TargetLowering.cpp revision 78d12644b905dc54cf6cf984af02a49d30d29744
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30namespace llvm {
31TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
32  bool isLocal = GV->hasLocalLinkage();
33  bool isDeclaration = GV->isDeclaration();
34  // FIXME: what should we do for protected and internal visibility?
35  // For variables, is internal different from hidden?
36  bool isHidden = GV->hasHiddenVisibility();
37
38  if (reloc == Reloc::PIC_) {
39    if (isLocal || isHidden)
40      return TLSModel::LocalDynamic;
41    else
42      return TLSModel::GeneralDynamic;
43  } else {
44    if (!isDeclaration || isHidden)
45      return TLSModel::LocalExec;
46    else
47      return TLSModel::InitialExec;
48  }
49}
50}
51
52/// InitLibcallNames - Set default libcall names.
53///
54static void InitLibcallNames(const char **Names) {
55  Names[RTLIB::SHL_I16] = "__ashlhi3";
56  Names[RTLIB::SHL_I32] = "__ashlsi3";
57  Names[RTLIB::SHL_I64] = "__ashldi3";
58  Names[RTLIB::SHL_I128] = "__ashlti3";
59  Names[RTLIB::SRL_I16] = "__lshrhi3";
60  Names[RTLIB::SRL_I32] = "__lshrsi3";
61  Names[RTLIB::SRL_I64] = "__lshrdi3";
62  Names[RTLIB::SRL_I128] = "__lshrti3";
63  Names[RTLIB::SRA_I16] = "__ashrhi3";
64  Names[RTLIB::SRA_I32] = "__ashrsi3";
65  Names[RTLIB::SRA_I64] = "__ashrdi3";
66  Names[RTLIB::SRA_I128] = "__ashrti3";
67  Names[RTLIB::MUL_I16] = "__mulhi3";
68  Names[RTLIB::MUL_I32] = "__mulsi3";
69  Names[RTLIB::MUL_I64] = "__muldi3";
70  Names[RTLIB::MUL_I128] = "__multi3";
71  Names[RTLIB::SDIV_I16] = "__divhi3";
72  Names[RTLIB::SDIV_I32] = "__divsi3";
73  Names[RTLIB::SDIV_I64] = "__divdi3";
74  Names[RTLIB::SDIV_I128] = "__divti3";
75  Names[RTLIB::UDIV_I16] = "__udivhi3";
76  Names[RTLIB::UDIV_I32] = "__udivsi3";
77  Names[RTLIB::UDIV_I64] = "__udivdi3";
78  Names[RTLIB::UDIV_I128] = "__udivti3";
79  Names[RTLIB::SREM_I16] = "__modhi3";
80  Names[RTLIB::SREM_I32] = "__modsi3";
81  Names[RTLIB::SREM_I64] = "__moddi3";
82  Names[RTLIB::SREM_I128] = "__modti3";
83  Names[RTLIB::UREM_I16] = "__umodhi3";
84  Names[RTLIB::UREM_I32] = "__umodsi3";
85  Names[RTLIB::UREM_I64] = "__umoddi3";
86  Names[RTLIB::UREM_I128] = "__umodti3";
87  Names[RTLIB::NEG_I32] = "__negsi2";
88  Names[RTLIB::NEG_I64] = "__negdi2";
89  Names[RTLIB::ADD_F32] = "__addsf3";
90  Names[RTLIB::ADD_F64] = "__adddf3";
91  Names[RTLIB::ADD_F80] = "__addxf3";
92  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
93  Names[RTLIB::SUB_F32] = "__subsf3";
94  Names[RTLIB::SUB_F64] = "__subdf3";
95  Names[RTLIB::SUB_F80] = "__subxf3";
96  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
97  Names[RTLIB::MUL_F32] = "__mulsf3";
98  Names[RTLIB::MUL_F64] = "__muldf3";
99  Names[RTLIB::MUL_F80] = "__mulxf3";
100  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
101  Names[RTLIB::DIV_F32] = "__divsf3";
102  Names[RTLIB::DIV_F64] = "__divdf3";
103  Names[RTLIB::DIV_F80] = "__divxf3";
104  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
105  Names[RTLIB::REM_F32] = "fmodf";
106  Names[RTLIB::REM_F64] = "fmod";
107  Names[RTLIB::REM_F80] = "fmodl";
108  Names[RTLIB::REM_PPCF128] = "fmodl";
109  Names[RTLIB::POWI_F32] = "__powisf2";
110  Names[RTLIB::POWI_F64] = "__powidf2";
111  Names[RTLIB::POWI_F80] = "__powixf2";
112  Names[RTLIB::POWI_PPCF128] = "__powitf2";
113  Names[RTLIB::SQRT_F32] = "sqrtf";
114  Names[RTLIB::SQRT_F64] = "sqrt";
115  Names[RTLIB::SQRT_F80] = "sqrtl";
116  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
117  Names[RTLIB::LOG_F32] = "logf";
118  Names[RTLIB::LOG_F64] = "log";
119  Names[RTLIB::LOG_F80] = "logl";
120  Names[RTLIB::LOG_PPCF128] = "logl";
121  Names[RTLIB::LOG2_F32] = "log2f";
122  Names[RTLIB::LOG2_F64] = "log2";
123  Names[RTLIB::LOG2_F80] = "log2l";
124  Names[RTLIB::LOG2_PPCF128] = "log2l";
125  Names[RTLIB::LOG10_F32] = "log10f";
126  Names[RTLIB::LOG10_F64] = "log10";
127  Names[RTLIB::LOG10_F80] = "log10l";
128  Names[RTLIB::LOG10_PPCF128] = "log10l";
129  Names[RTLIB::EXP_F32] = "expf";
130  Names[RTLIB::EXP_F64] = "exp";
131  Names[RTLIB::EXP_F80] = "expl";
132  Names[RTLIB::EXP_PPCF128] = "expl";
133  Names[RTLIB::EXP2_F32] = "exp2f";
134  Names[RTLIB::EXP2_F64] = "exp2";
135  Names[RTLIB::EXP2_F80] = "exp2l";
136  Names[RTLIB::EXP2_PPCF128] = "exp2l";
137  Names[RTLIB::SIN_F32] = "sinf";
138  Names[RTLIB::SIN_F64] = "sin";
139  Names[RTLIB::SIN_F80] = "sinl";
140  Names[RTLIB::SIN_PPCF128] = "sinl";
141  Names[RTLIB::COS_F32] = "cosf";
142  Names[RTLIB::COS_F64] = "cos";
143  Names[RTLIB::COS_F80] = "cosl";
144  Names[RTLIB::COS_PPCF128] = "cosl";
145  Names[RTLIB::POW_F32] = "powf";
146  Names[RTLIB::POW_F64] = "pow";
147  Names[RTLIB::POW_F80] = "powl";
148  Names[RTLIB::POW_PPCF128] = "powl";
149  Names[RTLIB::CEIL_F32] = "ceilf";
150  Names[RTLIB::CEIL_F64] = "ceil";
151  Names[RTLIB::CEIL_F80] = "ceill";
152  Names[RTLIB::CEIL_PPCF128] = "ceill";
153  Names[RTLIB::TRUNC_F32] = "truncf";
154  Names[RTLIB::TRUNC_F64] = "trunc";
155  Names[RTLIB::TRUNC_F80] = "truncl";
156  Names[RTLIB::TRUNC_PPCF128] = "truncl";
157  Names[RTLIB::RINT_F32] = "rintf";
158  Names[RTLIB::RINT_F64] = "rint";
159  Names[RTLIB::RINT_F80] = "rintl";
160  Names[RTLIB::RINT_PPCF128] = "rintl";
161  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
162  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
163  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
164  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
165  Names[RTLIB::FLOOR_F32] = "floorf";
166  Names[RTLIB::FLOOR_F64] = "floor";
167  Names[RTLIB::FLOOR_F80] = "floorl";
168  Names[RTLIB::FLOOR_PPCF128] = "floorl";
169  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
170  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
171  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
172  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
173  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
174  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
175  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
176  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
177  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
178  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
179  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
180  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
181  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
182  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
183  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
184  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
185  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
186  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
187  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
188  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
189  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
190  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
191  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
192  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
193  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
194  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
195  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
196  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
197  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
198  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
199  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
200  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
201  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
202  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
203  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
204  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
205  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
206  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
207  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
208  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
209  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
210  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
211  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
212  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
213  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
214  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
215  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
216  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
217  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
218  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
219  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
220  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
221  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
222  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
223  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
224  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
225  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
226  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
227  Names[RTLIB::OEQ_F32] = "__eqsf2";
228  Names[RTLIB::OEQ_F64] = "__eqdf2";
229  Names[RTLIB::UNE_F32] = "__nesf2";
230  Names[RTLIB::UNE_F64] = "__nedf2";
231  Names[RTLIB::OGE_F32] = "__gesf2";
232  Names[RTLIB::OGE_F64] = "__gedf2";
233  Names[RTLIB::OLT_F32] = "__ltsf2";
234  Names[RTLIB::OLT_F64] = "__ltdf2";
235  Names[RTLIB::OLE_F32] = "__lesf2";
236  Names[RTLIB::OLE_F64] = "__ledf2";
237  Names[RTLIB::OGT_F32] = "__gtsf2";
238  Names[RTLIB::OGT_F64] = "__gtdf2";
239  Names[RTLIB::UO_F32] = "__unordsf2";
240  Names[RTLIB::UO_F64] = "__unorddf2";
241  Names[RTLIB::O_F32] = "__unordsf2";
242  Names[RTLIB::O_F64] = "__unorddf2";
243  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
244}
245
246/// getFPEXT - Return the FPEXT_*_* value for the given types, or
247/// UNKNOWN_LIBCALL if there is none.
248RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
249  if (OpVT == MVT::f32) {
250    if (RetVT == MVT::f64)
251      return FPEXT_F32_F64;
252  }
253  return UNKNOWN_LIBCALL;
254}
255
256/// getFPROUND - Return the FPROUND_*_* value for the given types, or
257/// UNKNOWN_LIBCALL if there is none.
258RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
259  if (RetVT == MVT::f32) {
260    if (OpVT == MVT::f64)
261      return FPROUND_F64_F32;
262    if (OpVT == MVT::f80)
263      return FPROUND_F80_F32;
264    if (OpVT == MVT::ppcf128)
265      return FPROUND_PPCF128_F32;
266  } else if (RetVT == MVT::f64) {
267    if (OpVT == MVT::f80)
268      return FPROUND_F80_F64;
269    if (OpVT == MVT::ppcf128)
270      return FPROUND_PPCF128_F64;
271  }
272  return UNKNOWN_LIBCALL;
273}
274
275/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276/// UNKNOWN_LIBCALL if there is none.
277RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
278  if (OpVT == MVT::f32) {
279    if (RetVT == MVT::i8)
280      return FPTOSINT_F32_I8;
281    if (RetVT == MVT::i16)
282      return FPTOSINT_F32_I16;
283    if (RetVT == MVT::i32)
284      return FPTOSINT_F32_I32;
285    if (RetVT == MVT::i64)
286      return FPTOSINT_F32_I64;
287    if (RetVT == MVT::i128)
288      return FPTOSINT_F32_I128;
289  } else if (OpVT == MVT::f64) {
290    if (RetVT == MVT::i32)
291      return FPTOSINT_F64_I32;
292    if (RetVT == MVT::i64)
293      return FPTOSINT_F64_I64;
294    if (RetVT == MVT::i128)
295      return FPTOSINT_F64_I128;
296  } else if (OpVT == MVT::f80) {
297    if (RetVT == MVT::i32)
298      return FPTOSINT_F80_I32;
299    if (RetVT == MVT::i64)
300      return FPTOSINT_F80_I64;
301    if (RetVT == MVT::i128)
302      return FPTOSINT_F80_I128;
303  } else if (OpVT == MVT::ppcf128) {
304    if (RetVT == MVT::i32)
305      return FPTOSINT_PPCF128_I32;
306    if (RetVT == MVT::i64)
307      return FPTOSINT_PPCF128_I64;
308    if (RetVT == MVT::i128)
309      return FPTOSINT_PPCF128_I128;
310  }
311  return UNKNOWN_LIBCALL;
312}
313
314/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
315/// UNKNOWN_LIBCALL if there is none.
316RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
317  if (OpVT == MVT::f32) {
318    if (RetVT == MVT::i8)
319      return FPTOUINT_F32_I8;
320    if (RetVT == MVT::i16)
321      return FPTOUINT_F32_I16;
322    if (RetVT == MVT::i32)
323      return FPTOUINT_F32_I32;
324    if (RetVT == MVT::i64)
325      return FPTOUINT_F32_I64;
326    if (RetVT == MVT::i128)
327      return FPTOUINT_F32_I128;
328  } else if (OpVT == MVT::f64) {
329    if (RetVT == MVT::i32)
330      return FPTOUINT_F64_I32;
331    if (RetVT == MVT::i64)
332      return FPTOUINT_F64_I64;
333    if (RetVT == MVT::i128)
334      return FPTOUINT_F64_I128;
335  } else if (OpVT == MVT::f80) {
336    if (RetVT == MVT::i32)
337      return FPTOUINT_F80_I32;
338    if (RetVT == MVT::i64)
339      return FPTOUINT_F80_I64;
340    if (RetVT == MVT::i128)
341      return FPTOUINT_F80_I128;
342  } else if (OpVT == MVT::ppcf128) {
343    if (RetVT == MVT::i32)
344      return FPTOUINT_PPCF128_I32;
345    if (RetVT == MVT::i64)
346      return FPTOUINT_PPCF128_I64;
347    if (RetVT == MVT::i128)
348      return FPTOUINT_PPCF128_I128;
349  }
350  return UNKNOWN_LIBCALL;
351}
352
353/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
354/// UNKNOWN_LIBCALL if there is none.
355RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
356  if (OpVT == MVT::i32) {
357    if (RetVT == MVT::f32)
358      return SINTTOFP_I32_F32;
359    else if (RetVT == MVT::f64)
360      return SINTTOFP_I32_F64;
361    else if (RetVT == MVT::f80)
362      return SINTTOFP_I32_F80;
363    else if (RetVT == MVT::ppcf128)
364      return SINTTOFP_I32_PPCF128;
365  } else if (OpVT == MVT::i64) {
366    if (RetVT == MVT::f32)
367      return SINTTOFP_I64_F32;
368    else if (RetVT == MVT::f64)
369      return SINTTOFP_I64_F64;
370    else if (RetVT == MVT::f80)
371      return SINTTOFP_I64_F80;
372    else if (RetVT == MVT::ppcf128)
373      return SINTTOFP_I64_PPCF128;
374  } else if (OpVT == MVT::i128) {
375    if (RetVT == MVT::f32)
376      return SINTTOFP_I128_F32;
377    else if (RetVT == MVT::f64)
378      return SINTTOFP_I128_F64;
379    else if (RetVT == MVT::f80)
380      return SINTTOFP_I128_F80;
381    else if (RetVT == MVT::ppcf128)
382      return SINTTOFP_I128_PPCF128;
383  }
384  return UNKNOWN_LIBCALL;
385}
386
387/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
388/// UNKNOWN_LIBCALL if there is none.
389RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
390  if (OpVT == MVT::i32) {
391    if (RetVT == MVT::f32)
392      return UINTTOFP_I32_F32;
393    else if (RetVT == MVT::f64)
394      return UINTTOFP_I32_F64;
395    else if (RetVT == MVT::f80)
396      return UINTTOFP_I32_F80;
397    else if (RetVT == MVT::ppcf128)
398      return UINTTOFP_I32_PPCF128;
399  } else if (OpVT == MVT::i64) {
400    if (RetVT == MVT::f32)
401      return UINTTOFP_I64_F32;
402    else if (RetVT == MVT::f64)
403      return UINTTOFP_I64_F64;
404    else if (RetVT == MVT::f80)
405      return UINTTOFP_I64_F80;
406    else if (RetVT == MVT::ppcf128)
407      return UINTTOFP_I64_PPCF128;
408  } else if (OpVT == MVT::i128) {
409    if (RetVT == MVT::f32)
410      return UINTTOFP_I128_F32;
411    else if (RetVT == MVT::f64)
412      return UINTTOFP_I128_F64;
413    else if (RetVT == MVT::f80)
414      return UINTTOFP_I128_F80;
415    else if (RetVT == MVT::ppcf128)
416      return UINTTOFP_I128_PPCF128;
417  }
418  return UNKNOWN_LIBCALL;
419}
420
421/// InitCmpLibcallCCs - Set default comparison libcall CC.
422///
423static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
424  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
425  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
426  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
427  CCs[RTLIB::UNE_F32] = ISD::SETNE;
428  CCs[RTLIB::UNE_F64] = ISD::SETNE;
429  CCs[RTLIB::OGE_F32] = ISD::SETGE;
430  CCs[RTLIB::OGE_F64] = ISD::SETGE;
431  CCs[RTLIB::OLT_F32] = ISD::SETLT;
432  CCs[RTLIB::OLT_F64] = ISD::SETLT;
433  CCs[RTLIB::OLE_F32] = ISD::SETLE;
434  CCs[RTLIB::OLE_F64] = ISD::SETLE;
435  CCs[RTLIB::OGT_F32] = ISD::SETGT;
436  CCs[RTLIB::OGT_F64] = ISD::SETGT;
437  CCs[RTLIB::UO_F32] = ISD::SETNE;
438  CCs[RTLIB::UO_F64] = ISD::SETNE;
439  CCs[RTLIB::O_F32] = ISD::SETEQ;
440  CCs[RTLIB::O_F64] = ISD::SETEQ;
441}
442
443TargetLowering::TargetLowering(TargetMachine &tm)
444  : TM(tm), TD(TM.getTargetData()) {
445  // All operations default to being supported.
446  memset(OpActions, 0, sizeof(OpActions));
447  memset(LoadExtActions, 0, sizeof(LoadExtActions));
448  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
449  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
450  memset(ConvertActions, 0, sizeof(ConvertActions));
451  memset(CondCodeActions, 0, sizeof(CondCodeActions));
452
453  // Set default actions for various operations.
454  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
455    // Default all indexed load / store to expand.
456    for (unsigned IM = (unsigned)ISD::PRE_INC;
457         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
458      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
459      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
460    }
461
462    // These operations default to expand.
463    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
464    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
465  }
466
467  // Most targets ignore the @llvm.prefetch intrinsic.
468  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
469
470  // ConstantFP nodes default to expand.  Targets can either change this to
471  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
472  // to optimize expansions for certain constants.
473  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
474  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
475  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
476
477  // These library functions default to expand.
478  setOperationAction(ISD::FLOG , MVT::f64, Expand);
479  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
480  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
481  setOperationAction(ISD::FEXP , MVT::f64, Expand);
482  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
483  setOperationAction(ISD::FLOG , MVT::f32, Expand);
484  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
485  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
486  setOperationAction(ISD::FEXP , MVT::f32, Expand);
487  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
488
489  // Default ISD::TRAP to expand (which turns it into abort).
490  setOperationAction(ISD::TRAP, MVT::Other, Expand);
491
492  IsLittleEndian = TD->isLittleEndian();
493  UsesGlobalOffsetTable = false;
494  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
495  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
496  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
497  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
498  allowUnalignedMemoryAccesses = false;
499  benefitFromCodePlacementOpt = false;
500  UseUnderscoreSetJmp = false;
501  UseUnderscoreLongJmp = false;
502  SelectIsExpensive = false;
503  IntDivIsCheap = false;
504  Pow2DivIsCheap = false;
505  StackPointerRegisterToSaveRestore = 0;
506  ExceptionPointerRegister = 0;
507  ExceptionSelectorRegister = 0;
508  BooleanContents = UndefinedBooleanContent;
509  SchedPreferenceInfo = SchedulingForLatency;
510  JumpBufSize = 0;
511  JumpBufAlignment = 0;
512  IfCvtBlockSizeLimit = 2;
513  IfCvtDupBlockSizeLimit = 0;
514  PrefLoopAlignment = 0;
515
516  InitLibcallNames(LibcallRoutineNames);
517  InitCmpLibcallCCs(CmpLibcallCCs);
518
519  // Tell Legalize whether the assembler supports DEBUG_LOC.
520  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
521  if (!TASM || !TASM->hasDotLocAndDotFile())
522    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
523}
524
525TargetLowering::~TargetLowering() {}
526
527/// computeRegisterProperties - Once all of the register classes are added,
528/// this allows us to compute derived properties we expose.
529void TargetLowering::computeRegisterProperties() {
530  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
531         "Too many value types for ValueTypeActions to hold!");
532
533  // Everything defaults to needing one register.
534  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
535    NumRegistersForVT[i] = 1;
536    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
537  }
538  // ...except isVoid, which doesn't need any registers.
539  NumRegistersForVT[MVT::isVoid] = 0;
540
541  // Find the largest integer register class.
542  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
543  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
544    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
545
546  // Every integer value type larger than this largest register takes twice as
547  // many registers to represent as the previous ValueType.
548  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
549    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
550    if (!EVT.isInteger())
551      break;
552    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
553    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
554    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
555    ValueTypeActions.setTypeAction(EVT, Expand);
556  }
557
558  // Inspect all of the ValueType's smaller than the largest integer
559  // register to see which ones need promotion.
560  unsigned LegalIntReg = LargestIntReg;
561  for (unsigned IntReg = LargestIntReg - 1;
562       IntReg >= (unsigned)MVT::i1; --IntReg) {
563    MVT IVT = (MVT::SimpleValueType)IntReg;
564    if (isTypeLegal(IVT)) {
565      LegalIntReg = IntReg;
566    } else {
567      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
568        (MVT::SimpleValueType)LegalIntReg;
569      ValueTypeActions.setTypeAction(IVT, Promote);
570    }
571  }
572
573  // ppcf128 type is really two f64's.
