TargetLowering.cpp revision 89217a6f1852e764e58c489872b2d155dc2b7b8b
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::LOG_F32] = "logf";
87  Names[RTLIB::LOG_F64] = "log";
88  Names[RTLIB::LOG_F80] = "logl";
89  Names[RTLIB::LOG_PPCF128] = "logl";
90  Names[RTLIB::LOG2_F32] = "log2f";
91  Names[RTLIB::LOG2_F64] = "log2";
92  Names[RTLIB::LOG2_F80] = "log2l";
93  Names[RTLIB::LOG2_PPCF128] = "log2l";
94  Names[RTLIB::LOG10_F32] = "log10f";
95  Names[RTLIB::LOG10_F64] = "log10";
96  Names[RTLIB::LOG10_F80] = "log10l";
97  Names[RTLIB::LOG10_PPCF128] = "log10l";
98  Names[RTLIB::EXP_F32] = "expf";
99  Names[RTLIB::EXP_F64] = "exp";
100  Names[RTLIB::EXP_F80] = "expl";
101  Names[RTLIB::EXP_PPCF128] = "expl";
102  Names[RTLIB::EXP2_F32] = "exp2f";
103  Names[RTLIB::EXP2_F64] = "exp2";
104  Names[RTLIB::EXP2_F80] = "exp2l";
105  Names[RTLIB::EXP2_PPCF128] = "exp2l";
106  Names[RTLIB::SIN_F32] = "sinf";
107  Names[RTLIB::SIN_F64] = "sin";
108  Names[RTLIB::SIN_F80] = "sinl";
109  Names[RTLIB::SIN_PPCF128] = "sinl";
110  Names[RTLIB::COS_F32] = "cosf";
111  Names[RTLIB::COS_F64] = "cos";
112  Names[RTLIB::COS_F80] = "cosl";
113  Names[RTLIB::COS_PPCF128] = "cosl";
114  Names[RTLIB::POW_F32] = "powf";
115  Names[RTLIB::POW_F64] = "pow";
116  Names[RTLIB::POW_F80] = "powl";
117  Names[RTLIB::POW_PPCF128] = "powl";
118  Names[RTLIB::CEIL_F32] = "ceilf";
119  Names[RTLIB::CEIL_F64] = "ceil";
120  Names[RTLIB::CEIL_F80] = "ceill";
121  Names[RTLIB::CEIL_PPCF128] = "ceill";
122  Names[RTLIB::TRUNC_F32] = "truncf";
123  Names[RTLIB::TRUNC_F64] = "trunc";
124  Names[RTLIB::TRUNC_F80] = "truncl";
125  Names[RTLIB::TRUNC_PPCF128] = "truncl";
126  Names[RTLIB::RINT_F32] = "rintf";
127  Names[RTLIB::RINT_F64] = "rint";
128  Names[RTLIB::RINT_F80] = "rintl";
129  Names[RTLIB::RINT_PPCF128] = "rintl";
130  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
131  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
132  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
133  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
134  Names[RTLIB::FLOOR_F32] = "floorf";
135  Names[RTLIB::FLOOR_F64] = "floor";
136  Names[RTLIB::FLOOR_F80] = "floorl";
137  Names[RTLIB::FLOOR_PPCF128] = "floorl";
138  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
139  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
140  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
141  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
142  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
143  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
144  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
145  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
146  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
147  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
148  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
149  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
150  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
151  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
152  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
153  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
154  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
155  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
156  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
157  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
158  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
159  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
160  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
161  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
162  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
163  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
164  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
165  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
166  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
167  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
168  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
169  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
170  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
171  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
172  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
173  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
174  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
175  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
176  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
177  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
178  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
179  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
180  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
181  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
182  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
183  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
184  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
185  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
186  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
187  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
188  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
189  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
190  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
191  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
192  Names[RTLIB::OEQ_F32] = "__eqsf2";
193  Names[RTLIB::OEQ_F64] = "__eqdf2";
194  Names[RTLIB::UNE_F32] = "__nesf2";
195  Names[RTLIB::UNE_F64] = "__nedf2";
196  Names[RTLIB::OGE_F32] = "__gesf2";
197  Names[RTLIB::OGE_F64] = "__gedf2";
198  Names[RTLIB::OLT_F32] = "__ltsf2";
199  Names[RTLIB::OLT_F64] = "__ltdf2";
200  Names[RTLIB::OLE_F32] = "__lesf2";
201  Names[RTLIB::OLE_F64] = "__ledf2";
202  Names[RTLIB::OGT_F32] = "__gtsf2";
203  Names[RTLIB::OGT_F64] = "__gtdf2";
204  Names[RTLIB::UO_F32] = "__unordsf2";
205  Names[RTLIB::UO_F64] = "__unorddf2";
206  Names[RTLIB::O_F32] = "__unordsf2";
207  Names[RTLIB::O_F64] = "__unorddf2";
208}
209
210/// getFPEXT - Return the FPEXT_*_* value for the given types, or
211/// UNKNOWN_LIBCALL if there is none.
212RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
213  if (OpVT == MVT::f32) {
214    if (RetVT == MVT::f64)
215      return FPEXT_F32_F64;
216  }
217  return UNKNOWN_LIBCALL;
218}
219
220/// getFPROUND - Return the FPROUND_*_* value for the given types, or
221/// UNKNOWN_LIBCALL if there is none.
222RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
223  if (RetVT == MVT::f32) {
224    if (OpVT == MVT::f64)
225      return FPROUND_F64_F32;
226    if (OpVT == MVT::f80)
227      return FPROUND_F80_F32;
228    if (OpVT == MVT::ppcf128)
229      return FPROUND_PPCF128_F32;
230  } else if (RetVT == MVT::f64) {
231    if (OpVT == MVT::f80)
232      return FPROUND_F80_F64;
233    if (OpVT == MVT::ppcf128)
234      return FPROUND_PPCF128_F64;
235  }
236  return UNKNOWN_LIBCALL;
237}
238
239/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
240/// UNKNOWN_LIBCALL if there is none.
241RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
242  if (OpVT == MVT::f32) {
243    if (RetVT == MVT::i32)
244      return FPTOSINT_F32_I32;
245    if (RetVT == MVT::i64)
246      return FPTOSINT_F32_I64;
247    if (RetVT == MVT::i128)
248      return FPTOSINT_F32_I128;
249  } else if (OpVT == MVT::f64) {
250    if (RetVT == MVT::i32)
251      return FPTOSINT_F64_I32;
252    if (RetVT == MVT::i64)
253      return FPTOSINT_F64_I64;
254    if (RetVT == MVT::i128)
255      return FPTOSINT_F64_I128;
256  } else if (OpVT == MVT::f80) {
257    if (RetVT == MVT::i32)
258      return FPTOSINT_F80_I32;
259    if (RetVT == MVT::i64)
260      return FPTOSINT_F80_I64;
261    if (RetVT == MVT::i128)
262      return FPTOSINT_F80_I128;
263  } else if (OpVT == MVT::ppcf128) {
264    if (RetVT == MVT::i32)
265      return FPTOSINT_PPCF128_I32;
266    if (RetVT == MVT::i64)
267      return FPTOSINT_PPCF128_I64;
268    if (RetVT == MVT::i128)
269      return FPTOSINT_PPCF128_I128;
270  }
271  return UNKNOWN_LIBCALL;
272}
273
274/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
275/// UNKNOWN_LIBCALL if there is none.
276RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
277  if (OpVT == MVT::f32) {
278    if (RetVT == MVT::i32)
279      return FPTOUINT_F32_I32;
280    if (RetVT == MVT::i64)
281      return FPTOUINT_F32_I64;
282    if (RetVT == MVT::i128)
283      return FPTOUINT_F32_I128;
284  } else if (OpVT == MVT::f64) {
285    if (RetVT == MVT::i32)
286      return FPTOUINT_F64_I32;
287    if (RetVT == MVT::i64)
288      return FPTOUINT_F64_I64;
289    if (RetVT == MVT::i128)
290      return FPTOUINT_F64_I128;
291  } else if (OpVT == MVT::f80) {
292    if (RetVT == MVT::i32)
293      return FPTOUINT_F80_I32;
294    if (RetVT == MVT::i64)
295      return FPTOUINT_F80_I64;
296    if (RetVT == MVT::i128)
297      return FPTOUINT_F80_I128;
298  } else if (OpVT == MVT::ppcf128) {
299    if (RetVT == MVT::i32)
300      return FPTOUINT_PPCF128_I32;
301    if (RetVT == MVT::i64)
302      return FPTOUINT_PPCF128_I64;
303    if (RetVT == MVT::i128)
304      return FPTOUINT_PPCF128_I128;
305  }
306  return UNKNOWN_LIBCALL;
307}
308
309/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
310/// UNKNOWN_LIBCALL if there is none.
311RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
312  if (OpVT == MVT::i32) {
313    if (RetVT == MVT::f32)
314      return SINTTOFP_I32_F32;
315    else if (RetVT == MVT::f64)
316      return SINTTOFP_I32_F64;
317    else if (RetVT == MVT::f80)
318      return SINTTOFP_I32_F80;
319    else if (RetVT == MVT::ppcf128)
320      return SINTTOFP_I32_PPCF128;
321  } else if (OpVT == MVT::i64) {
322    if (RetVT == MVT::f32)
323      return SINTTOFP_I64_F32;
324    else if (RetVT == MVT::f64)
325      return SINTTOFP_I64_F64;
326    else if (RetVT == MVT::f80)
327      return SINTTOFP_I64_F80;
328    else if (RetVT == MVT::ppcf128)
329      return SINTTOFP_I64_PPCF128;
330  } else if (OpVT == MVT::i128) {
331    if (RetVT == MVT::f32)
332      return SINTTOFP_I128_F32;
333    else if (RetVT == MVT::f64)
334      return SINTTOFP_I128_F64;
335    else if (RetVT == MVT::f80)
336      return SINTTOFP_I128_F80;
337    else if (RetVT == MVT::ppcf128)
338      return SINTTOFP_I128_PPCF128;
339  }
340  return UNKNOWN_LIBCALL;
341}
342
343/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
344/// UNKNOWN_LIBCALL if there is none.
345RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
346  if (OpVT == MVT::i32) {
347    if (RetVT == MVT::f32)
348      return UINTTOFP_I32_F32;
349    else if (RetVT == MVT::f64)
350      return UINTTOFP_I32_F64;
351    else if (RetVT == MVT::f80)
352      return UINTTOFP_I32_F80;
353    else if (RetVT == MVT::ppcf128)
354      return UINTTOFP_I32_PPCF128;
355  } else if (OpVT == MVT::i64) {
356    if (RetVT == MVT::f32)
357      return UINTTOFP_I64_F32;
358    else if (RetVT == MVT::f64)
359      return UINTTOFP_I64_F64;
360    else if (RetVT == MVT::f80)
361      return UINTTOFP_I64_F80;
362    else if (RetVT == MVT::ppcf128)
363      return UINTTOFP_I64_PPCF128;
364  } else if (OpVT == MVT::i128) {
365    if (RetVT == MVT::f32)
366      return UINTTOFP_I128_F32;
367    else if (RetVT == MVT::f64)
368      return UINTTOFP_I128_F64;
369    else if (RetVT == MVT::f80)
370      return UINTTOFP_I128_F80;
371    else if (RetVT == MVT::ppcf128)
372      return UINTTOFP_I128_PPCF128;
373  }
374  return UNKNOWN_LIBCALL;
375}
376
377/// InitCmpLibcallCCs - Set default comparison libcall CC.
378///
379static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
380  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
381  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
382  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
383  CCs[RTLIB::UNE_F32] = ISD::SETNE;
384  CCs[RTLIB::UNE_F64] = ISD::SETNE;
385  CCs[RTLIB::OGE_F32] = ISD::SETGE;
386  CCs[RTLIB::OGE_F64] = ISD::SETGE;
387  CCs[RTLIB::OLT_F32] = ISD::SETLT;
388  CCs[RTLIB::OLT_F64] = ISD::SETLT;
389  CCs[RTLIB::OLE_F32] = ISD::SETLE;
390  CCs[RTLIB::OLE_F64] = ISD::SETLE;
391  CCs[RTLIB::OGT_F32] = ISD::SETGT;
392  CCs[RTLIB::OGT_F64] = ISD::SETGT;
393  CCs[RTLIB::UO_F32] = ISD::SETNE;
394  CCs[RTLIB::UO_F64] = ISD::SETNE;
395  CCs[RTLIB::O_F32] = ISD::SETEQ;
396  CCs[RTLIB::O_F64] = ISD::SETEQ;
397}
398
399TargetLowering::TargetLowering(TargetMachine &tm)
400  : TM(tm), TD(TM.getTargetData()) {
401  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
402         "Fixed size array in TargetLowering is not large enough!");
403  // All operations default to being supported.
404  memset(OpActions, 0, sizeof(OpActions));
405  memset(LoadExtActions, 0, sizeof(LoadExtActions));
406  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
407  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
408  memset(ConvertActions, 0, sizeof(ConvertActions));
409  memset(CondCodeActions, 0, sizeof(CondCodeActions));
410
411  // Set default actions for various operations.
412  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
413    // Default all indexed load / store to expand.
414    for (unsigned IM = (unsigned)ISD::PRE_INC;
415         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
416      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
417      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
418    }
419
420    // These operations default to expand.
421    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
422  }
423
424  // Most targets ignore the @llvm.prefetch intrinsic.
425  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
426
427  // ConstantFP nodes default to expand.  Targets can either change this to
428  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
429  // to optimize expansions for certain constants.
430  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
431  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
432  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
433
434  // These library functions default to expand.
435  setOperationAction(ISD::FLOG , MVT::f64, Expand);
436  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
437  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
438  setOperationAction(ISD::FEXP , MVT::f64, Expand);
439  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
440  setOperationAction(ISD::FLOG , MVT::f32, Expand);
441  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
442  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
443  setOperationAction(ISD::FEXP , MVT::f32, Expand);
444  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
445
446  // Default ISD::TRAP to expand (which turns it into abort).
447  setOperationAction(ISD::TRAP, MVT::Other, Expand);
448
449  IsLittleEndian = TD->isLittleEndian();
450  UsesGlobalOffsetTable = false;
451  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
452  ShiftAmtHandling = Undefined;
453  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
454  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
455  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
456  allowUnalignedMemoryAccesses = false;
457  UseUnderscoreSetJmp = false;
458  UseUnderscoreLongJmp = false;
459  SelectIsExpensive = false;
460  IntDivIsCheap = false;
461  Pow2DivIsCheap = false;
462  StackPointerRegisterToSaveRestore = 0;
463  ExceptionPointerRegister = 0;
464  ExceptionSelectorRegister = 0;
465  SetCCResultContents = UndefinedSetCCResult;
466  SchedPreferenceInfo = SchedulingForLatency;
467  JumpBufSize = 0;
468  JumpBufAlignment = 0;
469  IfCvtBlockSizeLimit = 2;
470  IfCvtDupBlockSizeLimit = 0;
471  PrefLoopAlignment = 0;
472
473  InitLibcallNames(LibcallRoutineNames);
474  InitCmpLibcallCCs(CmpLibcallCCs);
475
476  // Tell Legalize whether the assembler supports DEBUG_LOC.
477  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
478  if (!TASM || !TASM->hasDotLocAndDotFile())
479    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
480}
481
482TargetLowering::~TargetLowering() {}
483
484/// computeRegisterProperties - Once all of the register classes are added,
485/// this allows us to compute derived properties we expose.
486void TargetLowering::computeRegisterProperties() {
487  assert(MVT::LAST_VALUETYPE <= 32 &&
488         "Too many value types for ValueTypeActions to hold!");
489
490  // Everything defaults to needing one register.
491  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
492    NumRegistersForVT[i] = 1;
493    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
494  }
495  // ...except isVoid, which doesn't need any registers.
496  NumRegistersForVT[MVT::isVoid] = 0;
497
498  // Find the largest integer register class.
499  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
500  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
501    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
502
503  // Every integer value type larger than this largest register takes twice as
504  // many registers to represent as the previous ValueType.
505  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
506    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
507    if (!EVT.isInteger())
508      break;
509    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
510    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
511    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
512    ValueTypeActions.setTypeAction(EVT, Expand);
513  }
514
515  // Inspect all of the ValueType's smaller than the largest integer
516  // register to see which ones need promotion.
517  unsigned LegalIntReg = LargestIntReg;
518  for (unsigned IntReg = LargestIntReg - 1;
519       IntReg >= (unsigned)MVT::i1; --IntReg) {
520    MVT IVT = (MVT::SimpleValueType)IntReg;
521    if (isTypeLegal(IVT)) {
522      LegalIntReg = IntReg;
523    } else {
524      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
525        (MVT::SimpleValueType)LegalIntReg;
526      ValueTypeActions.setTypeAction(IVT, Promote);
527    }
528  }
529
530  // ppcf128 type is really two f64's.
531  if (!isTypeLegal(MVT::ppcf128)) {
532    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
533    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
534    TransformToType[MVT::ppcf128] = MVT::f64;
535    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
536  }
537
538  // Decide how to handle f64. If the target does not have native f64 support,
539  // expand it to i64 and we will be generating soft float library calls.
540  if (!isTypeLegal(MVT::f64)) {
541    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
542    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
543    TransformToType[MVT::f64] = MVT::i64;
544    ValueTypeActions.setTypeAction(MVT::f64, Expand);
545  }
546
547  // Decide how to handle f32. If the target does not have native support for
548  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
549  if (!isTypeLegal(MVT::f32)) {
550    if (isTypeLegal(MVT::f64)) {
551      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
552      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
553      TransformToType[MVT::f32] = MVT::f64;
554      ValueTypeActions.setTypeAction(MVT::f32, Promote);
555    } else {
556      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
557      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
558      TransformToType[MVT::f32] = MVT::i32;
559      ValueTypeActions.setTypeAction(MVT::f32, Expand);
560    }
561  }
562
563  // Loop over all of the vector value types to see which need transformations.
564  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
565       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
566    MVT VT = (MVT::SimpleValueType)i;
567    if (!isTypeLegal(VT)) {
568      MVT IntermediateVT, RegisterVT;
569      unsigned NumIntermediates;
570      NumRegistersForVT[i] =
571        getVectorTypeBreakdown(VT,
572                               IntermediateVT, NumIntermediates,
573                               RegisterVT);
574      RegisterTypeForVT[i] = RegisterVT;
575      TransformToType[i] = MVT::Other; // this isn't actually used
576      ValueTypeActions.setTypeAction(VT, Promote);
577    }
578  }
579}
580
581const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
582  return NULL;
583}
584
585
586MVT TargetLowering::getSetCCResultType(const SDValue &) const {
587  return getValueType(TD->getIntPtrType());
588}
589
590
591/// getVectorTypeBreakdown - Vector types are broken down into some number of
592/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
593/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
594/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
595///
596/// This method returns the number of registers needed, and the VT for each
597/// register.  It also returns the VT and quantity of the intermediate values
598/// before they are promoted/expanded.
599///
600unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
601                                                MVT &IntermediateVT,
602                                                unsigned &NumIntermediates,
603                                      MVT &RegisterVT) const {
604  // Figure out the right, legal destination reg to copy into.
605  unsigned NumElts = VT.getVectorNumElements();
606  MVT EltTy = VT.getVectorElementType();
607
608  unsigned NumVectorRegs = 1;
609
610  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
611  // could break down into LHS/RHS like LegalizeDAG does.
612  if (!isPowerOf2_32(NumElts)) {
613    NumVectorRegs = NumElts;
614    NumElts = 1;
615  }
616
617  // Divide the input until we get to a supported size.  This will always
618  // end with a scalar if the target doesn't support vectors.
