TargetLowering.cpp revision 8b2794aeff151be8cdbd44786c1d0f94f8f2e427
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Target/TargetMachine.h"
17#include "llvm/Target/MRegisterInfo.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/MathExtras.h"
22using namespace llvm;
23
24TargetLowering::TargetLowering(TargetMachine &tm)
25  : TM(tm), TD(TM.getTargetData()) {
26  assert(ISD::BUILTIN_OP_END <= 156 &&
27         "Fixed size array in TargetLowering is not large enough!");
28  // All operations default to being supported.
29  memset(OpActions, 0, sizeof(OpActions));
30  memset(LoadXActions, 0, sizeof(LoadXActions));
31  memset(&StoreXActions, 0, sizeof(StoreXActions));
32
33  IsLittleEndian = TD->isLittleEndian();
34  UsesGlobalOffsetTable = false;
35  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
36  ShiftAmtHandling = Undefined;
37  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
38  memset(TargetDAGCombineArray, 0,
39         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
40  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
41  allowUnalignedMemoryAccesses = false;
42  UseUnderscoreSetJmpLongJmp = false;
43  IntDivIsCheap = false;
44  Pow2DivIsCheap = false;
45  StackPointerRegisterToSaveRestore = 0;
46  SchedPreferenceInfo = SchedulingForLatency;
47  JumpBufSize = 0;
48  JumpBufAlignment = 0;
49}
50
51TargetLowering::~TargetLowering() {}
52
53/// setValueTypeAction - Set the action for a particular value type.  This
54/// assumes an action has not already been set for this value type.
55static void SetValueTypeAction(MVT::ValueType VT,
56                               TargetLowering::LegalizeAction Action,
57                               TargetLowering &TLI,
58                               MVT::ValueType *TransformToType,
59                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
60  ValueTypeActions.setTypeAction(VT, Action);
61  if (Action == TargetLowering::Promote) {
62    MVT::ValueType PromoteTo;
63    if (VT == MVT::f32)
64      PromoteTo = MVT::f64;
65    else {
66      unsigned LargerReg = VT+1;
67      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
68        ++LargerReg;
69        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
70               "Nothing to promote to??");
71      }
72      PromoteTo = (MVT::ValueType)LargerReg;
73    }
74
75    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
76           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
77           "Can only promote from int->int or fp->fp!");
78    assert(VT < PromoteTo && "Must promote to a larger type!");
79    TransformToType[VT] = PromoteTo;
80  } else if (Action == TargetLowering::Expand) {
81    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
82           "Cannot expand this type: target must support SOME integer reg!");
83    // Expand to the next smaller integer type!
84    TransformToType[VT] = (MVT::ValueType)(VT-1);
85  }
86}
87
88
89/// computeRegisterProperties - Once all of the register classes are added,
90/// this allows us to compute derived properties we expose.
91void TargetLowering::computeRegisterProperties() {
92  assert(MVT::LAST_VALUETYPE <= 32 &&
93         "Too many value types for ValueTypeActions to hold!");
94
95  // Everything defaults to one.
96  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
97    NumElementsForVT[i] = 1;
98
99  // Find the largest integer register class.
100  unsigned LargestIntReg = MVT::i128;
101  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
102    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
103
104  // Every integer value type larger than this largest register takes twice as
105  // many registers to represent as the previous ValueType.
106  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
107  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
108    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
109
110  // Inspect all of the ValueType's possible, deciding how to process them.
111  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
112    // If we are expanding this type, expand it!
113    if (getNumElements((MVT::ValueType)IntReg) != 1)
114      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
115                         ValueTypeActions);
116    else if (!isTypeLegal((MVT::ValueType)IntReg))
117      // Otherwise, if we don't have native support, we must promote to a
118      // larger type.
119      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
120                         TransformToType, ValueTypeActions);
121    else
122      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
123
124  // If the target does not have native support for F32, promote it to F64.
125  if (!isTypeLegal(MVT::f32))
126    SetValueTypeAction(MVT::f32, Promote, *this,
127                       TransformToType, ValueTypeActions);
128  else
129    TransformToType[MVT::f32] = MVT::f32;
130
131  // Set MVT::Vector to always be Expanded
132  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
133                     ValueTypeActions);
134
135  // Loop over all of the legal vector value types, specifying an identity type
136  // transformation.
137  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
138       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
139    if (isTypeLegal((MVT::ValueType)i))
140      TransformToType[i] = (MVT::ValueType)i;
141  }
142
143  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
144  TransformToType[MVT::f64] = MVT::f64;
145}
146
147const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
148  return NULL;
149}
150
151/// getPackedTypeBreakdown - Packed types are broken down into some number of
152/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
153/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
154///
155/// This method returns the number and type of the resultant breakdown.
156///
157unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy,
158                                                MVT::ValueType &PTyElementVT,
159                                      MVT::ValueType &PTyLegalElementVT) const {
160  // Figure out the right, legal destination reg to copy into.
161  unsigned NumElts = PTy->getNumElements();
162  MVT::ValueType EltTy = getValueType(PTy->getElementType());
163
164  unsigned NumVectorRegs = 1;
165
166  // Divide the input until we get to a supported size.  This will always
167  // end with a scalar if the target doesn't support vectors.
168  while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
169    NumElts >>= 1;
170    NumVectorRegs <<= 1;
171  }
172
173  MVT::ValueType VT;
174  if (NumElts == 1) {
175    VT = EltTy;
176  } else {
177    VT = getVectorType(EltTy, NumElts);
178  }
179  PTyElementVT = VT;
180
181  MVT::ValueType DestVT = getTypeToTransformTo(VT);
182  PTyLegalElementVT = DestVT;
183  if (DestVT < VT) {
184    // Value is expanded, e.g. i64 -> i16.
185    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
186  } else {
187    // Otherwise, promotion or legal types use the same number of registers as
188    // the vector decimated to the appropriate level.
189    return NumVectorRegs;
190  }
191
192  return 1;
193}
194
195//===----------------------------------------------------------------------===//
196//  Optimization Methods
197//===----------------------------------------------------------------------===//
198
199/// ShrinkDemandedConstant - Check to see if the specified operand of the
200/// specified instruction is a constant integer.  If so, check to see if there
201/// are any bits set in the constant that are not demanded.  If so, shrink the
202/// constant and return true.
203bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
204                                                            uint64_t Demanded) {
205  // FIXME: ISD::SELECT, ISD::SELECT_CC
206  switch(Op.getOpcode()) {
207  default: break;
208  case ISD::AND:
209  case ISD::OR:
210  case ISD::XOR:
211    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
212      if ((~Demanded & C->getValue()) != 0) {
213        MVT::ValueType VT = Op.getValueType();
214        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
215                                    DAG.getConstant(Demanded & C->getValue(),
216                                                    VT));
217        return CombineTo(Op, New);
218      }
219    break;
220  }
221  return false;
222}
223
224/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
225/// DemandedMask bits of the result of Op are ever used downstream.  If we can
226/// use this information to simplify Op, create a new simplified DAG node and
227/// return true, returning the original and new nodes in Old and New. Otherwise,
228/// analyze the expression and return a mask of KnownOne and KnownZero bits for
229/// the expression (used to simplify the caller).  The KnownZero/One bits may
230/// only be accurate for those bits in the DemandedMask.
231bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
232                                          uint64_t &KnownZero,
233                                          uint64_t &KnownOne,
234                                          TargetLoweringOpt &TLO,
235                                          unsigned Depth) const {
236  KnownZero = KnownOne = 0;   // Don't know anything.
237  // Other users may use these bits.
238  if (!Op.Val->hasOneUse()) {
239    if (Depth != 0) {
240      // If not at the root, Just compute the KnownZero/KnownOne bits to
241      // simplify things downstream.
242      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
243      return false;
244    }
245    // If this is the root being simplified, allow it to have multiple uses,
246    // just set the DemandedMask to all bits.
247    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
248  } else if (DemandedMask == 0) {
249    // Not demanding any bits from Op.
250    if (Op.getOpcode() != ISD::UNDEF)
251      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
252    return false;
253  } else if (Depth == 6) {        // Limit search depth.
254    return false;
255  }
256
257  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
258  switch (Op.getOpcode()) {
259  case ISD::Constant:
260    // We know all of the bits for a constant!
261    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
262    KnownZero = ~KnownOne & DemandedMask;
263    return false;   // Don't fall through, will infinitely loop.
264  case ISD::AND:
265    // If the RHS is a constant, check to see if the LHS would be zero without
266    // using the bits from the RHS.  Below, we use knowledge about the RHS to
267    // simplify the LHS, here we're using information from the LHS to simplify
268    // the RHS.
269    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
270      uint64_t LHSZero, LHSOne;
271      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
272                        LHSZero, LHSOne, Depth+1);
273      // If the LHS already has zeros where RHSC does, this and is dead.
274      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
275        return TLO.CombineTo(Op, Op.getOperand(0));
276      // If any of the set bits in the RHS are known zero on the LHS, shrink
277      // the constant.
278      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
279        return true;
280    }
281
282    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
283                             KnownOne, TLO, Depth+1))
284      return true;
285    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
286    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
287                             KnownZero2, KnownOne2, TLO, Depth+1))
288      return true;
289    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
290
291    // If all of the demanded bits are known one on one side, return the other.
292    // These bits cannot contribute to the result of the 'and'.
293    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
294      return TLO.CombineTo(Op, Op.getOperand(0));
295    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
296      return TLO.CombineTo(Op, Op.getOperand(1));
297    // If all of the demanded bits in the inputs are known zeros, return zero.
298    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
299      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
300    // If the RHS is a constant, see if we can simplify it.
301    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
302      return true;
303
304    // Output known-1 bits are only known if set in both the LHS & RHS.
305    KnownOne &= KnownOne2;
306    // Output known-0 are known to be clear if zero in either the LHS | RHS.
307    KnownZero |= KnownZero2;
308    break;
309  case ISD::OR:
310    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
311                             KnownOne, TLO, Depth+1))
312      return true;
313    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
314    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
315                             KnownZero2, KnownOne2, TLO, Depth+1))
316      return true;
317    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
318
319    // If all of the demanded bits are known zero on one side, return the other.
320    // These bits cannot contribute to the result of the 'or'.
321    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
322      return TLO.CombineTo(Op, Op.getOperand(0));
323    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
324      return TLO.CombineTo(Op, Op.getOperand(1));
325    // If all of the potentially set bits on one side are known to be set on
326    // the other side, just use the 'other' side.
327    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
328        (DemandedMask & (~KnownZero)))
329      return TLO.CombineTo(Op, Op.getOperand(0));
330    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
331        (DemandedMask & (~KnownZero2)))
332      return TLO.CombineTo(Op, Op.getOperand(1));
333    // If the RHS is a constant, see if we can simplify it.
334    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
335      return true;
336
337    // Output known-0 bits are only known if clear in both the LHS & RHS.
338    KnownZero &= KnownZero2;
339    // Output known-1 are known to be set if set in either the LHS | RHS.
340    KnownOne |= KnownOne2;
341    break;
342  case ISD::XOR:
343    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
344                             KnownOne, TLO, Depth+1))
345      return true;
346    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
347    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
348                             KnownOne2, TLO, Depth+1))
349      return true;
350    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351
352    // If all of the demanded bits are known zero on one side, return the other.
353    // These bits cannot contribute to the result of the 'xor'.
354    if ((DemandedMask & KnownZero) == DemandedMask)
355      return TLO.CombineTo(Op, Op.getOperand(0));
356    if ((DemandedMask & KnownZero2) == DemandedMask)
357      return TLO.CombineTo(Op, Op.getOperand(1));
358
359    // Output known-0 bits are known if clear or set in both the LHS & RHS.
360    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
361    // Output known-1 are known to be set if set in only one of the LHS, RHS.
362    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
363
364    // If all of the unknown bits are known to be zero on one side or the other
365    // (but not both) turn this into an *inclusive* or.
366    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
367    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
368      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
369        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
370                                                 Op.getOperand(0),
371                                                 Op.getOperand(1)));
372    // If all of the demanded bits on one side are known, and all of the set
373    // bits on that side are also known to be set on the other side, turn this
374    // into an AND, as we know the bits will be cleared.
375    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
376    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
377      if ((KnownOne & KnownOne2) == KnownOne) {
378        MVT::ValueType VT = Op.getValueType();
379        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
380        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
381                                                 ANDC));
382      }
383    }
384
385    // If the RHS is a constant, see if we can simplify it.