574  if (!isTypeLegal(MVT::ppcf128)) {
575    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
576    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
577    TransformToType[MVT::ppcf128] = MVT::f64;
578    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
579  }
580
581  // Decide how to handle f64. If the target does not have native f64 support,
582  // expand it to i64 and we will be generating soft float library calls.
583  if (!isTypeLegal(MVT::f64)) {
584    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
585    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
586    TransformToType[MVT::f64] = MVT::i64;
587    ValueTypeActions.setTypeAction(MVT::f64, Expand);
588  }
589
590  // Decide how to handle f32. If the target does not have native support for
591  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
592  if (!isTypeLegal(MVT::f32)) {
593    if (isTypeLegal(MVT::f64)) {
594      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
595      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
596      TransformToType[MVT::f32] = MVT::f64;
597      ValueTypeActions.setTypeAction(MVT::f32, Promote);
598    } else {
599      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
600      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
601      TransformToType[MVT::f32] = MVT::i32;
602      ValueTypeActions.setTypeAction(MVT::f32, Expand);
603    }
604  }
605
606  // Loop over all of the vector value types to see which need transformations.
607  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
608       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
609    MVT VT = (MVT::SimpleValueType)i;
610    if (!isTypeLegal(VT)) {
611      MVT IntermediateVT, RegisterVT;
612      unsigned NumIntermediates;
613      NumRegistersForVT[i] =
614        getVectorTypeBreakdown(VT,
615                               IntermediateVT, NumIntermediates,
616                               RegisterVT);
617      RegisterTypeForVT[i] = RegisterVT;
618
619      // Determine if there is a legal wider type.
620      bool IsLegalWiderType = false;
621      MVT EltVT = VT.getVectorElementType();
622      unsigned NElts = VT.getVectorNumElements();
623      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
624        MVT SVT = (MVT::SimpleValueType)nVT;
625        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
626            SVT.getVectorNumElements() > NElts) {
627          TransformToType[i] = SVT;
628          ValueTypeActions.setTypeAction(VT, Promote);
629          IsLegalWiderType = true;
630          break;
631        }
632      }
633      if (!IsLegalWiderType) {
634        MVT NVT = VT.getPow2VectorType();
635        if (NVT == VT) {
636          // Type is already a power of 2.  The default action is to split.
637          TransformToType[i] = MVT::Other;
638          ValueTypeActions.setTypeAction(VT, Expand);
639        } else {
640          TransformToType[i] = NVT;
641          ValueTypeActions.setTypeAction(VT, Promote);
642        }
643      }
644    }
645  }
646}
647
648const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
649  return NULL;
650}
651
652
653MVT TargetLowering::getSetCCResultType(MVT VT) const {
654  return getValueType(TD->getIntPtrType());
655}
656
657
658/// getVectorTypeBreakdown - Vector types are broken down into some number of
659/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
660/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
661/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
662///
663/// This method returns the number of registers needed, and the VT for each
664/// register.  It also returns the VT and quantity of the intermediate values
665/// before they are promoted/expanded.
666///
667unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
668                                                MVT &IntermediateVT,
669                                                unsigned &NumIntermediates,
670                                      MVT &RegisterVT) const {
671  // Figure out the right, legal destination reg to copy into.
672  unsigned NumElts = VT.getVectorNumElements();
673  MVT EltTy = VT.getVectorElementType();
674
675  unsigned NumVectorRegs = 1;
676
677  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
678  // could break down into LHS/RHS like LegalizeDAG does.
679  if (!isPowerOf2_32(NumElts)) {
680    NumVectorRegs = NumElts;
681    NumElts = 1;
682  }
683
684  // Divide the input until we get to a supported size.  This will always
685  // end with a scalar if the target doesn't support vectors.
686  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
687    NumElts >>= 1;
688    NumVectorRegs <<= 1;
689  }
690
691  NumIntermediates = NumVectorRegs;
692
693  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
694  if (!isTypeLegal(NewVT))
695    NewVT = EltTy;
696  IntermediateVT = NewVT;
697
698  MVT DestVT = getRegisterType(NewVT);
699  RegisterVT = DestVT;
700  if (DestVT.bitsLT(NewVT)) {
701    // Value is expanded, e.g. i64 -> i16.
702    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
703  } else {
704    // Otherwise, promotion or legal types use the same number of registers as
705    // the vector decimated to the appropriate level.
706    return NumVectorRegs;
707  }
708
709  return 1;
710}
711
712/// getWidenVectorType: given a vector type, returns the type to widen to
713/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
714/// If there is no vector type that we want to widen to, returns MVT::Other
715/// When and where to widen is target dependent based on the cost of
716/// scalarizing vs using the wider vector type.
717MVT TargetLowering::getWidenVectorType(MVT VT) const {
718  assert(VT.isVector());
719  if (isTypeLegal(VT))
720    return VT;
721
722  // Default is not to widen until moved to LegalizeTypes
723  return MVT::Other;
724}
725
726/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
727/// function arguments in the caller parameter area.  This is the actual
728/// alignment, not its logarithm.
729unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
730  return TD->getCallFrameTypeAlignment(Ty);
731}
732
733SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
734                                                 SelectionDAG &DAG) const {
735  if (usesGlobalOffsetTable())
736    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
737  return Table;
738}
739
740bool
741TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
742  // Assume that everything is safe in static mode.
743  if (getTargetMachine().getRelocationModel() == Reloc::Static)
744    return true;
745
746  // In dynamic-no-pic mode, assume that known defined values are safe.
747  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
748      GA &&
749      !GA->getGlobal()->isDeclaration() &&
750      !GA->getGlobal()->isWeakForLinker())
751    return true;
752
753  // Otherwise assume nothing is safe.
754  return false;
755}
756
757//===----------------------------------------------------------------------===//
758//  Optimization Methods
759//===----------------------------------------------------------------------===//
760
761/// ShrinkDemandedConstant - Check to see if the specified operand of the
762/// specified instruction is a constant integer.  If so, check to see if there
763/// are any bits set in the constant that are not demanded.  If so, shrink the
764/// constant and return true.
765bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
766                                                        const APInt &Demanded) {
767  DebugLoc dl = Op.getDebugLoc();
768
769  // FIXME: ISD::SELECT, ISD::SELECT_CC
770  switch (Op.getOpcode()) {
771  default: break;
772  case ISD::XOR:
773  case ISD::AND:
774  case ISD::OR: {
775    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
776    if (!C) return false;
777
778    if (Op.getOpcode() == ISD::XOR &&
779        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
780      return false;
781
782    // if we can expand it to have all bits set, do it
783    if (C->getAPIntValue().intersects(~Demanded)) {
784      MVT VT = Op.getValueType();
785      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
786                                DAG.getConstant(Demanded &
787                                                C->getAPIntValue(),
788                                                VT));
789      return CombineTo(Op, New);
790    }
791
792    break;
793  }
794  }
795
796  return false;
797}
798
799/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
800/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
801/// cast, but it could be generalized for targets with other types of
802/// implicit widening casts.
803bool
804TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
805                                                    unsigned BitWidth,
806                                                    const APInt &Demanded,
807                                                    DebugLoc dl) {
808  assert(Op.getNumOperands() == 2 &&
809         "ShrinkDemandedOp only supports binary operators!");
810  assert(Op.getNode()->getNumValues() == 1 &&
811         "ShrinkDemandedOp only supports nodes with one result!");
812
813  // Don't do this if the node has another user, which may require the
814  // full value.
815  if (!Op.getNode()->hasOneUse())
816    return false;
817
818  // Search for the smallest integer type with free casts to and from
819  // Op's type. For expedience, just check power-of-2 integer types.
820  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
822  if (!isPowerOf2_32(SmallVTBits))
823    SmallVTBits = NextPowerOf2(SmallVTBits);
824  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
825    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
826    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
827        TLI.isZExtFree(SmallVT, Op.getValueType())) {
828      // We found a type with free casts.
829      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
830                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
831                                          Op.getNode()->getOperand(0)),
832                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
833                                          Op.getNode()->getOperand(1)));
834      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
835      return CombineTo(Op, Z);
836    }
837  }
838  return false;
839}
840
841/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
842/// DemandedMask bits of the result of Op are ever used downstream.  If we can
843/// use this information to simplify Op, create a new simplified DAG node and
844/// return true, returning the original and new nodes in Old and New. Otherwise,
845/// analyze the expression and return a mask of KnownOne and KnownZero bits for
846/// the expression (used to simplify the caller).  The KnownZero/One bits may
847/// only be accurate for those bits in the DemandedMask.
848bool TargetLowering::SimplifyDemandedBits(SDValue Op,
849                                          const APInt &DemandedMask,
850                                          APInt &KnownZero,
851                                          APInt &KnownOne,
852                                          TargetLoweringOpt &TLO,
853                                          unsigned Depth) const {
854  unsigned BitWidth = DemandedMask.getBitWidth();
855  assert(Op.getValueSizeInBits() == BitWidth &&
856         "Mask size mismatches value type size!");
857  APInt NewMask = DemandedMask;
858  DebugLoc dl = Op.getDebugLoc();
859
860  // Don't know anything.
861  KnownZero = KnownOne = APInt(BitWidth, 0);
862
863  // Other users may use these bits.
864  if (!Op.getNode()->hasOneUse()) {
865    if (Depth != 0) {
866      // If not at the root, Just compute the KnownZero/KnownOne bits to
867      // simplify things downstream.
868      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
869      return false;
870    }
871    // If this is the root being simplified, allow it to have multiple uses,
872    // just set the NewMask to all bits.
873    NewMask = APInt::getAllOnesValue(BitWidth);
874  } else if (DemandedMask == 0) {
875    // Not demanding any bits from Op.
876    if (Op.getOpcode() != ISD::UNDEF)
877      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
878    return false;
879  } else if (Depth == 6) {        // Limit search depth.
880    return false;
881  }
882
883  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
884  switch (Op.getOpcode()) {
885  case ISD::Constant:
886    // We know all of the bits for a constant!
887    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
888    KnownZero = ~KnownOne & NewMask;
889    return false;   // Don't fall through, will infinitely loop.
890  case ISD::AND:
891    // If the RHS is a constant, check to see if the LHS would be zero without
892    // using the bits from the RHS.  Below, we use knowledge about the RHS to
893    // simplify the LHS, here we're using information from the LHS to simplify
894    // the RHS.
895    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
896      APInt LHSZero, LHSOne;
897      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
898                                LHSZero, LHSOne, Depth+1);
899      // If the LHS already has zeros where RHSC does, this and is dead.
900      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
901        return TLO.CombineTo(Op, Op.getOperand(0));
902      // If any of the set bits in the RHS are known zero on the LHS, shrink
903      // the constant.