619  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
620    NumElts >>= 1;
621    NumVectorRegs <<= 1;
622  }
623
624  NumIntermediates = NumVectorRegs;
625
626  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
627  if (!isTypeLegal(NewVT))
628    NewVT = EltTy;
629  IntermediateVT = NewVT;
630
631  MVT DestVT = getTypeToTransformTo(NewVT);
632  RegisterVT = DestVT;
633  if (DestVT.bitsLT(NewVT)) {
634    // Value is expanded, e.g. i64 -> i16.
635    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
636  } else {
637    // Otherwise, promotion or legal types use the same number of registers as
638    // the vector decimated to the appropriate level.
639    return NumVectorRegs;
640  }
641
642  return 1;
643}
644
645/// getWidenVectorType: given a vector type, returns the type to widen to
646/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
647/// If there is no vector type that we want to widen to, returns MVT::Other
648/// When and where to widen is target dependent based on the cost of
649/// scalarizing vs using the wider vector type.
650MVT TargetLowering::getWidenVectorType(MVT VT) {
651  assert(VT.isVector());
652  if (isTypeLegal(VT))
653    return VT;
654
655  // Default is not to widen until moved to LegalizeTypes
656  return MVT::Other;
657}
658
659/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
660/// function arguments in the caller parameter area.  This is the actual
661/// alignment, not its logarithm.
662unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
663  return TD->getCallFrameTypeAlignment(Ty);
664}
665
666SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
667                                                 SelectionDAG &DAG) const {
668  if (usesGlobalOffsetTable())
669    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
670  return Table;
671}
672
673bool
674TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
675  // Assume that everything is safe in static mode.
676  if (getTargetMachine().getRelocationModel() == Reloc::Static)
677    return true;
678
679  // In dynamic-no-pic mode, assume that known defined values are safe.
680  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
681      GA &&
682      !GA->getGlobal()->isDeclaration() &&
683      !GA->getGlobal()->mayBeOverridden())
684    return true;
685
686  // Otherwise assume nothing is safe.
687  return false;
688}
689
690//===----------------------------------------------------------------------===//
691//  Optimization Methods
692//===----------------------------------------------------------------------===//
693
694/// ShrinkDemandedConstant - Check to see if the specified operand of the
695/// specified instruction is a constant integer.  If so, check to see if there
696/// are any bits set in the constant that are not demanded.  If so, shrink the
697/// constant and return true.
698bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
699                                                        const APInt &Demanded) {
700  // FIXME: ISD::SELECT, ISD::SELECT_CC
701  switch(Op.getOpcode()) {
702  default: break;
703  case ISD::AND:
704  case ISD::OR:
705  case ISD::XOR:
706    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
707      if (C->getAPIntValue().intersects(~Demanded)) {
708        MVT VT = Op.getValueType();
709        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
710                                    DAG.getConstant(Demanded &
711                                                      C->getAPIntValue(),
712                                                    VT));
713        return CombineTo(Op, New);
714      }
715    break;
716  }
717  return false;
718}
719
720/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
721/// DemandedMask bits of the result of Op are ever used downstream.  If we can
722/// use this information to simplify Op, create a new simplified DAG node and
723/// return true, returning the original and new nodes in Old and New. Otherwise,
724/// analyze the expression and return a mask of KnownOne and KnownZero bits for
725/// the expression (used to simplify the caller).  The KnownZero/One bits may
726/// only be accurate for those bits in the DemandedMask.
727bool TargetLowering::SimplifyDemandedBits(SDValue Op,
728                                          const APInt &DemandedMask,
729                                          APInt &KnownZero,
730                                          APInt &KnownOne,
731                                          TargetLoweringOpt &TLO,
732                                          unsigned Depth) const {
733  unsigned BitWidth = DemandedMask.getBitWidth();
734  assert(Op.getValueSizeInBits() == BitWidth &&
735         "Mask size mismatches value type size!");
736  APInt NewMask = DemandedMask;
737
738  // Don't know anything.
739  KnownZero = KnownOne = APInt(BitWidth, 0);
740
741  // Other users may use these bits.
742  if (!Op.getNode()->hasOneUse()) {
743    if (Depth != 0) {
744      // If not at the root, Just compute the KnownZero/KnownOne bits to
745      // simplify things downstream.
746      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
747      return false;
748    }
749    // If this is the root being simplified, allow it to have multiple uses,
750    // just set the NewMask to all bits.
751    NewMask = APInt::getAllOnesValue(BitWidth);
752  } else if (DemandedMask == 0) {
753    // Not demanding any bits from Op.
754    if (Op.getOpcode() != ISD::UNDEF)
755      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
756    return false;
757  } else if (Depth == 6) {        // Limit search depth.
758    return false;
759  }
760
761  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
762  switch (Op.getOpcode()) {
763  case ISD::Constant:
764    // We know all of the bits for a constant!
765    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
766    KnownZero = ~KnownOne & NewMask;
767    return false;   // Don't fall through, will infinitely loop.
768  case ISD::AND:
769    // If the RHS is a constant, check to see if the LHS would be zero without
770    // using the bits from the RHS.  Below, we use knowledge about the RHS to
771    // simplify the LHS, here we're using information from the LHS to simplify
772    // the RHS.
773    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
774      APInt LHSZero, LHSOne;
775      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
776                                LHSZero, LHSOne, Depth+1);
777      // If the LHS already has zeros where RHSC does, this and is dead.
778      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
779        return TLO.CombineTo(Op, Op.getOperand(0));
780      // If any of the set bits in the RHS are known zero on the LHS, shrink
781      // the constant.
782      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
783        return true;
784    }
785
786    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
787                             KnownOne, TLO, Depth+1))
788      return true;
789    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
790    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
791                             KnownZero2, KnownOne2, TLO, Depth+1))
792      return true;
793    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
794
795    // If all of the demanded bits are known one on one side, return the other.
796    // These bits cannot contribute to the result of the 'and'.
797    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
798      return TLO.CombineTo(Op, Op.getOperand(0));
799    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
800      return TLO.CombineTo(Op, Op.getOperand(1));
801    // If all of the demanded bits in the inputs are known zeros, return zero.
802    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
803      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
804    // If the RHS is a constant, see if we can simplify it.
805    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
806      return true;
807
808    // Output known-1 bits are only known if set in both the LHS & RHS.
809    KnownOne &= KnownOne2;
810    // Output known-0 are known to be clear if zero in either the LHS | RHS.
811    KnownZero |= KnownZero2;
812    break;
813  case ISD::OR:
814    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
815                             KnownOne, TLO, Depth+1))
816      return true;
817    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
818    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
819                             KnownZero2, KnownOne2, TLO, Depth+1))
820      return true;
821    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
822
823    // If all of the demanded bits are known zero on one side, return the other.
824    // These bits cannot contribute to the result of the 'or'.
825    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
826      return TLO.CombineTo(Op, Op.getOperand(0));
827    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
828      return TLO.CombineTo(Op, Op.getOperand(1));
829    // If all of the potentially set bits on one side are known to be set on
830    // the other side, just use the 'other' side.
831    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
832      return TLO.CombineTo(Op, Op.getOperand(0));
833    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
834      return TLO.CombineTo(Op, Op.getOperand(1));
835    // If the RHS is a constant, see if we can simplify it.
836    if (TLO.ShrinkDemandedConstant(Op, NewMask))
837      return true;
838
839    // Output known-0 bits are only known if clear in both the LHS & RHS.
840    KnownZero &= KnownZero2;
841    // Output known-1 are known to be set if set in either the LHS | RHS.
842    KnownOne |= KnownOne2;
843    break;
844  case ISD::XOR:
845    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
846                             KnownOne, TLO, Depth+1))
847      return true;
848    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
849    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
850                             KnownOne2, TLO, Depth+1))
851      return true;
852    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
853
854    // If all of the demanded bits are known zero on one side, return the other.
855    // These bits cannot contribute to the result of the 'xor'.
856    if ((KnownZero & NewMask) == NewMask)
857      return TLO.CombineTo(Op, Op.getOperand(0));
858    if ((KnownZero2 & NewMask) == NewMask)
859      return TLO.CombineTo(Op, Op.getOperand(1));
860
861    // If all of the unknown bits are known to be zero on one side or the other
862    // (but not both) turn this into an *inclusive* or.
863    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
864    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
865      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
866                                               Op.getOperand(0),
867                                               Op.getOperand(1)));
868
869    // Output known-0 bits are known if clear or set in both the LHS & RHS.
870    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
871    // Output known-1 are known to be set if set in only one of the LHS, RHS.
872    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
873
874    // If all of the demanded bits on one side are known, and all of the set
875    // bits on that side are also known to be set on the other side, turn this
876    // into an AND, as we know the bits will be cleared.
877    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
878    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
879      if ((KnownOne & KnownOne2) == KnownOne) {
880        MVT VT = Op.getValueType();
881        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
882        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
883                                                 ANDC));
884      }
885    }
886
887    // If the RHS is a constant, see if we can simplify it.
888    // for XOR, we prefer to force bits to 1 if they will make a -1.
889    // if we can't force bits, try to shrink constant
890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
891      APInt Expanded = C->getAPIntValue() | (~NewMask);
892      // if we can expand it to have all bits set, do it
893      if (Expanded.isAllOnesValue()) {
894        if (Expanded != C->getAPIntValue()) {
895          MVT VT = Op.getValueType();
896          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
897                                          TLO.DAG.getConstant(Expanded, VT));
898          return TLO.CombineTo(Op, New);
899        }
900        // if it already has all the bits set, nothing to change
901        // but don't shrink either!
902      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
903        return true;
904      }
905    }
906
907    KnownZero = KnownZeroOut;
908    KnownOne  = KnownOneOut;
909    break;
910  case ISD::SELECT:
911    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
912                             KnownOne, TLO, Depth+1))
913      return true;
914    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
915                             KnownOne2, TLO, Depth+1))
916      return true;
917    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
918    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
919
920    // If the operands are constants, see if we can simplify them.