386    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
387    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
388      return true;
389
390    KnownZero = KnownZeroOut;
391    KnownOne  = KnownOneOut;
392    break;
393  case ISD::SETCC:
394    // If we know the result of a setcc has the top bits zero, use this info.
395    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
396      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
397    break;
398  case ISD::SELECT:
399    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
400                             KnownOne, TLO, Depth+1))
401      return true;
402    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
403                             KnownOne2, TLO, Depth+1))
404      return true;
405    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
406    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
407
408    // If the operands are constants, see if we can simplify them.
409    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
410      return true;
411
412    // Only known if known in both the LHS and RHS.
413    KnownOne &= KnownOne2;
414    KnownZero &= KnownZero2;
415    break;
416  case ISD::SELECT_CC:
417    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
418                             KnownOne, TLO, Depth+1))
419      return true;
420    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
421                             KnownOne2, TLO, Depth+1))
422      return true;
423    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
424    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
425
426    // If the operands are constants, see if we can simplify them.
427    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
428      return true;
429
430    // Only known if known in both the LHS and RHS.
431    KnownOne &= KnownOne2;
432    KnownZero &= KnownZero2;
433    break;
434  case ISD::SHL:
435    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
436      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
437                               KnownZero, KnownOne, TLO, Depth+1))
438        return true;
439      KnownZero <<= SA->getValue();
440      KnownOne  <<= SA->getValue();
441      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
442    }
443    break;
444  case ISD::SRL:
445    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
446      MVT::ValueType VT = Op.getValueType();
447      unsigned ShAmt = SA->getValue();
448
449      // Compute the new bits that are at the top now.
450      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
451      if (SimplifyDemandedBits(Op.getOperand(0),
452                               (DemandedMask << ShAmt) & TypeMask,
453                               KnownZero, KnownOne, TLO, Depth+1))
454        return true;
455      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
456      KnownZero &= TypeMask;
457      KnownOne  &= TypeMask;
458      KnownZero >>= ShAmt;
459      KnownOne  >>= ShAmt;
460
461      uint64_t HighBits = (1ULL << ShAmt)-1;
462      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
463      KnownZero |= HighBits;  // High bits known zero.
464    }
465    break;
466  case ISD::SRA:
467    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
468      MVT::ValueType VT = Op.getValueType();
469      unsigned ShAmt = SA->getValue();
470
471      // Compute the new bits that are at the top now.
472      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
473
474      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
475
476      // If any of the demanded bits are produced by the sign extension, we also
477      // demand the input sign bit.
478      uint64_t HighBits = (1ULL << ShAmt)-1;
479      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
480      if (HighBits & DemandedMask)
481        InDemandedMask |= MVT::getIntVTSignBit(VT);
482
483      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
484                               KnownZero, KnownOne, TLO, Depth+1))
485        return true;
486      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
487      KnownZero &= TypeMask;
488      KnownOne  &= TypeMask;
489      KnownZero >>= ShAmt;
490      KnownOne  >>= ShAmt;
491
492      // Handle the sign bits.
493      uint64_t SignBit = MVT::getIntVTSignBit(VT);
494      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
495
496      // If the input sign bit is known to be zero, or if none of the top bits
497      // are demanded, turn this into an unsigned shift right.
498      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
499        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
500                                                 Op.getOperand(1)));
501      } else if (KnownOne & SignBit) { // New bits are known one.
502        KnownOne |= HighBits;
503      }
504    }
505    break;
506  case ISD::SIGN_EXTEND_INREG: {
507    MVT::ValueType  VT = Op.getValueType();
508    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
509
510    // Sign extension.  Compute the demanded bits in the result that are not
511    // present in the input.
512    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
513
514    // If none of the extended bits are demanded, eliminate the sextinreg.
515    if (NewBits == 0)
516      return TLO.CombineTo(Op, Op.getOperand(0));
517
518    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
519    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
520
521    // Since the sign extended bits are demanded, we know that the sign
522    // bit is demanded.
523    InputDemandedBits |= InSignBit;
524
525    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
526                             KnownZero, KnownOne, TLO, Depth+1))
527      return true;
528    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
529
530    // If the sign bit of the input is known set or clear, then we know the
531    // top bits of the result.
532
533    // If the input sign bit is known zero, convert this into a zero extension.
534    if (KnownZero & InSignBit)
535      return TLO.CombineTo(Op,
536                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
537
538    if (KnownOne & InSignBit) {    // Input sign bit known set
539      KnownOne |= NewBits;
540      KnownZero &= ~NewBits;
541    } else {                       // Input sign bit unknown
542      KnownZero &= ~NewBits;
543      KnownOne &= ~NewBits;
544    }
545    break;
546  }
547  case ISD::CTTZ:
548  case ISD::CTLZ:
549  case ISD::CTPOP: {
550    MVT::ValueType VT = Op.getValueType();
551    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
552    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
553    KnownOne  = 0;
554    break;
555  }
556  case ISD::LOAD: {
557    if (ISD::isZEXTLoad(Op.Val)) {
558      LoadSDNode *LD = cast<LoadSDNode>(Op);
559      MVT::ValueType VT = LD->getLoadedVT();
560      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
561    }
562    break;
563  }
564  case ISD::ZERO_EXTEND: {
565    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
566
567    // If none of the top bits are demanded, convert this into an any_extend.
568    uint64_t NewBits = (~InMask) & DemandedMask;
569    if (NewBits == 0)
570      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
571                                               Op.getValueType(),
572                                               Op.getOperand(0)));
573
574    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
575                             KnownZero, KnownOne, TLO, Depth+1))
576      return true;
577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
578    KnownZero |= NewBits;
579    break;
580  }
581  case ISD::SIGN_EXTEND: {
582    MVT::ValueType InVT = Op.getOperand(0).getValueType();
583    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
584    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
585    uint64_t NewBits   = (~InMask) & DemandedMask;
586
587    // If none of the top bits are demanded, convert this into an any_extend.
588    if (NewBits == 0)
589      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
590                                           Op.getOperand(0)));
591
592    // Since some of the sign extended bits are demanded, we know that the sign
593    // bit is demanded.
594    uint64_t InDemandedBits = DemandedMask & InMask;
595    InDemandedBits |= InSignBit;
596
597    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
598                             KnownOne, TLO, Depth+1))
599      return true;
600
601    // If the sign bit is known zero, convert this to a zero extend.