904      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
905        return true;
906    }
907
908    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
909                             KnownOne, TLO, Depth+1))
910      return true;
911    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
912    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
913                             KnownZero2, KnownOne2, TLO, Depth+1))
914      return true;
915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
916
917    // If all of the demanded bits are known one on one side, return the other.
918    // These bits cannot contribute to the result of the 'and'.
919    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
920      return TLO.CombineTo(Op, Op.getOperand(0));
921    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
922      return TLO.CombineTo(Op, Op.getOperand(1));
923    // If all of the demanded bits in the inputs are known zeros, return zero.
924    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
925      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
926    // If the RHS is a constant, see if we can simplify it.
927    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
928      return true;
929    // If the operation can be done in a smaller type, do so.
930    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
931      return true;
932
933    // Output known-1 bits are only known if set in both the LHS & RHS.
934    KnownOne &= KnownOne2;
935    // Output known-0 are known to be clear if zero in either the LHS | RHS.
936    KnownZero |= KnownZero2;
937    break;
938  case ISD::OR:
939    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
940                             KnownOne, TLO, Depth+1))
941      return true;
942    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
943    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
944                             KnownZero2, KnownOne2, TLO, Depth+1))
945      return true;
946    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
947
948    // If all of the demanded bits are known zero on one side, return the other.
949    // These bits cannot contribute to the result of the 'or'.
950    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
951      return TLO.CombineTo(Op, Op.getOperand(0));
952    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
953      return TLO.CombineTo(Op, Op.getOperand(1));
954    // If all of the potentially set bits on one side are known to be set on
955    // the other side, just use the 'other' side.
956    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
957      return TLO.CombineTo(Op, Op.getOperand(0));
958    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
959      return TLO.CombineTo(Op, Op.getOperand(1));
960    // If the RHS is a constant, see if we can simplify it.
961    if (TLO.ShrinkDemandedConstant(Op, NewMask))
962      return true;
963    // If the operation can be done in a smaller type, do so.
964    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
965      return true;
966
967    // Output known-0 bits are only known if clear in both the LHS & RHS.
968    KnownZero &= KnownZero2;
969    // Output known-1 are known to be set if set in either the LHS | RHS.
970    KnownOne |= KnownOne2;
971    break;
972  case ISD::XOR:
973    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
974                             KnownOne, TLO, Depth+1))
975      return true;
976    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
977    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
978                             KnownOne2, TLO, Depth+1))
979      return true;
980    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
981
982    // If all of the demanded bits are known zero on one side, return the other.
983    // These bits cannot contribute to the result of the 'xor'.
984    if ((KnownZero & NewMask) == NewMask)
985      return TLO.CombineTo(Op, Op.getOperand(0));
986    if ((KnownZero2 & NewMask) == NewMask)
987      return TLO.CombineTo(Op, Op.getOperand(1));
988    // If the operation can be done in a smaller type, do so.
989    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
990      return true;
991
992    // If all of the unknown bits are known to be zero on one side or the other
993    // (but not both) turn this into an *inclusive* or.
994    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
995    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
996      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
997                                               Op.getOperand(0),
998                                               Op.getOperand(1)));
999
1000    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1001    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1002    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1003    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1004
1005    // If all of the demanded bits on one side are known, and all of the set
1006    // bits on that side are also known to be set on the other side, turn this
1007    // into an AND, as we know the bits will be cleared.
1008    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1009    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1010      if ((KnownOne & KnownOne2) == KnownOne) {
1011        MVT VT = Op.getValueType();
1012        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1013        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1014                                                 Op.getOperand(0), ANDC));
1015      }
1016    }
1017
1018    // If the RHS is a constant, see if we can simplify it.
1019    // for XOR, we prefer to force bits to 1 if they will make a -1.
1020    // if we can't force bits, try to shrink constant
1021    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1022      APInt Expanded = C->getAPIntValue() | (~NewMask);
1023      // if we can expand it to have all bits set, do it
1024      if (Expanded.isAllOnesValue()) {
1025        if (Expanded != C->getAPIntValue()) {
1026          MVT VT = Op.getValueType();
1027          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1028                                          TLO.DAG.getConstant(Expanded, VT));
1029          return TLO.CombineTo(Op, New);
1030        }
1031        // if it already has all the bits set, nothing to change
1032        // but don't shrink either!
1033      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1034        return true;
1035      }
1036    }
1037
1038    KnownZero = KnownZeroOut;
1039    KnownOne  = KnownOneOut;
1040    break;
1041  case ISD::SELECT:
1042    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1043                             KnownOne, TLO, Depth+1))
1044      return true;
1045    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1046                             KnownOne2, TLO, Depth+1))
1047      return true;
1048    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1049    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1050
1051    // If the operands are constants, see if we can simplify them.
1052    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1053      return true;
1054
1055    // Only known if known in both the LHS and RHS.
1056    KnownOne &= KnownOne2;
1057    KnownZero &= KnownZero2;
1058    break;
1059  case ISD::SELECT_CC:
1060    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1061                             KnownOne, TLO, Depth+1))
1062      return true;
1063    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1064                             KnownOne2, TLO, Depth+1))
1065      return true;
1066    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1067    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1068
1069    // If the operands are constants, see if we can simplify them.
1070    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1071      return true;
1072
1073    // Only known if known in both the LHS and RHS.
1074    KnownOne &= KnownOne2;
1075    KnownZero &= KnownZero2;
1076    break;
1077  case ISD::SHL:
1078    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1079      unsigned ShAmt = SA->getZExtValue();
1080      SDValue InOp = Op.getOperand(0);
1081
1082      // If the shift count is an invalid immediate, don't do anything.
1083      if (ShAmt >= BitWidth)
1084        break;
1085
1086      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1087      // single shift.  We can do this if the bottom bits (which are shifted
1088      // out) are never demanded.
1089      if (InOp.getOpcode() == ISD::SRL &&
1090          isa<ConstantSDNode>(InOp.getOperand(1))) {
1091        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1092          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1093          unsigned Opc = ISD::SHL;
1094          int Diff = ShAmt-C1;
1095          if (Diff < 0) {
1096            Diff = -Diff;
1097            Opc = ISD::SRL;
1098          }
1099
1100          SDValue NewSA =
1101            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1102          MVT VT = Op.getValueType();
1103          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1104                                                   InOp.getOperand(0), NewSA));
1105        }
1106      }
1107
1108      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1109                               KnownZero, KnownOne, TLO, Depth+1))
1110        return true;
1111      KnownZero <<= SA->getZExtValue();
1112      KnownOne  <<= SA->getZExtValue();
1113      // low bits known zero.
1114      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1115    }
1116    break;
1117  case ISD::SRL:
1118    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1119      MVT VT = Op.getValueType();
1120      unsigned ShAmt = SA->getZExtValue();
1121      unsigned VTSize = VT.getSizeInBits();
1122      SDValue InOp = Op.getOperand(0);
1123
1124      // If the shift count is an invalid immediate, don't do anything.
1125      if (ShAmt >= BitWidth)
1126        break;
1127
1128      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1129      // single shift.  We can do this if the top bits (which are shifted out)
1130      // are never demanded.
1131      if (InOp.getOpcode() == ISD::SHL &&
1132          isa<ConstantSDNode>(InOp.getOperand(1))) {
1133        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1134          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1135          unsigned Opc = ISD::SRL;
1136          int Diff = ShAmt-C1;
1137          if (Diff < 0) {
1138            Diff = -Diff;
1139            Opc = ISD::SHL;
1140          }
1141
1142          SDValue NewSA =
1143            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1144          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1145                                                   InOp.getOperand(0), NewSA));
1146        }
1147      }
1148
1149      // Compute the new bits that are at the top now.
1150      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1151                               KnownZero, KnownOne, TLO, Depth+1))
1152        return true;
1153      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1154      KnownZero = KnownZero.lshr(ShAmt);
1155      KnownOne  = KnownOne.lshr(ShAmt);
1156
1157      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1158      KnownZero |= HighBits;  // High bits known zero.
1159    }
1160    break;
1161  case ISD::SRA:
1162    // If this is an arithmetic shift right and only the low-bit is set, we can
1163    // always convert this into a logical shr, even if the shift amount is
1164    // variable.  The low bit of the shift cannot be an input sign bit unless
1165    // the shift amount is >= the size of the datatype, which is undefined.
1166    if (DemandedMask == 1)
1167      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1168                                               Op.getOperand(0), Op.getOperand(1)));
1169
1170    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1171      MVT VT = Op.getValueType();
1172      unsigned ShAmt = SA->getZExtValue();
1173
1174      // If the shift count is an invalid immediate, don't do anything.
1175      if (ShAmt >= BitWidth)
1176        break;
1177
1178      APInt InDemandedMask = (NewMask << ShAmt);
1179
1180      // If any of the demanded bits are produced by the sign extension, we also
1181      // demand the input sign bit.
1182      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1183      if (HighBits.intersects(NewMask))
1184        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1185
1186      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1187                               KnownZero, KnownOne, TLO, Depth+1))
1188        return true;
1189      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1190      KnownZero = KnownZero.lshr(ShAmt);
1191      KnownOne  = KnownOne.lshr(ShAmt);
1192
1193      // Handle the sign bit, adjusted to where it is now in the mask.
1194      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1195
1196      // If the input sign bit is known to be zero, or if none of the top bits
1197      // are demanded, turn this into an unsigned shift right.
1198      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1199        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1200                                                 Op.getOperand(0),
1201                                                 Op.getOperand(1)));
1202      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1203        KnownOne |= HighBits;
1204      }
1205    }
1206    break;
1207  case ISD::SIGN_EXTEND_INREG: {
1208    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1209
1210    // Sign extension.  Compute the demanded bits in the result that are not
1211    // present in the input.
1212    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1213                                          BitWidth - EVT.getSizeInBits()) &
1214                    NewMask;
1215
1216    // If none of the extended bits are demanded, eliminate the sextinreg.
1217    if (NewBits == 0)
1218      return TLO.CombineTo(Op, Op.getOperand(0));
1219
1220    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1221    InSignBit.zext(BitWidth);
1222    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1223                                                   EVT.getSizeInBits()) &
1224                              NewMask;
1225
1226    // Since the sign extended bits are demanded, we know that the sign
1227    // bit is demanded.
1228    InputDemandedBits |= InSignBit;
1229
1230    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1231                             KnownZero, KnownOne, TLO, Depth+1))
1232      return true;
1233    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1234
1235    // If the sign bit of the input is known set or clear, then we know the
1236    // top bits of the result.
1237
1238    // If the input sign bit is known zero, convert this into a zero extension.
1239    if (KnownZero.intersects(InSignBit))
1240      return TLO.CombineTo(Op,
1241                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1242
1243    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1244      KnownOne |= NewBits;
1245      KnownZero &= ~NewBits;
1246    } else {                       // Input sign bit unknown
1247      KnownZero &= ~NewBits;
1248      KnownOne &= ~NewBits;
1249    }
1250    break;
1251  }
1252  case ISD::ZERO_EXTEND: {
1253    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1254    APInt InMask = NewMask;
1255    InMask.trunc(OperandBitWidth);
1256
1257    // If none of the top bits are demanded, convert this into an any_extend.
