TargetLowering.cpp revision 83ec4b6711980242ef3c55a4fa36b2d7a39c1bfb
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SRL_I32] = "__lshrsi3";
35  Names[RTLIB::SRL_I64] = "__lshrdi3";
36  Names[RTLIB::SRA_I32] = "__ashrsi3";
37  Names[RTLIB::SRA_I64] = "__ashrdi3";
38  Names[RTLIB::MUL_I32] = "__mulsi3";
39  Names[RTLIB::MUL_I64] = "__muldi3";
40  Names[RTLIB::SDIV_I32] = "__divsi3";
41  Names[RTLIB::SDIV_I64] = "__divdi3";
42  Names[RTLIB::UDIV_I32] = "__udivsi3";
43  Names[RTLIB::UDIV_I64] = "__udivdi3";
44  Names[RTLIB::SREM_I32] = "__modsi3";
45  Names[RTLIB::SREM_I64] = "__moddi3";
46  Names[RTLIB::UREM_I32] = "__umodsi3";
47  Names[RTLIB::UREM_I64] = "__umoddi3";
48  Names[RTLIB::NEG_I32] = "__negsi2";
49  Names[RTLIB::NEG_I64] = "__negdi2";
50  Names[RTLIB::ADD_F32] = "__addsf3";
51  Names[RTLIB::ADD_F64] = "__adddf3";
52  Names[RTLIB::ADD_F80] = "__addxf3";
53  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
54  Names[RTLIB::SUB_F32] = "__subsf3";
55  Names[RTLIB::SUB_F64] = "__subdf3";
56  Names[RTLIB::SUB_F80] = "__subxf3";
57  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
58  Names[RTLIB::MUL_F32] = "__mulsf3";
59  Names[RTLIB::MUL_F64] = "__muldf3";
60  Names[RTLIB::MUL_F80] = "__mulxf3";
61  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
62  Names[RTLIB::DIV_F32] = "__divsf3";
63  Names[RTLIB::DIV_F64] = "__divdf3";
64  Names[RTLIB::DIV_F80] = "__divxf3";
65  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
66  Names[RTLIB::REM_F32] = "fmodf";
67  Names[RTLIB::REM_F64] = "fmod";
68  Names[RTLIB::REM_F80] = "fmodl";
69  Names[RTLIB::REM_PPCF128] = "fmodl";
70  Names[RTLIB::POWI_F32] = "__powisf2";
71  Names[RTLIB::POWI_F64] = "__powidf2";
72  Names[RTLIB::POWI_F80] = "__powixf2";
73  Names[RTLIB::POWI_PPCF128] = "__powitf2";
74  Names[RTLIB::SQRT_F32] = "sqrtf";
75  Names[RTLIB::SQRT_F64] = "sqrt";
76  Names[RTLIB::SQRT_F80] = "sqrtl";
77  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
78  Names[RTLIB::SIN_F32] = "sinf";
79  Names[RTLIB::SIN_F64] = "sin";
80  Names[RTLIB::SIN_F80] = "sinl";
81  Names[RTLIB::SIN_PPCF128] = "sinl";
82  Names[RTLIB::COS_F32] = "cosf";
83  Names[RTLIB::COS_F64] = "cos";
84  Names[RTLIB::COS_F80] = "cosl";
85  Names[RTLIB::COS_PPCF128] = "cosl";
86  Names[RTLIB::POW_F32] = "powf";
87  Names[RTLIB::POW_F64] = "pow";
88  Names[RTLIB::POW_F80] = "powl";
89  Names[RTLIB::POW_PPCF128] = "powl";
90  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
91  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
92  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
93  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
94  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
95  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
96  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
97  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
98  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
99  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
100  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
101  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
102  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
103  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
104  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
105  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
106  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
107  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
108  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
109  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
110  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
111  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
112  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
113  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
114  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
115  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
116  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
117  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
118  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
119  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
120  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
121  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
122  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
123  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
124  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
125  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
126  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
127  Names[RTLIB::OEQ_F32] = "__eqsf2";
128  Names[RTLIB::OEQ_F64] = "__eqdf2";
129  Names[RTLIB::UNE_F32] = "__nesf2";
130  Names[RTLIB::UNE_F64] = "__nedf2";
131  Names[RTLIB::OGE_F32] = "__gesf2";
132  Names[RTLIB::OGE_F64] = "__gedf2";
133  Names[RTLIB::OLT_F32] = "__ltsf2";
134  Names[RTLIB::OLT_F64] = "__ltdf2";
135  Names[RTLIB::OLE_F32] = "__lesf2";
136  Names[RTLIB::OLE_F64] = "__ledf2";
137  Names[RTLIB::OGT_F32] = "__gtsf2";
138  Names[RTLIB::OGT_F64] = "__gtdf2";
139  Names[RTLIB::UO_F32] = "__unordsf2";
140  Names[RTLIB::UO_F64] = "__unorddf2";
141  Names[RTLIB::O_F32] = "__unordsf2";
142  Names[RTLIB::O_F64] = "__unorddf2";
143}
144
145/// InitCmpLibcallCCs - Set default comparison libcall CC.
146///
147static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
148  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
149  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
150  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
151  CCs[RTLIB::UNE_F32] = ISD::SETNE;
152  CCs[RTLIB::UNE_F64] = ISD::SETNE;
153  CCs[RTLIB::OGE_F32] = ISD::SETGE;
154  CCs[RTLIB::OGE_F64] = ISD::SETGE;
155  CCs[RTLIB::OLT_F32] = ISD::SETLT;
156  CCs[RTLIB::OLT_F64] = ISD::SETLT;
157  CCs[RTLIB::OLE_F32] = ISD::SETLE;
158  CCs[RTLIB::OLE_F64] = ISD::SETLE;
159  CCs[RTLIB::OGT_F32] = ISD::SETGT;
160  CCs[RTLIB::OGT_F64] = ISD::SETGT;
161  CCs[RTLIB::UO_F32] = ISD::SETNE;
162  CCs[RTLIB::UO_F64] = ISD::SETNE;
163  CCs[RTLIB::O_F32] = ISD::SETEQ;
164  CCs[RTLIB::O_F64] = ISD::SETEQ;
165}
166
167TargetLowering::TargetLowering(TargetMachine &tm)
168  : TM(tm), TD(TM.getTargetData()) {
169  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
170         "Fixed size array in TargetLowering is not large enough!");
171  // All operations default to being supported.
172  memset(OpActions, 0, sizeof(OpActions));
173  memset(LoadXActions, 0, sizeof(LoadXActions));
174  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
175  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
176  memset(ConvertActions, 0, sizeof(ConvertActions));
177
178  // Set default actions for various operations.
179  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
180    // Default all indexed load / store to expand.
181    for (unsigned IM = (unsigned)ISD::PRE_INC;
182         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
183      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
184      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
185    }
186
187    // These operations default to expand.
188    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
189  }
190
191  // Most targets ignore the @llvm.prefetch intrinsic.
192  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
193
194  // ConstantFP nodes default to expand.  Targets can either change this to
195  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
196  // to optimize expansions for certain constants.
197  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
198  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
199  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
200
201  // Default ISD::TRAP to expand (which turns it into abort).
202  setOperationAction(ISD::TRAP, MVT::Other, Expand);
203
204  IsLittleEndian = TD->isLittleEndian();
205  UsesGlobalOffsetTable = false;
206  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
207  ShiftAmtHandling = Undefined;
208  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
209  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
210  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
211  allowUnalignedMemoryAccesses = false;
212  UseUnderscoreSetJmp = false;
213  UseUnderscoreLongJmp = false;
214  SelectIsExpensive = false;
215  IntDivIsCheap = false;
216  Pow2DivIsCheap = false;
217  StackPointerRegisterToSaveRestore = 0;
218  ExceptionPointerRegister = 0;
219  ExceptionSelectorRegister = 0;
220  SetCCResultContents = UndefinedSetCCResult;
221  SchedPreferenceInfo = SchedulingForLatency;
222  JumpBufSize = 0;
223  JumpBufAlignment = 0;
224  IfCvtBlockSizeLimit = 2;
225  IfCvtDupBlockSizeLimit = 0;
226  PrefLoopAlignment = 0;
227
228  InitLibcallNames(LibcallRoutineNames);
229  InitCmpLibcallCCs(CmpLibcallCCs);
230
231  // Tell Legalize whether the assembler supports DEBUG_LOC.
232  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
233    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234}
235
236TargetLowering::~TargetLowering() {}
237
238/// computeRegisterProperties - Once all of the register classes are added,
239/// this allows us to compute derived properties we expose.