602    if (KnownZero & InSignBit)
603      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
604                                               Op.getValueType(),
605                                               Op.getOperand(0)));
606
607    // If the sign bit is known one, the top bits match.
608    if (KnownOne & InSignBit) {
609      KnownOne  |= NewBits;
610      KnownZero &= ~NewBits;
611    } else {   // Otherwise, top bits aren't known.
612      KnownOne  &= ~NewBits;
613      KnownZero &= ~NewBits;
614    }
615    break;
616  }
617  case ISD::ANY_EXTEND: {
618    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
619    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
620                             KnownZero, KnownOne, TLO, Depth+1))
621      return true;
622    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
623    break;
624  }
625  case ISD::TRUNCATE: {
626    // Simplify the input, using demanded bit information, and compute the known
627    // zero/one bits live out.
628    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
629                             KnownZero, KnownOne, TLO, Depth+1))
630      return true;
631
632    // If the input is only used by this truncate, see if we can shrink it based
633    // on the known demanded bits.
634    if (Op.getOperand(0).Val->hasOneUse()) {
635      SDOperand In = Op.getOperand(0);
636      switch (In.getOpcode()) {
637      default: break;
638      case ISD::SRL:
639        // Shrink SRL by a constant if none of the high bits shifted in are
640        // demanded.
641        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
642          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
643          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
644          HighBits >>= ShAmt->getValue();
645
646          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
647              (DemandedMask & HighBits) == 0) {
648            // None of the shifted in bits are needed.  Add a truncate of the
649            // shift input, then shift it.
650            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
651                                                 Op.getValueType(),
652                                                 In.getOperand(0));
653            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
654                                                   NewTrunc, In.getOperand(1)));
655          }
656        }
657        break;
658      }
659    }
660
661    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
662    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
663    KnownZero &= OutMask;
664    KnownOne &= OutMask;
665    break;
666  }
667  case ISD::AssertZext: {
668    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
669    uint64_t InMask = MVT::getIntVTBitMask(VT);
670    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
671                             KnownZero, KnownOne, TLO, Depth+1))
672      return true;
673    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
674    KnownZero |= ~InMask & DemandedMask;
675    break;
676  }
677  case ISD::ADD:
678  case ISD::SUB:
679  case ISD::INTRINSIC_WO_CHAIN:
680  case ISD::INTRINSIC_W_CHAIN:
681  case ISD::INTRINSIC_VOID:
682    // Just use ComputeMaskedBits to compute output bits.
683    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
684    break;
685  }
686
687  // If we know the value of all of the demanded bits, return this as a
688  // constant.
689  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
690    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
691
692  return false;
693}
694
695/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
696/// this predicate to simplify operations downstream.  Mask is known to be zero
697/// for bits that V cannot have.
698bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
699                                       unsigned Depth) const {
700  uint64_t KnownZero, KnownOne;
701  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
702  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
703  return (KnownZero & Mask) == Mask;
704}
705
706/// ComputeMaskedBits - Determine which of the bits specified in Mask are
707/// known to be either zero or one and return them in the KnownZero/KnownOne
708/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
709/// processing.
710void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
711                                       uint64_t &KnownZero, uint64_t &KnownOne,
712                                       unsigned Depth) const {
713  KnownZero = KnownOne = 0;   // Don't know anything.
714  if (Depth == 6 || Mask == 0)
715    return;  // Limit search depth.
716
717  uint64_t KnownZero2, KnownOne2;
718
719  switch (Op.getOpcode()) {
720  case ISD::Constant:
721    // We know all of the bits for a constant!
722    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
723    KnownZero = ~KnownOne & Mask;
724    return;
725  case ISD::AND:
726    // If either the LHS or the RHS are Zero, the result is zero.
727    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
728    Mask &= ~KnownZero;
729    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
730    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
731    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
732
733    // Output known-1 bits are only known if set in both the LHS & RHS.
734    KnownOne &= KnownOne2;
735    // Output known-0 are known to be clear if zero in either the LHS | RHS.
736    KnownZero |= KnownZero2;
737    return;
738  case ISD::OR:
739    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
740    Mask &= ~KnownOne;
741    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
742    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
743    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
744
745    // Output known-0 bits are only known if clear in both the LHS & RHS.
746    KnownZero &= KnownZero2;
747    // Output known-1 are known to be set if set in either the LHS | RHS.
748    KnownOne |= KnownOne2;
749    return;
750  case ISD::XOR: {
751    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
752    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
753    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
754    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
755
756    // Output known-0 bits are known if clear or set in both the LHS & RHS.
757    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
758    // Output known-1 are known to be set if set in only one of the LHS, RHS.
759    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
760    KnownZero = KnownZeroOut;
761    return;
762  }
763  case ISD::SELECT:
764    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
765    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
766    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
767    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
768
769    // Only known if known in both the LHS and RHS.
770    KnownOne &= KnownOne2;
771    KnownZero &= KnownZero2;
772    return;
773  case ISD::SELECT_CC:
774    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
775    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
776    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
777    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
778
779    // Only known if known in both the LHS and RHS.
780    KnownOne &= KnownOne2;
781    KnownZero &= KnownZero2;
782    return;
783  case ISD::SETCC:
784    // If we know the result of a setcc has the top bits zero, use this info.
785    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
786      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
787    return;
788  case ISD::SHL:
789    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
790    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
791      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
792                        KnownZero, KnownOne, Depth+1);
793      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
794      KnownZero <<= SA->getValue();
795      KnownOne  <<= SA->getValue();
796      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
797    }
798    return;
799  case ISD::SRL:
800    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
801    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
802      MVT::ValueType VT = Op.getValueType();
803      unsigned ShAmt = SA->getValue();
804
805      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
806      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
807                        KnownZero, KnownOne, Depth+1);
808      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
809      KnownZero &= TypeMask;
810      KnownOne  &= TypeMask;
811      KnownZero >>= ShAmt;
812      KnownOne  >>= ShAmt;
813
814      uint64_t HighBits = (1ULL << ShAmt)-1;
815      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
816      KnownZero |= HighBits;  // High bits known zero.
817    }
818    return;
819  case ISD::SRA:
820    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
821      MVT::ValueType VT = Op.getValueType();
822      unsigned ShAmt = SA->getValue();
823
824      // Compute the new bits that are at the top now.
825      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
826
827      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
828      // If any of the demanded bits are produced by the sign extension, we also
829      // demand the input sign bit.
