900    case 'n':    // Simple Integer
1901    case 's':    // Relocatable Constant
1902    case 'X':    // Allow ANY value.
1903    case 'I':    // Target registers.
1904    case 'J':
1905    case 'K':
1906    case 'L':
1907    case 'M':
1908    case 'N':
1909    case 'O':
1910    case 'P':
1911      return C_Other;
1912    }
1913  }
1914
1915  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1916      Constraint[Constraint.size()-1] == '}')
1917    return C_Register;
1918  return C_Unknown;
1919}
1920
1921/// isOperandValidForConstraint - Return the specified operand (possibly
1922/// modified) if the specified SDOperand is valid for the specified target
1923/// constraint letter, otherwise return null.
1924SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
1925                                                      char ConstraintLetter,
1926                                                      SelectionDAG &DAG) {
1927  switch (ConstraintLetter) {
1928  default: break;
1929  case 'i':    // Simple Integer or Relocatable Constant
1930  case 'n':    // Simple Integer
1931  case 's':    // Relocatable Constant
1932  case 'X': {  // Allows any operand.
1933    // These operands are interested in values of the form (GV+C), where C may
1934    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1935    // is possible and fine if either GV or C are missing.
1936    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1937    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1938
1939    // If we have "(add GV, C)", pull out GV/C
1940    if (Op.getOpcode() == ISD::ADD) {
1941      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1942      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1943      if (C == 0 || GA == 0) {
1944        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1945        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1946      }
1947      if (C == 0 || GA == 0)
1948        C = 0, GA = 0;
1949    }
1950
1951    // If we find a valid operand, map to the TargetXXX version so that the
1952    // value itself doesn't get selected.
1953    if (GA) {   // Either &GV   or   &GV+C
1954      if (ConstraintLetter != 'n') {
1955        int64_t Offs = GA->getOffset();
1956        if (C) Offs += C->getValue();
1957        return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
1958                                          Offs);
1959      }
1960    }
1961    if (C) {   // just C, no GV.
1962      // Simple constants are not allowed for 's'.
1963      if (ConstraintLetter != 's')
1964        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
1965    }
1966    break;
1967  }
1968  }
1969  return SDOperand(0,0);
1970}
1971
1972std::vector<unsigned> TargetLowering::
1973getRegClassForInlineAsmConstraint(const std::string &Constraint,
1974                                  MVT::ValueType VT) const {
1975  return std::vector<unsigned>();
1976}
1977
1978
1979std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1980getRegForInlineAsmConstraint(const std::string &Constraint,
1981                             MVT::ValueType VT) const {
1982  if (Constraint[0] != '{')
1983    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1984  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1985
1986  // Remove the braces from around the name.
1987  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1988
1989  // Figure out which register class contains this reg.
1990  const MRegisterInfo *RI = TM.getRegisterInfo();
1991  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1992       E = RI->regclass_end(); RCI != E; ++RCI) {
1993    const TargetRegisterClass *RC = *RCI;
1994
1995    // If none of the the value types for this register class are valid, we
1996    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1997    bool isLegal = false;
1998    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1999         I != E; ++I) {
2000      if (isTypeLegal(*I)) {
2001        isLegal = true;
2002        break;
2003      }
2004    }
2005
2006    if (!isLegal) continue;
2007
2008    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2009         I != E; ++I) {
2010      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
2011        return std::make_pair(*I, RC);
2012    }
2013  }
2014
2015  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2016}
2017
2018//===----------------------------------------------------------------------===//
2019//  Loop Strength Reduction hooks
2020//===----------------------------------------------------------------------===//
2021
2022/// isLegalAddressingMode - Return true if the addressing mode represented
2023/// by AM is legal for this target, for a load/store of the specified type.
2024bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2025                                           const Type *Ty) const {
2026  // The default implementation of this implements a conservative RISCy, r+r and
2027  // r+i addr mode.
2028
2029  // Allows a sign-extended 16-bit immediate field.
2030  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2031    return false;
2032
2033  // No global is ever allowed as a base.
2034  if (AM.BaseGV)
2035    return false;
2036
2037  // Only support r+r,
2038  switch (AM.Scale) {
2039  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2040    break;
2041  case 1:
2042    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2043      return false;
2044    // Otherwise we have r+r or r+i.
2045    break;
2046  case 2:
2047    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2048      return false;
2049    // Allow 2*r as r+r.
