TargetLowering.cpp revision 7b620afb60382e26ea0c974175b50414f19fc0ff
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29namespace llvm {
30TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31  bool isLocal = GV->hasLocalLinkage();
32  bool isDeclaration = GV->isDeclaration();
33  // FIXME: what should we do for protected and internal visibility?
34  // For variables, is internal different from hidden?
35  bool isHidden = GV->hasHiddenVisibility();
36
37  if (reloc == Reloc::PIC_) {
38    if (isLocal || isHidden)
39      return TLSModel::LocalDynamic;
40    else
41      return TLSModel::GeneralDynamic;
42  } else {
43    if (!isDeclaration || isHidden)
44      return TLSModel::LocalExec;
45    else
46      return TLSModel::InitialExec;
47  }
48}
49}
50
51/// InitLibcallNames - Set default libcall names.
52///
53static void InitLibcallNames(const char **Names) {
54  Names[RTLIB::SHL_I16] = "__ashli16";
55  Names[RTLIB::SHL_I32] = "__ashlsi3";
56  Names[RTLIB::SHL_I64] = "__ashldi3";
57  Names[RTLIB::SHL_I128] = "__ashlti3";
58  Names[RTLIB::SRL_I16] = "__lshri16";
59  Names[RTLIB::SRL_I32] = "__lshrsi3";
60  Names[RTLIB::SRL_I64] = "__lshrdi3";
61  Names[RTLIB::SRL_I128] = "__lshrti3";
62  Names[RTLIB::SRA_I16] = "__ashri16";
63  Names[RTLIB::SRA_I32] = "__ashrsi3";
64  Names[RTLIB::SRA_I64] = "__ashrdi3";
65  Names[RTLIB::SRA_I128] = "__ashrti3";
66  Names[RTLIB::MUL_I16] = "__muli16";
67  Names[RTLIB::MUL_I32] = "__mulsi3";
68  Names[RTLIB::MUL_I64] = "__muldi3";
69  Names[RTLIB::MUL_I128] = "__multi3";
70  Names[RTLIB::SDIV_I32] = "__divsi3";
71  Names[RTLIB::SDIV_I64] = "__divdi3";
72  Names[RTLIB::SDIV_I128] = "__divti3";
73  Names[RTLIB::UDIV_I32] = "__udivsi3";
74  Names[RTLIB::UDIV_I64] = "__udivdi3";
75  Names[RTLIB::UDIV_I128] = "__udivti3";
76  Names[RTLIB::SREM_I32] = "__modsi3";
77  Names[RTLIB::SREM_I64] = "__moddi3";
78  Names[RTLIB::SREM_I128] = "__modti3";
79  Names[RTLIB::UREM_I32] = "__umodsi3";
80  Names[RTLIB::UREM_I64] = "__umoddi3";
81  Names[RTLIB::UREM_I128] = "__umodti3";
82  Names[RTLIB::NEG_I32] = "__negsi2";
83  Names[RTLIB::NEG_I64] = "__negdi2";
84  Names[RTLIB::ADD_F32] = "__addsf3";
85  Names[RTLIB::ADD_F64] = "__adddf3";
86  Names[RTLIB::ADD_F80] = "__addxf3";
87  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
88  Names[RTLIB::SUB_F32] = "__subsf3";
89  Names[RTLIB::SUB_F64] = "__subdf3";
90  Names[RTLIB::SUB_F80] = "__subxf3";
91  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
92  Names[RTLIB::MUL_F32] = "__mulsf3";
93  Names[RTLIB::MUL_F64] = "__muldf3";
94  Names[RTLIB::MUL_F80] = "__mulxf3";
95  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
96  Names[RTLIB::DIV_F32] = "__divsf3";
97  Names[RTLIB::DIV_F64] = "__divdf3";
98  Names[RTLIB::DIV_F80] = "__divxf3";
99  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
100  Names[RTLIB::REM_F32] = "fmodf";
101  Names[RTLIB::REM_F64] = "fmod";
102  Names[RTLIB::REM_F80] = "fmodl";
103  Names[RTLIB::REM_PPCF128] = "fmodl";
104  Names[RTLIB::POWI_F32] = "__powisf2";
105  Names[RTLIB::POWI_F64] = "__powidf2";
106  Names[RTLIB::POWI_F80] = "__powixf2";
107  Names[RTLIB::POWI_PPCF128] = "__powitf2";
108  Names[RTLIB::SQRT_F32] = "sqrtf";
109  Names[RTLIB::SQRT_F64] = "sqrt";
110  Names[RTLIB::SQRT_F80] = "sqrtl";
111  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
112  Names[RTLIB::LOG_F32] = "logf";
113  Names[RTLIB::LOG_F64] = "log";
114  Names[RTLIB::LOG_F80] = "logl";
115  Names[RTLIB::LOG_PPCF128] = "logl";
116  Names[RTLIB::LOG2_F32] = "log2f";
117  Names[RTLIB::LOG2_F64] = "log2";
118  Names[RTLIB::LOG2_F80] = "log2l";
119  Names[RTLIB::LOG2_PPCF128] = "log2l";
120  Names[RTLIB::LOG10_F32] = "log10f";
121  Names[RTLIB::LOG10_F64] = "log10";
122  Names[RTLIB::LOG10_F80] = "log10l";
123  Names[RTLIB::LOG10_PPCF128] = "log10l";
124  Names[RTLIB::EXP_F32] = "expf";
125  Names[RTLIB::EXP_F64] = "exp";
126  Names[RTLIB::EXP_F80] = "expl";
127  Names[RTLIB::EXP_PPCF128] = "expl";
128  Names[RTLIB::EXP2_F32] = "exp2f";
129  Names[RTLIB::EXP2_F64] = "exp2";
130  Names[RTLIB::EXP2_F80] = "exp2l";
131  Names[RTLIB::EXP2_PPCF128] = "exp2l";
132  Names[RTLIB::SIN_F32] = "sinf";
133  Names[RTLIB::SIN_F64] = "sin";
134  Names[RTLIB::SIN_F80] = "sinl";
135  Names[RTLIB::SIN_PPCF128] = "sinl";
136  Names[RTLIB::COS_F32] = "cosf";
137  Names[RTLIB::COS_F64] = "cos";
138  Names[RTLIB::COS_F80] = "cosl";
139  Names[RTLIB::COS_PPCF128] = "cosl";
140  Names[RTLIB::POW_F32] = "powf";
141  Names[RTLIB::POW_F64] = "pow";
142  Names[RTLIB::POW_F80] = "powl";
143  Names[RTLIB::POW_PPCF128] = "powl";
144  Names[RTLIB::CEIL_F32] = "ceilf";
145  Names[RTLIB::CEIL_F64] = "ceil";
146  Names[RTLIB::CEIL_F80] = "ceill";
147  Names[RTLIB::CEIL_PPCF128] = "ceill";
148  Names[RTLIB::TRUNC_F32] = "truncf";
149  Names[RTLIB::TRUNC_F64] = "trunc";
150  Names[RTLIB::TRUNC_F80] = "truncl";
151  Names[RTLIB::TRUNC_PPCF128] = "truncl";
152  Names[RTLIB::RINT_F32] = "rintf";
153  Names[RTLIB::RINT_F64] = "rint";
154  Names[RTLIB::RINT_F80] = "rintl";
155  Names[RTLIB::RINT_PPCF128] = "rintl";
156  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
157  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
158  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
159  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
160  Names[RTLIB::FLOOR_F32] = "floorf";
161  Names[RTLIB::FLOOR_F64] = "floor";
162  Names[RTLIB::FLOOR_F80] = "floorl";
163  Names[RTLIB::FLOOR_PPCF128] = "floorl";
164  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
165  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
166  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
167  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
168  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
169  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
170  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
171  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
172  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
173  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
174  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
175  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
176  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
177  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
178  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
179  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
180  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
181  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
182  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
183  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
184  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
185  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
186  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
187  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
188  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
189  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
190  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
191  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
192  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
193  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
194  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
195  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
196  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
197  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
198  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
199  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
200  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
201  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
202  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
203  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
204  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
205  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
206  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
207  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
208  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
209  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
210  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
211  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
212  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
213  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
214  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
215  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
216  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
217  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
218  Names[RTLIB::OEQ_F32] = "__eqsf2";
219  Names[RTLIB::OEQ_F64] = "__eqdf2";
220  Names[RTLIB::UNE_F32] = "__nesf2";
221  Names[RTLIB::UNE_F64] = "__nedf2";
222  Names[RTLIB::OGE_F32] = "__gesf2";
223  Names[RTLIB::OGE_F64] = "__gedf2";
224  Names[RTLIB::OLT_F32] = "__ltsf2";
225  Names[RTLIB::OLT_F64] = "__ltdf2";
226  Names[RTLIB::OLE_F32] = "__lesf2";
227  Names[RTLIB::OLE_F64] = "__ledf2";
228  Names[RTLIB::OGT_F32] = "__gtsf2";
229  Names[RTLIB::OGT_F64] = "__gtdf2";
230  Names[RTLIB::UO_F32] = "__unordsf2";
231  Names[RTLIB::UO_F64] = "__unorddf2";
232  Names[RTLIB::O_F32] = "__unordsf2";
233  Names[RTLIB::O_F64] = "__unorddf2";
234}
235
236/// getFPEXT - Return the FPEXT_*_* value for the given types, or
237/// UNKNOWN_LIBCALL if there is none.
238RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
239  if (OpVT == MVT::f32) {
240    if (RetVT == MVT::f64)
241      return FPEXT_F32_F64;
242  }
243  return UNKNOWN_LIBCALL;
244}
245
246/// getFPROUND - Return the FPROUND_*_* value for the given types, or
247/// UNKNOWN_LIBCALL if there is none.
248RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
249  if (RetVT == MVT::f32) {
250    if (OpVT == MVT::f64)
251      return FPROUND_F64_F32;
252    if (OpVT == MVT::f80)
253      return FPROUND_F80_F32;
254    if (OpVT == MVT::ppcf128)
255      return FPROUND_PPCF128_F32;
256  } else if (RetVT == MVT::f64) {
257    if (OpVT == MVT::f80)
258      return FPROUND_F80_F64;
259    if (OpVT == MVT::ppcf128)
260      return FPROUND_PPCF128_F64;
261  }
262  return UNKNOWN_LIBCALL;
263}
264
265/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
266/// UNKNOWN_LIBCALL if there is none.
267RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
268  if (OpVT == MVT::f32) {
269    if (RetVT == MVT::i32)
270      return FPTOSINT_F32_I32;
271    if (RetVT == MVT::i64)
272      return FPTOSINT_F32_I64;
273    if (RetVT == MVT::i128)
274      return FPTOSINT_F32_I128;
275  } else if (OpVT == MVT::f64) {
276    if (RetVT == MVT::i32)
277      return FPTOSINT_F64_I32;
278    if (RetVT == MVT::i64)
279      return FPTOSINT_F64_I64;
280    if (RetVT == MVT::i128)
281      return FPTOSINT_F64_I128;
282  } else if (OpVT == MVT::f80) {
283    if (RetVT == MVT::i32)
284      return FPTOSINT_F80_I32;
285    if (RetVT == MVT::i64)
286      return FPTOSINT_F80_I64;
287    if (RetVT == MVT::i128)
288      return FPTOSINT_F80_I128;
289  } else if (OpVT == MVT::ppcf128) {
290    if (RetVT == MVT::i32)
291      return FPTOSINT_PPCF128_I32;
292    if (RetVT == MVT::i64)
293      return FPTOSINT_PPCF128_I64;
294    if (RetVT == MVT::i128)
295      return FPTOSINT_PPCF128_I128;
296  }
297  return UNKNOWN_LIBCALL;
298}
299
300/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
301/// UNKNOWN_LIBCALL if there is none.
302RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
303  if (OpVT == MVT::f32) {
304    if (RetVT == MVT::i32)
305      return FPTOUINT_F32_I32;
306    if (RetVT == MVT::i64)
307      return FPTOUINT_F32_I64;
308    if (RetVT == MVT::i128)
309      return FPTOUINT_F32_I128;
310  } else if (OpVT == MVT::f64) {
311    if (RetVT == MVT::i32)
312      return FPTOUINT_F64_I32;
313    if (RetVT == MVT::i64)
314      return FPTOUINT_F64_I64;
315    if (RetVT == MVT::i128)
316      return FPTOUINT_F64_I128;
317  } else if (OpVT == MVT::f80) {
318    if (RetVT == MVT::i32)
319      return FPTOUINT_F80_I32;
320    if (RetVT == MVT::i64)
321      return FPTOUINT_F80_I64;
322    if (RetVT == MVT::i128)
323      return FPTOUINT_F80_I128;
324  } else if (OpVT == MVT::ppcf128) {
325    if (RetVT == MVT::i32)
326      return FPTOUINT_PPCF128_I32;
327    if (RetVT == MVT::i64)
328      return FPTOUINT_PPCF128_I64;
329    if (RetVT == MVT::i128)
330      return FPTOUINT_PPCF128_I128;
331  }
332  return UNKNOWN_LIBCALL;
333}
334
335/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
336/// UNKNOWN_LIBCALL if there is none.
337RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
338  if (OpVT == MVT::i32) {
339    if (RetVT == MVT::f32)
340      return SINTTOFP_I32_F32;
341    else if (RetVT == MVT::f64)
342      return SINTTOFP_I32_F64;
343    else if (RetVT == MVT::f80)
344      return SINTTOFP_I32_F80;
345    else if (RetVT == MVT::ppcf128)
346      return SINTTOFP_I32_PPCF128;
347  } else if (OpVT == MVT::i64) {
348    if (RetVT == MVT::f32)
349      return SINTTOFP_I64_F32;
350    else if (RetVT == MVT::f64)
351      return SINTTOFP_I64_F64;
352    else if (RetVT == MVT::f80)
353      return SINTTOFP_I64_F80;
354    else if (RetVT == MVT::ppcf128)
355      return SINTTOFP_I64_PPCF128;
356  } else if (OpVT == MVT::i128) {
357    if (RetVT == MVT::f32)
358      return SINTTOFP_I128_F32;
359    else if (RetVT == MVT::f64)
360      return SINTTOFP_I128_F64;
361    else if (RetVT == MVT::f80)
362      return SINTTOFP_I128_F80;
363    else if (RetVT == MVT::ppcf128)
364      return SINTTOFP_I128_PPCF128;
365  }
366  return UNKNOWN_LIBCALL;
367}
368
369/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
370/// UNKNOWN_LIBCALL if there is none.
371RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
372  if (OpVT == MVT::i32) {
373    if (RetVT == MVT::f32)
374      return UINTTOFP_I32_F32;
375    else if (RetVT == MVT::f64)
376      return UINTTOFP_I32_F64;
377    else if (RetVT == MVT::f80)
378      return UINTTOFP_I32_F80;
379    else if (RetVT == MVT::ppcf128)
380      return UINTTOFP_I32_PPCF128;
381  } else if (OpVT == MVT::i64) {
382    if (RetVT == MVT::f32)
383      return UINTTOFP_I64_F32;
384    else if (RetVT == MVT::f64)
385      return UINTTOFP_I64_F64;
386    else if (RetVT == MVT::f80)
387      return UINTTOFP_I64_F80;
388    else if (RetVT == MVT::ppcf128)
389      return UINTTOFP_I64_PPCF128;
390  } else if (OpVT == MVT::i128) {
391    if (RetVT == MVT::f32)
392      return UINTTOFP_I128_F32;
393    else if (RetVT == MVT::f64)
394      return UINTTOFP_I128_F64;
395    else if (RetVT == MVT::f80)
396      return UINTTOFP_I128_F80;
397    else if (RetVT == MVT::ppcf128)
398      return UINTTOFP_I128_PPCF128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// InitCmpLibcallCCs - Set default comparison libcall CC.
404///
405static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
406  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
407  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
408  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
409  CCs[RTLIB::UNE_F32] = ISD::SETNE;
410  CCs[RTLIB::UNE_F64] = ISD::SETNE;
411  CCs[RTLIB::OGE_F32] = ISD::SETGE;
412  CCs[RTLIB::OGE_F64] = ISD::SETGE;
413  CCs[RTLIB::OLT_F32] = ISD::SETLT;
414  CCs[RTLIB::OLT_F64] = ISD::SETLT;
415  CCs[RTLIB::OLE_F32] = ISD::SETLE;
416  CCs[RTLIB::OLE_F64] = ISD::SETLE;
417  CCs[RTLIB::OGT_F32] = ISD::SETGT;
418  CCs[RTLIB::OGT_F64] = ISD::SETGT;
419  CCs[RTLIB::UO_F32] = ISD::SETNE;
420  CCs[RTLIB::UO_F64] = ISD::SETNE;
421  CCs[RTLIB::O_F32] = ISD::SETEQ;
422  CCs[RTLIB::O_F64] = ISD::SETEQ;
423}
424
425TargetLowering::TargetLowering(TargetMachine &tm)
426  : TM(tm), TD(TM.getTargetData()) {
427  // All operations default to being supported.
428  memset(OpActions, 0, sizeof(OpActions));
429  memset(LoadExtActions, 0, sizeof(LoadExtActions));
430  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
431  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
432  memset(ConvertActions, 0, sizeof(ConvertActions));
433  memset(CondCodeActions, 0, sizeof(CondCodeActions));
434
435  // Set default actions for various operations.
436  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
437    // Default all indexed load / store to expand.
438    for (unsigned IM = (unsigned)ISD::PRE_INC;
439         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
440      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
441      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
442    }
443
444    // These operations default to expand.
445    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
446  }
447
448  // Most targets ignore the @llvm.prefetch intrinsic.
449  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
450
451  // ConstantFP nodes default to expand.  Targets can either change this to
452  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
453  // to optimize expansions for certain constants.
454  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
455  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
456  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
457
458  // These library functions default to expand.
459  setOperationAction(ISD::FLOG , MVT::f64, Expand);
460  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
461  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
462  setOperationAction(ISD::FEXP , MVT::f64, Expand);
463  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
464  setOperationAction(ISD::FLOG , MVT::f32, Expand);
465  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
466  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
467  setOperationAction(ISD::FEXP , MVT::f32, Expand);
468  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
469
470  // Default ISD::TRAP to expand (which turns it into abort).
471  setOperationAction(ISD::TRAP, MVT::Other, Expand);
472
473  IsLittleEndian = TD->isLittleEndian();
474  UsesGlobalOffsetTable = false;
475  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
476  ShiftAmtHandling = Undefined;
477  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
478  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
479  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
480  allowUnalignedMemoryAccesses = false;
481  UseUnderscoreSetJmp = false;
482  UseUnderscoreLongJmp = false;
483  SelectIsExpensive = false;
484  IntDivIsCheap = false;
485  Pow2DivIsCheap = false;
486  StackPointerRegisterToSaveRestore = 0;
487  ExceptionPointerRegister = 0;
488  ExceptionSelectorRegister = 0;
489  BooleanContents = UndefinedBooleanContent;
490  SchedPreferenceInfo = SchedulingForLatency;
491  JumpBufSize = 0;
492  JumpBufAlignment = 0;
493  IfCvtBlockSizeLimit = 2;
494  IfCvtDupBlockSizeLimit = 0;
495  PrefLoopAlignment = 0;
496
497  InitLibcallNames(LibcallRoutineNames);
498  InitCmpLibcallCCs(CmpLibcallCCs);
499
500  // Tell Legalize whether the assembler supports DEBUG_LOC.
501  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
502  if (!TASM || !TASM->hasDotLocAndDotFile())
503    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
504}
505
506TargetLowering::~TargetLowering() {}
507
508/// computeRegisterProperties - Once all of the register classes are added,
509/// this allows us to compute derived properties we expose.
510void TargetLowering::computeRegisterProperties() {
511  assert(MVT::LAST_VALUETYPE <= 32 &&
512         "Too many value types for ValueTypeActions to hold!");
513
514  // Everything defaults to needing one register.
515  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
516    NumRegistersForVT[i] = 1;
517    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
518  }
519  // ...except isVoid, which doesn't need any registers.
520  NumRegistersForVT[MVT::isVoid] = 0;
521
522  // Find the largest integer register class.
523  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
524  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
525    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
526
527  // Every integer value type larger than this largest register takes twice as
528  // many registers to represent as the previous ValueType.
529  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
530    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
531    if (!EVT.isInteger())
532      break;
533    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
534    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
535    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
536    ValueTypeActions.setTypeAction(EVT, Expand);
537  }
538
539  // Inspect all of the ValueType's smaller than the largest integer
540  // register to see which ones need promotion.
541  unsigned LegalIntReg = LargestIntReg;
542  for (unsigned IntReg = LargestIntReg - 1;
543       IntReg >= (unsigned)MVT::i1; --IntReg) {
544    MVT IVT = (MVT::SimpleValueType)IntReg;
545    if (isTypeLegal(IVT)) {
546      LegalIntReg = IntReg;
547    } else {
548      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
549        (MVT::SimpleValueType)LegalIntReg;
550      ValueTypeActions.setTypeAction(IVT, Promote);
551    }
552  }
553
554  // ppcf128 type is really two f64's.