1258    APInt NewBits =
1259      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1260    if (!NewBits.intersects(NewMask))
1261      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1262                                               Op.getValueType(),
1263                                               Op.getOperand(0)));
1264
1265    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1266                             KnownZero, KnownOne, TLO, Depth+1))
1267      return true;
1268    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1269    KnownZero.zext(BitWidth);
1270    KnownOne.zext(BitWidth);
1271    KnownZero |= NewBits;
1272    break;
1273  }
1274  case ISD::SIGN_EXTEND: {
1275    MVT InVT = Op.getOperand(0).getValueType();
1276    unsigned InBits = InVT.getSizeInBits();
1277    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1278    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1279    APInt NewBits   = ~InMask & NewMask;
1280
1281    // If none of the top bits are demanded, convert this into an any_extend.
1282    if (NewBits == 0)
1283      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1284                                              Op.getValueType(),
1285                                              Op.getOperand(0)));
1286
1287    // Since some of the sign extended bits are demanded, we know that the sign
1288    // bit is demanded.
1289    APInt InDemandedBits = InMask & NewMask;
1290    InDemandedBits |= InSignBit;
1291    InDemandedBits.trunc(InBits);
1292
1293    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1294                             KnownOne, TLO, Depth+1))
1295      return true;
1296    KnownZero.zext(BitWidth);
1297    KnownOne.zext(BitWidth);
1298
1299    // If the sign bit is known zero, convert this to a zero extend.
1300    if (KnownZero.intersects(InSignBit))
1301      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1302                                               Op.getValueType(),
1303                                               Op.getOperand(0)));
1304
1305    // If the sign bit is known one, the top bits match.
1306    if (KnownOne.intersects(InSignBit)) {
1307      KnownOne  |= NewBits;
1308      KnownZero &= ~NewBits;
1309    } else {   // Otherwise, top bits aren't known.
1310      KnownOne  &= ~NewBits;
1311      KnownZero &= ~NewBits;
1312    }
1313    break;
1314  }
1315  case ISD::ANY_EXTEND: {
1316    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1317    APInt InMask = NewMask;
1318    InMask.trunc(OperandBitWidth);
1319    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1320                             KnownZero, KnownOne, TLO, Depth+1))
1321      return true;
1322    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1323    KnownZero.zext(BitWidth);
1324    KnownOne.zext(BitWidth);
1325    break;
1326  }
1327  case ISD::TRUNCATE: {
1328    // Simplify the input, using demanded bit information, and compute the known
1329    // zero/one bits live out.
1330    APInt TruncMask = NewMask;
1331    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1332    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1333                             KnownZero, KnownOne, TLO, Depth+1))
1334      return true;
1335    KnownZero.trunc(BitWidth);
1336    KnownOne.trunc(BitWidth);
1337
1338    // If the input is only used by this truncate, see if we can shrink it based
1339    // on the known demanded bits.
1340    if (Op.getOperand(0).getNode()->hasOneUse()) {
1341      SDValue In = Op.getOperand(0);
1342      unsigned InBitWidth = In.getValueSizeInBits();
1343      switch (In.getOpcode()) {
1344      default: break;
1345      case ISD::SRL:
1346        // Shrink SRL by a constant if none of the high bits shifted in are
1347        // demanded.
1348        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1349          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1350                                                 InBitWidth - BitWidth);
1351          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1352          HighBits.trunc(BitWidth);
1353
1354          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1355            // None of the shifted in bits are needed.  Add a truncate of the
1356            // shift input, then shift it.
1357            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1358                                                 Op.getValueType(),
1359                                                 In.getOperand(0));
1360            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1361                                                     Op.getValueType(),
1362                                                     NewTrunc,
1363                                                     In.getOperand(1)));
1364          }
1365        }
1366        break;
1367      }
1368    }
1369
1370    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1371    break;
1372  }
1373  case ISD::AssertZext: {
1374    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1375    APInt InMask = APInt::getLowBitsSet(BitWidth,
1376                                        VT.getSizeInBits());
1377    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1378                             KnownZero, KnownOne, TLO, Depth+1))
1379      return true;
1380    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1381    KnownZero |= ~InMask & NewMask;
1382    break;
1383  }
1384  case ISD::BIT_CONVERT:
1385#if 0
1386    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1387    // is demanded, turn this into a FGETSIGN.
1388    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1389        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1390        !MVT::isVector(Op.getOperand(0).getValueType())) {
1391      // Only do this xform if FGETSIGN is valid or if before legalize.
1392      if (!TLO.AfterLegalize ||
1393          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1394        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1395        // place.  We expect the SHL to be eliminated by other optimizations.
1396        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1397                                         Op.getOperand(0));
1398        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1399        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1400        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1401                                                 Sign, ShAmt));
1402      }
1403    }
1404#endif
1405    break;
1406  case ISD::ADD:
1407  case ISD::MUL:
1408  case ISD::SUB: {
1409    // Add, Sub, and Mul don't demand any bits in positions beyond that
1410    // of the highest bit demanded of them.
1411    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1412                                        BitWidth - NewMask.countLeadingZeros());
1413    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1414                             KnownOne2, TLO, Depth+1))
1415      return true;
1416    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1417                             KnownOne2, TLO, Depth+1))
1418      return true;
1419    // See if the operation should be performed at a smaller bit width.
1420    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1421      return true;
1422  }
1423  // FALL THROUGH
1424  default:
1425    // Just use ComputeMaskedBits to compute output bits.
1426    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1427    break;
1428  }
1429
1430  // If we know the value of all of the demanded bits, return this as a
1431  // constant.
1432  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1433    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1434
1435  return false;
1436}
1437
1438/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1439/// in Mask are known to be either zero or one and return them in the
1440/// KnownZero/KnownOne bitsets.
1441void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1442                                                    const APInt &Mask,
1443                                                    APInt &KnownZero,
1444                                                    APInt &KnownOne,
1445                                                    const SelectionDAG &DAG,
1446                                                    unsigned Depth) const {
1447  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1448          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1449          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1450          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1451         "Should use MaskedValueIsZero if you don't know whether Op"
1452         " is a target node!");
1453  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1454}
1455
1456/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1457/// targets that want to expose additional information about sign bits to the
1458/// DAG Combiner.
1459unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1460                                                         unsigned Depth) const {
1461  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1462          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1463          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1464          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1465         "Should use ComputeNumSignBits if you don't know whether Op"
1466         " is a target node!");
1467  return 1;
1468}
1469
1470/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1471/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1472/// determine which bit is set.
1473///
1474static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1475  // A left-shift of a constant one will have exactly one bit set, because
1476  // shifting the bit off the end is undefined.
1477  if (Val.getOpcode() == ISD::SHL)
1478    if (ConstantSDNode *C =
1479         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1480      if (C->getAPIntValue() == 1)
1481        return true;
1482
1483  // Similarly, a right-shift of a constant sign-bit will have exactly
1484  // one bit set.
1485  if (Val.getOpcode() == ISD::SRL)
1486    if (ConstantSDNode *C =
1487         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1488      if (C->getAPIntValue().isSignBit())
1489        return true;
1490
1491  // More could be done here, though the above checks are enough
1492  // to handle some common cases.
1493
1494  // Fall back to ComputeMaskedBits to catch other known cases.
1495  MVT OpVT = Val.getValueType();
1496  unsigned BitWidth = OpVT.getSizeInBits();
1497  APInt Mask = APInt::getAllOnesValue(BitWidth);
1498  APInt KnownZero, KnownOne;
1499  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1500  return (KnownZero.countPopulation() == BitWidth - 1) &&
1501         (KnownOne.countPopulation() == 1);
1502}
1503
1504/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1505/// and cc. If it is unable to simplify it, return a null SDValue.
1506SDValue
1507TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1508                              ISD::CondCode Cond, bool foldBooleans,
1509                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1510  SelectionDAG &DAG = DCI.DAG;
1511
1512  // These setcc operations always fold.
1513  switch (Cond) {
1514  default: break;
1515  case ISD::SETFALSE:
1516  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1517  case ISD::SETTRUE:
1518  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1519  }
1520
1521  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1522    const APInt &C1 = N1C->getAPIntValue();
1523    if (isa<ConstantSDNode>(N0.getNode())) {
1524      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1525    } else {
1526      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1527      // equality comparison, then we're just comparing whether X itself is
1528      // zero.
1529      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1530          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1531          N0.getOperand(1).getOpcode() == ISD::Constant) {
1532        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1533        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1534            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1535          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1536            // (srl (ctlz x), 5) == 0  -> X != 0
1537            // (srl (ctlz x), 5) != 1  -> X != 0
1538            Cond = ISD::SETNE;
1539          } else {
1540            // (srl (ctlz x), 5) != 0  -> X == 0
1541            // (srl (ctlz x), 5) == 1  -> X == 0
1542            Cond = ISD::SETEQ;
1543          }
1544          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1545          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1546                              Zero, Cond);
1547        }
1548      }
1549
1550      // If the LHS is '(and load, const)', the RHS is 0,
1551      // the test is for equality or unsigned, and all 1 bits of the const are
1552      // in the same partial word, see if we can shorten the load.
1553      if (DCI.isBeforeLegalize() &&
1554          N0.getOpcode() == ISD::AND && C1 == 0 &&
1555          N0.getNode()->hasOneUse() &&
1556          isa<LoadSDNode>(N0.getOperand(0)) &&
1557          N0.getOperand(0).getNode()->hasOneUse() &&
1558          isa<ConstantSDNode>(N0.getOperand(1))) {
1559        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1560        uint64_t bestMask = 0;
1561        unsigned bestWidth = 0, bestOffset = 0;
1562        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1563            // FIXME: This uses getZExtValue() below so it only works on i64 and
1564            // below.
1565            N0.getValueType().getSizeInBits() <= 64) {
1566          unsigned origWidth = N0.getValueType().getSizeInBits();
1567          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1568          // 8 bits, but have to be careful...