2050    break;
2051  }
2052
2053  return true;
2054}
2055
2056// Magic for divide replacement
2057
2058struct ms {
2059  int64_t m;  // magic number
2060  int64_t s;  // shift amount
2061};
2062
2063struct mu {
2064  uint64_t m; // magic number
2065  int64_t a;  // add indicator
2066  int64_t s;  // shift amount
2067};
2068
2069/// magic - calculate the magic numbers required to codegen an integer sdiv as
2070/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2071/// or -1.
2072static ms magic32(int32_t d) {
2073  int32_t p;
2074  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2075  const uint32_t two31 = 0x80000000U;
2076  struct ms mag;
2077
2078  ad = abs(d);
2079  t = two31 + ((uint32_t)d >> 31);
2080  anc = t - 1 - t%ad;   // absolute value of nc
2081  p = 31;               // initialize p
2082  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2083  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2084  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2085  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2086  do {
2087    p = p + 1;
2088    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2089    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2090    if (r1 >= anc) {  // must be unsigned comparison
2091      q1 = q1 + 1;
2092      r1 = r1 - anc;
2093    }
2094    q2 = 2*q2;        // update q2 = 2p/abs(d)
2095    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2096    if (r2 >= ad) {   // must be unsigned comparison
2097      q2 = q2 + 1;
2098      r2 = r2 - ad;
2099    }
2100    delta = ad - r2;
2101  } while (q1 < delta || (q1 == delta && r1 == 0));
2102
2103  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2104  if (d < 0) mag.m = -mag.m; // resulting magic number
2105  mag.s = p - 32;            // resulting shift
2106  return mag;
2107}
2108
2109/// magicu - calculate the magic numbers required to codegen an integer udiv as
2110/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2111static mu magicu32(uint32_t d) {
2112  int32_t p;
2113  uint32_t nc, delta, q1, r1, q2, r2;
2114  struct mu magu;
2115  magu.a = 0;               // initialize "add" indicator
2116  nc = - 1 - (-d)%d;
2117  p = 31;                   // initialize p
2118  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2119  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2120  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2121  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2122  do {
2123    p = p + 1;
2124    if (r1 >= nc - r1 ) {
2125      q1 = 2*q1 + 1;  // update q1
2126      r1 = 2*r1 - nc; // update r1
2127    }
2128    else {
2129      q1 = 2*q1; // update q1
2130      r1 = 2*r1; // update r1
2131    }
2132    if (r2 + 1 >= d - r2) {
2133      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2134      q2 = 2*q2 + 1;     // update q2
2135      r2 = 2*r2 + 1 - d; // update r2
2136    }
2137    else {
2138      if (q2 >= 0x80000000) magu.a = 1;
2139      q2 = 2*q2;     // update q2
2140      r2 = 2*r2 + 1; // update r2
2141    }
2142    delta = d - 1 - r2;
2143  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2144  magu.m = q2 + 1; // resulting magic number
2145  magu.s = p - 32;  // resulting shift
2146  return magu;
2147}
2148
2149/// magic - calculate the magic numbers required to codegen an integer sdiv as
2150/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2151/// or -1.