555  if (!isTypeLegal(MVT::ppcf128)) {
556    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
557    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
558    TransformToType[MVT::ppcf128] = MVT::f64;
559    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
560  }
561
562  // Decide how to handle f64. If the target does not have native f64 support,
563  // expand it to i64 and we will be generating soft float library calls.
564  if (!isTypeLegal(MVT::f64)) {
565    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
566    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
567    TransformToType[MVT::f64] = MVT::i64;
568    ValueTypeActions.setTypeAction(MVT::f64, Expand);
569  }
570
571  // Decide how to handle f32. If the target does not have native support for
572  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
573  if (!isTypeLegal(MVT::f32)) {
574    if (isTypeLegal(MVT::f64)) {
575      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
576      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
577      TransformToType[MVT::f32] = MVT::f64;
578      ValueTypeActions.setTypeAction(MVT::f32, Promote);
579    } else {
580      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
581      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
582      TransformToType[MVT::f32] = MVT::i32;
583      ValueTypeActions.setTypeAction(MVT::f32, Expand);
584    }
585  }
586
587  // Loop over all of the vector value types to see which need transformations.
588  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
589       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
590    MVT VT = (MVT::SimpleValueType)i;
591    if (!isTypeLegal(VT)) {
592      MVT IntermediateVT, RegisterVT;
593      unsigned NumIntermediates;
594      NumRegistersForVT[i] =
595        getVectorTypeBreakdown(VT,
596                               IntermediateVT, NumIntermediates,
597                               RegisterVT);
598      RegisterTypeForVT[i] = RegisterVT;
599
600      // Determine if there is a legal wider type.
601      bool IsLegalWiderType = false;
602      MVT EltVT = VT.getVectorElementType();
603      unsigned NElts = VT.getVectorNumElements();
604      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
605        MVT SVT = (MVT::SimpleValueType)nVT;
606        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
607            SVT.getVectorNumElements() > NElts) {
608          TransformToType[i] = SVT;
609          ValueTypeActions.setTypeAction(VT, Promote);
610          IsLegalWiderType = true;
611          break;
612        }
613      }
614      if (!IsLegalWiderType) {
615        MVT NVT = VT.getPow2VectorType();
616        if (NVT == VT) {
617          // Type is already a power of 2.  The default action is to split.
618          TransformToType[i] = MVT::Other;
619          ValueTypeActions.setTypeAction(VT, Expand);
620        } else {
621          TransformToType[i] = NVT;
622          ValueTypeActions.setTypeAction(VT, Promote);
623        }
624      }
625    }
626  }
627}
628
629const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
630  return NULL;
631}
632
633
634MVT TargetLowering::getSetCCResultType(MVT VT) const {
635  return getValueType(TD->getIntPtrType());
636}
637
638
639/// getVectorTypeBreakdown - Vector types are broken down into some number of
640/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
641/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
642/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
643///
644/// This method returns the number of registers needed, and the VT for each
645/// register.  It also returns the VT and quantity of the intermediate values
646/// before they are promoted/expanded.
647///
648unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
649                                                MVT &IntermediateVT,
650                                                unsigned &NumIntermediates,
651                                      MVT &RegisterVT) const {
652  // Figure out the right, legal destination reg to copy into.
653  unsigned NumElts = VT.getVectorNumElements();
654  MVT EltTy = VT.getVectorElementType();
655
656  unsigned NumVectorRegs = 1;
657
658  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
659  // could break down into LHS/RHS like LegalizeDAG does.
660  if (!isPowerOf2_32(NumElts)) {
661    NumVectorRegs = NumElts;
662    NumElts = 1;
663  }
664
665  // Divide the input until we get to a supported size.  This will always
666  // end with a scalar if the target doesn't support vectors.
667  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
668    NumElts >>= 1;
669    NumVectorRegs <<= 1;
670  }
671
672  NumIntermediates = NumVectorRegs;
673
674  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
675  if (!isTypeLegal(NewVT))
676    NewVT = EltTy;
677  IntermediateVT = NewVT;
678
679  MVT DestVT = getTypeToTransformTo(NewVT);
680  RegisterVT = DestVT;
681  if (DestVT.bitsLT(NewVT)) {
682    // Value is expanded, e.g. i64 -> i16.
683    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
684  } else {
685    // Otherwise, promotion or legal types use the same number of registers as
686    // the vector decimated to the appropriate level.
687    return NumVectorRegs;
688  }
689
690  return 1;
691}
692
693/// getWidenVectorType: given a vector type, returns the type to widen to
694/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
695/// If there is no vector type that we want to widen to, returns MVT::Other
696/// When and where to widen is target dependent based on the cost of
697/// scalarizing vs using the wider vector type.
698MVT TargetLowering::getWidenVectorType(MVT VT) const {
699  assert(VT.isVector());
700  if (isTypeLegal(VT))
701    return VT;
702
703  // Default is not to widen until moved to LegalizeTypes
704  return MVT::Other;
705}
706
707/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
708/// function arguments in the caller parameter area.  This is the actual
709/// alignment, not its logarithm.
710unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
711  return TD->getCallFrameTypeAlignment(Ty);
712}
713
714SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
715                                                 SelectionDAG &DAG) const {
716  if (usesGlobalOffsetTable())
717    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
718  return Table;
719}
720
721bool
722TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
723  // Assume that everything is safe in static mode.
724  if (getTargetMachine().getRelocationModel() == Reloc::Static)
725    return true;
726
727  // In dynamic-no-pic mode, assume that known defined values are safe.
728  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
729      GA &&
730      !GA->getGlobal()->isDeclaration() &&
731      !GA->getGlobal()->mayBeOverridden())
732    return true;
733
734  // Otherwise assume nothing is safe.
735  return false;
736}
737
738//===----------------------------------------------------------------------===//
739//  Optimization Methods
740//===----------------------------------------------------------------------===//
741
742/// ShrinkDemandedConstant - Check to see if the specified operand of the
743/// specified instruction is a constant integer.  If so, check to see if there
744/// are any bits set in the constant that are not demanded.  If so, shrink the
745/// constant and return true.
746bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
747                                                        const APInt &Demanded) {
748  DebugLoc dl = Op.getDebugLoc();
749  // FIXME: ISD::SELECT, ISD::SELECT_CC
750  switch (Op.getOpcode()) {
751  default: break;
752  case ISD::AND:
753  case ISD::OR:
754  case ISD::XOR:
755    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
756      if (C->getAPIntValue().intersects(~Demanded)) {
757        MVT VT = Op.getValueType();
758        SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
759                                    DAG.getConstant(Demanded &
760                                                      C->getAPIntValue(),
761                                                    VT));
762        return CombineTo(Op, New);
763      }
764    break;
765  }
766  return false;
767}
768
769/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
770/// DemandedMask bits of the result of Op are ever used downstream.  If we can
771/// use this information to simplify Op, create a new simplified DAG node and
772/// return true, returning the original and new nodes in Old and New. Otherwise,
773/// analyze the expression and return a mask of KnownOne and KnownZero bits for
774/// the expression (used to simplify the caller).  The KnownZero/One bits may
775/// only be accurate for those bits in the DemandedMask.
776bool TargetLowering::SimplifyDemandedBits(SDValue Op,
777                                          const APInt &DemandedMask,
778                                          APInt &KnownZero,
779                                          APInt &KnownOne,
780                                          TargetLoweringOpt &TLO,
781                                          unsigned Depth) const {
782  unsigned BitWidth = DemandedMask.getBitWidth();
783  assert(Op.getValueSizeInBits() == BitWidth &&
784         "Mask size mismatches value type size!");
785  APInt NewMask = DemandedMask;
786  DebugLoc dl = Op.getDebugLoc();
787
788  // Don't know anything.
789  KnownZero = KnownOne = APInt(BitWidth, 0);
790
791  // Other users may use these bits.
792  if (!Op.getNode()->hasOneUse()) {
793    if (Depth != 0) {
794      // If not at the root, Just compute the KnownZero/KnownOne bits to
795      // simplify things downstream.
796      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
797      return false;
798    }
799    // If this is the root being simplified, allow it to have multiple uses,
800    // just set the NewMask to all bits.
801    NewMask = APInt::getAllOnesValue(BitWidth);
802  } else if (DemandedMask == 0) {
803    // Not demanding any bits from Op.
804    if (Op.getOpcode() != ISD::UNDEF)
805      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
806    return false;
807  } else if (Depth == 6) {        // Limit search depth.
808    return false;
809  }
810
811  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
812  switch (Op.getOpcode()) {
813  case ISD::Constant:
814    // We know all of the bits for a constant!
815    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
816    KnownZero = ~KnownOne & NewMask;
817    return false;   // Don't fall through, will infinitely loop.
818  case ISD::AND:
819    // If the RHS is a constant, check to see if the LHS would be zero without
820    // using the bits from the RHS.  Below, we use knowledge about the RHS to
821    // simplify the LHS, here we're using information from the LHS to simplify
822    // the RHS.
823    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
824      APInt LHSZero, LHSOne;
825      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
826                                LHSZero, LHSOne, Depth+1);
827      // If the LHS already has zeros where RHSC does, this and is dead.
828      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
829        return TLO.CombineTo(Op, Op.getOperand(0));
830      // If any of the set bits in the RHS are known zero on the LHS, shrink
831      // the constant.
832      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
833        return true;
834    }
835
836    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
837                             KnownOne, TLO, Depth+1))
838      return true;
839    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
840    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
841                             KnownZero2, KnownOne2, TLO, Depth+1))
842      return true;
843    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
844
845    // If all of the demanded bits are known one on one side, return the other.
846    // These bits cannot contribute to the result of the 'and'.
847    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
848      return TLO.CombineTo(Op, Op.getOperand(0));
849    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
850      return TLO.CombineTo(Op, Op.getOperand(1));
851    // If all of the demanded bits in the inputs are known zeros, return zero.
852    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
853      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
854    // If the RHS is a constant, see if we can simplify it.
855    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
856      return true;
857
858    // Output known-1 bits are only known if set in both the LHS & RHS.
859    KnownOne &= KnownOne2;
860    // Output known-0 are known to be clear if zero in either the LHS | RHS.
861    KnownZero |= KnownZero2;
862    break;
863  case ISD::OR:
864    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
865                             KnownOne, TLO, Depth+1))
866      return true;
867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
868    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
869                             KnownZero2, KnownOne2, TLO, Depth+1))
870      return true;
871    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
872
873    // If all of the demanded bits are known zero on one side, return the other.
874    // These bits cannot contribute to the result of the 'or'.