921    if (TLO.ShrinkDemandedConstant(Op, NewMask))
922      return true;
923
924    // Only known if known in both the LHS and RHS.
925    KnownOne &= KnownOne2;
926    KnownZero &= KnownZero2;
927    break;
928  case ISD::SELECT_CC:
929    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
930                             KnownOne, TLO, Depth+1))
931      return true;
932    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
933                             KnownOne2, TLO, Depth+1))
934      return true;
935    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
936    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
937
938    // If the operands are constants, see if we can simplify them.
939    if (TLO.ShrinkDemandedConstant(Op, NewMask))
940      return true;
941
942    // Only known if known in both the LHS and RHS.
943    KnownOne &= KnownOne2;
944    KnownZero &= KnownZero2;
945    break;
946  case ISD::SHL:
947    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
948      unsigned ShAmt = SA->getZExtValue();
949      SDValue InOp = Op.getOperand(0);
950
951      // If the shift count is an invalid immediate, don't do anything.
952      if (ShAmt >= BitWidth)
953        break;
954
955      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
956      // single shift.  We can do this if the bottom bits (which are shifted
957      // out) are never demanded.
958      if (InOp.getOpcode() == ISD::SRL &&
959          isa<ConstantSDNode>(InOp.getOperand(1))) {
960        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
961          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
962          unsigned Opc = ISD::SHL;
963          int Diff = ShAmt-C1;
964          if (Diff < 0) {
965            Diff = -Diff;
966            Opc = ISD::SRL;
967          }
968
969          SDValue NewSA =
970            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
971          MVT VT = Op.getValueType();
972          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
973                                                   InOp.getOperand(0), NewSA));
974        }
975      }
976
977      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
978                               KnownZero, KnownOne, TLO, Depth+1))
979        return true;
980      KnownZero <<= SA->getZExtValue();
981      KnownOne  <<= SA->getZExtValue();
982      // low bits known zero.
983      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
984    }
985    break;
986  case ISD::SRL:
987    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
988      MVT VT = Op.getValueType();
989      unsigned ShAmt = SA->getZExtValue();
990      unsigned VTSize = VT.getSizeInBits();
991      SDValue InOp = Op.getOperand(0);
992
993      // If the shift count is an invalid immediate, don't do anything.
994      if (ShAmt >= BitWidth)
995        break;
996
997      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
998      // single shift.  We can do this if the top bits (which are shifted out)
999      // are never demanded.
1000      if (InOp.getOpcode() == ISD::SHL &&
1001          isa<ConstantSDNode>(InOp.getOperand(1))) {
1002        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1003          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1004          unsigned Opc = ISD::SRL;
1005          int Diff = ShAmt-C1;
1006          if (Diff < 0) {
1007            Diff = -Diff;
1008            Opc = ISD::SHL;
1009          }
1010
1011          SDValue NewSA =
1012            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1013          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
1014                                                   InOp.getOperand(0), NewSA));
1015        }
1016      }
1017
1018      // Compute the new bits that are at the top now.
1019      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1020                               KnownZero, KnownOne, TLO, Depth+1))
1021        return true;
1022      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1023      KnownZero = KnownZero.lshr(ShAmt);
1024      KnownOne  = KnownOne.lshr(ShAmt);
1025
1026      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1027      KnownZero |= HighBits;  // High bits known zero.
1028    }
1029    break;
1030  case ISD::SRA:
1031    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1032      MVT VT = Op.getValueType();
1033      unsigned ShAmt = SA->getZExtValue();
1034
1035      // If the shift count is an invalid immediate, don't do anything.
1036      if (ShAmt >= BitWidth)
1037        break;
1038
1039      APInt InDemandedMask = (NewMask << ShAmt);
1040
1041      // If any of the demanded bits are produced by the sign extension, we also
1042      // demand the input sign bit.
1043      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1044      if (HighBits.intersects(NewMask))
1045        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1046
1047      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1048                               KnownZero, KnownOne, TLO, Depth+1))
1049        return true;
1050      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1051      KnownZero = KnownZero.lshr(ShAmt);
1052      KnownOne  = KnownOne.lshr(ShAmt);
1053
1054      // Handle the sign bit, adjusted to where it is now in the mask.
1055      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1056
1057      // If the input sign bit is known to be zero, or if none of the top bits
1058      // are demanded, turn this into an unsigned shift right.
1059      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1060        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1061                                                 Op.getOperand(1)));
1062      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1063        KnownOne |= HighBits;
1064      }
1065    }
1066    break;
1067  case ISD::SIGN_EXTEND_INREG: {
1068    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1069
1070    // Sign extension.  Compute the demanded bits in the result that are not
1071    // present in the input.
1072    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1073                                          BitWidth - EVT.getSizeInBits()) &
1074                    NewMask;
1075
1076    // If none of the extended bits are demanded, eliminate the sextinreg.
1077    if (NewBits == 0)
1078      return TLO.CombineTo(Op, Op.getOperand(0));
1079
1080    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1081    InSignBit.zext(BitWidth);
1082    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1083                                                   EVT.getSizeInBits()) &
1084                              NewMask;
1085
1086    // Since the sign extended bits are demanded, we know that the sign
1087    // bit is demanded.
1088    InputDemandedBits |= InSignBit;
1089
1090    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1091                             KnownZero, KnownOne, TLO, Depth+1))
1092      return true;
1093    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1094
1095    // If the sign bit of the input is known set or clear, then we know the
1096    // top bits of the result.
1097
1098    // If the input sign bit is known zero, convert this into a zero extension.
1099    if (KnownZero.intersects(InSignBit))
1100      return TLO.CombineTo(Op,
1101                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1102
1103    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1104      KnownOne |= NewBits;
1105      KnownZero &= ~NewBits;
1106    } else {                       // Input sign bit unknown
1107      KnownZero &= ~NewBits;
1108      KnownOne &= ~NewBits;
1109    }
1110    break;
1111  }
1112  case ISD::ZERO_EXTEND: {
1113    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1114    APInt InMask = NewMask;
1115    InMask.trunc(OperandBitWidth);
1116
1117    // If none of the top bits are demanded, convert this into an any_extend.
1118    APInt NewBits =
1119      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1120    if (!NewBits.intersects(NewMask))
1121      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1122                                               Op.getValueType(),
1123                                               Op.getOperand(0)));
1124
1125    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1126                             KnownZero, KnownOne, TLO, Depth+1))
1127      return true;
1128    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1129    KnownZero.zext(BitWidth);
1130    KnownOne.zext(BitWidth);
1131    KnownZero |= NewBits;
1132    break;
1133  }
1134  case ISD::SIGN_EXTEND: {
1135    MVT InVT = Op.getOperand(0).getValueType();
1136    unsigned InBits = InVT.getSizeInBits();
1137    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1138    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1139    APInt NewBits   = ~InMask & NewMask;
1140
1141    // If none of the top bits are demanded, convert this into an any_extend.
1142    if (NewBits == 0)
1143      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1144                                           Op.getOperand(0)));
1145
1146    // Since some of the sign extended bits are demanded, we know that the sign
1147    // bit is demanded.
1148    APInt InDemandedBits = InMask & NewMask;
1149    InDemandedBits |= InSignBit;
1150    InDemandedBits.trunc(InBits);
1151
1152    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1153                             KnownOne, TLO, Depth+1))
1154      return true;
1155    KnownZero.zext(BitWidth);
1156    KnownOne.zext(BitWidth);
1157
1158    // If the sign bit is known zero, convert this to a zero extend.
1159    if (KnownZero.intersects(InSignBit))
1160      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1161                                               Op.getValueType(),
1162                                               Op.getOperand(0)));
1163
1164    // If the sign bit is known one, the top bits match.
1165    if (KnownOne.intersects(InSignBit)) {
1166      KnownOne  |= NewBits;
1167      KnownZero &= ~NewBits;
1168    } else {   // Otherwise, top bits aren't known.
1169      KnownOne  &= ~NewBits;
1170      KnownZero &= ~NewBits;
1171    }
1172    break;
1173  }
1174  case ISD::ANY_EXTEND: {
1175    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1176    APInt InMask = NewMask;
1177    InMask.trunc(OperandBitWidth);
1178    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1179                             KnownZero, KnownOne, TLO, Depth+1))
1180      return true;
1181    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182    KnownZero.zext(BitWidth);
1183    KnownOne.zext(BitWidth);
1184    break;
1185  }
1186  case ISD::TRUNCATE: {
1187    // Simplify the input, using demanded bit information, and compute the known
1188    // zero/one bits live out.
1189    APInt TruncMask = NewMask;
1190    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1191    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1192                             KnownZero, KnownOne, TLO, Depth+1))
1193      return true;
1194    KnownZero.trunc(BitWidth);
1195    KnownOne.trunc(BitWidth);
1196
1197    // If the input is only used by this truncate, see if we can shrink it based
1198    // on the known demanded bits.
1199    if (Op.getOperand(0).getNode()->hasOneUse()) {
1200      SDValue In = Op.getOperand(0);
1201      unsigned InBitWidth = In.getValueSizeInBits();
1202      switch (In.getOpcode()) {
1203      default: break;
1204      case ISD::SRL:
1205        // Shrink SRL by a constant if none of the high bits shifted in are
1206        // demanded.
1207        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1208          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1209                                                 InBitWidth - BitWidth);
1210          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1211          HighBits.trunc(BitWidth);
1212
1213          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1214            // None of the shifted in bits are needed.  Add a truncate of the
1215            // shift input, then shift it.