1569          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1570            origWidth = Lod->getMemoryVT().getSizeInBits();
1571          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1572          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1573            uint64_t newMask = (1ULL << width) - 1;
1574            for (unsigned offset=0; offset<origWidth/width; offset++) {
1575              if ((newMask & Mask) == Mask) {
1576                if (!TD->isLittleEndian())
1577                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1578                else
1579                  bestOffset = (uint64_t)offset * (width/8);
1580                bestMask = Mask >> (offset * (width/8) * 8);
1581                bestWidth = width;
1582                break;
1583              }
1584              newMask = newMask << width;
1585            }
1586          }
1587        }
1588        if (bestWidth) {
1589          MVT newVT = MVT::getIntegerVT(bestWidth);
1590          if (newVT.isRound()) {
1591            MVT PtrType = Lod->getOperand(1).getValueType();
1592            SDValue Ptr = Lod->getBasePtr();
1593            if (bestOffset != 0)
1594              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1595                                DAG.getConstant(bestOffset, PtrType));
1596            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1597            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1598                                          Lod->getSrcValue(),
1599                                          Lod->getSrcValueOffset() + bestOffset,
1600                                          false, NewAlign);
1601            return DAG.getSetCC(dl, VT,
1602                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1603                                            DAG.getConstant(bestMask, newVT)),
1604                                DAG.getConstant(0LL, newVT), Cond);
1605          }
1606        }
1607      }
1608
1609      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1610      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1611        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1612
1613        // If the comparison constant has bits in the upper part, the
1614        // zero-extended value could never match.
1615        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1616                                                C1.getBitWidth() - InSize))) {
1617          switch (Cond) {
1618          case ISD::SETUGT:
1619          case ISD::SETUGE:
1620          case ISD::SETEQ: return DAG.getConstant(0, VT);
1621          case ISD::SETULT:
1622          case ISD::SETULE:
1623          case ISD::SETNE: return DAG.getConstant(1, VT);
1624          case ISD::SETGT:
1625          case ISD::SETGE:
1626            // True if the sign bit of C1 is set.
1627            return DAG.getConstant(C1.isNegative(), VT);
1628          case ISD::SETLT:
1629          case ISD::SETLE:
1630            // True if the sign bit of C1 isn't set.
1631            return DAG.getConstant(C1.isNonNegative(), VT);
1632          default:
1633            break;
1634          }
1635        }
1636
1637        // Otherwise, we can perform the comparison with the low bits.
1638        switch (Cond) {
1639        case ISD::SETEQ:
1640        case ISD::SETNE:
1641        case ISD::SETUGT:
1642        case ISD::SETUGE:
1643        case ISD::SETULT:
1644        case ISD::SETULE: {
1645          MVT newVT = N0.getOperand(0).getValueType();
1646          if (DCI.isBeforeLegalizeOps() ||
1647              (isOperationLegal(ISD::SETCC, newVT) &&
1648               getCondCodeAction(Cond, newVT)==Legal))
1649            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1650                                DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1651                                Cond);
1652          break;
1653        }
1654        default:
1655          break;   // todo, be more careful with signed comparisons
1656        }
1657      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1658                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1659        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1660        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1661        MVT ExtDstTy = N0.getValueType();
1662        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1663
1664        // If the extended part has any inconsistent bits, it cannot ever
1665        // compare equal.  In other words, they have to be all ones or all
1666        // zeros.
1667        APInt ExtBits =
1668          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1669        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1670          return DAG.getConstant(Cond == ISD::SETNE, VT);
1671
1672        SDValue ZextOp;
1673        MVT Op0Ty = N0.getOperand(0).getValueType();
1674        if (Op0Ty == ExtSrcTy) {
1675          ZextOp = N0.getOperand(0);
1676        } else {
1677          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1678          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1679                               DAG.getConstant(Imm, Op0Ty));
1680        }
1681        if (!DCI.isCalledByLegalizer())
1682          DCI.AddToWorklist(ZextOp.getNode());
1683        // Otherwise, make this a use of a zext.
1684        return DAG.getSetCC(dl, VT, ZextOp,
1685                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1686                                                               ExtDstTyBits,
1687                                                               ExtSrcTyBits),
1688                                            ExtDstTy),
1689                            Cond);
1690      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1691                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1692
1693        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1694        if (N0.getOpcode() == ISD::SETCC) {
1695          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1696          if (TrueWhenTrue)
1697            return N0;
1698
1699          // Invert the condition.
1700          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1701          CC = ISD::getSetCCInverse(CC,
1702                                   N0.getOperand(0).getValueType().isInteger());
1703          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1704        }
1705
1706        if ((N0.getOpcode() == ISD::XOR ||
1707             (N0.getOpcode() == ISD::AND &&
1708              N0.getOperand(0).getOpcode() == ISD::XOR &&
1709              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1710            isa<ConstantSDNode>(N0.getOperand(1)) &&
1711            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1712          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1713          // can only do this if the top bits are known zero.
1714          unsigned BitWidth = N0.getValueSizeInBits();
1715          if (DAG.MaskedValueIsZero(N0,
1716                                    APInt::getHighBitsSet(BitWidth,
1717                                                          BitWidth-1))) {
1718            // Okay, get the un-inverted input value.
1719            SDValue Val;
1720            if (N0.getOpcode() == ISD::XOR)
1721              Val = N0.getOperand(0);
1722            else {
1723              assert(N0.getOpcode() == ISD::AND &&
1724                     N0.getOperand(0).getOpcode() == ISD::XOR);
1725              // ((X^1)&1)^1 -> X & 1
1726              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1727                                N0.getOperand(0).getOperand(0),
1728                                N0.getOperand(1));
1729            }
1730            return DAG.getSetCC(dl, VT, Val, N1,
1731                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1732          }
1733        }
1734      }
1735
1736      APInt MinVal, MaxVal;
1737      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1738      if (ISD::isSignedIntSetCC(Cond)) {
1739        MinVal = APInt::getSignedMinValue(OperandBitSize);
1740        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1741      } else {
1742        MinVal = APInt::getMinValue(OperandBitSize);
1743        MaxVal = APInt::getMaxValue(OperandBitSize);
1744      }
1745
1746      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1747      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1748        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1749        // X >= C0 --> X > (C0-1)
1750        return DAG.getSetCC(dl, VT, N0,
1751                            DAG.getConstant(C1-1, N1.getValueType()),
1752                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1753      }
1754
1755      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1756        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1757        // X <= C0 --> X < (C0+1)
1758        return DAG.getSetCC(dl, VT, N0,
1759                            DAG.getConstant(C1+1, N1.getValueType()),
1760                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1761      }
1762
1763      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1764        return DAG.getConstant(0, VT);      // X < MIN --> false
1765      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1766        return DAG.getConstant(1, VT);      // X >= MIN --> true
1767      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1768        return DAG.getConstant(0, VT);      // X > MAX --> false
1769      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1770        return DAG.getConstant(1, VT);      // X <= MAX --> true
1771
1772      // Canonicalize setgt X, Min --> setne X, Min
1773      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1774        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1775      // Canonicalize setlt X, Max --> setne X, Max
1776      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1777        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1778
1779      // If we have setult X, 1, turn it into seteq X, 0
1780      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1781        return DAG.getSetCC(dl, VT, N0,
1782                            DAG.getConstant(MinVal, N0.getValueType()),
1783                            ISD::SETEQ);
1784      // If we have setugt X, Max-1, turn it into seteq X, Max
1785      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1786        return DAG.getSetCC(dl, VT, N0,
1787                            DAG.getConstant(MaxVal, N0.getValueType()),
1788                            ISD::SETEQ);
1789
1790      // If we have "setcc X, C0", check to see if we can shrink the immediate
1791      // by changing cc.
1792
1793      // SETUGT X, SINTMAX  -> SETLT X, 0
1794      if (Cond == ISD::SETUGT &&
1795          C1 == APInt::getSignedMaxValue(OperandBitSize))
1796        return DAG.getSetCC(dl, VT, N0,
1797                            DAG.getConstant(0, N1.getValueType()),
1798                            ISD::SETLT);
1799
1800      // SETULT X, SINTMIN  -> SETGT X, -1
1801      if (Cond == ISD::SETULT &&
1802          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1803        SDValue ConstMinusOne =
1804            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1805                            N1.getValueType());
1806        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1807      }
1808
1809      // Fold bit comparisons when we can.
1810      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1811          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1812        if (ConstantSDNode *AndRHS =
1813                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1814          MVT ShiftTy = DCI.isBeforeLegalize() ?
1815            getPointerTy() : getShiftAmountTy();
1816          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1817            // Perform the xform if the AND RHS is a single bit.
1818            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1819              return DAG.getNode(ISD::SRL, dl, VT, N0,
1820                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1821                                                 ShiftTy));
1822            }
1823          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1824            // (X & 8) == 8  -->  (X & 8) >> 3
1825            // Perform the xform if C1 is a single bit.
1826            if (C1.isPowerOf2()) {
1827              return DAG.getNode(ISD::SRL, dl, VT, N0,
1828                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1829            }
1830          }
1831        }
1832    }
1833  } else if (isa<ConstantSDNode>(N0.getNode())) {
1834      // Ensure that the constant occurs on the RHS.
1835    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1836  }
1837
1838  if (isa<ConstantFPSDNode>(N0.getNode())) {
1839    // Constant fold or commute setcc.
1840    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1841    if (O.getNode()) return O;
1842  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1843    // If the RHS of an FP comparison is a constant, simplify it away in
1844    // some cases.
1845    if (CFP->getValueAPF().isNaN()) {
1846      // If an operand is known to be a nan, we can fold it.
1847      switch (ISD::getUnorderedFlavor(Cond)) {
1848      default: llvm_unreachable("Unknown flavor!");
1849      case 0:  // Known false.
1850        return DAG.getConstant(0, VT);
1851      case 1:  // Known true.
1852        return DAG.getConstant(1, VT);
1853      case 2:  // Undefined.
1854        return DAG.getUNDEF(VT);
1855      }
1856    }
1857
1858    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1859    // constant if knowing that the operand is non-nan is enough.  We prefer to
1860    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1861    // materialize 0.0.
1862    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1863      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1864  }
1865
1866  if (N0 == N1) {
1867    // We can always fold X == X for integer setcc's.
1868    if (N0.getValueType().isInteger())
1869      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1870    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1871    if (UOF == 2)   // FP operators that are undefined on NaNs.
1872      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1873    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1874      return DAG.getConstant(UOF, VT);
1875    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1876    // if it is not already.
1877    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1878    if (NewCond != Cond)
1879      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1880  }
1881
1882  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1883      N0.getValueType().isInteger()) {
1884    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1885        N0.getOpcode() == ISD::XOR) {
1886      // Simplify (X+Y) == (X+Z) -->  Y == Z
1887      if (N0.getOpcode() == N1.getOpcode()) {
1888        if (N0.getOperand(0) == N1.getOperand(0))
1889          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1890        if (N0.getOperand(1) == N1.getOperand(1))
1891          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1892        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1893          // If X op Y == Y op X, try other combinations.
1894          if (N0.getOperand(0) == N1.getOperand(1))
1895            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1896                                Cond);
1897          if (N0.getOperand(1) == N1.getOperand(0))
1898            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1899                                Cond);
1900        }
1901      }
1902
1903      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1904        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1905          // Turn (X+C1) == C2 --> X == C2-C1
1906          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1907            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1908                                DAG.getConstant(RHSC->getAPIntValue()-
1909                                                LHSR->getAPIntValue(),
1910                                N0.getValueType()), Cond);
1911          }
1912
1913          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1914          if (N0.getOpcode() == ISD::XOR)
1915            // If we know that all of the inverted bits are zero, don't bother
1916            // performing the inversion.