875    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
876      return TLO.CombineTo(Op, Op.getOperand(0));
877    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
878      return TLO.CombineTo(Op, Op.getOperand(1));
879    // If all of the potentially set bits on one side are known to be set on
880    // the other side, just use the 'other' side.
881    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
882      return TLO.CombineTo(Op, Op.getOperand(0));
883    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
884      return TLO.CombineTo(Op, Op.getOperand(1));
885    // If the RHS is a constant, see if we can simplify it.
886    if (TLO.ShrinkDemandedConstant(Op, NewMask))
887      return true;
888
889    // Output known-0 bits are only known if clear in both the LHS & RHS.
890    KnownZero &= KnownZero2;
891    // Output known-1 are known to be set if set in either the LHS | RHS.
892    KnownOne |= KnownOne2;
893    break;
894  case ISD::XOR:
895    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
896                             KnownOne, TLO, Depth+1))
897      return true;
898    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
899    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
900                             KnownOne2, TLO, Depth+1))
901      return true;
902    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
903
904    // If all of the demanded bits are known zero on one side, return the other.
905    // These bits cannot contribute to the result of the 'xor'.
906    if ((KnownZero & NewMask) == NewMask)
907      return TLO.CombineTo(Op, Op.getOperand(0));
908    if ((KnownZero2 & NewMask) == NewMask)
909      return TLO.CombineTo(Op, Op.getOperand(1));
910
911    // If all of the unknown bits are known to be zero on one side or the other
912    // (but not both) turn this into an *inclusive* or.
913    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
914    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
915      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
916                                               Op.getOperand(0),
917                                               Op.getOperand(1)));
918
919    // Output known-0 bits are known if clear or set in both the LHS & RHS.
920    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
921    // Output known-1 are known to be set if set in only one of the LHS, RHS.
922    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
923
924    // If all of the demanded bits on one side are known, and all of the set
925    // bits on that side are also known to be set on the other side, turn this
926    // into an AND, as we know the bits will be cleared.
927    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
928    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
929      if ((KnownOne & KnownOne2) == KnownOne) {
930        MVT VT = Op.getValueType();
931        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
932        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
933                                                 Op.getOperand(0), ANDC));
934      }
935    }
936
937    // If the RHS is a constant, see if we can simplify it.
938    // for XOR, we prefer to force bits to 1 if they will make a -1.
939    // if we can't force bits, try to shrink constant
940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
941      APInt Expanded = C->getAPIntValue() | (~NewMask);
942      // if we can expand it to have all bits set, do it
943      if (Expanded.isAllOnesValue()) {
944        if (Expanded != C->getAPIntValue()) {
945          MVT VT = Op.getValueType();
946          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
947                                          TLO.DAG.getConstant(Expanded, VT));
948          return TLO.CombineTo(Op, New);
949        }
950        // if it already has all the bits set, nothing to change
951        // but don't shrink either!
952      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
953        return true;
954      }
955    }
956
957    KnownZero = KnownZeroOut;
958    KnownOne  = KnownOneOut;
959    break;
960  case ISD::SELECT:
961    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
962                             KnownOne, TLO, Depth+1))
963      return true;
964    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
965                             KnownOne2, TLO, Depth+1))
966      return true;
967    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
968    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
969
970    // If the operands are constants, see if we can simplify them.
971    if (TLO.ShrinkDemandedConstant(Op, NewMask))
972      return true;
973
974    // Only known if known in both the LHS and RHS.
975    KnownOne &= KnownOne2;
976    KnownZero &= KnownZero2;
977    break;
978  case ISD::SELECT_CC:
979    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
980                             KnownOne, TLO, Depth+1))
981      return true;
982    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
983                             KnownOne2, TLO, Depth+1))
984      return true;
985    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
986    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
987
988    // If the operands are constants, see if we can simplify them.
989    if (TLO.ShrinkDemandedConstant(Op, NewMask))
990      return true;
991
992    // Only known if known in both the LHS and RHS.
993    KnownOne &= KnownOne2;
994    KnownZero &= KnownZero2;
995    break;
996  case ISD::SHL:
997    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
998      unsigned ShAmt = SA->getZExtValue();
999      SDValue InOp = Op.getOperand(0);
1000
1001      // If the shift count is an invalid immediate, don't do anything.
1002      if (ShAmt >= BitWidth)
1003        break;
1004
1005      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1006      // single shift.  We can do this if the bottom bits (which are shifted
1007      // out) are never demanded.
1008      if (InOp.getOpcode() == ISD::SRL &&
1009          isa<ConstantSDNode>(InOp.getOperand(1))) {
1010        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1011          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1012          unsigned Opc = ISD::SHL;
1013          int Diff = ShAmt-C1;
1014          if (Diff < 0) {
1015            Diff = -Diff;
1016            Opc = ISD::SRL;
1017          }
1018
1019          SDValue NewSA =
1020            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1021          MVT VT = Op.getValueType();
1022          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1023                                                   InOp.getOperand(0), NewSA));
1024        }
1025      }
1026
1027      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1028                               KnownZero, KnownOne, TLO, Depth+1))
1029        return true;
1030      KnownZero <<= SA->getZExtValue();
1031      KnownOne  <<= SA->getZExtValue();
1032      // low bits known zero.
1033      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1034    }
1035    break;
1036  case ISD::SRL:
1037    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1038      MVT VT = Op.getValueType();
1039      unsigned ShAmt = SA->getZExtValue();
1040      unsigned VTSize = VT.getSizeInBits();
1041      SDValue InOp = Op.getOperand(0);
1042
1043      // If the shift count is an invalid immediate, don't do anything.
1044      if (ShAmt >= BitWidth)
1045        break;
1046
1047      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1048      // single shift.  We can do this if the top bits (which are shifted out)
1049      // are never demanded.
1050      if (InOp.getOpcode() == ISD::SHL &&
1051          isa<ConstantSDNode>(InOp.getOperand(1))) {
1052        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1053          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1054          unsigned Opc = ISD::SRL;
1055          int Diff = ShAmt-C1;
1056          if (Diff < 0) {
1057            Diff = -Diff;
1058            Opc = ISD::SHL;
1059          }
1060
1061          SDValue NewSA =
1062            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1063          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1064                                                   InOp.getOperand(0), NewSA));
1065        }
1066      }
1067
1068      // Compute the new bits that are at the top now.
1069      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1070                               KnownZero, KnownOne, TLO, Depth+1))
1071        return true;
1072      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1073      KnownZero = KnownZero.lshr(ShAmt);
1074      KnownOne  = KnownOne.lshr(ShAmt);
1075
1076      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1077      KnownZero |= HighBits;  // High bits known zero.
1078    }
1079    break;
1080  case ISD::SRA:
1081    // If this is an arithmetic shift right and only the low-bit is set, we can
1082    // always convert this into a logical shr, even if the shift amount is
1083    // variable.  The low bit of the shift cannot be an input sign bit unless
1084    // the shift amount is >= the size of the datatype, which is undefined.
1085    if (DemandedMask == 1)
1086      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1087                                               Op.getOperand(0), Op.getOperand(1)));
1088
1089    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1090      MVT VT = Op.getValueType();
1091      unsigned ShAmt = SA->getZExtValue();
1092
1093      // If the shift count is an invalid immediate, don't do anything.
1094      if (ShAmt >= BitWidth)
1095        break;
1096
1097      APInt InDemandedMask = (NewMask << ShAmt);
1098
1099      // If any of the demanded bits are produced by the sign extension, we also
1100      // demand the input sign bit.
1101      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1102      if (HighBits.intersects(NewMask))
1103        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1104
1105      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1106                               KnownZero, KnownOne, TLO, Depth+1))
1107        return true;
1108      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1109      KnownZero = KnownZero.lshr(ShAmt);
1110      KnownOne  = KnownOne.lshr(ShAmt);
1111
1112      // Handle the sign bit, adjusted to where it is now in the mask.
1113      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1114
1115      // If the input sign bit is known to be zero, or if none of the top bits
1116      // are demanded, turn this into an unsigned shift right.
1117      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1118        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1119                                                 Op.getOperand(0),
1120                                                 Op.getOperand(1)));
1121      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1122        KnownOne |= HighBits;
1123      }
1124    }
1125    break;
1126  case ISD::SIGN_EXTEND_INREG: {
1127    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1128
1129    // Sign extension.  Compute the demanded bits in the result that are not
1130    // present in the input.
1131    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1132                                          BitWidth - EVT.getSizeInBits()) &
1133                    NewMask;
1134
1135    // If none of the extended bits are demanded, eliminate the sextinreg.
1136    if (NewBits == 0)
1137      return TLO.CombineTo(Op, Op.getOperand(0));
1138
1139    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1140    InSignBit.zext(BitWidth);
1141    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1142                                                   EVT.getSizeInBits()) &
1143                              NewMask;
1144
1145    // Since the sign extended bits are demanded, we know that the sign
1146    // bit is demanded.
1147    InputDemandedBits |= InSignBit;
1148
1149    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1150                             KnownZero, KnownOne, TLO, Depth+1))
1151      return true;
1152    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1153
1154    // If the sign bit of the input is known set or clear, then we know the
1155    // top bits of the result.
1156
1157    // If the input sign bit is known zero, convert this into a zero extension.
1158    if (KnownZero.intersects(InSignBit))
1159      return TLO.CombineTo(Op,
1160                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1161
1162    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1163      KnownOne |= NewBits;
1164      KnownZero &= ~NewBits;
1165    } else {                       // Input sign bit unknown
1166      KnownZero &= ~NewBits;
1167      KnownOne &= ~NewBits;
1168    }
1169    break;
1170  }
1171  case ISD::ZERO_EXTEND: {
1172    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1173    APInt InMask = NewMask;
1174    InMask.trunc(OperandBitWidth);
1175
1176    // If none of the top bits are demanded, convert this into an any_extend.
1177    APInt NewBits =
1178      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1179    if (!NewBits.intersects(NewMask))
1180      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1181                                               Op.getValueType(),
1182                                               Op.getOperand(0)));
1183
1184    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1185                             KnownZero, KnownOne, TLO, Depth+1))
1186      return true;
1187    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1188    KnownZero.zext(BitWidth);
1189    KnownOne.zext(BitWidth);
1190    KnownZero |= NewBits;
1191    break;
1192  }
1193  case ISD::SIGN_EXTEND: {
1194    MVT InVT = Op.getOperand(0).getValueType();
1195    unsigned InBits = InVT.getSizeInBits();
1196    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1197    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1198    APInt NewBits   = ~InMask & NewMask;
1199
1200    // If none of the top bits are demanded, convert this into an any_extend.
1201    if (NewBits == 0)
1202      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1203                                              Op.getValueType(),
1204                                              Op.getOperand(0)));
1205
1206    // Since some of the sign extended bits are demanded, we know that the sign
1207    // bit is demanded.