1216            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1217                                                 Op.getValueType(),
1218                                                 In.getOperand(0));
1219            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1220                                                   NewTrunc, In.getOperand(1)));
1221          }
1222        }
1223        break;
1224      }
1225    }
1226
1227    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1228    break;
1229  }
1230  case ISD::AssertZext: {
1231    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1232    APInt InMask = APInt::getLowBitsSet(BitWidth,
1233                                        VT.getSizeInBits());
1234    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1235                             KnownZero, KnownOne, TLO, Depth+1))
1236      return true;
1237    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238    KnownZero |= ~InMask & NewMask;
1239    break;
1240  }
1241  case ISD::BIT_CONVERT:
1242#if 0
1243    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1244    // is demanded, turn this into a FGETSIGN.
1245    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1246        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1247        !MVT::isVector(Op.getOperand(0).getValueType())) {
1248      // Only do this xform if FGETSIGN is valid or if before legalize.
1249      if (!TLO.AfterLegalize ||
1250          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1251        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1252        // place.  We expect the SHL to be eliminated by other optimizations.
1253        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1254                                         Op.getOperand(0));
1255        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1256        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1257        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1258                                                 Sign, ShAmt));
1259      }
1260    }
1261#endif
1262    break;
1263  default:
1264    // Just use ComputeMaskedBits to compute output bits.
1265    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1266    break;
1267  }
1268
1269  // If we know the value of all of the demanded bits, return this as a
1270  // constant.
1271  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1272    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1273
1274  return false;
1275}
1276
1277/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1278/// in Mask are known to be either zero or one and return them in the
1279/// KnownZero/KnownOne bitsets.
1280void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1281                                                    const APInt &Mask,
1282                                                    APInt &KnownZero,
1283                                                    APInt &KnownOne,
1284                                                    const SelectionDAG &DAG,
1285                                                    unsigned Depth) const {
1286  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1287          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1288          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1289          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1290         "Should use MaskedValueIsZero if you don't know whether Op"
1291         " is a target node!");
1292  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1293}
1294
1295/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1296/// targets that want to expose additional information about sign bits to the
1297/// DAG Combiner.
1298unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1299                                                         unsigned Depth) const {
1300  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1301          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1302          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1303          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1304         "Should use ComputeNumSignBits if you don't know whether Op"
1305         " is a target node!");
1306  return 1;
1307}
1308
1309
1310/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1311/// and cc. If it is unable to simplify it, return a null SDValue.
1312SDValue
1313TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1314                              ISD::CondCode Cond, bool foldBooleans,
1315                              DAGCombinerInfo &DCI) const {
1316  SelectionDAG &DAG = DCI.DAG;
1317
1318  // These setcc operations always fold.
1319  switch (Cond) {
1320  default: break;
1321  case ISD::SETFALSE:
1322  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1323  case ISD::SETTRUE:
1324  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1325  }
1326
1327  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1328    const APInt &C1 = N1C->getAPIntValue();
1329    if (isa<ConstantSDNode>(N0.getNode())) {
1330      return DAG.FoldSetCC(VT, N0, N1, Cond);
1331    } else {
1332      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1333      // equality comparison, then we're just comparing whether X itself is
1334      // zero.
1335      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1336          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1337          N0.getOperand(1).getOpcode() == ISD::Constant) {
1338        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1339        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1340            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1341          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1342            // (srl (ctlz x), 5) == 0  -> X != 0
1343            // (srl (ctlz x), 5) != 1  -> X != 0
1344            Cond = ISD::SETNE;
1345          } else {
1346            // (srl (ctlz x), 5) != 0  -> X == 0
1347            // (srl (ctlz x), 5) == 1  -> X == 0
1348            Cond = ISD::SETEQ;
1349          }
1350          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1351          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1352                              Zero, Cond);
1353        }
1354      }
1355
1356      // If the LHS is '(and load, const)', the RHS is 0,
1357      // the test is for equality or unsigned, and all 1 bits of the const are
1358      // in the same partial word, see if we can shorten the load.
1359      if (DCI.isBeforeLegalize() &&
1360          N0.getOpcode() == ISD::AND && C1 == 0 &&
1361          isa<LoadSDNode>(N0.getOperand(0)) &&
1362          N0.getOperand(0).getNode()->hasOneUse() &&
1363          isa<ConstantSDNode>(N0.getOperand(1))) {
1364        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1365        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1366        unsigned bestWidth = 0, bestOffset = 0;
1367        if (!Lod->isVolatile()) {
1368          unsigned origWidth = N0.getValueType().getSizeInBits();
1369          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1370            uint64_t newMask = (1ULL << width) - 1;
1371            for (unsigned offset=0; offset<origWidth/width; offset++) {
1372              if ((newMask & Mask)==Mask) {
1373                bestOffset = (uint64_t)offset * (width/8);
1374                bestWidth = width;
1375                break;
1376              }
1377              newMask = newMask << width;
1378            }
1379          }
1380        }
1381        if (bestWidth) {
1382          MVT newVT = MVT::getIntegerVT(bestWidth);
1383          if (newVT.isRound()) {
1384            uint64_t bestMask = Mask >> (bestOffset * 8);
1385            MVT PtrType = Lod->getOperand(1).getValueType();
1386            SDValue Ptr = Lod->getBasePtr();
1387            if (bestOffset != 0)
1388              Ptr = DAG.getNode(ISD::ADD, PtrType, Lod->getBasePtr(),
1389                                DAG.getConstant(bestOffset, PtrType));
1390            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1391            SDValue NewLoad = DAG.getLoad(newVT, Lod->getChain(), Ptr,
1392                                          Lod->getSrcValue(),
1393                                          Lod->getSrcValueOffset() + bestOffset,
1394                                          false, NewAlign);
1395            return DAG.getSetCC(VT, DAG.getNode(ISD::AND, newVT, NewLoad,
1396                                            DAG.getConstant(bestMask, newVT)),
1397                                    DAG.getConstant(0LL, newVT), Cond);
1398          }
1399        }
1400      }
1401
1402      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1403      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1404        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1405
1406        // If the comparison constant has bits in the upper part, the
1407        // zero-extended value could never match.
1408        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1409                                                C1.getBitWidth() - InSize))) {
1410          switch (Cond) {
1411          case ISD::SETUGT:
1412          case ISD::SETUGE:
1413          case ISD::SETEQ: return DAG.getConstant(0, VT);
1414          case ISD::SETULT:
1415          case ISD::SETULE:
1416          case ISD::SETNE: return DAG.getConstant(1, VT);
1417          case ISD::SETGT:
1418          case ISD::SETGE:
1419            // True if the sign bit of C1 is set.
1420            return DAG.getConstant(C1.isNegative(), VT);
1421          case ISD::SETLT:
1422          case ISD::SETLE:
1423            // True if the sign bit of C1 isn't set.
1424            return DAG.getConstant(C1.isNonNegative(), VT);
1425          default:
1426            break;
1427          }
1428        }
1429
1430        // Otherwise, we can perform the comparison with the low bits.
1431        switch (Cond) {
1432        case ISD::SETEQ:
1433        case ISD::SETNE:
1434        case ISD::SETUGT:
1435        case ISD::SETUGE:
1436        case ISD::SETULT:
1437        case ISD::SETULE:
1438          return DAG.getSetCC(VT, N0.getOperand(0),
1439                          DAG.getConstant(APInt(C1).trunc(InSize),
1440                                          N0.getOperand(0).getValueType()),
1441                          Cond);
1442        default:
1443          break;   // todo, be more careful with signed comparisons
1444        }
1445      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1446                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1447        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1448        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1449        MVT ExtDstTy = N0.getValueType();
1450        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1451
1452        // If the extended part has any inconsistent bits, it cannot ever
1453        // compare equal.  In other words, they have to be all ones or all
1454        // zeros.
1455        APInt ExtBits =
1456          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1457        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1458          return DAG.getConstant(Cond == ISD::SETNE, VT);
1459
1460        SDValue ZextOp;
1461        MVT Op0Ty = N0.getOperand(0).getValueType();
1462        if (Op0Ty == ExtSrcTy) {
1463          ZextOp = N0.getOperand(0);
1464        } else {
1465          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1466          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1467                               DAG.getConstant(Imm, Op0Ty));
1468        }
1469        if (!DCI.isCalledByLegalizer())
1470          DCI.AddToWorklist(ZextOp.getNode());
1471        // Otherwise, make this a use of a zext.
1472        return DAG.getSetCC(VT, ZextOp,
1473                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1474                                                               ExtDstTyBits,
1475                                                               ExtSrcTyBits),
1476                                            ExtDstTy),
1477                            Cond);
1478      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1479                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1480
1481        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1482        if (N0.getOpcode() == ISD::SETCC) {
1483          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1484          if (TrueWhenTrue)
1485            return N0;
1486
1487          // Invert the condition.
1488          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1489          CC = ISD::getSetCCInverse(CC,
1490                                   N0.getOperand(0).getValueType().isInteger());
1491          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1492        }
1493
1494        if ((N0.getOpcode() == ISD::XOR ||
1495             (N0.getOpcode() == ISD::AND &&
1496              N0.getOperand(0).getOpcode() == ISD::XOR &&
1497              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1498            isa<ConstantSDNode>(N0.getOperand(1)) &&
1499            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1500          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1501          // can only do this if the top bits are known zero.
1502          unsigned BitWidth = N0.getValueSizeInBits();
1503          if (DAG.MaskedValueIsZero(N0,
1504                                    APInt::getHighBitsSet(BitWidth,
1505                                                          BitWidth-1))) {
1506            // Okay, get the un-inverted input value.