240void TargetLowering::computeRegisterProperties() {
241  assert(MVT::LAST_VALUETYPE <= 32 &&
242         "Too many value types for ValueTypeActions to hold!");
243
244  // Everything defaults to needing one register.
245  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
246    NumRegistersForVT[i] = 1;
247    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
248  }
249  // ...except isVoid, which doesn't need any registers.
250  NumRegistersForVT[MVT::isVoid] = 0;
251
252  // Find the largest integer register class.
253  unsigned LargestIntReg = MVT::i128;
254  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
255    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
256
257  // Every integer value type larger than this largest register takes twice as
258  // many registers to represent as the previous ValueType.
259  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
260    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
261    if (!EVT.isInteger())
262      break;
263    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
264    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
265    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
266    ValueTypeActions.setTypeAction(EVT, Expand);
267  }
268
269  // Inspect all of the ValueType's smaller than the largest integer
270  // register to see which ones need promotion.
271  unsigned LegalIntReg = LargestIntReg;
272  for (unsigned IntReg = LargestIntReg - 1;
273       IntReg >= (unsigned)MVT::i1; --IntReg) {
274    MVT IVT = (MVT::SimpleValueType)IntReg;
275    if (isTypeLegal(IVT)) {
276      LegalIntReg = IntReg;
277    } else {
278      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
279        (MVT::SimpleValueType)LegalIntReg;
280      ValueTypeActions.setTypeAction(IVT, Promote);
281    }
282  }
283
284  // ppcf128 type is really two f64's.
285  if (!isTypeLegal(MVT::ppcf128)) {
286    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
287    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
288    TransformToType[MVT::ppcf128] = MVT::f64;
289    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
290  }
291
292  // Decide how to handle f64. If the target does not have native f64 support,
293  // expand it to i64 and we will be generating soft float library calls.
294  if (!isTypeLegal(MVT::f64)) {
295    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
296    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
297    TransformToType[MVT::f64] = MVT::i64;
298    ValueTypeActions.setTypeAction(MVT::f64, Expand);
299  }
300
301  // Decide how to handle f32. If the target does not have native support for
302  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
303  if (!isTypeLegal(MVT::f32)) {
304    if (isTypeLegal(MVT::f64)) {
305      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
306      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
307      TransformToType[MVT::f32] = MVT::f64;
308      ValueTypeActions.setTypeAction(MVT::f32, Promote);
309    } else {
310      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
311      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
312      TransformToType[MVT::f32] = MVT::i32;
313      ValueTypeActions.setTypeAction(MVT::f32, Expand);
314    }
315  }
316
317  // Loop over all of the vector value types to see which need transformations.
318  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
319       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
320    MVT VT = (MVT::SimpleValueType)i;
321    if (!isTypeLegal(VT)) {
322      MVT IntermediateVT, RegisterVT;
323      unsigned NumIntermediates;
324      NumRegistersForVT[i] =
325        getVectorTypeBreakdown(VT,
326                               IntermediateVT, NumIntermediates,
327                               RegisterVT);
328      RegisterTypeForVT[i] = RegisterVT;
329      TransformToType[i] = MVT::Other; // this isn't actually used
330      ValueTypeActions.setTypeAction(VT, Expand);
331    }
332  }
333}
334
335const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
336  return NULL;
337}
338
339
340MVT TargetLowering::getSetCCResultType(const SDOperand &) const {
341  return getValueType(TD->getIntPtrType());
342}
343
344
345/// getVectorTypeBreakdown - Vector types are broken down into some number of
346/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
347/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
348/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
349///
350/// This method returns the number of registers needed, and the VT for each
351/// register.  It also returns the VT and quantity of the intermediate values
352/// before they are promoted/expanded.
353///
354unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
355                                                MVT &IntermediateVT,
356                                                unsigned &NumIntermediates,
357                                      MVT &RegisterVT) const {
358  // Figure out the right, legal destination reg to copy into.
359  unsigned NumElts = VT.getVectorNumElements();
360  MVT EltTy = VT.getVectorElementType();
361
362  unsigned NumVectorRegs = 1;
363
364  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
365  // could break down into LHS/RHS like LegalizeDAG does.
366  if (!isPowerOf2_32(NumElts)) {
367    NumVectorRegs = NumElts;
368    NumElts = 1;
369  }
370
371  // Divide the input until we get to a supported size.  This will always
372  // end with a scalar if the target doesn't support vectors.
373  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
374    NumElts >>= 1;
375    NumVectorRegs <<= 1;
376  }
377
378  NumIntermediates = NumVectorRegs;
379
380  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
381  if (!isTypeLegal(NewVT))
382    NewVT = EltTy;
383  IntermediateVT = NewVT;
384
385  MVT DestVT = getTypeToTransformTo(NewVT);
386  RegisterVT = DestVT;
387  if (DestVT < NewVT) {
388    // Value is expanded, e.g. i64 -> i16.
389    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
390  } else {
391    // Otherwise, promotion or legal types use the same number of registers as
392    // the vector decimated to the appropriate level.
393    return NumVectorRegs;
394  }
395
396  return 1;
397}
398
399/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
400/// function arguments in the caller parameter area.  This is the actual
401/// alignment, not its logarithm.
402unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
403  return TD->getCallFrameTypeAlignment(Ty);
404}
405
406SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
407                                                   SelectionDAG &DAG) const {
408  if (usesGlobalOffsetTable())
409    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
410  return Table;
411}
412
413//===----------------------------------------------------------------------===//
414//  Optimization Methods
415//===----------------------------------------------------------------------===//
416
417/// ShrinkDemandedConstant - Check to see if the specified operand of the
418/// specified instruction is a constant integer.  If so, check to see if there
419/// are any bits set in the constant that are not demanded.  If so, shrink the
420/// constant and return true.
421bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
422                                                        const APInt &Demanded) {
423  // FIXME: ISD::SELECT, ISD::SELECT_CC
424  switch(Op.getOpcode()) {
425  default: break;
426  case ISD::AND:
427  case ISD::OR:
428  case ISD::XOR:
429    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
430      if (C->getAPIntValue().intersects(~Demanded)) {
431        MVT VT = Op.getValueType();
432        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
433                                    DAG.getConstant(Demanded &
434                                                      C->getAPIntValue(),
435                                                    VT));
436        return CombineTo(Op, New);
437      }
438    break;
439  }
440  return false;
441}
442
443/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
444/// DemandedMask bits of the result of Op are ever used downstream.  If we can
445/// use this information to simplify Op, create a new simplified DAG node and
446/// return true, returning the original and new nodes in Old and New. Otherwise,
447/// analyze the expression and return a mask of KnownOne and KnownZero bits for
448/// the expression (used to simplify the caller).  The KnownZero/One bits may
449/// only be accurate for those bits in the DemandedMask.
450bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
451                                          const APInt &DemandedMask,
452                                          APInt &KnownZero,
453                                          APInt &KnownOne,
454                                          TargetLoweringOpt &TLO,
455                                          unsigned Depth) const {
456  unsigned BitWidth = DemandedMask.getBitWidth();
457  assert(Op.getValueSizeInBits() == BitWidth &&
458         "Mask size mismatches value type size!");
459  APInt NewMask = DemandedMask;
460
461  // Don't know anything.
462  KnownZero = KnownOne = APInt(BitWidth, 0);
463
464  // Other users may use these bits.
465  if (!Op.Val->hasOneUse()) {
466    if (Depth != 0) {
467      // If not at the root, Just compute the KnownZero/KnownOne bits to
468      // simplify things downstream.
469      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
470      return false;
471    }
472    // If this is the root being simplified, allow it to have multiple uses,
473    // just set the NewMask to all bits.
474    NewMask = APInt::getAllOnesValue(BitWidth);
475  } else if (DemandedMask == 0) {
476    // Not demanding any bits from Op.
477    if (Op.getOpcode() != ISD::UNDEF)
478      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
479    return false;
480  } else if (Depth == 6) {        // Limit search depth.
481    return false;
482  }
483
484  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
485  switch (Op.getOpcode()) {
486  case ISD::Constant:
487    // We know all of the bits for a constant!
488    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
489    KnownZero = ~KnownOne & NewMask;
490    return false;   // Don't fall through, will infinitely loop.
491  case ISD::AND:
492    // If the RHS is a constant, check to see if the LHS would be zero without
493    // using the bits from the RHS.  Below, we use knowledge about the RHS to
494    // simplify the LHS, here we're using information from the LHS to simplify
495    // the RHS.