1917            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1918              return
1919                DAG.getSetCC(dl, VT, N0.getOperand(0),
1920                             DAG.getConstant(LHSR->getAPIntValue() ^
1921                                               RHSC->getAPIntValue(),
1922                                             N0.getValueType()),
1923                             Cond);
1924        }
1925
1926        // Turn (C1-X) == C2 --> X == C1-C2
1927        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1928          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1929            return
1930              DAG.getSetCC(dl, VT, N0.getOperand(1),
1931                           DAG.getConstant(SUBC->getAPIntValue() -
1932                                             RHSC->getAPIntValue(),
1933                                           N0.getValueType()),
1934                           Cond);
1935          }
1936        }
1937      }
1938
1939      // Simplify (X+Z) == X -->  Z == 0
1940      if (N0.getOperand(0) == N1)
1941        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1942                        DAG.getConstant(0, N0.getValueType()), Cond);
1943      if (N0.getOperand(1) == N1) {
1944        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1945          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1946                          DAG.getConstant(0, N0.getValueType()), Cond);
1947        else if (N0.getNode()->hasOneUse()) {
1948          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1949          // (Z-X) == X  --> Z == X<<1
1950          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1951                                     N1,
1952                                     DAG.getConstant(1, getShiftAmountTy()));
1953          if (!DCI.isCalledByLegalizer())
1954            DCI.AddToWorklist(SH.getNode());
1955          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1956        }
1957      }
1958    }
1959
1960    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1961        N1.getOpcode() == ISD::XOR) {
1962      // Simplify  X == (X+Z) -->  Z == 0
1963      if (N1.getOperand(0) == N0) {
1964        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1965                        DAG.getConstant(0, N1.getValueType()), Cond);
1966      } else if (N1.getOperand(1) == N0) {
1967        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1968          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1969                          DAG.getConstant(0, N1.getValueType()), Cond);
1970        } else if (N1.getNode()->hasOneUse()) {
1971          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1972          // X == (Z-X)  --> X<<1 == Z
1973          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1974                                     DAG.getConstant(1, getShiftAmountTy()));
1975          if (!DCI.isCalledByLegalizer())
1976            DCI.AddToWorklist(SH.getNode());
1977          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1978        }
1979      }
1980    }
1981
1982    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1983    // Note that where y is variable and is known to have at most
1984    // one bit set (for example, if it is z&1) we cannot do this;
1985    // the expressions are not equivalent when y==0.
1986    if (N0.getOpcode() == ISD::AND)
1987      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1988        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1989          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1990          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1991          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1992        }
1993      }
1994    if (N1.getOpcode() == ISD::AND)
1995      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1996        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1997          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1998          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1999          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2000        }
2001      }
2002  }
2003
2004  // Fold away ALL boolean setcc's.
2005  SDValue Temp;
2006  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2007    switch (Cond) {
2008    default: llvm_unreachable("Unknown integer setcc!");
2009    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2010      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2011      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2012      if (!DCI.isCalledByLegalizer())
2013        DCI.AddToWorklist(Temp.getNode());
2014      break;
2015    case ISD::SETNE:  // X != Y   -->  (X^Y)
2016      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2017      break;
2018    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2019    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2020      Temp = DAG.getNOT(dl, N0, MVT::i1);
2021      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2022      if (!DCI.isCalledByLegalizer())
2023        DCI.AddToWorklist(Temp.getNode());
2024      break;
2025    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2026    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2027      Temp = DAG.getNOT(dl, N1, MVT::i1);
2028      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2029      if (!DCI.isCalledByLegalizer())
2030        DCI.AddToWorklist(Temp.getNode());
2031      break;
2032    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2033    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2034      Temp = DAG.getNOT(dl, N0, MVT::i1);
2035      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2036      if (!DCI.isCalledByLegalizer())
2037        DCI.AddToWorklist(Temp.getNode());
2038      break;
2039    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2040    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2041      Temp = DAG.getNOT(dl, N1, MVT::i1);
2042      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2043      break;
2044    }
2045    if (VT != MVT::i1) {
2046      if (!DCI.isCalledByLegalizer())
2047        DCI.AddToWorklist(N0.getNode());
2048      // FIXME: If running after legalize, we probably can't do this.
2049      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2050    }
2051    return N0;
2052  }
2053
2054  // Could not fold it.
2055  return SDValue();
2056}
2057
2058/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2059/// node is a GlobalAddress + offset.
2060bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2061                                    int64_t &Offset) const {
2062  if (isa<GlobalAddressSDNode>(N)) {
2063    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2064    GA = GASD->getGlobal();
2065    Offset += GASD->getOffset();
2066    return true;
2067  }
2068
2069  if (N->getOpcode() == ISD::ADD) {
2070    SDValue N1 = N->getOperand(0);
2071    SDValue N2 = N->getOperand(1);
2072    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2073      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2074      if (V) {
2075        Offset += V->getSExtValue();
2076        return true;
2077      }
2078    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2079      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2080      if (V) {
2081        Offset += V->getSExtValue();
2082        return true;
2083      }
2084    }
2085  }
2086  return false;
2087}
2088
2089
2090/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2091/// location that is 'Dist' units away from the location that the 'Base' load
2092/// is loading from.
2093bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2094                                       unsigned Bytes, int Dist,
2095                                       const MachineFrameInfo *MFI) const {
2096  if (LD->getChain() != Base->getChain())
2097    return false;
2098  MVT VT = LD->getValueType(0);
2099  if (VT.getSizeInBits() / 8 != Bytes)
2100    return false;
2101
2102  SDValue Loc = LD->getOperand(1);
2103  SDValue BaseLoc = Base->getOperand(1);
2104  if (Loc.getOpcode() == ISD::FrameIndex) {
2105    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2106      return false;
2107    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2108    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2109    int FS  = MFI->getObjectSize(FI);
2110    int BFS = MFI->getObjectSize(BFI);
2111    if (FS != BFS || FS != (int)Bytes) return false;
2112    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2113  }
2114  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2115    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2116    if (V && (V->getSExtValue() == Dist*Bytes))
2117      return true;
2118  }
2119
2120  GlobalValue *GV1 = NULL;
2121  GlobalValue *GV2 = NULL;
2122  int64_t Offset1 = 0;
2123  int64_t Offset2 = 0;
2124  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2125  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2126  if (isGA1 && isGA2 && GV1 == GV2)
2127    return Offset1 == (Offset2 + Dist*Bytes);
2128  return false;
2129}
2130
2131
2132SDValue TargetLowering::
2133PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2134  // Default implementation: no optimization.
2135  return SDValue();
2136}
2137
2138//===----------------------------------------------------------------------===//
2139//  Inline Assembler Implementation Methods
2140//===----------------------------------------------------------------------===//
2141
2142
2143TargetLowering::ConstraintType
2144TargetLowering::getConstraintType(const std::string &Constraint) const {
2145  // FIXME: lots more standard ones to handle.
2146  if (Constraint.size() == 1) {
2147    switch (Constraint[0]) {
2148    default: break;
2149    case 'r': return C_RegisterClass;
2150    case 'm':    // memory
2151    case 'o':    // offsetable
2152    case 'V':    // not offsetable
2153      return C_Memory;
2154    case 'i':    // Simple Integer or Relocatable Constant
2155    case 'n':    // Simple Integer
2156    case 's':    // Relocatable Constant
2157    case 'X':    // Allow ANY value.
2158    case 'I':    // Target registers.
2159    case 'J':
2160    case 'K':
2161    case 'L':
2162    case 'M':
2163    case 'N':
2164    case 'O':
2165    case 'P':
2166      return C_Other;
2167    }
2168  }
2169
2170  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2171      Constraint[Constraint.size()-1] == '}')
2172    return C_Register;
2173  return C_Unknown;
2174}
2175
2176/// LowerXConstraint - try to replace an X constraint, which matches anything,
2177/// with another that has more specific requirements based on the type of the
2178/// corresponding operand.
2179const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2180  if (ConstraintVT.isInteger())
2181    return "r";
2182  if (ConstraintVT.isFloatingPoint())
2183    return "f";      // works for many targets
2184  return 0;
2185}
2186
2187/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2188/// vector.  If it is invalid, don't add anything to Ops.
2189void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2190                                                  char ConstraintLetter,
2191                                                  bool hasMemory,
2192                                                  std::vector<SDValue> &Ops,
2193                                                  SelectionDAG &DAG) const {
2194  switch (ConstraintLetter) {
2195  default: break;
2196  case 'X':     // Allows any operand; labels (basic block) use this.
2197    if (Op.getOpcode() == ISD::BasicBlock) {
2198      Ops.push_back(Op);
2199      return;
2200    }
2201    // fall through
2202  case 'i':    // Simple Integer or Relocatable Constant
2203  case 'n':    // Simple Integer
2204  case 's': {  // Relocatable Constant
2205    // These operands are interested in values of the form (GV+C), where C may
2206    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2207    // is possible and fine if either GV or C are missing.
2208    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2209    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2210
2211    // If we have "(add GV, C)", pull out GV/C
2212    if (Op.getOpcode() == ISD::ADD) {
2213      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2214      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2215      if (C == 0 || GA == 0) {
2216        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2217        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2218      }
2219      if (C == 0 || GA == 0)
2220        C = 0, GA = 0;
2221    }
2222
2223    // If we find a valid operand, map to the TargetXXX version so that the
2224    // value itself doesn't get selected.
2225    if (GA) {   // Either &GV   or   &GV+C
2226      if (ConstraintLetter != 'n') {
2227        int64_t Offs = GA->getOffset();
2228        if (C) Offs += C->getZExtValue();
2229        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2230                                                 Op.getValueType(), Offs));
2231        return;
2232      }
2233    }
2234    if (C) {   // just C, no GV.
2235      // Simple constants are not allowed for 's'.
2236      if (ConstraintLetter != 's') {
2237        // gcc prints these as sign extended.  Sign extend value to 64 bits
2238        // now; without this it would get ZExt'd later in
2239        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2240        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2241                                            MVT::i64));
2242        return;
2243      }
2244    }
2245    break;
2246  }
2247  }
2248}
2249
2250std::vector<unsigned> TargetLowering::
2251getRegClassForInlineAsmConstraint(const std::string &Constraint,
2252                                  MVT VT) const {
2253  return std::vector<unsigned>();
2254}
2255
2256
2257std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2258getRegForInlineAsmConstraint(const std::string &Constraint,
2259                             MVT VT) const {
2260  if (Constraint[0] != '{')
2261    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2262  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2263
2264  // Remove the braces from around the name.
2265  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2266
2267  // Figure out which register class contains this reg.