1507            SDValue Val;
1508            if (N0.getOpcode() == ISD::XOR)
1509              Val = N0.getOperand(0);
1510            else {
1511              assert(N0.getOpcode() == ISD::AND &&
1512                     N0.getOperand(0).getOpcode() == ISD::XOR);
1513              // ((X^1)&1)^1 -> X & 1
1514              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1515                                N0.getOperand(0).getOperand(0),
1516                                N0.getOperand(1));
1517            }
1518            return DAG.getSetCC(VT, Val, N1,
1519                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1520          }
1521        }
1522      }
1523
1524      APInt MinVal, MaxVal;
1525      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1526      if (ISD::isSignedIntSetCC(Cond)) {
1527        MinVal = APInt::getSignedMinValue(OperandBitSize);
1528        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1529      } else {
1530        MinVal = APInt::getMinValue(OperandBitSize);
1531        MaxVal = APInt::getMaxValue(OperandBitSize);
1532      }
1533
1534      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1535      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1536        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1537        // X >= C0 --> X > (C0-1)
1538        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1539                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1540      }
1541
1542      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1543        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1544        // X <= C0 --> X < (C0+1)
1545        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1546                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1547      }
1548
1549      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1550        return DAG.getConstant(0, VT);      // X < MIN --> false
1551      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1552        return DAG.getConstant(1, VT);      // X >= MIN --> true
1553      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1554        return DAG.getConstant(0, VT);      // X > MAX --> false
1555      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1556        return DAG.getConstant(1, VT);      // X <= MAX --> true
1557
1558      // Canonicalize setgt X, Min --> setne X, Min
1559      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1560        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1561      // Canonicalize setlt X, Max --> setne X, Max
1562      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1563        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1564
1565      // If we have setult X, 1, turn it into seteq X, 0
1566      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1567        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1568                        ISD::SETEQ);
1569      // If we have setugt X, Max-1, turn it into seteq X, Max
1570      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1571        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1572                        ISD::SETEQ);
1573
1574      // If we have "setcc X, C0", check to see if we can shrink the immediate
1575      // by changing cc.
1576
1577      // SETUGT X, SINTMAX  -> SETLT X, 0
1578      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1579          C1 == (~0ULL >> (65-OperandBitSize)))
1580        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1581                            ISD::SETLT);
1582
1583      // FIXME: Implement the rest of these.
1584
1585      // Fold bit comparisons when we can.
1586      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1587          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1588        if (ConstantSDNode *AndRHS =
1589                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1590          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1591            // Perform the xform if the AND RHS is a single bit.
1592            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1593              return DAG.getNode(ISD::SRL, VT, N0,
1594                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1595                                             getShiftAmountTy()));
1596            }
1597          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1598            // (X & 8) == 8  -->  (X & 8) >> 3
1599            // Perform the xform if C1 is a single bit.
1600            if (C1.isPowerOf2()) {
1601              return DAG.getNode(ISD::SRL, VT, N0,
1602                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1603            }
1604          }
1605        }
1606    }
1607  } else if (isa<ConstantSDNode>(N0.getNode())) {
1608      // Ensure that the constant occurs on the RHS.
1609    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1610  }
1611
1612  if (isa<ConstantFPSDNode>(N0.getNode())) {
1613    // Constant fold or commute setcc.
1614    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1615    if (O.getNode()) return O;
1616  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1617    // If the RHS of an FP comparison is a constant, simplify it away in
1618    // some cases.
1619    if (CFP->getValueAPF().isNaN()) {
1620      // If an operand is known to be a nan, we can fold it.
1621      switch (ISD::getUnorderedFlavor(Cond)) {
1622      default: assert(0 && "Unknown flavor!");
1623      case 0:  // Known false.
1624        return DAG.getConstant(0, VT);
1625      case 1:  // Known true.
1626        return DAG.getConstant(1, VT);
1627      case 2:  // Undefined.
1628        return DAG.getNode(ISD::UNDEF, VT);
1629      }
1630    }
1631
1632    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1633    // constant if knowing that the operand is non-nan is enough.  We prefer to
1634    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1635    // materialize 0.0.
1636    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1637      return DAG.getSetCC(VT, N0, N0, Cond);
1638  }
1639
1640  if (N0 == N1) {
1641    // We can always fold X == X for integer setcc's.
1642    if (N0.getValueType().isInteger())
1643      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1644    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1645    if (UOF == 2)   // FP operators that are undefined on NaNs.
1646      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1647    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1648      return DAG.getConstant(UOF, VT);
1649    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1650    // if it is not already.
1651    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1652    if (NewCond != Cond)
1653      return DAG.getSetCC(VT, N0, N1, NewCond);
1654  }
1655
1656  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1657      N0.getValueType().isInteger()) {
1658    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1659        N0.getOpcode() == ISD::XOR) {
1660      // Simplify (X+Y) == (X+Z) -->  Y == Z
1661      if (N0.getOpcode() == N1.getOpcode()) {
1662        if (N0.getOperand(0) == N1.getOperand(0))
1663          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1664        if (N0.getOperand(1) == N1.getOperand(1))
1665          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1666        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1667          // If X op Y == Y op X, try other combinations.
1668          if (N0.getOperand(0) == N1.getOperand(1))
1669            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1670          if (N0.getOperand(1) == N1.getOperand(0))
1671            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1672        }
1673      }
1674
1675      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1676        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1677          // Turn (X+C1) == C2 --> X == C2-C1
1678          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1679            return DAG.getSetCC(VT, N0.getOperand(0),
1680                                DAG.getConstant(RHSC->getAPIntValue()-
1681                                                LHSR->getAPIntValue(),
1682                                N0.getValueType()), Cond);
1683          }
1684
1685          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1686          if (N0.getOpcode() == ISD::XOR)
1687            // If we know that all of the inverted bits are zero, don't bother
1688            // performing the inversion.
1689            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1690              return
1691                DAG.getSetCC(VT, N0.getOperand(0),
1692                             DAG.getConstant(LHSR->getAPIntValue() ^
1693                                               RHSC->getAPIntValue(),
1694                                             N0.getValueType()),
1695                             Cond);
1696        }
1697
1698        // Turn (C1-X) == C2 --> X == C1-C2
1699        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1700          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1701            return
1702              DAG.getSetCC(VT, N0.getOperand(1),
1703                           DAG.getConstant(SUBC->getAPIntValue() -
1704                                             RHSC->getAPIntValue(),
1705                                           N0.getValueType()),
1706                           Cond);
1707          }
1708        }
1709      }
1710
1711      // Simplify (X+Z) == X -->  Z == 0
1712      if (N0.getOperand(0) == N1)
1713        return DAG.getSetCC(VT, N0.getOperand(1),
1714                        DAG.getConstant(0, N0.getValueType()), Cond);
1715      if (N0.getOperand(1) == N1) {
1716        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1717          return DAG.getSetCC(VT, N0.getOperand(0),
1718                          DAG.getConstant(0, N0.getValueType()), Cond);
1719        else if (N0.getNode()->hasOneUse()) {
1720          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1721          // (Z-X) == X  --> Z == X<<1
1722          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1723                                     N1,
1724                                     DAG.getConstant(1, getShiftAmountTy()));
1725          if (!DCI.isCalledByLegalizer())
1726            DCI.AddToWorklist(SH.getNode());
1727          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1728        }
1729      }
1730    }
1731
1732    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1733        N1.getOpcode() == ISD::XOR) {
1734      // Simplify  X == (X+Z) -->  Z == 0
1735      if (N1.getOperand(0) == N0) {
1736        return DAG.getSetCC(VT, N1.getOperand(1),
1737                        DAG.getConstant(0, N1.getValueType()), Cond);
1738      } else if (N1.getOperand(1) == N0) {
1739        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1740          return DAG.getSetCC(VT, N1.getOperand(0),
1741                          DAG.getConstant(0, N1.getValueType()), Cond);
1742        } else if (N1.getNode()->hasOneUse()) {
1743          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1744          // X == (Z-X)  --> X<<1 == Z
1745          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1746                                     DAG.getConstant(1, getShiftAmountTy()));
1747          if (!DCI.isCalledByLegalizer())
1748            DCI.AddToWorklist(SH.getNode());
1749          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1750        }
1751      }
1752    }
1753  }
1754
1755  // Fold away ALL boolean setcc's.
1756  SDValue Temp;
1757  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1758    switch (Cond) {
1759    default: assert(0 && "Unknown integer setcc!");
1760    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1761      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1762      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1763      if (!DCI.isCalledByLegalizer())
1764        DCI.AddToWorklist(Temp.getNode());
1765      break;
1766    case ISD::SETNE:  // X != Y   -->  (X^Y)
1767      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1768      break;
1769    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1770    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1771      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1772      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1773      if (!DCI.isCalledByLegalizer())
1774        DCI.AddToWorklist(Temp.getNode());
1775      break;
1776    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1777    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1778      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1779      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1780      if (!DCI.isCalledByLegalizer())
1781        DCI.AddToWorklist(Temp.getNode());
1782      break;
1783    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1784    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1785      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1786      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1787      if (!DCI.isCalledByLegalizer())
1788        DCI.AddToWorklist(Temp.getNode());
1789      break;
1790    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1791    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1792      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1793      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1794      break;
1795    }
1796    if (VT != MVT::i1) {
1797      if (!DCI.isCalledByLegalizer())
1798        DCI.AddToWorklist(N0.getNode());
1799      // FIXME: If running after legalize, we probably can't do this.
1800      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1801    }
1802    return N0;
1803  }
1804
1805  // Could not fold it.
1806  return SDValue();
1807}
1808
1809/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1810/// node is a GlobalAddress + offset.
1811bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1812                                    int64_t &Offset) const {
1813  if (isa<GlobalAddressSDNode>(N)) {
1814    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1815    GA = GASD->getGlobal();
1816    Offset += GASD->getOffset();
1817    return true;
1818  }
1819
1820  if (N->getOpcode() == ISD::ADD) {
1821    SDValue N1 = N->getOperand(0);
1822    SDValue N2 = N->getOperand(1);
1823    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1824      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1825      if (V) {
1826        Offset += V->getSExtValue();
1827        return true;
1828      }
1829    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1830      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1831      if (V) {
1832        Offset += V->getSExtValue();
1833        return true;
1834      }
1835    }
1836  }
1837  return false;
1838}
1839
1840
1841/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1842/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1843/// location that the 'Base' load is loading from.