496    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
497      APInt LHSZero, LHSOne;
498      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
499                                LHSZero, LHSOne, Depth+1);
500      // If the LHS already has zeros where RHSC does, this and is dead.
501      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
502        return TLO.CombineTo(Op, Op.getOperand(0));
503      // If any of the set bits in the RHS are known zero on the LHS, shrink
504      // the constant.
505      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
506        return true;
507    }
508
509    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
510                             KnownOne, TLO, Depth+1))
511      return true;
512    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
513    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
514                             KnownZero2, KnownOne2, TLO, Depth+1))
515      return true;
516    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
517
518    // If all of the demanded bits are known one on one side, return the other.
519    // These bits cannot contribute to the result of the 'and'.
520    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
521      return TLO.CombineTo(Op, Op.getOperand(0));
522    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
523      return TLO.CombineTo(Op, Op.getOperand(1));
524    // If all of the demanded bits in the inputs are known zeros, return zero.
525    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
526      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
527    // If the RHS is a constant, see if we can simplify it.
528    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
529      return true;
530
531    // Output known-1 bits are only known if set in both the LHS & RHS.
532    KnownOne &= KnownOne2;
533    // Output known-0 are known to be clear if zero in either the LHS | RHS.
534    KnownZero |= KnownZero2;
535    break;
536  case ISD::OR:
537    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
538                             KnownOne, TLO, Depth+1))
539      return true;
540    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
541    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
542                             KnownZero2, KnownOne2, TLO, Depth+1))
543      return true;
544    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
545
546    // If all of the demanded bits are known zero on one side, return the other.
547    // These bits cannot contribute to the result of the 'or'.
548    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
549      return TLO.CombineTo(Op, Op.getOperand(0));
550    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
551      return TLO.CombineTo(Op, Op.getOperand(1));
552    // If all of the potentially set bits on one side are known to be set on
553    // the other side, just use the 'other' side.
554    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
555      return TLO.CombineTo(Op, Op.getOperand(0));
556    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
557      return TLO.CombineTo(Op, Op.getOperand(1));
558    // If the RHS is a constant, see if we can simplify it.
559    if (TLO.ShrinkDemandedConstant(Op, NewMask))
560      return true;
561
562    // Output known-0 bits are only known if clear in both the LHS & RHS.
563    KnownZero &= KnownZero2;
564    // Output known-1 are known to be set if set in either the LHS | RHS.
565    KnownOne |= KnownOne2;
566    break;
567  case ISD::XOR:
568    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
569                             KnownOne, TLO, Depth+1))
570      return true;
571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
572    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
573                             KnownOne2, TLO, Depth+1))
574      return true;
575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
576
577    // If all of the demanded bits are known zero on one side, return the other.
578    // These bits cannot contribute to the result of the 'xor'.
579    if ((KnownZero & NewMask) == NewMask)
580      return TLO.CombineTo(Op, Op.getOperand(0));
581    if ((KnownZero2 & NewMask) == NewMask)
582      return TLO.CombineTo(Op, Op.getOperand(1));
583
584    // If all of the unknown bits are known to be zero on one side or the other
585    // (but not both) turn this into an *inclusive* or.
586    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
587    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
588      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
589                                               Op.getOperand(0),
590                                               Op.getOperand(1)));
591
592    // Output known-0 bits are known if clear or set in both the LHS & RHS.
593    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
594    // Output known-1 are known to be set if set in only one of the LHS, RHS.
595    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
596
597    // If all of the demanded bits on one side are known, and all of the set
598    // bits on that side are also known to be set on the other side, turn this
599    // into an AND, as we know the bits will be cleared.
600    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
601    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
602      if ((KnownOne & KnownOne2) == KnownOne) {
603        MVT VT = Op.getValueType();
604        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
605        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
606                                                 ANDC));
607      }
608    }
609
610    // If the RHS is a constant, see if we can simplify it.
611    // for XOR, we prefer to force bits to 1 if they will make a -1.
612    // if we can't force bits, try to shrink constant
613    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
614      APInt Expanded = C->getAPIntValue() | (~NewMask);
615      // if we can expand it to have all bits set, do it
616      if (Expanded.isAllOnesValue()) {
617        if (Expanded != C->getAPIntValue()) {
618          MVT VT = Op.getValueType();
619          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
620                                          TLO.DAG.getConstant(Expanded, VT));
621          return TLO.CombineTo(Op, New);
622        }
623        // if it already has all the bits set, nothing to change
624        // but don't shrink either!
625      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
626        return true;
627      }
628    }
629
630    KnownZero = KnownZeroOut;
631    KnownOne  = KnownOneOut;
632    break;
633  case ISD::SELECT:
634    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
635                             KnownOne, TLO, Depth+1))
636      return true;
637    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
638                             KnownOne2, TLO, Depth+1))
639      return true;
640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
642
643    // If the operands are constants, see if we can simplify them.
644    if (TLO.ShrinkDemandedConstant(Op, NewMask))
645      return true;
646
647    // Only known if known in both the LHS and RHS.
648    KnownOne &= KnownOne2;
649    KnownZero &= KnownZero2;
650    break;
651  case ISD::SELECT_CC:
652    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
653                             KnownOne, TLO, Depth+1))
654      return true;
655    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
656                             KnownOne2, TLO, Depth+1))
657      return true;
658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
660
661    // If the operands are constants, see if we can simplify them.
662    if (TLO.ShrinkDemandedConstant(Op, NewMask))
663      return true;
664
665    // Only known if known in both the LHS and RHS.
666    KnownOne &= KnownOne2;
667    KnownZero &= KnownZero2;
668    break;
669  case ISD::SHL:
670    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
671      unsigned ShAmt = SA->getValue();
672      SDOperand InOp = Op.getOperand(0);
673
674      // If the shift count is an invalid immediate, don't do anything.
675      if (ShAmt >= BitWidth)
676        break;
677
678      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
679      // single shift.  We can do this if the bottom bits (which are shifted
680      // out) are never demanded.
681      if (InOp.getOpcode() == ISD::SRL &&
682          isa<ConstantSDNode>(InOp.getOperand(1))) {
683        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
684          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
685          unsigned Opc = ISD::SHL;
686          int Diff = ShAmt-C1;
687          if (Diff < 0) {
688            Diff = -Diff;
689            Opc = ISD::SRL;
690          }
691
692          SDOperand NewSA =
693            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
694          MVT VT = Op.getValueType();
695          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
696                                                   InOp.getOperand(0), NewSA));
697        }
698      }
699
700      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
701                               KnownZero, KnownOne, TLO, Depth+1))
702        return true;
703      KnownZero <<= SA->getValue();
704      KnownOne  <<= SA->getValue();
705      // low bits known zero.
706      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
707    }
708    break;
709  case ISD::SRL:
710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
711      MVT VT = Op.getValueType();
712      unsigned ShAmt = SA->getValue();
713      unsigned VTSize = VT.getSizeInBits();
714      SDOperand InOp = Op.getOperand(0);
715
716      // If the shift count is an invalid immediate, don't do anything.
717      if (ShAmt >= BitWidth)
718        break;
719
720      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
721      // single shift.  We can do this if the top bits (which are shifted out)
722      // are never demanded.
723      if (InOp.getOpcode() == ISD::SHL &&
724          isa<ConstantSDNode>(InOp.getOperand(1))) {
725        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
726          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
727          unsigned Opc = ISD::SRL;
728          int Diff = ShAmt-C1;
729          if (Diff < 0) {
730            Diff = -Diff;
731            Opc = ISD::SHL;
732          }
733
734          SDOperand NewSA =
735            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
736          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
737                                                   InOp.getOperand(0), NewSA));
738        }
739      }
740
741      // Compute the new bits that are at the top now.
742      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
743                               KnownZero, KnownOne, TLO, Depth+1))
744        return true;
745      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
746      KnownZero = KnownZero.lshr(ShAmt);
747      KnownOne  = KnownOne.lshr(ShAmt);
748
749      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
750      KnownZero |= HighBits;  // High bits known zero.
751    }
752    break;
753  case ISD::SRA:
754    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
755      MVT VT = Op.getValueType();
756      unsigned ShAmt = SA->getValue();
757
758      // If the shift count is an invalid immediate, don't do anything.
759      if (ShAmt >= BitWidth)
760        break;
761
762      APInt InDemandedMask = (NewMask << ShAmt);
763
764      // If any of the demanded bits are produced by the sign extension, we also
765      // demand the input sign bit.