830      uint64_t HighBits = (1ULL << ShAmt)-1;
831      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
832      if (HighBits & Mask)
833        InDemandedMask |= MVT::getIntVTSignBit(VT);
834
835      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
836                        Depth+1);
837      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
838      KnownZero &= TypeMask;
839      KnownOne  &= TypeMask;
840      KnownZero >>= ShAmt;
841      KnownOne  >>= ShAmt;
842
843      // Handle the sign bits.
844      uint64_t SignBit = MVT::getIntVTSignBit(VT);
845      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
846
847      if (KnownZero & SignBit) {
848        KnownZero |= HighBits;  // New bits are known zero.
849      } else if (KnownOne & SignBit) {
850        KnownOne  |= HighBits;  // New bits are known one.
851      }
852    }
853    return;
854  case ISD::SIGN_EXTEND_INREG: {
855    MVT::ValueType  VT = Op.getValueType();
856    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
857
858    // Sign extension.  Compute the demanded bits in the result that are not
859    // present in the input.
860    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
861
862    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
863    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
864
865    // If the sign extended bits are demanded, we know that the sign
866    // bit is demanded.
867    if (NewBits)
868      InputDemandedBits |= InSignBit;
869
870    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
871                      KnownZero, KnownOne, Depth+1);
872    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
873
874    // If the sign bit of the input is known set or clear, then we know the
875    // top bits of the result.
876    if (KnownZero & InSignBit) {          // Input sign bit known clear
877      KnownZero |= NewBits;
878      KnownOne  &= ~NewBits;
879    } else if (KnownOne & InSignBit) {    // Input sign bit known set
880      KnownOne  |= NewBits;
881      KnownZero &= ~NewBits;
882    } else {                              // Input sign bit unknown
883      KnownZero &= ~NewBits;
884      KnownOne  &= ~NewBits;
885    }
886    return;
887  }
888  case ISD::CTTZ:
889  case ISD::CTLZ:
890  case ISD::CTPOP: {
891    MVT::ValueType VT = Op.getValueType();
892    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
893    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
894    KnownOne  = 0;
895    return;
896  }
897  case ISD::LOAD: {
898    if (ISD::isZEXTLoad(Op.Val)) {
899      LoadSDNode *LD = cast<LoadSDNode>(Op);
900      MVT::ValueType VT = LD->getLoadedVT();
901      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
902    }
903    return;
904  }
905  case ISD::ZERO_EXTEND: {
906    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
907    uint64_t NewBits = (~InMask) & Mask;
908    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
909                      KnownOne, Depth+1);
910    KnownZero |= NewBits & Mask;
911    KnownOne  &= ~NewBits;
912    return;
913  }
914  case ISD::SIGN_EXTEND: {
915    MVT::ValueType InVT = Op.getOperand(0).getValueType();
916    unsigned InBits    = MVT::getSizeInBits(InVT);
917    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
918    uint64_t InSignBit = 1ULL << (InBits-1);
919    uint64_t NewBits   = (~InMask) & Mask;
920    uint64_t InDemandedBits = Mask & InMask;
921
922    // If any of the sign extended bits are demanded, we know that the sign
923    // bit is demanded.
924    if (NewBits & Mask)
925      InDemandedBits |= InSignBit;
926
927    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
928                      KnownOne, Depth+1);
929    // If the sign bit is known zero or one, the  top bits match.
930    if (KnownZero & InSignBit) {
931      KnownZero |= NewBits;
932      KnownOne  &= ~NewBits;
933    } else if (KnownOne & InSignBit) {
934      KnownOne  |= NewBits;
935      KnownZero &= ~NewBits;
936    } else {   // Otherwise, top bits aren't known.
937      KnownOne  &= ~NewBits;
938      KnownZero &= ~NewBits;
939    }
940    return;
941  }
942  case ISD::ANY_EXTEND: {
943    MVT::ValueType VT = Op.getOperand(0).getValueType();
944    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
945                      KnownZero, KnownOne, Depth+1);
946    return;
947  }
948  case ISD::TRUNCATE: {
949    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
950    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
951    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
952    KnownZero &= OutMask;
953    KnownOne &= OutMask;
954    break;
955  }
956  case ISD::AssertZext: {
957    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
958    uint64_t InMask = MVT::getIntVTBitMask(VT);
959    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
960                      KnownOne, Depth+1);
961    KnownZero |= (~InMask) & Mask;
962    return;
963  }
964  case ISD::ADD: {
965    // If either the LHS or the RHS are Zero, the result is zero.
966    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
967    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
968    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
969    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
970
971    // Output known-0 bits are known if clear or set in both the low clear bits
972    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
973    // low 3 bits clear.
974    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
975                                     CountTrailingZeros_64(~KnownZero2));
976
977    KnownZero = (1ULL << KnownZeroOut) - 1;
978    KnownOne = 0;
979    return;
980  }
981  case ISD::SUB: {
982    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
983    if (!CLHS) return;
984
985    // We know that the top bits of C-X are clear if X contains less bits
986    // than C (i.e. no wrap-around can happen).  For example, 20-X is
987    // positive if we can prove that X is >= 0 and < 16.
988    MVT::ValueType VT = CLHS->getValueType(0);
989    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
990      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
991      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
992      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
993      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
994
995      // If all of the MaskV bits are known to be zero, then we know the output
996      // top bits are zero, because we now know that the output is from [0-C].
997      if ((KnownZero & MaskV) == MaskV) {
998        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
999        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1000        KnownOne = 0;   // No one bits known.
1001      } else {
1002        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1003      }
1004    }
1005    return;
1006  }
1007  default:
1008    // Allow the target to implement this method for its nodes.
1009    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1010  case ISD::INTRINSIC_WO_CHAIN:
1011  case ISD::INTRINSIC_W_CHAIN:
1012  case ISD::INTRINSIC_VOID:
1013      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
1014    }
1015    return;
1016  }
1017}
1018
1019/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1020/// in Mask are known to be either zero or one and return them in the
1021/// KnownZero/KnownOne bitsets.