1208    APInt InDemandedBits = InMask & NewMask;
1209    InDemandedBits |= InSignBit;
1210    InDemandedBits.trunc(InBits);
1211
1212    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1213                             KnownOne, TLO, Depth+1))
1214      return true;
1215    KnownZero.zext(BitWidth);
1216    KnownOne.zext(BitWidth);
1217
1218    // If the sign bit is known zero, convert this to a zero extend.
1219    if (KnownZero.intersects(InSignBit))
1220      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1221                                               Op.getValueType(),
1222                                               Op.getOperand(0)));
1223
1224    // If the sign bit is known one, the top bits match.
1225    if (KnownOne.intersects(InSignBit)) {
1226      KnownOne  |= NewBits;
1227      KnownZero &= ~NewBits;
1228    } else {   // Otherwise, top bits aren't known.
1229      KnownOne  &= ~NewBits;
1230      KnownZero &= ~NewBits;
1231    }
1232    break;
1233  }
1234  case ISD::ANY_EXTEND: {
1235    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1236    APInt InMask = NewMask;
1237    InMask.trunc(OperandBitWidth);
1238    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1239                             KnownZero, KnownOne, TLO, Depth+1))
1240      return true;
1241    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1242    KnownZero.zext(BitWidth);
1243    KnownOne.zext(BitWidth);
1244    break;
1245  }
1246  case ISD::TRUNCATE: {
1247    // Simplify the input, using demanded bit information, and compute the known
1248    // zero/one bits live out.
1249    APInt TruncMask = NewMask;
1250    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1251    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1252                             KnownZero, KnownOne, TLO, Depth+1))
1253      return true;
1254    KnownZero.trunc(BitWidth);
1255    KnownOne.trunc(BitWidth);
1256
1257    // If the input is only used by this truncate, see if we can shrink it based
1258    // on the known demanded bits.
1259    if (Op.getOperand(0).getNode()->hasOneUse()) {
1260      SDValue In = Op.getOperand(0);
1261      unsigned InBitWidth = In.getValueSizeInBits();
1262      switch (In.getOpcode()) {
1263      default: break;
1264      case ISD::SRL:
1265        // Shrink SRL by a constant if none of the high bits shifted in are
1266        // demanded.
1267        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1268          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1269                                                 InBitWidth - BitWidth);
1270          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1271          HighBits.trunc(BitWidth);
1272
1273          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1274            // None of the shifted in bits are needed.  Add a truncate of the
1275            // shift input, then shift it.
1276            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1277                                                 Op.getValueType(),
1278                                                 In.getOperand(0));
1279            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1280                                                     Op.getValueType(),
1281                                                     NewTrunc,
1282                                                     In.getOperand(1)));
1283          }
1284        }
1285        break;
1286      }
1287    }
1288
1289    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1290    break;
1291  }
1292  case ISD::AssertZext: {
1293    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1294    APInt InMask = APInt::getLowBitsSet(BitWidth,
1295                                        VT.getSizeInBits());
1296    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1297                             KnownZero, KnownOne, TLO, Depth+1))
1298      return true;
1299    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300    KnownZero |= ~InMask & NewMask;
1301    break;
1302  }
1303  case ISD::BIT_CONVERT:
1304#if 0
1305    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1306    // is demanded, turn this into a FGETSIGN.
1307    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1308        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1309        !MVT::isVector(Op.getOperand(0).getValueType())) {
1310      // Only do this xform if FGETSIGN is valid or if before legalize.
1311      if (!TLO.AfterLegalize ||
1312          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1313        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1314        // place.  We expect the SHL to be eliminated by other optimizations.
1315        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1316                                         Op.getOperand(0));
1317        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1318        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1319        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1320                                                 Sign, ShAmt));
1321      }
1322    }
1323#endif
1324    break;
1325  default:
1326    // Just use ComputeMaskedBits to compute output bits.
1327    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1328    break;
1329  }
1330
1331  // If we know the value of all of the demanded bits, return this as a
1332  // constant.
1333  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1334    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1335
1336  return false;
1337}
1338
1339/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1340/// in Mask are known to be either zero or one and return them in the
1341/// KnownZero/KnownOne bitsets.
1342void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1343                                                    const APInt &Mask,
1344                                                    APInt &KnownZero,
1345                                                    APInt &KnownOne,
1346                                                    const SelectionDAG &DAG,
1347                                                    unsigned Depth) const {
1348  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1349          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1350          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1351          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1352         "Should use MaskedValueIsZero if you don't know whether Op"
1353         " is a target node!");
1354  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1355}
1356
1357/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1358/// targets that want to expose additional information about sign bits to the
1359/// DAG Combiner.
1360unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1361                                                         unsigned Depth) const {
1362  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1363          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1364          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1365          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1366         "Should use ComputeNumSignBits if you don't know whether Op"
1367         " is a target node!");
1368  return 1;
1369}
1370
1371/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1372/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1373/// determine which bit is set.
1374///
1375static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1376  // A left-shift of a constant one will have exactly one bit set, because
1377  // shifting the bit off the end is undefined.
1378  if (Val.getOpcode() == ISD::SHL)
1379    if (ConstantSDNode *C =
1380         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1381      if (C->getAPIntValue() == 1)
1382        return true;
1383
1384  // Similarly, a right-shift of a constant sign-bit will have exactly
1385  // one bit set.
1386  if (Val.getOpcode() == ISD::SRL)
1387    if (ConstantSDNode *C =
1388         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1389      if (C->getAPIntValue().isSignBit())
1390        return true;
1391
1392  // More could be done here, though the above checks are enough
1393  // to handle some common cases.
1394
1395  // Fall back to ComputeMaskedBits to catch other known cases.
1396  MVT OpVT = Val.getValueType();
1397  unsigned BitWidth = OpVT.getSizeInBits();
1398  APInt Mask = APInt::getAllOnesValue(BitWidth);
1399  APInt KnownZero, KnownOne;
1400  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1401  return (KnownZero.countPopulation() == BitWidth - 1) &&
1402         (KnownOne.countPopulation() == 1);
1403}
1404
1405/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1406/// and cc. If it is unable to simplify it, return a null SDValue.
1407SDValue
1408TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1409                              ISD::CondCode Cond, bool foldBooleans,
1410                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1411  SelectionDAG &DAG = DCI.DAG;
1412
1413  // These setcc operations always fold.
1414  switch (Cond) {
1415  default: break;
1416  case ISD::SETFALSE:
1417  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1418  case ISD::SETTRUE:
1419  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1420  }
1421
1422  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1423    const APInt &C1 = N1C->getAPIntValue();
1424    if (isa<ConstantSDNode>(N0.getNode())) {
1425      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1426    } else {
1427      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1428      // equality comparison, then we're just comparing whether X itself is
1429      // zero.
1430      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1431          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1432          N0.getOperand(1).getOpcode() == ISD::Constant) {
1433        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1434        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1435            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1436          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1437            // (srl (ctlz x), 5) == 0  -> X != 0
1438            // (srl (ctlz x), 5) != 1  -> X != 0
1439            Cond = ISD::SETNE;
1440          } else {
1441            // (srl (ctlz x), 5) != 0  -> X == 0
1442            // (srl (ctlz x), 5) == 1  -> X == 0
1443            Cond = ISD::SETEQ;
1444          }
1445          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1446          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1447                              Zero, Cond);
1448        }
1449      }
1450
1451      // If the LHS is '(and load, const)', the RHS is 0,
1452      // the test is for equality or unsigned, and all 1 bits of the const are
1453      // in the same partial word, see if we can shorten the load.
1454      if (DCI.isBeforeLegalize() &&
1455          N0.getOpcode() == ISD::AND && C1 == 0 &&
1456          isa<LoadSDNode>(N0.getOperand(0)) &&
1457          N0.getOperand(0).getNode()->hasOneUse() &&
1458          isa<ConstantSDNode>(N0.getOperand(1))) {
1459        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1460        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1461        uint64_t bestMask = 0;
1462        unsigned bestWidth = 0, bestOffset = 0;
1463        if (!Lod->isVolatile() && Lod->isUnindexed()) {
1464          unsigned origWidth = N0.getValueType().getSizeInBits();
1465          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1466          // 8 bits, but have to be careful...
1467          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1468            origWidth = Lod->getMemoryVT().getSizeInBits();
1469          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1470            uint64_t newMask = (1ULL << width) - 1;
1471            for (unsigned offset=0; offset<origWidth/width; offset++) {
1472              if ((newMask & Mask)==Mask) {
1473                if (!TD->isLittleEndian())
1474                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1475                else
1476                  bestOffset = (uint64_t)offset * (width/8);
1477                bestMask = Mask >> (offset * (width/8) * 8);
1478                bestWidth = width;
1479                break;
1480              }
1481              newMask = newMask << width;
1482            }
1483          }
1484        }
1485        if (bestWidth) {
1486          MVT newVT = MVT::getIntegerVT(bestWidth);
1487          if (newVT.isRound()) {
1488            MVT PtrType = Lod->getOperand(1).getValueType();
1489            SDValue Ptr = Lod->getBasePtr();
1490            if (bestOffset != 0)
1491              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1492                                DAG.getConstant(bestOffset, PtrType));
1493            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1494            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1495                                          Lod->getSrcValue(),
1496                                          Lod->getSrcValueOffset() + bestOffset,
1497                                          false, NewAlign);
1498            return DAG.getSetCC(dl, VT,
1499                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1500                                            DAG.getConstant(bestMask, newVT)),
1501                                DAG.getConstant(0LL, newVT), Cond);
1502          }
1503        }
1504      }
1505
1506      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1507      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1508        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1509
1510        // If the comparison constant has bits in the upper part, the
1511        // zero-extended value could never match.
1512        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1513                                                C1.getBitWidth() - InSize))) {
1514          switch (Cond) {
1515          case ISD::SETUGT:
1516          case ISD::SETUGE:
1517          case ISD::SETEQ: return DAG.getConstant(0, VT);
1518          case ISD::SETULT:
1519          case ISD::SETULE:
1520          case ISD::SETNE: return DAG.getConstant(1, VT);
1521          case ISD::SETGT:
1522          case ISD::SETGE:
1523            // True if the sign bit of C1 is set.
1524            return DAG.getConstant(C1.isNegative(), VT);
1525          case ISD::SETLT:
1526          case ISD::SETLE:
1527            // True if the sign bit of C1 isn't set.
1528            return DAG.getConstant(C1.isNonNegative(), VT);
1529          default:
1530            break;
1531          }
1532        }
1533
1534        // Otherwise, we can perform the comparison with the low bits.