766      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
767      if (HighBits.intersects(NewMask))
768        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
769
770      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
771                               KnownZero, KnownOne, TLO, Depth+1))
772        return true;
773      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
774      KnownZero = KnownZero.lshr(ShAmt);
775      KnownOne  = KnownOne.lshr(ShAmt);
776
777      // Handle the sign bit, adjusted to where it is now in the mask.
778      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
779
780      // If the input sign bit is known to be zero, or if none of the top bits
781      // are demanded, turn this into an unsigned shift right.
782      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
783        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
784                                                 Op.getOperand(1)));
785      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
786        KnownOne |= HighBits;
787      }
788    }
789    break;
790  case ISD::SIGN_EXTEND_INREG: {
791    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
792
793    // Sign extension.  Compute the demanded bits in the result that are not
794    // present in the input.
795    APInt NewBits = APInt::getHighBitsSet(BitWidth,
796                                          BitWidth - EVT.getSizeInBits()) &
797                    NewMask;
798
799    // If none of the extended bits are demanded, eliminate the sextinreg.
800    if (NewBits == 0)
801      return TLO.CombineTo(Op, Op.getOperand(0));
802
803    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
804    InSignBit.zext(BitWidth);
805    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
806                                                   EVT.getSizeInBits()) &
807                              NewMask;
808
809    // Since the sign extended bits are demanded, we know that the sign
810    // bit is demanded.
811    InputDemandedBits |= InSignBit;
812
813    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
814                             KnownZero, KnownOne, TLO, Depth+1))
815      return true;
816    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
817
818    // If the sign bit of the input is known set or clear, then we know the
819    // top bits of the result.
820
821    // If the input sign bit is known zero, convert this into a zero extension.
822    if (KnownZero.intersects(InSignBit))
823      return TLO.CombineTo(Op,
824                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
825
826    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
827      KnownOne |= NewBits;
828      KnownZero &= ~NewBits;
829    } else {                       // Input sign bit unknown
830      KnownZero &= ~NewBits;
831      KnownOne &= ~NewBits;
832    }
833    break;
834  }
835  case ISD::ZERO_EXTEND: {
836    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
837    APInt InMask = NewMask;
838    InMask.trunc(OperandBitWidth);
839
840    // If none of the top bits are demanded, convert this into an any_extend.
841    APInt NewBits =
842      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
843    if (!NewBits.intersects(NewMask))
844      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
845                                               Op.getValueType(),
846                                               Op.getOperand(0)));
847
848    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
849                             KnownZero, KnownOne, TLO, Depth+1))
850      return true;
851    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
852    KnownZero.zext(BitWidth);
853    KnownOne.zext(BitWidth);
854    KnownZero |= NewBits;
855    break;
856  }
857  case ISD::SIGN_EXTEND: {
858    MVT InVT = Op.getOperand(0).getValueType();
859    unsigned InBits = InVT.getSizeInBits();
860    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
861    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
862    APInt NewBits   = ~InMask & NewMask;
863
864    // If none of the top bits are demanded, convert this into an any_extend.
865    if (NewBits == 0)
866      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
867                                           Op.getOperand(0)));
868
869    // Since some of the sign extended bits are demanded, we know that the sign
870    // bit is demanded.
871    APInt InDemandedBits = InMask & NewMask;
872    InDemandedBits |= InSignBit;
873    InDemandedBits.trunc(InBits);
874
875    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
876                             KnownOne, TLO, Depth+1))
877      return true;
878    KnownZero.zext(BitWidth);
879    KnownOne.zext(BitWidth);
880
881    // If the sign bit is known zero, convert this to a zero extend.
882    if (KnownZero.intersects(InSignBit))
883      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
884                                               Op.getValueType(),
885                                               Op.getOperand(0)));
886
887    // If the sign bit is known one, the top bits match.
888    if (KnownOne.intersects(InSignBit)) {
889      KnownOne  |= NewBits;
890      KnownZero &= ~NewBits;
891    } else {   // Otherwise, top bits aren't known.
892      KnownOne  &= ~NewBits;
893      KnownZero &= ~NewBits;
894    }
895    break;
896  }
897  case ISD::ANY_EXTEND: {
898    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
899    APInt InMask = NewMask;
900    InMask.trunc(OperandBitWidth);
901    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
902                             KnownZero, KnownOne, TLO, Depth+1))
903      return true;
904    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
905    KnownZero.zext(BitWidth);
906    KnownOne.zext(BitWidth);
907    break;
908  }
909  case ISD::TRUNCATE: {
910    // Simplify the input, using demanded bit information, and compute the known
911    // zero/one bits live out.
912    APInt TruncMask = NewMask;
913    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
914    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
915                             KnownZero, KnownOne, TLO, Depth+1))
916      return true;
917    KnownZero.trunc(BitWidth);
918    KnownOne.trunc(BitWidth);
919
920    // If the input is only used by this truncate, see if we can shrink it based
921    // on the known demanded bits.
922    if (Op.getOperand(0).Val->hasOneUse()) {
923      SDOperand In = Op.getOperand(0);
924      unsigned InBitWidth = In.getValueSizeInBits();
925      switch (In.getOpcode()) {
926      default: break;
927      case ISD::SRL:
928        // Shrink SRL by a constant if none of the high bits shifted in are
929        // demanded.
930        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
931          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
932                                                 InBitWidth - BitWidth);
933          HighBits = HighBits.lshr(ShAmt->getValue());
934          HighBits.trunc(BitWidth);
935
936          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
937            // None of the shifted in bits are needed.  Add a truncate of the
938            // shift input, then shift it.
939            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
940                                                 Op.getValueType(),
941                                                 In.getOperand(0));
942            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
943                                                   NewTrunc, In.getOperand(1)));
944          }
945        }
946        break;
947      }
948    }
949
950    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
951    break;
952  }
953  case ISD::AssertZext: {
954    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
955    APInt InMask = APInt::getLowBitsSet(BitWidth,
956                                        VT.getSizeInBits());
957    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
958                             KnownZero, KnownOne, TLO, Depth+1))
959      return true;
960    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
961    KnownZero |= ~InMask & NewMask;
962    break;
963  }
964  case ISD::BIT_CONVERT:
965#if 0
966    // If this is an FP->Int bitcast and if the sign bit is the only thing that
967    // is demanded, turn this into a FGETSIGN.
968    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
969        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
970        !MVT::isVector(Op.getOperand(0).getValueType())) {
971      // Only do this xform if FGETSIGN is valid or if before legalize.
972      if (!TLO.AfterLegalize ||
973          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
974        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
975        // place.  We expect the SHL to be eliminated by other optimizations.
976        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
977                                         Op.getOperand(0));
978        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
979        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
980        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
981                                                 Sign, ShAmt));
982      }
983    }
984#endif
985    break;
986  default:
987    // Just use ComputeMaskedBits to compute output bits.
988    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
989    break;
990  }
991
992  // If we know the value of all of the demanded bits, return this as a
993  // constant.
994  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
995    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
996
997  return false;
998}
999
1000/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1001/// in Mask are known to be either zero or one and return them in the
1002/// KnownZero/KnownOne bitsets.
1003void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1004                                                    const APInt &Mask,
1005                                                    APInt &KnownZero,
1006                                                    APInt &KnownOne,
1007                                                    const SelectionDAG &DAG,
1008                                                    unsigned Depth) const {
1009  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1010          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1011          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1012          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1013         "Should use MaskedValueIsZero if you don't know whether Op"
1014         " is a target node!");
1015  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1016}
1017
1018/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1019/// targets that want to expose additional information about sign bits to the
1020/// DAG Combiner.
1021unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1022                                                         unsigned Depth) const {
1023  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1024          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1025          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1026          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1027         "Should use ComputeNumSignBits if you don't know whether Op"
1028         " is a target node!");
1029  return 1;
1030}
1031
1032
1033/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1034/// and cc. If it is unable to simplify it, return a null SDOperand.
1035SDOperand
1036TargetLowering::SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1,
1037                              ISD::CondCode Cond, bool foldBooleans,
1038                              DAGCombinerInfo &DCI) const {
1039  SelectionDAG &DAG = DCI.DAG;
1040
1041  // These setcc operations always fold.
1042  switch (Cond) {
1043  default: break;
1044  case ISD::SETFALSE:
1045  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1046  case ISD::SETTRUE:
1047  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1048  }
1049
1050  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1051    const APInt &C1 = N1C->getAPIntValue();
1052    if (isa<ConstantSDNode>(N0.Val)) {
1053      return DAG.FoldSetCC(VT, N0, N1, Cond);
1054    } else {
1055      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1056      // equality comparison, then we're just comparing whether X itself is
1057      // zero.