1022void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1023                                                    uint64_t Mask,
1024                                                    uint64_t &KnownZero,
1025                                                    uint64_t &KnownOne,
1026                                                    unsigned Depth) const {
1027  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1028          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1029          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1030          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1031         "Should use MaskedValueIsZero if you don't know whether Op"
1032         " is a target node!");
1033  KnownZero = 0;
1034  KnownOne = 0;
1035}
1036
1037/// ComputeNumSignBits - Return the number of times the sign bit of the
1038/// register is replicated into the other bits.  We know that at least 1 bit
1039/// is always equal to the sign bit (itself), but other cases can give us
1040/// information.  For example, immediately after an "SRA X, 2", we know that
1041/// the top 3 bits are all equal to each other, so we return 3.
1042unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1043  MVT::ValueType VT = Op.getValueType();
1044  assert(MVT::isInteger(VT) && "Invalid VT!");
1045  unsigned VTBits = MVT::getSizeInBits(VT);
1046  unsigned Tmp, Tmp2;
1047
1048  if (Depth == 6)
1049    return 1;  // Limit search depth.
1050
1051  switch (Op.getOpcode()) {
1052  default: break;
1053  case ISD::AssertSext:
1054    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1055    return VTBits-Tmp+1;
1056  case ISD::AssertZext:
1057    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1058    return VTBits-Tmp;
1059
1060  case ISD::Constant: {
1061    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1062    // If negative, invert the bits, then look at it.
1063    if (Val & MVT::getIntVTSignBit(VT))
1064      Val = ~Val;
1065
1066    // Shift the bits so they are the leading bits in the int64_t.
1067    Val <<= 64-VTBits;
1068
1069    // Return # leading zeros.  We use 'min' here in case Val was zero before
1070    // shifting.  We don't want to return '64' as for an i32 "0".
1071    return std::min(VTBits, CountLeadingZeros_64(Val));
1072  }
1073
1074  case ISD::SIGN_EXTEND:
1075    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1076    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1077
1078  case ISD::SIGN_EXTEND_INREG:
1079    // Max of the input and what this extends.
1080    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1081    Tmp = VTBits-Tmp+1;
1082
1083    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1084    return std::max(Tmp, Tmp2);
1085
1086  case ISD::SRA:
1087    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1088    // SRA X, C   -> adds C sign bits.
1089    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1090      Tmp += C->getValue();
1091      if (Tmp > VTBits) Tmp = VTBits;
1092    }
1093    return Tmp;
1094  case ISD::SHL:
1095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1096      // shl destroys sign bits.
1097      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1098      if (C->getValue() >= VTBits ||      // Bad shift.
1099          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1100      return Tmp - C->getValue();
1101    }
1102    break;
1103  case ISD::AND:
1104  case ISD::OR:
1105  case ISD::XOR:    // NOT is handled here.
1106    // Logical binary ops preserve the number of sign bits.
1107    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1108    if (Tmp == 1) return 1;  // Early out.
1109    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1110    return std::min(Tmp, Tmp2);
1111
1112  case ISD::SELECT:
1113    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1114    if (Tmp == 1) return 1;  // Early out.
1115    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1116    return std::min(Tmp, Tmp2);
1117
1118  case ISD::SETCC:
1119    // If setcc returns 0/-1, all bits are sign bits.
1120    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1121      return VTBits;
1122    break;
1123  case ISD::ROTL:
1124  case ISD::ROTR:
1125    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1126      unsigned RotAmt = C->getValue() & (VTBits-1);
1127
1128      // Handle rotate right by N like a rotate left by 32-N.
1129      if (Op.getOpcode() == ISD::ROTR)
1130        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1131
1132      // If we aren't rotating out all of the known-in sign bits, return the
1133      // number that are left.  This handles rotl(sext(x), 1) for example.
1134      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1135      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1136    }
1137    break;
1138  case ISD::ADD:
1139    // Add can have at most one carry bit.  Thus we know that the output
1140    // is, at worst, one more bit than the inputs.
1141    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1142    if (Tmp == 1) return 1;  // Early out.
1143
1144    // Special case decrementing a value (ADD X, -1):
1145    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1146      if (CRHS->isAllOnesValue()) {
1147        uint64_t KnownZero, KnownOne;
1148        uint64_t Mask = MVT::getIntVTBitMask(VT);
1149        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1150
1151        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1152        // sign bits set.
1153        if ((KnownZero|1) == Mask)
1154          return VTBits;
1155
1156        // If we are subtracting one from a positive number, there is no carry
1157        // out of the result.
1158        if (KnownZero & MVT::getIntVTSignBit(VT))
1159          return Tmp;
1160      }
1161
1162    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1163    if (Tmp2 == 1) return 1;
1164      return std::min(Tmp, Tmp2)-1;
1165    break;
1166
1167  case ISD::SUB:
1168    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1169    if (Tmp2 == 1) return 1;
1170
1171    // Handle NEG.
1172    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1173      if (CLHS->getValue() == 0) {
1174        uint64_t KnownZero, KnownOne;
1175        uint64_t Mask = MVT::getIntVTBitMask(VT);
1176        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1177        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1178        // sign bits set.
1179        if ((KnownZero|1) == Mask)
1180          return VTBits;
1181
1182        // If the input is known to be positive (the sign bit is known clear),
1183        // the output of the NEG has the same number of sign bits as the input.
1184        if (KnownZero & MVT::getIntVTSignBit(VT))
1185          return Tmp2;
1186
1187        // Otherwise, we treat this like a SUB.
1188      }
1189
1190    // Sub can have at most one carry bit.  Thus we know that the output
1191    // is, at worst, one more bit than the inputs.
1192    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1193    if (Tmp == 1) return 1;  // Early out.
1194      return std::min(Tmp, Tmp2)-1;
1195    break;
1196  case ISD::TRUNCATE:
1197    // FIXME: it's tricky to do anything useful for this, but it is an important
1198    // case for targets like X86.
1199    break;
1200  }
1201
1202  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1203  if (Op.getOpcode() == ISD::LOAD) {
1204    LoadSDNode *LD = cast<LoadSDNode>(Op);
1205    unsigned ExtType = LD->getExtensionType();
1206    switch (ExtType) {
1207    default: break;
1208    case ISD::SEXTLOAD:    // '17' bits known
1209      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1210      return VTBits-Tmp+1;
1211    case ISD::ZEXTLOAD:    // '16' bits known
1212      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1213      return VTBits-Tmp;
1214    }
1215  }
1216
1217  // Allow the target to implement this method for its nodes.
1218  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1219      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1220      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1221      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1222    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1223    if (NumBits > 1) return NumBits;
1224  }
1225
1226  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1227  // use this information.