1535        switch (Cond) {
1536        case ISD::SETEQ:
1537        case ISD::SETNE:
1538        case ISD::SETUGT:
1539        case ISD::SETUGE:
1540        case ISD::SETULT:
1541        case ISD::SETULE:
1542          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1543                          DAG.getConstant(APInt(C1).trunc(InSize),
1544                                          N0.getOperand(0).getValueType()),
1545                          Cond);
1546        default:
1547          break;   // todo, be more careful with signed comparisons
1548        }
1549      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1550                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1551        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1552        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1553        MVT ExtDstTy = N0.getValueType();
1554        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1555
1556        // If the extended part has any inconsistent bits, it cannot ever
1557        // compare equal.  In other words, they have to be all ones or all
1558        // zeros.
1559        APInt ExtBits =
1560          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1561        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1562          return DAG.getConstant(Cond == ISD::SETNE, VT);
1563
1564        SDValue ZextOp;
1565        MVT Op0Ty = N0.getOperand(0).getValueType();
1566        if (Op0Ty == ExtSrcTy) {
1567          ZextOp = N0.getOperand(0);
1568        } else {
1569          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1570          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1571                               DAG.getConstant(Imm, Op0Ty));
1572        }
1573        if (!DCI.isCalledByLegalizer())
1574          DCI.AddToWorklist(ZextOp.getNode());
1575        // Otherwise, make this a use of a zext.
1576        return DAG.getSetCC(dl, VT, ZextOp,
1577                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1578                                                               ExtDstTyBits,
1579                                                               ExtSrcTyBits),
1580                                            ExtDstTy),
1581                            Cond);
1582      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1583                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1584
1585        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1586        if (N0.getOpcode() == ISD::SETCC) {
1587          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1588          if (TrueWhenTrue)
1589            return N0;
1590
1591          // Invert the condition.
1592          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1593          CC = ISD::getSetCCInverse(CC,
1594                                   N0.getOperand(0).getValueType().isInteger());
1595          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1596        }
1597
1598        if ((N0.getOpcode() == ISD::XOR ||
1599             (N0.getOpcode() == ISD::AND &&
1600              N0.getOperand(0).getOpcode() == ISD::XOR &&
1601              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1602            isa<ConstantSDNode>(N0.getOperand(1)) &&
1603            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1604          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1605          // can only do this if the top bits are known zero.
1606          unsigned BitWidth = N0.getValueSizeInBits();
1607          if (DAG.MaskedValueIsZero(N0,
1608                                    APInt::getHighBitsSet(BitWidth,
1609                                                          BitWidth-1))) {
1610            // Okay, get the un-inverted input value.
1611            SDValue Val;
1612            if (N0.getOpcode() == ISD::XOR)
1613              Val = N0.getOperand(0);
1614            else {
1615              assert(N0.getOpcode() == ISD::AND &&
1616                     N0.getOperand(0).getOpcode() == ISD::XOR);
1617              // ((X^1)&1)^1 -> X & 1
1618              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1619                                N0.getOperand(0).getOperand(0),
1620                                N0.getOperand(1));
1621            }
1622            return DAG.getSetCC(dl, VT, Val, N1,
1623                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1624          }
1625        }
1626      }
1627
1628      APInt MinVal, MaxVal;
1629      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1630      if (ISD::isSignedIntSetCC(Cond)) {
1631        MinVal = APInt::getSignedMinValue(OperandBitSize);
1632        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1633      } else {
1634        MinVal = APInt::getMinValue(OperandBitSize);
1635        MaxVal = APInt::getMaxValue(OperandBitSize);
1636      }
1637
1638      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1639      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1640        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1641        // X >= C0 --> X > (C0-1)
1642        return DAG.getSetCC(dl, VT, N0,
1643                            DAG.getConstant(C1-1, N1.getValueType()),
1644                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1645      }
1646
1647      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1648        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1649        // X <= C0 --> X < (C0+1)
1650        return DAG.getSetCC(dl, VT, N0,
1651                            DAG.getConstant(C1+1, N1.getValueType()),
1652                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1653      }
1654
1655      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1656        return DAG.getConstant(0, VT);      // X < MIN --> false
1657      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1658        return DAG.getConstant(1, VT);      // X >= MIN --> true
1659      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1660        return DAG.getConstant(0, VT);      // X > MAX --> false
1661      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1662        return DAG.getConstant(1, VT);      // X <= MAX --> true
1663
1664      // Canonicalize setgt X, Min --> setne X, Min
1665      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1666        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1667      // Canonicalize setlt X, Max --> setne X, Max
1668      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1669        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1670
1671      // If we have setult X, 1, turn it into seteq X, 0
1672      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1673        return DAG.getSetCC(dl, VT, N0,
1674                            DAG.getConstant(MinVal, N0.getValueType()),
1675                            ISD::SETEQ);
1676      // If we have setugt X, Max-1, turn it into seteq X, Max
1677      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1678        return DAG.getSetCC(dl, VT, N0,
1679                            DAG.getConstant(MaxVal, N0.getValueType()),
1680                            ISD::SETEQ);
1681
1682      // If we have "setcc X, C0", check to see if we can shrink the immediate
1683      // by changing cc.
1684
1685      // SETUGT X, SINTMAX  -> SETLT X, 0
1686      if (Cond == ISD::SETUGT &&
1687          C1 == APInt::getSignedMaxValue(OperandBitSize))
1688        return DAG.getSetCC(dl, VT, N0,
1689                            DAG.getConstant(0, N1.getValueType()),
1690                            ISD::SETLT);
1691
1692      // SETULT X, SINTMIN  -> SETGT X, -1
1693      if (Cond == ISD::SETULT &&
1694          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1695        SDValue ConstMinusOne =
1696            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1697                            N1.getValueType());
1698        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1699      }
1700
1701      // Fold bit comparisons when we can.
1702      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1703          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1704        if (ConstantSDNode *AndRHS =
1705                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1706          MVT ShiftTy = DCI.isBeforeLegalize() ?
1707            getPointerTy() : getShiftAmountTy();
1708          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1709            // Perform the xform if the AND RHS is a single bit.
1710            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1711              return DAG.getNode(ISD::SRL, dl, VT, N0,
1712                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1713                                                 ShiftTy));
1714            }
1715          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1716            // (X & 8) == 8  -->  (X & 8) >> 3
1717            // Perform the xform if C1 is a single bit.
1718            if (C1.isPowerOf2()) {
1719              return DAG.getNode(ISD::SRL, dl, VT, N0,
1720                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1721            }
1722          }
1723        }
1724    }
1725  } else if (isa<ConstantSDNode>(N0.getNode())) {
1726      // Ensure that the constant occurs on the RHS.
1727    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1728  }
1729
1730  if (isa<ConstantFPSDNode>(N0.getNode())) {
1731    // Constant fold or commute setcc.
1732    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1733    if (O.getNode()) return O;
1734  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1735    // If the RHS of an FP comparison is a constant, simplify it away in
1736    // some cases.
1737    if (CFP->getValueAPF().isNaN()) {
1738      // If an operand is known to be a nan, we can fold it.
1739      switch (ISD::getUnorderedFlavor(Cond)) {
1740      default: assert(0 && "Unknown flavor!");
1741      case 0:  // Known false.
1742        return DAG.getConstant(0, VT);
1743      case 1:  // Known true.
1744        return DAG.getConstant(1, VT);
1745      case 2:  // Undefined.
1746        return DAG.getUNDEF(VT);
1747      }
1748    }
1749
1750    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1751    // constant if knowing that the operand is non-nan is enough.  We prefer to
1752    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1753    // materialize 0.0.
1754    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1755      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1756  }
1757
1758  if (N0 == N1) {
1759    // We can always fold X == X for integer setcc's.
1760    if (N0.getValueType().isInteger())
1761      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1762    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1763    if (UOF == 2)   // FP operators that are undefined on NaNs.
1764      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1765    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1766      return DAG.getConstant(UOF, VT);
1767    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1768    // if it is not already.
1769    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1770    if (NewCond != Cond)
1771      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1772  }
1773
1774  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1775      N0.getValueType().isInteger()) {
1776    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1777        N0.getOpcode() == ISD::XOR) {
1778      // Simplify (X+Y) == (X+Z) -->  Y == Z
1779      if (N0.getOpcode() == N1.getOpcode()) {
1780        if (N0.getOperand(0) == N1.getOperand(0))
1781          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1782        if (N0.getOperand(1) == N1.getOperand(1))
1783          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1784        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1785          // If X op Y == Y op X, try other combinations.
1786          if (N0.getOperand(0) == N1.getOperand(1))
1787            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1788                                Cond);
1789          if (N0.getOperand(1) == N1.getOperand(0))
1790            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1791                                Cond);
1792        }
1793      }
1794
1795      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1796        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1797          // Turn (X+C1) == C2 --> X == C2-C1
1798          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1799            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1800                                DAG.getConstant(RHSC->getAPIntValue()-
1801                                                LHSR->getAPIntValue(),
1802                                N0.getValueType()), Cond);
1803          }
1804
1805          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1806          if (N0.getOpcode() == ISD::XOR)
1807            // If we know that all of the inverted bits are zero, don't bother
1808            // performing the inversion.
1809            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1810              return
1811                DAG.getSetCC(dl, VT, N0.getOperand(0),
1812                             DAG.getConstant(LHSR->getAPIntValue() ^
1813                                               RHSC->getAPIntValue(),
1814                                             N0.getValueType()),
1815                             Cond);
1816        }
1817
1818        // Turn (C1-X) == C2 --> X == C1-C2
1819        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1820          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1821            return
1822              DAG.getSetCC(dl, VT, N0.getOperand(1),
1823                           DAG.getConstant(SUBC->getAPIntValue() -
1824                                             RHSC->getAPIntValue(),
1825                                           N0.getValueType()),
1826                           Cond);
1827          }
1828        }
1829      }
1830
1831      // Simplify (X+Z) == X -->  Z == 0
1832      if (N0.getOperand(0) == N1)
1833        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1834                        DAG.getConstant(0, N0.getValueType()), Cond);
1835      if (N0.getOperand(1) == N1) {
1836        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1837          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1838                          DAG.getConstant(0, N0.getValueType()), Cond);
1839        else if (N0.getNode()->hasOneUse()) {
1840          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1841          // (Z-X) == X  --> Z == X<<1
1842          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1843                                     N1,
1844                                     DAG.getConstant(1, getShiftAmountTy()));
1845          if (!DCI.isCalledByLegalizer())
1846            DCI.AddToWorklist(SH.getNode());
1847          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1848        }
1849      }
1850    }
1851
1852    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1853        N1.getOpcode() == ISD::XOR) {
1854      // Simplify  X == (X+Z) -->  Z == 0
1855      if (N1.getOperand(0) == N0) {
1856        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1857                        DAG.getConstant(0, N1.getValueType()), Cond);
1858      } else if (N1.getOperand(1) == N0) {
1859        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1860          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1861                          DAG.getConstant(0, N1.getValueType()), Cond);
1862        } else if (N1.getNode()->hasOneUse()) {
1863          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1864          // X == (Z-X)  --> X<<1 == Z
1865          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1866                                     DAG.getConstant(1, getShiftAmountTy()));
1867          if (!DCI.isCalledByLegalizer())
1868            DCI.AddToWorklist(SH.getNode());
1869          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1870        }
1871      }
1872    }
1873
1874    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1875    // Note that where y is variable and is known to have at most
1876    // one bit set (for example, if it is z&1) we cannot do this;
1877    // the expressions are not equivalent when y==0.