1058      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1059          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1060          N0.getOperand(1).getOpcode() == ISD::Constant) {
1061        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1062        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1063            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1064          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1065            // (srl (ctlz x), 5) == 0  -> X != 0
1066            // (srl (ctlz x), 5) != 1  -> X != 0
1067            Cond = ISD::SETNE;
1068          } else {
1069            // (srl (ctlz x), 5) != 0  -> X == 0
1070            // (srl (ctlz x), 5) == 1  -> X == 0
1071            Cond = ISD::SETEQ;
1072          }
1073          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1074          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1075                              Zero, Cond);
1076        }
1077      }
1078
1079      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1080      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1081        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1082
1083        // If the comparison constant has bits in the upper part, the
1084        // zero-extended value could never match.
1085        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1086                                                C1.getBitWidth() - InSize))) {
1087          switch (Cond) {
1088          case ISD::SETUGT:
1089          case ISD::SETUGE:
1090          case ISD::SETEQ: return DAG.getConstant(0, VT);
1091          case ISD::SETULT:
1092          case ISD::SETULE:
1093          case ISD::SETNE: return DAG.getConstant(1, VT);
1094          case ISD::SETGT:
1095          case ISD::SETGE:
1096            // True if the sign bit of C1 is set.
1097            return DAG.getConstant(C1.isNegative(), VT);
1098          case ISD::SETLT:
1099          case ISD::SETLE:
1100            // True if the sign bit of C1 isn't set.
1101            return DAG.getConstant(C1.isNonNegative(), VT);
1102          default:
1103            break;
1104          }
1105        }
1106
1107        // Otherwise, we can perform the comparison with the low bits.
1108        switch (Cond) {
1109        case ISD::SETEQ:
1110        case ISD::SETNE:
1111        case ISD::SETUGT:
1112        case ISD::SETUGE:
1113        case ISD::SETULT:
1114        case ISD::SETULE:
1115          return DAG.getSetCC(VT, N0.getOperand(0),
1116                          DAG.getConstant(APInt(C1).trunc(InSize),
1117                                          N0.getOperand(0).getValueType()),
1118                          Cond);
1119        default:
1120          break;   // todo, be more careful with signed comparisons
1121        }
1122      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1123                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1124        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1125        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1126        MVT ExtDstTy = N0.getValueType();
1127        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1128
1129        // If the extended part has any inconsistent bits, it cannot ever
1130        // compare equal.  In other words, they have to be all ones or all
1131        // zeros.
1132        APInt ExtBits =
1133          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1134        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1135          return DAG.getConstant(Cond == ISD::SETNE, VT);
1136
1137        SDOperand ZextOp;
1138        MVT Op0Ty = N0.getOperand(0).getValueType();
1139        if (Op0Ty == ExtSrcTy) {
1140          ZextOp = N0.getOperand(0);
1141        } else {
1142          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1143          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1144                               DAG.getConstant(Imm, Op0Ty));
1145        }
1146        if (!DCI.isCalledByLegalizer())
1147          DCI.AddToWorklist(ZextOp.Val);
1148        // Otherwise, make this a use of a zext.
1149        return DAG.getSetCC(VT, ZextOp,
1150                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1151                                                               ExtDstTyBits,
1152                                                               ExtSrcTyBits),
1153                                            ExtDstTy),
1154                            Cond);
1155      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1156                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1157
1158        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1159        if (N0.getOpcode() == ISD::SETCC) {
1160          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1161          if (TrueWhenTrue)
1162            return N0;
1163
1164          // Invert the condition.
1165          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1166          CC = ISD::getSetCCInverse(CC,
1167                                   N0.getOperand(0).getValueType().isInteger());
1168          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1169        }
1170
1171        if ((N0.getOpcode() == ISD::XOR ||
1172             (N0.getOpcode() == ISD::AND &&
1173              N0.getOperand(0).getOpcode() == ISD::XOR &&
1174              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1175            isa<ConstantSDNode>(N0.getOperand(1)) &&
1176            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1177          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1178          // can only do this if the top bits are known zero.
1179          unsigned BitWidth = N0.getValueSizeInBits();
1180          if (DAG.MaskedValueIsZero(N0,
1181                                    APInt::getHighBitsSet(BitWidth,
1182                                                          BitWidth-1))) {
1183            // Okay, get the un-inverted input value.
1184            SDOperand Val;
1185            if (N0.getOpcode() == ISD::XOR)
1186              Val = N0.getOperand(0);
1187            else {
1188              assert(N0.getOpcode() == ISD::AND &&
1189                     N0.getOperand(0).getOpcode() == ISD::XOR);
1190              // ((X^1)&1)^1 -> X & 1
1191              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1192                                N0.getOperand(0).getOperand(0),
1193                                N0.getOperand(1));
1194            }
1195            return DAG.getSetCC(VT, Val, N1,
1196                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1197          }
1198        }
1199      }
1200
1201      APInt MinVal, MaxVal;
1202      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1203      if (ISD::isSignedIntSetCC(Cond)) {
1204        MinVal = APInt::getSignedMinValue(OperandBitSize);
1205        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1206      } else {
1207        MinVal = APInt::getMinValue(OperandBitSize);
1208        MaxVal = APInt::getMaxValue(OperandBitSize);
1209      }
1210
1211      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1212      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1213        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1214        // X >= C0 --> X > (C0-1)
1215        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1216                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1217      }
1218
1219      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1220        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1221        // X <= C0 --> X < (C0+1)
1222        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1223                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1224      }
1225
1226      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1227        return DAG.getConstant(0, VT);      // X < MIN --> false
1228      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1229        return DAG.getConstant(1, VT);      // X >= MIN --> true
1230      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1231        return DAG.getConstant(0, VT);      // X > MAX --> false
1232      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1233        return DAG.getConstant(1, VT);      // X <= MAX --> true
1234
1235      // Canonicalize setgt X, Min --> setne X, Min
1236      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1237        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1238      // Canonicalize setlt X, Max --> setne X, Max
1239      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1240        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1241
1242      // If we have setult X, 1, turn it into seteq X, 0
1243      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1244        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1245                        ISD::SETEQ);
1246      // If we have setugt X, Max-1, turn it into seteq X, Max
1247      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1248        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1249                        ISD::SETEQ);
1250
1251      // If we have "setcc X, C0", check to see if we can shrink the immediate
1252      // by changing cc.
1253
1254      // SETUGT X, SINTMAX  -> SETLT X, 0
1255      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1256          C1 == (~0ULL >> (65-OperandBitSize)))
1257        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1258                            ISD::SETLT);
1259
1260      // FIXME: Implement the rest of these.
1261
1262      // Fold bit comparisons when we can.
1263      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1264          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1265        if (ConstantSDNode *AndRHS =
1266                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1267          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1268            // Perform the xform if the AND RHS is a single bit.
1269            if (isPowerOf2_64(AndRHS->getValue())) {
1270              return DAG.getNode(ISD::SRL, VT, N0,
1271                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1272                                             getShiftAmountTy()));
1273            }
1274          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1275            // (X & 8) == 8  -->  (X & 8) >> 3
1276            // Perform the xform if C1 is a single bit.
1277            if (C1.isPowerOf2()) {
1278              return DAG.getNode(ISD::SRL, VT, N0,
1279                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1280            }
1281          }
1282        }
1283    }
1284  } else if (isa<ConstantSDNode>(N0.Val)) {
1285      // Ensure that the constant occurs on the RHS.
1286    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1287  }
1288
1289  if (isa<ConstantFPSDNode>(N0.Val)) {
1290    // Constant fold or commute setcc.
1291    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1292    if (O.Val) return O;
1293  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1294    // If the RHS of an FP comparison is a constant, simplify it away in
1295    // some cases.
1296    if (CFP->getValueAPF().isNaN()) {
1297      // If an operand is known to be a nan, we can fold it.
1298      switch (ISD::getUnorderedFlavor(Cond)) {
1299      default: assert(0 && "Unknown flavor!");
1300      case 0:  // Known false.
1301        return DAG.getConstant(0, VT);
1302      case 1:  // Known true.
1303        return DAG.getConstant(1, VT);
1304      case 2:  // Undefined.
1305        return DAG.getNode(ISD::UNDEF, VT);
1306      }
1307    }
1308
1309    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1310    // constant if knowing that the operand is non-nan is enough.  We prefer to
1311    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1312    // materialize 0.0.
1313    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1314      return DAG.getSetCC(VT, N0, N0, Cond);
1315  }
1316
1317  if (N0 == N1) {
1318    // We can always fold X == X for integer setcc's.