1228  uint64_t KnownZero, KnownOne;
1229  uint64_t Mask = MVT::getIntVTBitMask(VT);
1230  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1231
1232  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1233  if (KnownZero & SignBit) {        // SignBit is 0
1234    Mask = KnownZero;
1235  } else if (KnownOne & SignBit) {  // SignBit is 1;
1236    Mask = KnownOne;
1237  } else {
1238    // Nothing known.
1239    return 1;
1240  }
1241
1242  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1243  // the number of identical bits in the top of the input value.
1244  Mask ^= ~0ULL;
1245  Mask <<= 64-VTBits;
1246  // Return # leading zeros.  We use 'min' here in case Val was zero before
1247  // shifting.  We don't want to return '64' as for an i32 "0".
1248  return std::min(VTBits, CountLeadingZeros_64(Mask));
1249}
1250
1251
1252
1253/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1254/// targets that want to expose additional information about sign bits to the
1255/// DAG Combiner.
1256unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1257                                                         unsigned Depth) const {
1258  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1259          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1260          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1261          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1262         "Should use ComputeNumSignBits if you don't know whether Op"
1263         " is a target node!");
1264  return 1;
1265}
1266
1267
1268SDOperand TargetLowering::
1269PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1270  // Default implementation: no optimization.
1271  return SDOperand();
1272}
1273
1274//===----------------------------------------------------------------------===//
1275//  Inline Assembler Implementation Methods
1276//===----------------------------------------------------------------------===//
1277
1278TargetLowering::ConstraintType
1279TargetLowering::getConstraintType(char ConstraintLetter) const {
1280  // FIXME: lots more standard ones to handle.
1281  switch (ConstraintLetter) {
1282  default: return C_Unknown;
1283  case 'r': return C_RegisterClass;
1284  case 'm':    // memory
1285  case 'o':    // offsetable
1286  case 'V':    // not offsetable
1287    return C_Memory;
1288  case 'i':    // Simple Integer or Relocatable Constant
1289  case 'n':    // Simple Integer
1290  case 's':    // Relocatable Constant
1291  case 'I':    // Target registers.
1292  case 'J':
1293  case 'K':
1294  case 'L':
1295  case 'M':
1296  case 'N':
1297  case 'O':
1298  case 'P':
1299    return C_Other;
1300  }
1301}
1302
1303bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
1304                                                 char ConstraintLetter) {
1305  switch (ConstraintLetter) {
1306  default: return false;
1307  case 'i':    // Simple Integer or Relocatable Constant
1308  case 'n':    // Simple Integer
1309  case 's':    // Relocatable Constant
1310    return true;   // FIXME: not right.
1311  }
1312}
1313
1314
1315std::vector<unsigned> TargetLowering::
1316getRegClassForInlineAsmConstraint(const std::string &Constraint,
1317                                  MVT::ValueType VT) const {
1318  return std::vector<unsigned>();
1319}
1320
1321
1322std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1323getRegForInlineAsmConstraint(const std::string &Constraint,
1324                             MVT::ValueType VT) const {
1325  if (Constraint[0] != '{')
1326    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1327  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1328
1329  // Remove the braces from around the name.
1330  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1331
1332  // Figure out which register class contains this reg.
1333  const MRegisterInfo *RI = TM.getRegisterInfo();
1334  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1335       E = RI->regclass_end(); RCI != E; ++RCI) {
1336    const TargetRegisterClass *RC = *RCI;
1337
1338    // If none of the the value types for this register class are valid, we
1339    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1340    bool isLegal = false;
1341    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1342         I != E; ++I) {
1343      if (isTypeLegal(*I)) {
1344        isLegal = true;
1345        break;
1346      }
1347    }
1348
1349    if (!isLegal) continue;
1350
1351    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1352         I != E; ++I) {
1353      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1354        return std::make_pair(*I, RC);
1355    }
1356  }
1357
1358  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1359}
1360
1361//===----------------------------------------------------------------------===//
1362//  Loop Strength Reduction hooks
1363//===----------------------------------------------------------------------===//
1364
1365/// isLegalAddressImmediate - Return true if the integer value or
1366/// GlobalValue can be used as the offset of the target addressing mode.
1367bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
1368  return false;
1369}
1370bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
1371  return false;
1372}
1373
1374
1375// Magic for divide replacement
1376
1377struct ms {
1378  int64_t m;  // magic number
1379  int64_t s;  // shift amount
1380};
1381
1382struct mu {
1383  uint64_t m; // magic number
1384  int64_t a;  // add indicator
1385  int64_t s;  // shift amount
1386};
1387
1388/// magic - calculate the magic numbers required to codegen an integer sdiv as
1389/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1390/// or -1.
1391static ms magic32(int32_t d) {
1392  int32_t p;
1393  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1394  const uint32_t two31 = 0x80000000U;
1395  struct ms mag;
1396
1397  ad = abs(d);
1398  t = two31 + ((uint32_t)d >> 31);
1399  anc = t - 1 - t%ad;   // absolute value of nc
1400  p = 31;               // initialize p
1401  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1402  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1403  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1404  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1405  do {
1406    p = p + 1;
1407    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1408    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1409    if (r1 >= anc) {  // must be unsigned comparison
1410      q1 = q1 + 1;
1411      r1 = r1 - anc;
1412    }
1413    q2 = 2*q2;        // update q2 = 2p/abs(d)
1414    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1415    if (r2 >= ad) {   // must be unsigned comparison
1416      q2 = q2 + 1;
1417      r2 = r2 - ad;
1418    }
1419    delta = ad - r2;
1420  } while (q1 < delta || (q1 == delta && r1 == 0));
1421
1422  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1423  if (d < 0) mag.m = -mag.m; // resulting magic number
1424  mag.s = p - 32;            // resulting shift
1425  return mag;
1426}
1427
1428/// magicu - calculate the magic numbers required to codegen an integer udiv as
1429/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1430static mu magicu32(uint32_t d) {
1431  int32_t p;
1432  uint32_t nc, delta, q1, r1, q2, r2;
1433  struct mu magu;
1434  magu.a = 0;               // initialize "add" indicator
1435  nc = - 1 - (-d)%d;
1436  p = 31;                   // initialize p
1437  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1438  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1439  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1440  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1441  do {
1442    p = p + 1;
1443    if (r1 >= nc - r1 ) {
1444      q1 = 2*q1 + 1;  // update q1
1445      r1 = 2*r1 - nc; // update r1
1446    }
1447    else {
1448      q1 = 2*q1; // update q1
1449      r1 = 2*r1; // update r1
1450    }
1451    if (r2 + 1 >= d - r2) {
1452      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1453      q2 = 2*q2 + 1;     // update q2
1454      r2 = 2*r2 + 1 - d; // update r2
1455    }
1456    else {
1457      if (q2 >= 0x80000000) magu.a = 1;
1458      q2 = 2*q2;     // update q2
1459      r2 = 2*r2 + 1; // update r2
1460    }
1461    delta = d - 1 - r2;
1462  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1463  magu.m = q2 + 1; // resulting magic number
1464  magu.s = p - 32;  // resulting shift
1465  return magu;
1466}
1467
1468/// magic - calculate the magic numbers required to codegen an integer sdiv as
1469/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1470/// or -1.