1844bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1845                                       unsigned Bytes, int Dist,
1846                                       const MachineFrameInfo *MFI) const {
1847  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1848    return false;
1849  MVT VT = LD->getValueType(0);
1850  if (VT.getSizeInBits() / 8 != Bytes)
1851    return false;
1852
1853  SDValue Loc = LD->getOperand(1);
1854  SDValue BaseLoc = Base->getOperand(1);
1855  if (Loc.getOpcode() == ISD::FrameIndex) {
1856    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1857      return false;
1858    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1859    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1860    int FS  = MFI->getObjectSize(FI);
1861    int BFS = MFI->getObjectSize(BFI);
1862    if (FS != BFS || FS != (int)Bytes) return false;
1863    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1864  }
1865
1866  GlobalValue *GV1 = NULL;
1867  GlobalValue *GV2 = NULL;
1868  int64_t Offset1 = 0;
1869  int64_t Offset2 = 0;
1870  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1871  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1872  if (isGA1 && isGA2 && GV1 == GV2)
1873    return Offset1 == (Offset2 + Dist*Bytes);
1874  return false;
1875}
1876
1877
1878SDValue TargetLowering::
1879PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1880  // Default implementation: no optimization.
1881  return SDValue();
1882}
1883
1884//===----------------------------------------------------------------------===//
1885//  Inline Assembler Implementation Methods
1886//===----------------------------------------------------------------------===//
1887
1888
1889TargetLowering::ConstraintType
1890TargetLowering::getConstraintType(const std::string &Constraint) const {
1891  // FIXME: lots more standard ones to handle.
1892  if (Constraint.size() == 1) {
1893    switch (Constraint[0]) {
1894    default: break;
1895    case 'r': return C_RegisterClass;
1896    case 'm':    // memory
1897    case 'o':    // offsetable
1898    case 'V':    // not offsetable
1899      return C_Memory;
1900    case 'i':    // Simple Integer or Relocatable Constant
1901    case 'n':    // Simple Integer
1902    case 's':    // Relocatable Constant
1903    case 'X':    // Allow ANY value.
1904    case 'I':    // Target registers.
1905    case 'J':
1906    case 'K':
1907    case 'L':
1908    case 'M':
1909    case 'N':
1910    case 'O':
1911    case 'P':
1912      return C_Other;
1913    }
1914  }
1915
1916  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1917      Constraint[Constraint.size()-1] == '}')
1918    return C_Register;
1919  return C_Unknown;
1920}
1921
1922/// LowerXConstraint - try to replace an X constraint, which matches anything,
1923/// with another that has more specific requirements based on the type of the
1924/// corresponding operand.
1925const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1926  if (ConstraintVT.isInteger())
1927    return "r";
1928  if (ConstraintVT.isFloatingPoint())
1929    return "f";      // works for many targets
1930  return 0;
1931}
1932
1933/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1934/// vector.  If it is invalid, don't add anything to Ops.
1935void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1936                                                  char ConstraintLetter,
1937                                                  bool hasMemory,
1938                                                  std::vector<SDValue> &Ops,
1939                                                  SelectionDAG &DAG) const {
1940  switch (ConstraintLetter) {
1941  default: break;
1942  case 'X':     // Allows any operand; labels (basic block) use this.
1943    if (Op.getOpcode() == ISD::BasicBlock) {
1944      Ops.push_back(Op);
1945      return;
1946    }
1947    // fall through
1948  case 'i':    // Simple Integer or Relocatable Constant
1949  case 'n':    // Simple Integer
1950  case 's': {  // Relocatable Constant
1951    // These operands are interested in values of the form (GV+C), where C may
1952    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1953    // is possible and fine if either GV or C are missing.
1954    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1955    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1956
1957    // If we have "(add GV, C)", pull out GV/C
1958    if (Op.getOpcode() == ISD::ADD) {
1959      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1960      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1961      if (C == 0 || GA == 0) {
1962        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1963        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1964      }
1965      if (C == 0 || GA == 0)
1966        C = 0, GA = 0;
1967    }
1968
1969    // If we find a valid operand, map to the TargetXXX version so that the
1970    // value itself doesn't get selected.
1971    if (GA) {   // Either &GV   or   &GV+C
1972      if (ConstraintLetter != 'n') {
1973        int64_t Offs = GA->getOffset();
1974        if (C) Offs += C->getZExtValue();
1975        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1976                                                 Op.getValueType(), Offs));
1977        return;
1978      }
1979    }
1980    if (C) {   // just C, no GV.
1981      // Simple constants are not allowed for 's'.
1982      if (ConstraintLetter != 's') {
1983        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
1984                                            Op.getValueType()));
1985        return;
1986      }
1987    }
1988    break;
1989  }
1990  }
1991}
1992
1993std::vector<unsigned> TargetLowering::
1994getRegClassForInlineAsmConstraint(const std::string &Constraint,
1995                                  MVT VT) const {
1996  return std::vector<unsigned>();
1997}
1998
1999
2000std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2001getRegForInlineAsmConstraint(const std::string &Constraint,
2002                             MVT VT) const {
2003  if (Constraint[0] != '{')
2004    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2005  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2006
2007  // Remove the braces from around the name.
2008  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2009
2010  // Figure out which register class contains this reg.
2011  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2012  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2013       E = RI->regclass_end(); RCI != E; ++RCI) {
2014    const TargetRegisterClass *RC = *RCI;
2015
2016    // If none of the the value types for this register class are valid, we
2017    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2018    bool isLegal = false;
2019    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2020         I != E; ++I) {
2021      if (isTypeLegal(*I)) {
2022        isLegal = true;
2023        break;
2024      }
2025    }
2026
2027    if (!isLegal) continue;
2028
2029    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2030         I != E; ++I) {
2031      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2032        return std::make_pair(*I, RC);
2033    }
2034  }
2035
2036  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2037}
2038
2039//===----------------------------------------------------------------------===//
2040// Constraint Selection.
2041
2042/// isMatchingInputConstraint - Return true of this is an input operand that is
2043/// a matching constraint like "4".
2044bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2045  assert(!ConstraintCode.empty() && "No known constraint!");
2046  return isdigit(ConstraintCode[0]);
2047}
2048
2049/// getMatchedOperand - If this is an input matching constraint, this method
2050/// returns the output operand it matches.
2051unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2052  assert(!ConstraintCode.empty() && "No known constraint!");
2053  return atoi(ConstraintCode.c_str());
2054}
2055
2056
2057/// getConstraintGenerality - Return an integer indicating how general CT
2058/// is.
2059static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2060  switch (CT) {
2061  default: assert(0 && "Unknown constraint type!");
2062  case TargetLowering::C_Other:
2063  case TargetLowering::C_Unknown:
2064    return 0;
2065  case TargetLowering::C_Register:
2066    return 1;
2067  case TargetLowering::C_RegisterClass:
2068    return 2;
2069  case TargetLowering::C_Memory:
2070    return 3;
2071  }
2072}
2073
2074/// ChooseConstraint - If there are multiple different constraints that we
2075/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2076/// This is somewhat tricky: constraints fall into four classes:
2077///    Other         -> immediates and magic values
2078///    Register      -> one specific register
2079///    RegisterClass -> a group of regs
2080///    Memory        -> memory
2081/// Ideally, we would pick the most specific constraint possible: if we have
2082/// something that fits into a register, we would pick it.  The problem here
2083/// is that if we have something that could either be in a register or in
2084/// memory that use of the register could cause selection of *other*
2085/// operands to fail: they might only succeed if we pick memory.  Because of
2086/// this the heuristic we use is:
2087///
2088///  1) If there is an 'other' constraint, and if the operand is valid for
2089///     that constraint, use it.  This makes us take advantage of 'i'
2090///     constraints when available.
2091///  2) Otherwise, pick the most general constraint present.  This prefers
2092///     'm' over 'r', for example.
2093///
2094static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2095                             bool hasMemory,  const TargetLowering &TLI,
2096                             SDValue Op, SelectionDAG *DAG) {
2097  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2098  unsigned BestIdx = 0;
2099  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2100  int BestGenerality = -1;
2101
2102  // Loop over the options, keeping track of the most general one.
2103  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2104    TargetLowering::ConstraintType CType =
2105      TLI.getConstraintType(OpInfo.Codes[i]);
2106
2107    // If this is an 'other' constraint, see if the operand is valid for it.
2108    // For example, on X86 we might have an 'rI' constraint.  If the operand
2109    // is an integer in the range [0..31] we want to use I (saving a load
2110    // of a register), otherwise we must use 'r'.
2111    if (CType == TargetLowering::C_Other && Op.getNode()) {
2112      assert(OpInfo.Codes[i].size() == 1 &&
2113             "Unhandled multi-letter 'other' constraint");
2114      std::vector<SDValue> ResultOps;
2115      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2116                                       ResultOps, *DAG);
2117      if (!ResultOps.empty()) {
2118        BestType = CType;
2119        BestIdx = i;
2120        break;
2121      }
2122    }
2123
2124    // This constraint letter is more general than the previous one, use it.
2125    int Generality = getConstraintGenerality(CType);
2126    if (Generality > BestGenerality) {
2127      BestType = CType;
2128      BestIdx = i;
2129      BestGenerality = Generality;
2130    }
2131  }
2132
2133  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2134  OpInfo.ConstraintType = BestType;
2135}
2136
2137/// ComputeConstraintToUse - Determines the constraint code and constraint
2138/// type to use for the specific AsmOperandInfo, setting
2139/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2140void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2141                                            SDValue Op,
2142                                            bool hasMemory,
2143                                            SelectionDAG *DAG) const {
2144  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2145
2146  // Single-letter constraints ('r') are very common.
2147  if (OpInfo.Codes.size() == 1) {
2148    OpInfo.ConstraintCode = OpInfo.Codes[0];
2149    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2150  } else {
2151    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2152  }
2153
2154  // 'X' matches anything.
2155  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2156    // Labels and constants are handled elsewhere ('X' is the only thing
2157    // that matches labels).