1319    if (N0.getValueType().isInteger())
1320      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1321    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1322    if (UOF == 2)   // FP operators that are undefined on NaNs.
1323      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1324    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1325      return DAG.getConstant(UOF, VT);
1326    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1327    // if it is not already.
1328    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1329    if (NewCond != Cond)
1330      return DAG.getSetCC(VT, N0, N1, NewCond);
1331  }
1332
1333  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1334      N0.getValueType().isInteger()) {
1335    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1336        N0.getOpcode() == ISD::XOR) {
1337      // Simplify (X+Y) == (X+Z) -->  Y == Z
1338      if (N0.getOpcode() == N1.getOpcode()) {
1339        if (N0.getOperand(0) == N1.getOperand(0))
1340          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1341        if (N0.getOperand(1) == N1.getOperand(1))
1342          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1343        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1344          // If X op Y == Y op X, try other combinations.
1345          if (N0.getOperand(0) == N1.getOperand(1))
1346            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1347          if (N0.getOperand(1) == N1.getOperand(0))
1348            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1349        }
1350      }
1351
1352      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1353        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1354          // Turn (X+C1) == C2 --> X == C2-C1
1355          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1356            return DAG.getSetCC(VT, N0.getOperand(0),
1357                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1358                                N0.getValueType()), Cond);
1359          }
1360
1361          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1362          if (N0.getOpcode() == ISD::XOR)
1363            // If we know that all of the inverted bits are zero, don't bother
1364            // performing the inversion.
1365            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1366              return
1367                DAG.getSetCC(VT, N0.getOperand(0),
1368                             DAG.getConstant(LHSR->getAPIntValue() ^
1369                                               RHSC->getAPIntValue(),
1370                                             N0.getValueType()),
1371                             Cond);
1372        }
1373
1374        // Turn (C1-X) == C2 --> X == C1-C2
1375        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1376          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1377            return
1378              DAG.getSetCC(VT, N0.getOperand(1),
1379                           DAG.getConstant(SUBC->getAPIntValue() -
1380                                             RHSC->getAPIntValue(),
1381                                           N0.getValueType()),
1382                           Cond);
1383          }
1384        }
1385      }
1386
1387      // Simplify (X+Z) == X -->  Z == 0
1388      if (N0.getOperand(0) == N1)
1389        return DAG.getSetCC(VT, N0.getOperand(1),
1390                        DAG.getConstant(0, N0.getValueType()), Cond);
1391      if (N0.getOperand(1) == N1) {
1392        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1393          return DAG.getSetCC(VT, N0.getOperand(0),
1394                          DAG.getConstant(0, N0.getValueType()), Cond);
1395        else if (N0.Val->hasOneUse()) {
1396          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1397          // (Z-X) == X  --> Z == X<<1
1398          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1399                                     N1,
1400                                     DAG.getConstant(1, getShiftAmountTy()));
1401          if (!DCI.isCalledByLegalizer())
1402            DCI.AddToWorklist(SH.Val);
1403          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1404        }
1405      }
1406    }
1407
1408    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1409        N1.getOpcode() == ISD::XOR) {
1410      // Simplify  X == (X+Z) -->  Z == 0
1411      if (N1.getOperand(0) == N0) {
1412        return DAG.getSetCC(VT, N1.getOperand(1),
1413                        DAG.getConstant(0, N1.getValueType()), Cond);
1414      } else if (N1.getOperand(1) == N0) {
1415        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1416          return DAG.getSetCC(VT, N1.getOperand(0),
1417                          DAG.getConstant(0, N1.getValueType()), Cond);
1418        } else if (N1.Val->hasOneUse()) {
1419          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1420          // X == (Z-X)  --> X<<1 == Z
1421          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1422                                     DAG.getConstant(1, getShiftAmountTy()));
1423          if (!DCI.isCalledByLegalizer())
1424            DCI.AddToWorklist(SH.Val);
1425          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1426        }
1427      }
1428    }
1429  }
1430
1431  // Fold away ALL boolean setcc's.
1432  SDOperand Temp;
1433  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1434    switch (Cond) {
1435    default: assert(0 && "Unknown integer setcc!");
1436    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1437      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1438      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1439      if (!DCI.isCalledByLegalizer())
1440        DCI.AddToWorklist(Temp.Val);
1441      break;
1442    case ISD::SETNE:  // X != Y   -->  (X^Y)
1443      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1444      break;
1445    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1446    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1447      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1448      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1449      if (!DCI.isCalledByLegalizer())
1450        DCI.AddToWorklist(Temp.Val);
1451      break;
1452    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1453    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1454      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1455      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1456      if (!DCI.isCalledByLegalizer())
1457        DCI.AddToWorklist(Temp.Val);
1458      break;
1459    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1460    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1461      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1462      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1463      if (!DCI.isCalledByLegalizer())
1464        DCI.AddToWorklist(Temp.Val);
1465      break;
1466    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1467    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1468      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1469      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1470      break;
1471    }
1472    if (VT != MVT::i1) {
1473      if (!DCI.isCalledByLegalizer())
1474        DCI.AddToWorklist(N0.Val);
1475      // FIXME: If running after legalize, we probably can't do this.
1476      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1477    }
1478    return N0;
1479  }
1480
1481  // Could not fold it.
1482  return SDOperand();
1483}
1484
1485/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1486/// node is a GlobalAddress + offset.
1487bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1488                                    int64_t &Offset) const {
1489  if (isa<GlobalAddressSDNode>(N)) {
1490    GA = cast<GlobalAddressSDNode>(N)->getGlobal();
1491    return true;
1492  }
1493
1494  if (N->getOpcode() == ISD::ADD) {
1495    SDOperand N1 = N->getOperand(0);
1496    SDOperand N2 = N->getOperand(1);
1497    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1498      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1499      if (V) {
1500        Offset += V->getSignExtended();
1501        return true;
1502      }
1503    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1504      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1505      if (V) {
1506        Offset += V->getSignExtended();
1507        return true;
1508      }
1509    }
1510  }
1511  return false;
1512}
1513
1514
1515/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1516/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1517/// location that the 'Base' load is loading from.
1518bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1519                                       unsigned Bytes, int Dist,
1520                                       const MachineFrameInfo *MFI) const {
1521  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1522    return false;
1523  MVT VT = LD->getValueType(0);
1524  if (VT.getSizeInBits() / 8 != Bytes)
1525    return false;
1526
1527  SDOperand Loc = LD->getOperand(1);
1528  SDOperand BaseLoc = Base->getOperand(1);
1529  if (Loc.getOpcode() == ISD::FrameIndex) {
1530    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1531      return false;
1532    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1533    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1534    int FS  = MFI->getObjectSize(FI);
1535    int BFS = MFI->getObjectSize(BFI);
1536    if (FS != BFS || FS != (int)Bytes) return false;
1537    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1538  }
1539
1540  GlobalValue *GV1 = NULL;
1541  GlobalValue *GV2 = NULL;
1542  int64_t Offset1 = 0;
1543  int64_t Offset2 = 0;
1544  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1545  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1546  if (isGA1 && isGA2 && GV1 == GV2)
1547    return Offset1 == (Offset2 + Dist*Bytes);
1548  return false;
1549}
1550
1551
1552SDOperand TargetLowering::
1553PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1554  // Default implementation: no optimization.
1555  return SDOperand();
1556}
1557
1558//===----------------------------------------------------------------------===//
1559//  Inline Assembler Implementation Methods
1560//===----------------------------------------------------------------------===//
1561
1562
1563TargetLowering::ConstraintType
1564TargetLowering::getConstraintType(const std::string &Constraint) const {
1565  // FIXME: lots more standard ones to handle.
1566  if (Constraint.size() == 1) {
1567    switch (Constraint[0]) {
1568    default: break;
1569    case 'r': return C_RegisterClass;
1570    case 'm':    // memory
1571    case 'o':    // offsetable
1572    case 'V':    // not offsetable
1573      return C_Memory;
1574    case 'i':    // Simple Integer or Relocatable Constant
1575    case 'n':    // Simple Integer
1576    case 's':    // Relocatable Constant
1577    case 'X':    // Allow ANY value.
1578    case 'I':    // Target registers.
1579    case 'J':
1580    case 'K':
1581    case 'L':
1582    case 'M':
1583    case 'N':
1584    case 'O':
1585    case 'P':
1586      return C_Other;
1587    }
1588  }
1589
1590  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1591      Constraint[Constraint.size()-1] == '}')
1592    return C_Register;
1593  return C_Unknown;
1594}
1595
1596/// LowerXConstraint - try to replace an X constraint, which matches anything,
1597/// with another that has more specific requirements based on the type of the
1598/// corresponding operand.