1878    if (N0.getOpcode() == ISD::AND)
1879      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1880        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1881          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1882          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1883          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1884        }
1885      }
1886    if (N1.getOpcode() == ISD::AND)
1887      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1888        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1889          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1890          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1891          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1892        }
1893      }
1894  }
1895
1896  // Fold away ALL boolean setcc's.
1897  SDValue Temp;
1898  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1899    switch (Cond) {
1900    default: assert(0 && "Unknown integer setcc!");
1901    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1902      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1903      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1904      if (!DCI.isCalledByLegalizer())
1905        DCI.AddToWorklist(Temp.getNode());
1906      break;
1907    case ISD::SETNE:  // X != Y   -->  (X^Y)
1908      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1909      break;
1910    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1911    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1912      Temp = DAG.getNOT(dl, N0, MVT::i1);
1913      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1914      if (!DCI.isCalledByLegalizer())
1915        DCI.AddToWorklist(Temp.getNode());
1916      break;
1917    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1918    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1919      Temp = DAG.getNOT(dl, N1, MVT::i1);
1920      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1921      if (!DCI.isCalledByLegalizer())
1922        DCI.AddToWorklist(Temp.getNode());
1923      break;
1924    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1925    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1926      Temp = DAG.getNOT(dl, N0, MVT::i1);
1927      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1928      if (!DCI.isCalledByLegalizer())
1929        DCI.AddToWorklist(Temp.getNode());
1930      break;
1931    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1932    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1933      Temp = DAG.getNOT(dl, N1, MVT::i1);
1934      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1935      break;
1936    }
1937    if (VT != MVT::i1) {
1938      if (!DCI.isCalledByLegalizer())
1939        DCI.AddToWorklist(N0.getNode());
1940      // FIXME: If running after legalize, we probably can't do this.
1941      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1942    }
1943    return N0;
1944  }
1945
1946  // Could not fold it.
1947  return SDValue();
1948}
1949
1950/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1951/// node is a GlobalAddress + offset.
1952bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1953                                    int64_t &Offset) const {
1954  if (isa<GlobalAddressSDNode>(N)) {
1955    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1956    GA = GASD->getGlobal();
1957    Offset += GASD->getOffset();
1958    return true;
1959  }
1960
1961  if (N->getOpcode() == ISD::ADD) {
1962    SDValue N1 = N->getOperand(0);
1963    SDValue N2 = N->getOperand(1);
1964    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1965      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1966      if (V) {
1967        Offset += V->getSExtValue();
1968        return true;
1969      }
1970    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1971      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1972      if (V) {
1973        Offset += V->getSExtValue();
1974        return true;
1975      }
1976    }
1977  }
1978  return false;
1979}
1980
1981
1982/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1983/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1984/// location that the 'Base' load is loading from.
1985bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1986                                       unsigned Bytes, int Dist,
1987                                       const MachineFrameInfo *MFI) const {
1988  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1989    return false;
1990  MVT VT = LD->getValueType(0);
1991  if (VT.getSizeInBits() / 8 != Bytes)
1992    return false;
1993
1994  SDValue Loc = LD->getOperand(1);
1995  SDValue BaseLoc = Base->getOperand(1);
1996  if (Loc.getOpcode() == ISD::FrameIndex) {
1997    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1998      return false;
1999    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2000    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2001    int FS  = MFI->getObjectSize(FI);
2002    int BFS = MFI->getObjectSize(BFI);
2003    if (FS != BFS || FS != (int)Bytes) return false;
2004    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2005  }
2006
2007  GlobalValue *GV1 = NULL;
2008  GlobalValue *GV2 = NULL;
2009  int64_t Offset1 = 0;
2010  int64_t Offset2 = 0;
2011  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2012  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2013  if (isGA1 && isGA2 && GV1 == GV2)
2014    return Offset1 == (Offset2 + Dist*Bytes);
2015  return false;
2016}
2017
2018
2019SDValue TargetLowering::
2020PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2021  // Default implementation: no optimization.
2022  return SDValue();
2023}
2024
2025//===----------------------------------------------------------------------===//
2026//  Inline Assembler Implementation Methods
2027//===----------------------------------------------------------------------===//
2028
2029
2030TargetLowering::ConstraintType
2031TargetLowering::getConstraintType(const std::string &Constraint) const {
2032  // FIXME: lots more standard ones to handle.
2033  if (Constraint.size() == 1) {
2034    switch (Constraint[0]) {
2035    default: break;
2036    case 'r': return C_RegisterClass;
2037    case 'm':    // memory
2038    case 'o':    // offsetable
2039    case 'V':    // not offsetable
2040      return C_Memory;
2041    case 'i':    // Simple Integer or Relocatable Constant
2042    case 'n':    // Simple Integer
2043    case 's':    // Relocatable Constant
2044    case 'X':    // Allow ANY value.
2045    case 'I':    // Target registers.
2046    case 'J':
2047    case 'K':
2048    case 'L':
2049    case 'M':
2050    case 'N':
2051    case 'O':
2052    case 'P':
2053      return C_Other;
2054    }
2055  }
2056
2057  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2058      Constraint[Constraint.size()-1] == '}')
2059    return C_Register;
2060  return C_Unknown;
2061}
2062
2063/// LowerXConstraint - try to replace an X constraint, which matches anything,
2064/// with another that has more specific requirements based on the type of the
2065/// corresponding operand.
2066const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2067  if (ConstraintVT.isInteger())
2068    return "r";
2069  if (ConstraintVT.isFloatingPoint())
2070    return "f";      // works for many targets
2071  return 0;
2072}
2073
2074/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2075/// vector.  If it is invalid, don't add anything to Ops.
2076void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2077                                                  char ConstraintLetter,
2078                                                  bool hasMemory,
2079                                                  std::vector<SDValue> &Ops,
2080                                                  SelectionDAG &DAG) const {
2081  switch (ConstraintLetter) {
2082  default: break;
2083  case 'X':     // Allows any operand; labels (basic block) use this.
2084    if (Op.getOpcode() == ISD::BasicBlock) {
2085      Ops.push_back(Op);
2086      return;
2087    }
2088    // fall through
2089  case 'i':    // Simple Integer or Relocatable Constant
2090  case 'n':    // Simple Integer
2091  case 's': {  // Relocatable Constant
2092    // These operands are interested in values of the form (GV+C), where C may
2093    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2094    // is possible and fine if either GV or C are missing.
2095    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2096    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2097
2098    // If we have "(add GV, C)", pull out GV/C
2099    if (Op.getOpcode() == ISD::ADD) {
2100      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2101      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2102      if (C == 0 || GA == 0) {
2103        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2104        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2105      }
2106      if (C == 0 || GA == 0)
2107        C = 0, GA = 0;
2108    }
2109
2110    // If we find a valid operand, map to the TargetXXX version so that the
2111    // value itself doesn't get selected.
2112    if (GA) {   // Either &GV   or   &GV+C
2113      if (ConstraintLetter != 'n') {
2114        int64_t Offs = GA->getOffset();
2115        if (C) Offs += C->getZExtValue();
2116        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2117                                                 Op.getValueType(), Offs));
2118        return;
2119      }
2120    }
2121    if (C) {   // just C, no GV.
2122      // Simple constants are not allowed for 's'.
2123      if (ConstraintLetter != 's') {
2124        // gcc prints these as sign extended.  Sign extend value to 64 bits
2125        // now; without this it would get ZExt'd later in
2126        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2127        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2128                                            MVT::i64));
2129        return;
2130      }
2131    }
2132    break;
2133  }
2134  }
2135}
2136
2137std::vector<unsigned> TargetLowering::
2138getRegClassForInlineAsmConstraint(const std::string &Constraint,
2139                                  MVT VT) const {
2140  return std::vector<unsigned>();
2141}
2142
2143
2144std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2145getRegForInlineAsmConstraint(const std::string &Constraint,
2146                             MVT VT) const {
2147  if (Constraint[0] != '{')
2148    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2149  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2150
2151  // Remove the braces from around the name.
2152  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2153
2154  // Figure out which register class contains this reg.
2155  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2156  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2157       E = RI->regclass_end(); RCI != E; ++RCI) {
2158    const TargetRegisterClass *RC = *RCI;
2159
2160    // If none of the the value types for this register class are valid, we
2161    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2162    bool isLegal = false;
2163    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2164         I != E; ++I) {
2165      if (isTypeLegal(*I)) {
2166        isLegal = true;
2167        break;
2168      }
2169    }
2170
2171    if (!isLegal) continue;
2172
2173    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2174         I != E; ++I) {
2175      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2176        return std::make_pair(*I, RC);
2177    }
2178  }
2179
2180  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2181}
2182
2183//===----------------------------------------------------------------------===//
2184// Constraint Selection.
2185
2186/// isMatchingInputConstraint - Return true of this is an input operand that is
2187/// a matching constraint like "4".
2188bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2189  assert(!ConstraintCode.empty() && "No known constraint!");
2190  return isdigit(ConstraintCode[0]);
2191}
2192
2193/// getMatchedOperand - If this is an input matching constraint, this method
2194/// returns the output operand it matches.
2195unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2196  assert(!ConstraintCode.empty() && "No known constraint!");
2197  return atoi(ConstraintCode.c_str());
2198}
2199
2200
2201/// getConstraintGenerality - Return an integer indicating how general CT
2202/// is.