2268  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2269  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2270       E = RI->regclass_end(); RCI != E; ++RCI) {
2271    const TargetRegisterClass *RC = *RCI;
2272
2273    // If none of the the value types for this register class are valid, we
2274    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2275    bool isLegal = false;
2276    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2277         I != E; ++I) {
2278      if (isTypeLegal(*I)) {
2279        isLegal = true;
2280        break;
2281      }
2282    }
2283
2284    if (!isLegal) continue;
2285
2286    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2287         I != E; ++I) {
2288      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2289        return std::make_pair(*I, RC);
2290    }
2291  }
2292
2293  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2294}
2295
2296//===----------------------------------------------------------------------===//
2297// Constraint Selection.
2298
2299/// isMatchingInputConstraint - Return true of this is an input operand that is
2300/// a matching constraint like "4".
2301bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2302  assert(!ConstraintCode.empty() && "No known constraint!");
2303  return isdigit(ConstraintCode[0]);
2304}
2305
2306/// getMatchedOperand - If this is an input matching constraint, this method
2307/// returns the output operand it matches.
2308unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2309  assert(!ConstraintCode.empty() && "No known constraint!");
2310  return atoi(ConstraintCode.c_str());
2311}
2312
2313
2314/// getConstraintGenerality - Return an integer indicating how general CT
2315/// is.
2316static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2317  switch (CT) {
2318  default: llvm_unreachable("Unknown constraint type!");
2319  case TargetLowering::C_Other:
2320  case TargetLowering::C_Unknown:
2321    return 0;
2322  case TargetLowering::C_Register:
2323    return 1;
2324  case TargetLowering::C_RegisterClass:
2325    return 2;
2326  case TargetLowering::C_Memory:
2327    return 3;
2328  }
2329}
2330
2331/// ChooseConstraint - If there are multiple different constraints that we
2332/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2333/// This is somewhat tricky: constraints fall into four classes:
2334///    Other         -> immediates and magic values
2335///    Register      -> one specific register
2336///    RegisterClass -> a group of regs
2337///    Memory        -> memory
2338/// Ideally, we would pick the most specific constraint possible: if we have
2339/// something that fits into a register, we would pick it.  The problem here
2340/// is that if we have something that could either be in a register or in
2341/// memory that use of the register could cause selection of *other*
2342/// operands to fail: they might only succeed if we pick memory.  Because of
2343/// this the heuristic we use is:
2344///
2345///  1) If there is an 'other' constraint, and if the operand is valid for
2346///     that constraint, use it.  This makes us take advantage of 'i'
2347///     constraints when available.
2348///  2) Otherwise, pick the most general constraint present.  This prefers
2349///     'm' over 'r', for example.
2350///
2351static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2352                             bool hasMemory,  const TargetLowering &TLI,
2353                             SDValue Op, SelectionDAG *DAG) {
2354  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2355  unsigned BestIdx = 0;
2356  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2357  int BestGenerality = -1;
2358
2359  // Loop over the options, keeping track of the most general one.
2360  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2361    TargetLowering::ConstraintType CType =
2362      TLI.getConstraintType(OpInfo.Codes[i]);
2363
2364    // If this is an 'other' constraint, see if the operand is valid for it.
2365    // For example, on X86 we might have an 'rI' constraint.  If the operand
2366    // is an integer in the range [0..31] we want to use I (saving a load
2367    // of a register), otherwise we must use 'r'.
2368    if (CType == TargetLowering::C_Other && Op.getNode()) {
2369      assert(OpInfo.Codes[i].size() == 1 &&
2370             "Unhandled multi-letter 'other' constraint");
2371      std::vector<SDValue> ResultOps;
2372      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2373                                       ResultOps, *DAG);
2374      if (!ResultOps.empty()) {
2375        BestType = CType;
2376        BestIdx = i;
2377        break;
2378      }
2379    }
2380
2381    // This constraint letter is more general than the previous one, use it.
2382    int Generality = getConstraintGenerality(CType);
2383    if (Generality > BestGenerality) {
2384      BestType = CType;
2385      BestIdx = i;
2386      BestGenerality = Generality;
2387    }
2388  }
2389
2390  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2391  OpInfo.ConstraintType = BestType;
2392}
2393
2394/// ComputeConstraintToUse - Determines the constraint code and constraint
2395/// type to use for the specific AsmOperandInfo, setting
2396/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2397void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2398                                            SDValue Op,
2399                                            bool hasMemory,
2400                                            SelectionDAG *DAG) const {
2401  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2402
2403  // Single-letter constraints ('r') are very common.
2404  if (OpInfo.Codes.size() == 1) {
2405    OpInfo.ConstraintCode = OpInfo.Codes[0];
2406    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2407  } else {
2408    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2409  }
2410
2411  // 'X' matches anything.
2412  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2413    // Labels and constants are handled elsewhere ('X' is the only thing
2414    // that matches labels).  For Functions, the type here is the type of
2415    // the result, which is not what we want to look at; leave them alone.
2416    Value *v = OpInfo.CallOperandVal;
2417    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2418      OpInfo.CallOperandVal = v;
2419      return;
2420    }
2421
2422    // Otherwise, try to resolve it to something we know about by looking at
2423    // the actual operand type.
2424    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2425      OpInfo.ConstraintCode = Repl;
2426      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2427    }
2428  }
2429}
2430
2431//===----------------------------------------------------------------------===//
2432//  Loop Strength Reduction hooks
2433//===----------------------------------------------------------------------===//
2434
2435/// isLegalAddressingMode - Return true if the addressing mode represented
2436/// by AM is legal for this target, for a load/store of the specified type.
2437bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2438                                           const Type *Ty) const {
2439  // The default implementation of this implements a conservative RISCy, r+r and
2440  // r+i addr mode.
2441
2442  // Allows a sign-extended 16-bit immediate field.
2443  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2444    return false;
2445
2446  // No global is ever allowed as a base.
2447  if (AM.BaseGV)
2448    return false;
2449
2450  // Only support r+r,
2451  switch (AM.Scale) {
2452  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2453    break;
2454  case 1:
2455    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2456      return false;
2457    // Otherwise we have r+r or r+i.
2458    break;
2459  case 2:
2460    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2461      return false;
2462    // Allow 2*r as r+r.
2463    break;
2464  }
2465
2466  return true;
2467}
2468
2469/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2470/// return a DAG expression to select that will generate the same value by
2471/// multiplying by a magic number.  See:
2472/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2473SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2474                                  std::vector<SDNode*>* Created) const {
2475  MVT VT = N->getValueType(0);
2476  DebugLoc dl= N->getDebugLoc();
2477
2478  // Check to see if we can do this.
2479  // FIXME: We should be more aggressive here.
2480  if (!isTypeLegal(VT))
2481    return SDValue();
2482
2483  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2484  APInt::ms magics = d.magic();
2485
2486  // Multiply the numerator (operand 0) by the magic value
2487  // FIXME: We should support doing a MUL in a wider type
2488  SDValue Q;
2489  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2490    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2491                    DAG.getConstant(magics.m, VT));
2492  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2493    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2494                              N->getOperand(0),
2495                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2496  else
2497    return SDValue();       // No mulhs or equvialent
2498  // If d > 0 and m < 0, add the numerator
2499  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2500    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2501    if (Created)
2502      Created->push_back(Q.getNode());
2503  }
2504  // If d < 0 and m > 0, subtract the numerator.
2505  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2506    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2507    if (Created)
2508      Created->push_back(Q.getNode());
2509  }
2510  // Shift right algebraic if shift value is nonzero
2511  if (magics.s > 0) {
2512    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2513                    DAG.getConstant(magics.s, getShiftAmountTy()));
2514    if (Created)
2515      Created->push_back(Q.getNode());
2516  }
2517  // Extract the sign bit and add it to the quotient
2518  SDValue T =
2519    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2520                                                 getShiftAmountTy()));
2521  if (Created)
2522    Created->push_back(T.getNode());
2523  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2524}
2525
2526/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2527/// return a DAG expression to select that will generate the same value by
2528/// multiplying by a magic number.  See:
2529/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2530SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2531                                  std::vector<SDNode*>* Created) const {
2532  MVT VT = N->getValueType(0);
2533  DebugLoc dl = N->getDebugLoc();
2534
2535  // Check to see if we can do this.
2536  // FIXME: We should be more aggressive here.
2537  if (!isTypeLegal(VT))
2538    return SDValue();
2539
2540  // FIXME: We should use a narrower constant when the upper
2541  // bits are known to be zero.
2542  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2543  APInt::mu magics = N1C->getAPIntValue().magicu();
2544
2545  // Multiply the numerator (operand 0) by the magic value
2546  // FIXME: We should support doing a MUL in a wider type
2547  SDValue Q;
2548  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2549    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2550                    DAG.getConstant(magics.m, VT));
2551  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2552    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2553                              N->getOperand(0),
2554                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2555  else
2556    return SDValue();       // No mulhu or equvialent
2557  if (Created)
2558    Created->push_back(Q.getNode());
2559
2560  if (magics.a == 0) {
2561    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2562           "We shouldn't generate an undefined shift!");
2563    return DAG.getNode(ISD::SRL, dl, VT, Q,
2564                       DAG.getConstant(magics.s, getShiftAmountTy()));
2565  } else {
2566    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2567    if (Created)
2568      Created->push_back(NPQ.getNode());
2569    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2570                      DAG.getConstant(1, getShiftAmountTy()));
2571    if (Created)
2572      Created->push_back(NPQ.getNode());
2573    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2574    if (Created)
2575      Created->push_back(NPQ.getNode());
2576    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2577                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2578  }
2579}
2580
2581/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2582/// node that don't prevent tail call optimization.
2583static SDValue IgnoreHarmlessInstructions(SDValue node) {
2584  // Found call return.
2585  if (node.getOpcode() == ISD::CALL) return node;
2586  // Ignore MERGE_VALUES. Will have at least one operand.
2587  if (node.getOpcode() == ISD::MERGE_VALUES)
2588    return IgnoreHarmlessInstructions(node.getOperand(0));
2589  // Ignore ANY_EXTEND node.
2590  if (node.getOpcode() == ISD::ANY_EXTEND)
2591    return IgnoreHarmlessInstructions(node.getOperand(0));
2592  if (node.getOpcode() == ISD::TRUNCATE)
2593    return IgnoreHarmlessInstructions(node.getOperand(0));
2594  // Any other node type.
2595  return node;
2596}
2597
2598bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2599                                                    SDValue Ret) {
2600  unsigned NumOps = Ret.getNumOperands();
2601  // ISD::CALL results:(value0, ..., valuen, chain)
2602  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2603  // Value return:
2604  // Check that operand of the RET node sources from the CALL node. The RET node
2605  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2606  // value.
2607  // Also we need to check that there is no code in between the call and the
2608  // return. Hence we also check that the incomming chain to the return sources
2609  // from the outgoing chain of the call.
2610  if (NumOps > 1 &&
2611      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
2612      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2613    return true;
2614  // void return: The RET node  has the chain result value of the CALL node as
2615  // input.
2616  if (NumOps == 1 &&
2617      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2618    return true;
2619
2620  return false;
2621}
2622