1599const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1600  if (ConstraintVT.isInteger())
1601    return "r";
1602  if (ConstraintVT.isFloatingPoint())
1603    return "f";      // works for many targets
1604  return 0;
1605}
1606
1607/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1608/// vector.  If it is invalid, don't add anything to Ops.
1609void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1610                                                  char ConstraintLetter,
1611                                                  std::vector<SDOperand> &Ops,
1612                                                  SelectionDAG &DAG) const {
1613  switch (ConstraintLetter) {
1614  default: break;
1615  case 'X':     // Allows any operand; labels (basic block) use this.
1616    if (Op.getOpcode() == ISD::BasicBlock) {
1617      Ops.push_back(Op);
1618      return;
1619    }
1620    // fall through
1621  case 'i':    // Simple Integer or Relocatable Constant
1622  case 'n':    // Simple Integer
1623  case 's': {  // Relocatable Constant
1624    // These operands are interested in values of the form (GV+C), where C may
1625    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1626    // is possible and fine if either GV or C are missing.
1627    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1628    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1629
1630    // If we have "(add GV, C)", pull out GV/C
1631    if (Op.getOpcode() == ISD::ADD) {
1632      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1633      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1634      if (C == 0 || GA == 0) {
1635        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1636        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1637      }
1638      if (C == 0 || GA == 0)
1639        C = 0, GA = 0;
1640    }
1641
1642    // If we find a valid operand, map to the TargetXXX version so that the
1643    // value itself doesn't get selected.
1644    if (GA) {   // Either &GV   or   &GV+C
1645      if (ConstraintLetter != 'n') {
1646        int64_t Offs = GA->getOffset();
1647        if (C) Offs += C->getValue();
1648        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1649                                                 Op.getValueType(), Offs));
1650        return;
1651      }
1652    }
1653    if (C) {   // just C, no GV.
1654      // Simple constants are not allowed for 's'.
1655      if (ConstraintLetter != 's') {
1656        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1657        return;
1658      }
1659    }
1660    break;
1661  }
1662  }
1663}
1664
1665std::vector<unsigned> TargetLowering::
1666getRegClassForInlineAsmConstraint(const std::string &Constraint,
1667                                  MVT VT) const {
1668  return std::vector<unsigned>();
1669}
1670
1671
1672std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1673getRegForInlineAsmConstraint(const std::string &Constraint,
1674                             MVT VT) const {
1675  if (Constraint[0] != '{')
1676    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1677  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1678
1679  // Remove the braces from around the name.
1680  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1681
1682  // Figure out which register class contains this reg.
1683  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1684  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1685       E = RI->regclass_end(); RCI != E; ++RCI) {
1686    const TargetRegisterClass *RC = *RCI;
1687
1688    // If none of the the value types for this register class are valid, we
1689    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1690    bool isLegal = false;
1691    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1692         I != E; ++I) {
1693      if (isTypeLegal(*I)) {
1694        isLegal = true;
1695        break;
1696      }
1697    }
1698
1699    if (!isLegal) continue;
1700
1701    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1702         I != E; ++I) {
1703      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1704        return std::make_pair(*I, RC);
1705    }
1706  }
1707
1708  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1709}
1710
1711//===----------------------------------------------------------------------===//
1712// Constraint Selection.
1713
1714/// getConstraintGenerality - Return an integer indicating how general CT
1715/// is.
1716static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1717  switch (CT) {
1718  default: assert(0 && "Unknown constraint type!");
1719  case TargetLowering::C_Other:
1720  case TargetLowering::C_Unknown:
1721    return 0;
1722  case TargetLowering::C_Register:
1723    return 1;
1724  case TargetLowering::C_RegisterClass:
1725    return 2;
1726  case TargetLowering::C_Memory:
1727    return 3;
1728  }
1729}
1730
1731/// ChooseConstraint - If there are multiple different constraints that we
1732/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1733/// This is somewhat tricky: constraints fall into four classes:
1734///    Other         -> immediates and magic values
1735///    Register      -> one specific register
1736///    RegisterClass -> a group of regs
1737///    Memory        -> memory
1738/// Ideally, we would pick the most specific constraint possible: if we have
1739/// something that fits into a register, we would pick it.  The problem here
1740/// is that if we have something that could either be in a register or in
1741/// memory that use of the register could cause selection of *other*
1742/// operands to fail: they might only succeed if we pick memory.  Because of
1743/// this the heuristic we use is:
1744///
1745///  1) If there is an 'other' constraint, and if the operand is valid for
1746///     that constraint, use it.  This makes us take advantage of 'i'
1747///     constraints when available.
1748///  2) Otherwise, pick the most general constraint present.  This prefers
1749///     'm' over 'r', for example.
1750///
1751static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1752                             const TargetLowering &TLI,
1753                             SDOperand Op, SelectionDAG *DAG) {
1754  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1755  unsigned BestIdx = 0;
1756  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1757  int BestGenerality = -1;
1758
1759  // Loop over the options, keeping track of the most general one.
1760  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1761    TargetLowering::ConstraintType CType =
1762      TLI.getConstraintType(OpInfo.Codes[i]);
1763
1764    // If this is an 'other' constraint, see if the operand is valid for it.
1765    // For example, on X86 we might have an 'rI' constraint.  If the operand
1766    // is an integer in the range [0..31] we want to use I (saving a load
1767    // of a register), otherwise we must use 'r'.
1768    if (CType == TargetLowering::C_Other && Op.Val) {
1769      assert(OpInfo.Codes[i].size() == 1 &&
1770             "Unhandled multi-letter 'other' constraint");
1771      std::vector<SDOperand> ResultOps;
1772      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1773                                       ResultOps, *DAG);
1774      if (!ResultOps.empty()) {
1775        BestType = CType;
1776        BestIdx = i;
1777        break;
1778      }
1779    }
1780
1781    // This constraint letter is more general than the previous one, use it.
1782    int Generality = getConstraintGenerality(CType);
1783    if (Generality > BestGenerality) {
1784      BestType = CType;
1785      BestIdx = i;
1786      BestGenerality = Generality;
1787    }
1788  }
1789
1790  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1791  OpInfo.ConstraintType = BestType;
1792}
1793
1794/// ComputeConstraintToUse - Determines the constraint code and constraint
1795/// type to use for the specific AsmOperandInfo, setting
1796/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1797void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1798                                            SDOperand Op,
1799                                            SelectionDAG *DAG) const {
1800  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1801
1802  // Single-letter constraints ('r') are very common.
1803  if (OpInfo.Codes.size() == 1) {
1804    OpInfo.ConstraintCode = OpInfo.Codes[0];
1805    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1806  } else {
1807    ChooseConstraint(OpInfo, *this, Op, DAG);
1808  }
1809
1810  // 'X' matches anything.
1811  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1812    // Labels and constants are handled elsewhere ('X' is the only thing
1813    // that matches labels).
1814    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1815        isa<ConstantInt>(OpInfo.CallOperandVal))
1816      return;
1817
1818    // Otherwise, try to resolve it to something we know about by looking at
1819    // the actual operand type.
1820    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1821      OpInfo.ConstraintCode = Repl;
1822      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1823    }
1824  }
1825}
1826
1827//===----------------------------------------------------------------------===//
1828//  Loop Strength Reduction hooks
1829//===----------------------------------------------------------------------===//
1830
1831/// isLegalAddressingMode - Return true if the addressing mode represented
1832/// by AM is legal for this target, for a load/store of the specified type.
1833bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1834                                           const Type *Ty) const {
1835  // The default implementation of this implements a conservative RISCy, r+r and
1836  // r+i addr mode.
1837
1838  // Allows a sign-extended 16-bit immediate field.
1839  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1840    return false;
1841
1842  // No global is ever allowed as a base.
1843  if (AM.BaseGV)
1844    return false;
1845
1846  // Only support r+r,
1847  switch (AM.Scale) {
1848  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1849    break;
1850  case 1:
1851    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1852      return false;
1853    // Otherwise we have r+r or r+i.
1854    break;
1855  case 2:
1856    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1857      return false;
1858    // Allow 2*r as r+r.
1859    break;
1860  }
1861
1862  return true;
1863}
1864
1865// Magic for divide replacement
1866
1867struct ms {
1868  int64_t m;  // magic number
1869  int64_t s;  // shift amount
1870};
1871
1872struct mu {
1873  uint64_t m; // magic number
1874  int64_t a;  // add indicator
1875  int64_t s;  // shift amount
1876};
1877
1878/// magic - calculate the magic numbers required to codegen an integer sdiv as
1879/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1880/// or -1.