2158    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2159        isa<ConstantInt>(OpInfo.CallOperandVal))
2160      return;
2161
2162    // Otherwise, try to resolve it to something we know about by looking at
2163    // the actual operand type.
2164    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2165      OpInfo.ConstraintCode = Repl;
2166      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2167    }
2168  }
2169}
2170
2171//===----------------------------------------------------------------------===//
2172//  Loop Strength Reduction hooks
2173//===----------------------------------------------------------------------===//
2174
2175/// isLegalAddressingMode - Return true if the addressing mode represented
2176/// by AM is legal for this target, for a load/store of the specified type.
2177bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2178                                           const Type *Ty) const {
2179  // The default implementation of this implements a conservative RISCy, r+r and
2180  // r+i addr mode.
2181
2182  // Allows a sign-extended 16-bit immediate field.
2183  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2184    return false;
2185
2186  // No global is ever allowed as a base.
2187  if (AM.BaseGV)
2188    return false;
2189
2190  // Only support r+r,
2191  switch (AM.Scale) {
2192  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2193    break;
2194  case 1:
2195    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2196      return false;
2197    // Otherwise we have r+r or r+i.
2198    break;
2199  case 2:
2200    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2201      return false;
2202    // Allow 2*r as r+r.
2203    break;
2204  }
2205
2206  return true;
2207}
2208
2209// Magic for divide replacement
2210
2211struct ms {
2212  int64_t m;  // magic number
2213  int64_t s;  // shift amount
2214};
2215
2216struct mu {
2217  uint64_t m; // magic number
2218  int64_t a;  // add indicator
2219  int64_t s;  // shift amount
2220};
2221
2222/// magic - calculate the magic numbers required to codegen an integer sdiv as
2223/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2224/// or -1.
2225static ms magic32(int32_t d) {
2226  int32_t p;
2227  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2228  const uint32_t two31 = 0x80000000U;
2229  struct ms mag;
2230
2231  ad = abs(d);
2232  t = two31 + ((uint32_t)d >> 31);
2233  anc = t - 1 - t%ad;   // absolute value of nc
2234  p = 31;               // initialize p
2235  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2236  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2237  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2238  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2239  do {
2240    p = p + 1;
2241    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2242    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2243    if (r1 >= anc) {  // must be unsigned comparison
2244      q1 = q1 + 1;
2245      r1 = r1 - anc;
2246    }
2247    q2 = 2*q2;        // update q2 = 2p/abs(d)
2248    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2249    if (r2 >= ad) {   // must be unsigned comparison
2250      q2 = q2 + 1;
2251      r2 = r2 - ad;
2252    }
2253    delta = ad - r2;
2254  } while (q1 < delta || (q1 == delta && r1 == 0));
2255
2256  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2257  if (d < 0) mag.m = -mag.m; // resulting magic number
2258  mag.s = p - 32;            // resulting shift
2259  return mag;
2260}
2261
2262/// magicu - calculate the magic numbers required to codegen an integer udiv as
2263/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2264static mu magicu32(uint32_t d) {
2265  int32_t p;
2266  uint32_t nc, delta, q1, r1, q2, r2;
2267  struct mu magu;
2268  magu.a = 0;               // initialize "add" indicator
2269  nc = - 1 - (-d)%d;
2270  p = 31;                   // initialize p
2271  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2272  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2273  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2274  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2275  do {
2276    p = p + 1;
2277    if (r1 >= nc - r1 ) {
2278      q1 = 2*q1 + 1;  // update q1
2279      r1 = 2*r1 - nc; // update r1
2280    }
2281    else {
2282      q1 = 2*q1; // update q1
2283      r1 = 2*r1; // update r1
2284    }
2285    if (r2 + 1 >= d - r2) {
2286      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2287      q2 = 2*q2 + 1;     // update q2
2288      r2 = 2*r2 + 1 - d; // update r2
2289    }
2290    else {
2291      if (q2 >= 0x80000000) magu.a = 1;
2292      q2 = 2*q2;     // update q2
2293      r2 = 2*r2 + 1; // update r2
2294    }
2295    delta = d - 1 - r2;
2296  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2297  magu.m = q2 + 1; // resulting magic number
2298  magu.s = p - 32;  // resulting shift
2299  return magu;
2300}
2301
2302/// magic - calculate the magic numbers required to codegen an integer sdiv as
2303/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2304/// or -1.
2305static ms magic64(int64_t d) {
2306  int64_t p;
2307  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2308  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2309  struct ms mag;
2310
2311  ad = d >= 0 ? d : -d;
2312  t = two63 + ((uint64_t)d >> 63);
2313  anc = t - 1 - t%ad;   // absolute value of nc
2314  p = 63;               // initialize p
2315  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2316  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2317  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2318  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2319  do {
2320    p = p + 1;
2321    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2322    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2323    if (r1 >= anc) {  // must be unsigned comparison
2324      q1 = q1 + 1;
2325      r1 = r1 - anc;
2326    }
2327    q2 = 2*q2;        // update q2 = 2p/abs(d)
2328    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2329    if (r2 >= ad) {   // must be unsigned comparison
2330      q2 = q2 + 1;
2331      r2 = r2 - ad;
2332    }
2333    delta = ad - r2;
2334  } while (q1 < delta || (q1 == delta && r1 == 0));
2335
2336  mag.m = q2 + 1;
2337  if (d < 0) mag.m = -mag.m; // resulting magic number
2338  mag.s = p - 64;            // resulting shift
2339  return mag;
2340}
2341
2342/// magicu - calculate the magic numbers required to codegen an integer udiv as
2343/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2344static mu magicu64(uint64_t d)
2345{
2346  int64_t p;
2347  uint64_t nc, delta, q1, r1, q2, r2;
2348  struct mu magu;
2349  magu.a = 0;               // initialize "add" indicator
2350  nc = - 1 - (-d)%d;
2351  p = 63;                   // initialize p
2352  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2353  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2354  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2355  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2356  do {
2357    p = p + 1;
2358    if (r1 >= nc - r1 ) {
2359      q1 = 2*q1 + 1;  // update q1
2360      r1 = 2*r1 - nc; // update r1
2361    }
2362    else {
2363      q1 = 2*q1; // update q1
2364      r1 = 2*r1; // update r1
2365    }
2366    if (r2 + 1 >= d - r2) {
2367      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2368      q2 = 2*q2 + 1;     // update q2
2369      r2 = 2*r2 + 1 - d; // update r2
2370    }
2371    else {
2372      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2373      q2 = 2*q2;     // update q2
2374      r2 = 2*r2 + 1; // update r2
2375    }
2376    delta = d - 1 - r2;
2377  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2378  magu.m = q2 + 1; // resulting magic number
2379  magu.s = p - 64;  // resulting shift
2380  return magu;
2381}
2382
2383/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2384/// return a DAG expression to select that will generate the same value by
2385/// multiplying by a magic number.  See:
2386/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2387SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2388                                  std::vector<SDNode*>* Created) const {
2389  MVT VT = N->getValueType(0);
2390
2391  // Check to see if we can do this.
2392  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2393    return SDValue();       // BuildSDIV only operates on i32 or i64
2394
2395  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2396  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2397
2398  // Multiply the numerator (operand 0) by the magic value
2399  SDValue Q;
2400  if (isOperationLegal(ISD::MULHS, VT))
2401    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2402                    DAG.getConstant(magics.m, VT));
2403  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2404    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2405                              N->getOperand(0),
2406                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2407  else
2408    return SDValue();       // No mulhs or equvialent
2409  // If d > 0 and m < 0, add the numerator
2410  if (d > 0 && magics.m < 0) {
2411    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2412    if (Created)
2413      Created->push_back(Q.getNode());
2414  }
2415  // If d < 0 and m > 0, subtract the numerator.
2416  if (d < 0 && magics.m > 0) {
2417    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2418    if (Created)
2419      Created->push_back(Q.getNode());
2420  }
2421  // Shift right algebraic if shift value is nonzero
2422  if (magics.s > 0) {
2423    Q = DAG.getNode(ISD::SRA, VT, Q,
2424                    DAG.getConstant(magics.s, getShiftAmountTy()));
2425    if (Created)
2426      Created->push_back(Q.getNode());
2427  }
2428  // Extract the sign bit and add it to the quotient
2429  SDValue T =
2430    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2431                                                 getShiftAmountTy()));
2432  if (Created)
2433    Created->push_back(T.getNode());
2434  return DAG.getNode(ISD::ADD, VT, Q, T);
2435}
2436
2437/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2438/// return a DAG expression to select that will generate the same value by
2439/// multiplying by a magic number.  See:
2440/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2441SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2442                                  std::vector<SDNode*>* Created) const {
2443  MVT VT = N->getValueType(0);
2444
2445  // Check to see if we can do this.
2446  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2447    return SDValue();       // BuildUDIV only operates on i32 or i64
2448
2449  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2450  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2451
2452  // Multiply the numerator (operand 0) by the magic value
2453  SDValue Q;
2454  if (isOperationLegal(ISD::MULHU, VT))
2455    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2456                    DAG.getConstant(magics.m, VT));
2457  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2458    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2459                              N->getOperand(0),
2460                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2461  else
2462    return SDValue();       // No mulhu or equvialent
2463  if (Created)
2464    Created->push_back(Q.getNode());
2465
2466  if (magics.a == 0) {
2467    return DAG.getNode(ISD::SRL, VT, Q,
2468                       DAG.getConstant(magics.s, getShiftAmountTy()));
2469  } else {
2470    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2471    if (Created)
2472      Created->push_back(NPQ.getNode());
2473    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2474                      DAG.getConstant(1, getShiftAmountTy()));
2475    if (Created)
2476      Created->push_back(NPQ.getNode());
2477    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2478    if (Created)
2479      Created->push_back(NPQ.getNode());
2480    return DAG.getNode(ISD::SRL, VT, NPQ,
2481                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2482  }
2483}
2484