2203static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2204  switch (CT) {
2205  default: assert(0 && "Unknown constraint type!");
2206  case TargetLowering::C_Other:
2207  case TargetLowering::C_Unknown:
2208    return 0;
2209  case TargetLowering::C_Register:
2210    return 1;
2211  case TargetLowering::C_RegisterClass:
2212    return 2;
2213  case TargetLowering::C_Memory:
2214    return 3;
2215  }
2216}
2217
2218/// ChooseConstraint - If there are multiple different constraints that we
2219/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2220/// This is somewhat tricky: constraints fall into four classes:
2221///    Other         -> immediates and magic values
2222///    Register      -> one specific register
2223///    RegisterClass -> a group of regs
2224///    Memory        -> memory
2225/// Ideally, we would pick the most specific constraint possible: if we have
2226/// something that fits into a register, we would pick it.  The problem here
2227/// is that if we have something that could either be in a register or in
2228/// memory that use of the register could cause selection of *other*
2229/// operands to fail: they might only succeed if we pick memory.  Because of
2230/// this the heuristic we use is:
2231///
2232///  1) If there is an 'other' constraint, and if the operand is valid for
2233///     that constraint, use it.  This makes us take advantage of 'i'
2234///     constraints when available.
2235///  2) Otherwise, pick the most general constraint present.  This prefers
2236///     'm' over 'r', for example.
2237///
2238static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2239                             bool hasMemory,  const TargetLowering &TLI,
2240                             SDValue Op, SelectionDAG *DAG) {
2241  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2242  unsigned BestIdx = 0;
2243  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2244  int BestGenerality = -1;
2245
2246  // Loop over the options, keeping track of the most general one.
2247  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2248    TargetLowering::ConstraintType CType =
2249      TLI.getConstraintType(OpInfo.Codes[i]);
2250
2251    // If this is an 'other' constraint, see if the operand is valid for it.
2252    // For example, on X86 we might have an 'rI' constraint.  If the operand
2253    // is an integer in the range [0..31] we want to use I (saving a load
2254    // of a register), otherwise we must use 'r'.
2255    if (CType == TargetLowering::C_Other && Op.getNode()) {
2256      assert(OpInfo.Codes[i].size() == 1 &&
2257             "Unhandled multi-letter 'other' constraint");
2258      std::vector<SDValue> ResultOps;
2259      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2260                                       ResultOps, *DAG);
2261      if (!ResultOps.empty()) {
2262        BestType = CType;
2263        BestIdx = i;
2264        break;
2265      }
2266    }
2267
2268    // This constraint letter is more general than the previous one, use it.
2269    int Generality = getConstraintGenerality(CType);
2270    if (Generality > BestGenerality) {
2271      BestType = CType;
2272      BestIdx = i;
2273      BestGenerality = Generality;
2274    }
2275  }
2276
2277  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2278  OpInfo.ConstraintType = BestType;
2279}
2280
2281/// ComputeConstraintToUse - Determines the constraint code and constraint
2282/// type to use for the specific AsmOperandInfo, setting
2283/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2284void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2285                                            SDValue Op,
2286                                            bool hasMemory,
2287                                            SelectionDAG *DAG) const {
2288  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2289
2290  // Single-letter constraints ('r') are very common.
2291  if (OpInfo.Codes.size() == 1) {
2292    OpInfo.ConstraintCode = OpInfo.Codes[0];
2293    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2294  } else {
2295    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2296  }
2297
2298  // 'X' matches anything.
2299  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2300    // Labels and constants are handled elsewhere ('X' is the only thing
2301    // that matches labels).
2302    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2303        isa<ConstantInt>(OpInfo.CallOperandVal))
2304      return;
2305
2306    // Otherwise, try to resolve it to something we know about by looking at
2307    // the actual operand type.
2308    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2309      OpInfo.ConstraintCode = Repl;
2310      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2311    }
2312  }
2313}
2314
2315//===----------------------------------------------------------------------===//
2316//  Loop Strength Reduction hooks
2317//===----------------------------------------------------------------------===//
2318
2319/// isLegalAddressingMode - Return true if the addressing mode represented
2320/// by AM is legal for this target, for a load/store of the specified type.
2321bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2322                                           const Type *Ty) const {
2323  // The default implementation of this implements a conservative RISCy, r+r and
2324  // r+i addr mode.
2325
2326  // Allows a sign-extended 16-bit immediate field.
2327  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2328    return false;
2329
2330  // No global is ever allowed as a base.
2331  if (AM.BaseGV)
2332    return false;
2333
2334  // Only support r+r,
2335  switch (AM.Scale) {
2336  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2337    break;
2338  case 1:
2339    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2340      return false;
2341    // Otherwise we have r+r or r+i.
2342    break;
2343  case 2:
2344    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2345      return false;
2346    // Allow 2*r as r+r.
2347    break;
2348  }
2349
2350  return true;
2351}
2352
2353struct mu {
2354  APInt m;     // magic number
2355  bool a;      // add indicator
2356  unsigned s;  // shift amount
2357};
2358
2359/// magicu - calculate the magic numbers required to codegen an integer udiv as
2360/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2361static mu magicu(const APInt& d) {
2362  unsigned p;
2363  APInt nc, delta, q1, r1, q2, r2;
2364  struct mu magu;
2365  magu.a = 0;               // initialize "add" indicator
2366  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2367  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2368  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2369
2370  nc = allOnes - (-d).urem(d);
2371  p = d.getBitWidth() - 1;  // initialize p
2372  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2373  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2374  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2375  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2376  do {
2377    p = p + 1;
2378    if (r1.uge(nc - r1)) {
2379      q1 = q1 + q1 + 1;  // update q1
2380      r1 = r1 + r1 - nc; // update r1
2381    }
2382    else {
2383      q1 = q1+q1; // update q1
2384      r1 = r1+r1; // update r1
2385    }
2386    if ((r2 + 1).uge(d - r2)) {
2387      if (q2.uge(signedMax)) magu.a = 1;
2388      q2 = q2+q2 + 1;     // update q2
2389      r2 = r2+r2 + 1 - d; // update r2
2390    }
2391    else {
2392      if (q2.uge(signedMin)) magu.a = 1;
2393      q2 = q2+q2;     // update q2
2394      r2 = r2+r2 + 1; // update r2
2395    }
2396    delta = d - 1 - r2;
2397  } while (p < d.getBitWidth()*2 &&
2398           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2399  magu.m = q2 + 1; // resulting magic number
2400  magu.s = p - d.getBitWidth();  // resulting shift
2401  return magu;
2402}
2403
2404// Magic for divide replacement
2405struct ms {
2406  APInt m;  // magic number
2407  unsigned s;  // shift amount
2408};
2409
2410/// magic - calculate the magic numbers required to codegen an integer sdiv as
2411/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2412/// or -1.
2413static ms magic(const APInt& d) {
2414  unsigned p;
2415  APInt ad, anc, delta, q1, r1, q2, r2, t;
2416  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2417  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2418  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2419  struct ms mag;
2420
2421  ad = d.abs();
2422  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2423  anc = t - 1 - t.urem(ad);   // absolute value of nc
2424  p = d.getBitWidth() - 1;    // initialize p
2425  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2426  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2427  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2428  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2429  do {
2430    p = p + 1;
2431    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2432    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2433    if (r1.uge(anc)) {  // must be unsigned comparison
2434      q1 = q1 + 1;
2435      r1 = r1 - anc;
2436    }
2437    q2 = q2<<1;          // update q2 = 2p/abs(d)
2438    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2439    if (r2.uge(ad)) {   // must be unsigned comparison
2440      q2 = q2 + 1;
2441      r2 = r2 - ad;
2442    }
2443    delta = ad - r2;
2444  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2445
2446  mag.m = q2 + 1;
2447  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2448  mag.s = p - d.getBitWidth();          // resulting shift
2449  return mag;
2450}
2451
2452/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2453/// return a DAG expression to select that will generate the same value by
2454/// multiplying by a magic number.  See:
2455/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2456SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2457                                  std::vector<SDNode*>* Created) const {
2458  MVT VT = N->getValueType(0);
2459  DebugLoc dl= N->getDebugLoc();
2460
2461  // Check to see if we can do this.
2462  // FIXME: We should be more aggressive here.
2463  if (!isTypeLegal(VT))
2464    return SDValue();
2465
2466  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2467  ms magics = magic(d);
2468
2469  // Multiply the numerator (operand 0) by the magic value
2470  // FIXME: We should support doing a MUL in a wider type
2471  SDValue Q;
2472  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2473    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2474                    DAG.getConstant(magics.m, VT));
2475  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2476    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2477                              N->getOperand(0),
2478                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2479  else
2480    return SDValue();       // No mulhs or equvialent
2481  // If d > 0 and m < 0, add the numerator
2482  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2483    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2484    if (Created)
2485      Created->push_back(Q.getNode());
2486  }
2487  // If d < 0 and m > 0, subtract the numerator.
2488  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2489    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2490    if (Created)
2491      Created->push_back(Q.getNode());
2492  }
2493  // Shift right algebraic if shift value is nonzero
2494  if (magics.s > 0) {
2495    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2496                    DAG.getConstant(magics.s, getShiftAmountTy()));
2497    if (Created)
2498      Created->push_back(Q.getNode());
2499  }
2500  // Extract the sign bit and add it to the quotient
2501  SDValue T =
2502    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2503                                                 getShiftAmountTy()));
2504  if (Created)
2505    Created->push_back(T.getNode());
2506  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2507}
2508
2509/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2510/// return a DAG expression to select that will generate the same value by
2511/// multiplying by a magic number.  See:
2512/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2513SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2514                                  std::vector<SDNode*>* Created) const {
2515  MVT VT = N->getValueType(0);
2516  DebugLoc dl = N->getDebugLoc();
2517
2518  // Check to see if we can do this.
2519  // FIXME: We should be more aggressive here.
2520  if (!isTypeLegal(VT))
2521    return SDValue();
2522
2523  // FIXME: We should use a narrower constant when the upper
2524  // bits are known to be zero.
2525  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2526  mu magics = magicu(N1C->getAPIntValue());
2527
2528  // Multiply the numerator (operand 0) by the magic value
2529  // FIXME: We should support doing a MUL in a wider type
2530  SDValue Q;
2531  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2532    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2533                    DAG.getConstant(magics.m, VT));
2534  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2535    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2536                              N->getOperand(0),
2537                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2538  else
2539    return SDValue();       // No mulhu or equvialent
2540  if (Created)
2541    Created->push_back(Q.getNode());
2542
2543  if (magics.a == 0) {
2544    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2545           "We shouldn't generate an undefined shift!");
2546    return DAG.getNode(ISD::SRL, dl, VT, Q,
2547                       DAG.getConstant(magics.s, getShiftAmountTy()));
2548  } else {
2549    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2550    if (Created)
2551      Created->push_back(NPQ.getNode());
2552    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2553                      DAG.getConstant(1, getShiftAmountTy()));
2554    if (Created)
2555      Created->push_back(NPQ.getNode());
2556    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2557    if (Created)
2558      Created->push_back(NPQ.getNode());
2559    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2560                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2561  }
2562}
2563