2152static ms magic64(int64_t d) {
2153  int64_t p;
2154  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2155  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2156  struct ms mag;
2157
2158  ad = d >= 0 ? d : -d;
2159  t = two63 + ((uint64_t)d >> 63);
2160  anc = t - 1 - t%ad;   // absolute value of nc
2161  p = 63;               // initialize p
2162  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2163  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2164  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2165  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2166  do {
2167    p = p + 1;
2168    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2169    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2170    if (r1 >= anc) {  // must be unsigned comparison
2171      q1 = q1 + 1;
2172      r1 = r1 - anc;
2173    }
2174    q2 = 2*q2;        // update q2 = 2p/abs(d)
2175    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2176    if (r2 >= ad) {   // must be unsigned comparison
2177      q2 = q2 + 1;
2178      r2 = r2 - ad;
2179    }
2180    delta = ad - r2;
2181  } while (q1 < delta || (q1 == delta && r1 == 0));
2182
2183  mag.m = q2 + 1;
2184  if (d < 0) mag.m = -mag.m; // resulting magic number
2185  mag.s = p - 64;            // resulting shift
2186  return mag;
2187}
2188
2189/// magicu - calculate the magic numbers required to codegen an integer udiv as
2190/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2191static mu magicu64(uint64_t d)
2192{
2193  int64_t p;
2194  uint64_t nc, delta, q1, r1, q2, r2;
2195  struct mu magu;
2196  magu.a = 0;               // initialize "add" indicator
2197  nc = - 1 - (-d)%d;
2198  p = 63;                   // initialize p
2199  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2200  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2201  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2202  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2203  do {
2204    p = p + 1;
2205    if (r1 >= nc - r1 ) {
2206      q1 = 2*q1 + 1;  // update q1
2207      r1 = 2*r1 - nc; // update r1
2208    }
2209    else {
2210      q1 = 2*q1; // update q1
2211      r1 = 2*r1; // update r1
2212    }
2213    if (r2 + 1 >= d - r2) {
2214      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2215      q2 = 2*q2 + 1;     // update q2
2216      r2 = 2*r2 + 1 - d; // update r2
2217    }
2218    else {
2219      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2220      q2 = 2*q2;     // update q2
2221      r2 = 2*r2 + 1; // update r2
2222    }
2223    delta = d - 1 - r2;
2224  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2225  magu.m = q2 + 1; // resulting magic number
2226  magu.s = p - 64;  // resulting shift
2227  return magu;
2228}
2229
2230/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2231/// return a DAG expression to select that will generate the same value by
2232/// multiplying by a magic number.  See:
2233/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2234SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2235                                    std::vector<SDNode*>* Created) const {
2236  MVT::ValueType VT = N->getValueType(0);
2237
2238  // Check to see if we can do this.
2239  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2240    return SDOperand();       // BuildSDIV only operates on i32 or i64
2241  if (!isOperationLegal(ISD::MULHS, VT))
2242    return SDOperand();       // Make sure the target supports MULHS.
2243
2244  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2245  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2246
2247  // Multiply the numerator (operand 0) by the magic value
2248  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2249                            DAG.getConstant(magics.m, VT));
2250  // If d > 0 and m < 0, add the numerator
2251  if (d > 0 && magics.m < 0) {
2252    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2253    if (Created)
2254      Created->push_back(Q.Val);
2255  }
2256  // If d < 0 and m > 0, subtract the numerator.
2257  if (d < 0 && magics.m > 0) {
2258    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2259    if (Created)
2260      Created->push_back(Q.Val);
2261  }
2262  // Shift right algebraic if shift value is nonzero
2263  if (magics.s > 0) {
2264    Q = DAG.getNode(ISD::SRA, VT, Q,
2265                    DAG.getConstant(magics.s, getShiftAmountTy()));
2266    if (Created)
2267      Created->push_back(Q.Val);
2268  }
2269  // Extract the sign bit and add it to the quotient
2270  SDOperand T =
2271    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
2272                                                 getShiftAmountTy()));
2273  if (Created)
2274    Created->push_back(T.Val);
2275  return DAG.getNode(ISD::ADD, VT, Q, T);
2276}
2277
2278/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2279/// return a DAG expression to select that will generate the same value by
2280/// multiplying by a magic number.  See:
2281/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2282SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2283                                    std::vector<SDNode*>* Created) const {
2284  MVT::ValueType VT = N->getValueType(0);
2285
2286  // Check to see if we can do this.
2287  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2288    return SDOperand();       // BuildUDIV only operates on i32 or i64
2289  if (!isOperationLegal(ISD::MULHU, VT))
2290    return SDOperand();       // Make sure the target supports MULHU.
2291
2292  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2293  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2294
2295  // Multiply the numerator (operand 0) by the magic value
2296  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2297                            DAG.getConstant(magics.m, VT));
2298  if (Created)
2299    Created->push_back(Q.Val);
2300
2301  if (magics.a == 0) {
2302    return DAG.getNode(ISD::SRL, VT, Q,
2303                       DAG.getConstant(magics.s, getShiftAmountTy()));
2304  } else {
2305    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2306    if (Created)
2307      Created->push_back(NPQ.Val);
2308    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2309                      DAG.getConstant(1, getShiftAmountTy()));
2310    if (Created)
2311      Created->push_back(NPQ.Val);
2312    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2313    if (Created)
2314      Created->push_back(NPQ.Val);
2315    return DAG.getNode(ISD::SRL, VT, NPQ,
2316                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2317  }
2318}
2319