1471static ms magic64(int64_t d) {
1472  int64_t p;
1473  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1474  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1475  struct ms mag;
1476
1477  ad = d >= 0 ? d : -d;
1478  t = two63 + ((uint64_t)d >> 63);
1479  anc = t - 1 - t%ad;   // absolute value of nc
1480  p = 63;               // initialize p
1481  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1482  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1483  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1484  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1485  do {
1486    p = p + 1;
1487    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1488    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1489    if (r1 >= anc) {  // must be unsigned comparison
1490      q1 = q1 + 1;
1491      r1 = r1 - anc;
1492    }
1493    q2 = 2*q2;        // update q2 = 2p/abs(d)
1494    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1495    if (r2 >= ad) {   // must be unsigned comparison
1496      q2 = q2 + 1;
1497      r2 = r2 - ad;
1498    }
1499    delta = ad - r2;
1500  } while (q1 < delta || (q1 == delta && r1 == 0));
1501
1502  mag.m = q2 + 1;
1503  if (d < 0) mag.m = -mag.m; // resulting magic number
1504  mag.s = p - 64;            // resulting shift
1505  return mag;
1506}
1507
1508/// magicu - calculate the magic numbers required to codegen an integer udiv as
1509/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1510static mu magicu64(uint64_t d)
1511{
1512  int64_t p;
1513  uint64_t nc, delta, q1, r1, q2, r2;
1514  struct mu magu;
1515  magu.a = 0;               // initialize "add" indicator
1516  nc = - 1 - (-d)%d;
1517  p = 63;                   // initialize p
1518  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1519  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1520  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1521  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1522  do {
1523    p = p + 1;
1524    if (r1 >= nc - r1 ) {
1525      q1 = 2*q1 + 1;  // update q1
1526      r1 = 2*r1 - nc; // update r1
1527    }
1528    else {
1529      q1 = 2*q1; // update q1
1530      r1 = 2*r1; // update r1
1531    }
1532    if (r2 + 1 >= d - r2) {
1533      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1534      q2 = 2*q2 + 1;     // update q2
1535      r2 = 2*r2 + 1 - d; // update r2
1536    }
1537    else {
1538      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1539      q2 = 2*q2;     // update q2
1540      r2 = 2*r2 + 1; // update r2
1541    }
1542    delta = d - 1 - r2;
1543  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1544  magu.m = q2 + 1; // resulting magic number
1545  magu.s = p - 64;  // resulting shift
1546  return magu;
1547}
1548
1549/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1550/// return a DAG expression to select that will generate the same value by
1551/// multiplying by a magic number.  See:
1552/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1553SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1554				    std::vector<SDNode*>* Created) const {
1555  MVT::ValueType VT = N->getValueType(0);
1556
1557  // Check to see if we can do this.
1558  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1559    return SDOperand();       // BuildSDIV only operates on i32 or i64
1560  if (!isOperationLegal(ISD::MULHS, VT))
1561    return SDOperand();       // Make sure the target supports MULHS.
1562
1563  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1564  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1565
1566  // Multiply the numerator (operand 0) by the magic value
1567  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1568                            DAG.getConstant(magics.m, VT));
1569  // If d > 0 and m < 0, add the numerator
1570  if (d > 0 && magics.m < 0) {
1571    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1572    if (Created)
1573      Created->push_back(Q.Val);
1574  }
1575  // If d < 0 and m > 0, subtract the numerator.
1576  if (d < 0 && magics.m > 0) {
1577    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1578    if (Created)
1579      Created->push_back(Q.Val);
1580  }
1581  // Shift right algebraic if shift value is nonzero
1582  if (magics.s > 0) {
1583    Q = DAG.getNode(ISD::SRA, VT, Q,
1584                    DAG.getConstant(magics.s, getShiftAmountTy()));
1585    if (Created)
1586      Created->push_back(Q.Val);
1587  }
1588  // Extract the sign bit and add it to the quotient
1589  SDOperand T =
1590    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1591                                                 getShiftAmountTy()));
1592  if (Created)
1593    Created->push_back(T.Val);
1594  return DAG.getNode(ISD::ADD, VT, Q, T);
1595}
1596
1597/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1598/// return a DAG expression to select that will generate the same value by
1599/// multiplying by a magic number.  See:
1600/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1601SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1602				    std::vector<SDNode*>* Created) const {
1603  MVT::ValueType VT = N->getValueType(0);
1604
1605  // Check to see if we can do this.
1606  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1607    return SDOperand();       // BuildUDIV only operates on i32 or i64
1608  if (!isOperationLegal(ISD::MULHU, VT))
1609    return SDOperand();       // Make sure the target supports MULHU.
1610
1611  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1612  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1613
1614  // Multiply the numerator (operand 0) by the magic value
1615  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1616                            DAG.getConstant(magics.m, VT));
1617  if (Created)
1618    Created->push_back(Q.Val);
1619
1620  if (magics.a == 0) {
1621    return DAG.getNode(ISD::SRL, VT, Q,
1622                       DAG.getConstant(magics.s, getShiftAmountTy()));
1623  } else {
1624    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1625    if (Created)
1626      Created->push_back(NPQ.Val);
1627    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1628                      DAG.getConstant(1, getShiftAmountTy()));
1629    if (Created)
1630      Created->push_back(NPQ.Val);
1631    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1632    if (Created)
1633      Created->push_back(NPQ.Val);
1634    return DAG.getNode(ISD::SRL, VT, NPQ,
1635                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1636  }
1637}
1638