1881static ms magic32(int32_t d) {
1882  int32_t p;
1883  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1884  const uint32_t two31 = 0x80000000U;
1885  struct ms mag;
1886
1887  ad = abs(d);
1888  t = two31 + ((uint32_t)d >> 31);
1889  anc = t - 1 - t%ad;   // absolute value of nc
1890  p = 31;               // initialize p
1891  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1892  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1893  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1894  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1895  do {
1896    p = p + 1;
1897    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1898    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1899    if (r1 >= anc) {  // must be unsigned comparison
1900      q1 = q1 + 1;
1901      r1 = r1 - anc;
1902    }
1903    q2 = 2*q2;        // update q2 = 2p/abs(d)
1904    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1905    if (r2 >= ad) {   // must be unsigned comparison
1906      q2 = q2 + 1;
1907      r2 = r2 - ad;
1908    }
1909    delta = ad - r2;
1910  } while (q1 < delta || (q1 == delta && r1 == 0));
1911
1912  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1913  if (d < 0) mag.m = -mag.m; // resulting magic number
1914  mag.s = p - 32;            // resulting shift
1915  return mag;
1916}
1917
1918/// magicu - calculate the magic numbers required to codegen an integer udiv as
1919/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1920static mu magicu32(uint32_t d) {
1921  int32_t p;
1922  uint32_t nc, delta, q1, r1, q2, r2;
1923  struct mu magu;
1924  magu.a = 0;               // initialize "add" indicator
1925  nc = - 1 - (-d)%d;
1926  p = 31;                   // initialize p
1927  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1928  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1929  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1930  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1931  do {
1932    p = p + 1;
1933    if (r1 >= nc - r1 ) {
1934      q1 = 2*q1 + 1;  // update q1
1935      r1 = 2*r1 - nc; // update r1
1936    }
1937    else {
1938      q1 = 2*q1; // update q1
1939      r1 = 2*r1; // update r1
1940    }
1941    if (r2 + 1 >= d - r2) {
1942      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1943      q2 = 2*q2 + 1;     // update q2
1944      r2 = 2*r2 + 1 - d; // update r2
1945    }
1946    else {
1947      if (q2 >= 0x80000000) magu.a = 1;
1948      q2 = 2*q2;     // update q2
1949      r2 = 2*r2 + 1; // update r2
1950    }
1951    delta = d - 1 - r2;
1952  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1953  magu.m = q2 + 1; // resulting magic number
1954  magu.s = p - 32;  // resulting shift
1955  return magu;
1956}
1957
1958/// magic - calculate the magic numbers required to codegen an integer sdiv as
1959/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1960/// or -1.
1961static ms magic64(int64_t d) {
1962  int64_t p;
1963  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1964  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1965  struct ms mag;
1966
1967  ad = d >= 0 ? d : -d;
1968  t = two63 + ((uint64_t)d >> 63);
1969  anc = t - 1 - t%ad;   // absolute value of nc
1970  p = 63;               // initialize p
1971  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1972  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1973  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1974  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1975  do {
1976    p = p + 1;
1977    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1978    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1979    if (r1 >= anc) {  // must be unsigned comparison
1980      q1 = q1 + 1;
1981      r1 = r1 - anc;
1982    }
1983    q2 = 2*q2;        // update q2 = 2p/abs(d)
1984    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1985    if (r2 >= ad) {   // must be unsigned comparison
1986      q2 = q2 + 1;
1987      r2 = r2 - ad;
1988    }
1989    delta = ad - r2;
1990  } while (q1 < delta || (q1 == delta && r1 == 0));
1991
1992  mag.m = q2 + 1;
1993  if (d < 0) mag.m = -mag.m; // resulting magic number
1994  mag.s = p - 64;            // resulting shift
1995  return mag;
1996}
1997
1998/// magicu - calculate the magic numbers required to codegen an integer udiv as
1999/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2000static mu magicu64(uint64_t d)
2001{
2002  int64_t p;
2003  uint64_t nc, delta, q1, r1, q2, r2;
2004  struct mu magu;
2005  magu.a = 0;               // initialize "add" indicator
2006  nc = - 1 - (-d)%d;
2007  p = 63;                   // initialize p
2008  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2009  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2010  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2011  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2012  do {
2013    p = p + 1;
2014    if (r1 >= nc - r1 ) {
2015      q1 = 2*q1 + 1;  // update q1
2016      r1 = 2*r1 - nc; // update r1
2017    }
2018    else {
2019      q1 = 2*q1; // update q1
2020      r1 = 2*r1; // update r1
2021    }
2022    if (r2 + 1 >= d - r2) {
2023      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2024      q2 = 2*q2 + 1;     // update q2
2025      r2 = 2*r2 + 1 - d; // update r2
2026    }
2027    else {
2028      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2029      q2 = 2*q2;     // update q2
2030      r2 = 2*r2 + 1; // update r2
2031    }
2032    delta = d - 1 - r2;
2033  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2034  magu.m = q2 + 1; // resulting magic number
2035  magu.s = p - 64;  // resulting shift
2036  return magu;
2037}
2038
2039/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2040/// return a DAG expression to select that will generate the same value by
2041/// multiplying by a magic number.  See:
2042/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2043SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2044                                    std::vector<SDNode*>* Created) const {
2045  MVT VT = N->getValueType(0);
2046
2047  // Check to see if we can do this.
2048  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2049    return SDOperand();       // BuildSDIV only operates on i32 or i64
2050
2051  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2052  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2053
2054  // Multiply the numerator (operand 0) by the magic value
2055  SDOperand Q;
2056  if (isOperationLegal(ISD::MULHS, VT))
2057    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2058                    DAG.getConstant(magics.m, VT));
2059  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2060    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2061                              N->getOperand(0),
2062                              DAG.getConstant(magics.m, VT)).Val, 1);
2063  else
2064    return SDOperand();       // No mulhs or equvialent
2065  // If d > 0 and m < 0, add the numerator
2066  if (d > 0 && magics.m < 0) {
2067    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2068    if (Created)
2069      Created->push_back(Q.Val);
2070  }
2071  // If d < 0 and m > 0, subtract the numerator.
2072  if (d < 0 && magics.m > 0) {
2073    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2074    if (Created)
2075      Created->push_back(Q.Val);
2076  }
2077  // Shift right algebraic if shift value is nonzero
2078  if (magics.s > 0) {
2079    Q = DAG.getNode(ISD::SRA, VT, Q,
2080                    DAG.getConstant(magics.s, getShiftAmountTy()));
2081    if (Created)
2082      Created->push_back(Q.Val);
2083  }
2084  // Extract the sign bit and add it to the quotient
2085  SDOperand T =
2086    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2087                                                 getShiftAmountTy()));
2088  if (Created)
2089    Created->push_back(T.Val);
2090  return DAG.getNode(ISD::ADD, VT, Q, T);
2091}
2092
2093/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2094/// return a DAG expression to select that will generate the same value by
2095/// multiplying by a magic number.  See:
2096/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2097SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2098                                    std::vector<SDNode*>* Created) const {
2099  MVT VT = N->getValueType(0);
2100
2101  // Check to see if we can do this.
2102  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2103    return SDOperand();       // BuildUDIV only operates on i32 or i64
2104
2105  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2106  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2107
2108  // Multiply the numerator (operand 0) by the magic value
2109  SDOperand Q;
2110  if (isOperationLegal(ISD::MULHU, VT))
2111    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2112                    DAG.getConstant(magics.m, VT));
2113  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2114    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2115                              N->getOperand(0),
2116                              DAG.getConstant(magics.m, VT)).Val, 1);
2117  else
2118    return SDOperand();       // No mulhu or equvialent
2119  if (Created)
2120    Created->push_back(Q.Val);
2121
2122  if (magics.a == 0) {
2123    return DAG.getNode(ISD::SRL, VT, Q,
2124                       DAG.getConstant(magics.s, getShiftAmountTy()));
2125  } else {
2126    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2127    if (Created)
2128      Created->push_back(NPQ.Val);
2129    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2130                      DAG.getConstant(1, getShiftAmountTy()));
2131    if (Created)
2132      Created->push_back(NPQ.Val);
2133    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2134    if (Created)
2135      Created->push_back(NPQ.Val);
2136    return DAG.getNode(ISD::SRL, VT, NPQ,
2137                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2138  }
2139}
2140