TargetLowering.cpp revision 8c1ec5a0a21dcb3364aace8174f29f209ff3224e
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden,
40  cl::desc("Allow promotion of integer vector element types"));
41
42namespace llvm {
43TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44  bool isLocal = GV->hasLocalLinkage();
45  bool isDeclaration = GV->isDeclaration();
46  // FIXME: what should we do for protected and internal visibility?
47  // For variables, is internal different from hidden?
48  bool isHidden = GV->hasHiddenVisibility();
49
50  if (reloc == Reloc::PIC_) {
51    if (isLocal || isHidden)
52      return TLSModel::LocalDynamic;
53    else
54      return TLSModel::GeneralDynamic;
55  } else {
56    if (!isDeclaration || isHidden)
57      return TLSModel::LocalExec;
58    else
59      return TLSModel::InitialExec;
60  }
61}
62}
63
64/// InitLibcallNames - Set default libcall names.
65///
66static void InitLibcallNames(const char **Names) {
67  Names[RTLIB::SHL_I16] = "__ashlhi3";
68  Names[RTLIB::SHL_I32] = "__ashlsi3";
69  Names[RTLIB::SHL_I64] = "__ashldi3";
70  Names[RTLIB::SHL_I128] = "__ashlti3";
71  Names[RTLIB::SRL_I16] = "__lshrhi3";
72  Names[RTLIB::SRL_I32] = "__lshrsi3";
73  Names[RTLIB::SRL_I64] = "__lshrdi3";
74  Names[RTLIB::SRL_I128] = "__lshrti3";
75  Names[RTLIB::SRA_I16] = "__ashrhi3";
76  Names[RTLIB::SRA_I32] = "__ashrsi3";
77  Names[RTLIB::SRA_I64] = "__ashrdi3";
78  Names[RTLIB::SRA_I128] = "__ashrti3";
79  Names[RTLIB::MUL_I8] = "__mulqi3";
80  Names[RTLIB::MUL_I16] = "__mulhi3";
81  Names[RTLIB::MUL_I32] = "__mulsi3";
82  Names[RTLIB::MUL_I64] = "__muldi3";
83  Names[RTLIB::MUL_I128] = "__multi3";
84  Names[RTLIB::SDIV_I8] = "__divqi3";
85  Names[RTLIB::SDIV_I16] = "__divhi3";
86  Names[RTLIB::SDIV_I32] = "__divsi3";
87  Names[RTLIB::SDIV_I64] = "__divdi3";
88  Names[RTLIB::SDIV_I128] = "__divti3";
89  Names[RTLIB::UDIV_I8] = "__udivqi3";
90  Names[RTLIB::UDIV_I16] = "__udivhi3";
91  Names[RTLIB::UDIV_I32] = "__udivsi3";
92  Names[RTLIB::UDIV_I64] = "__udivdi3";
93  Names[RTLIB::UDIV_I128] = "__udivti3";
94  Names[RTLIB::SREM_I8] = "__modqi3";
95  Names[RTLIB::SREM_I16] = "__modhi3";
96  Names[RTLIB::SREM_I32] = "__modsi3";
97  Names[RTLIB::SREM_I64] = "__moddi3";
98  Names[RTLIB::SREM_I128] = "__modti3";
99  Names[RTLIB::UREM_I8] = "__umodqi3";
100  Names[RTLIB::UREM_I16] = "__umodhi3";
101  Names[RTLIB::UREM_I32] = "__umodsi3";
102  Names[RTLIB::UREM_I64] = "__umoddi3";
103  Names[RTLIB::UREM_I128] = "__umodti3";
104
105  // These are generally not available.
106  Names[RTLIB::SDIVREM_I8] = 0;
107  Names[RTLIB::SDIVREM_I16] = 0;
108  Names[RTLIB::SDIVREM_I32] = 0;
109  Names[RTLIB::SDIVREM_I64] = 0;
110  Names[RTLIB::SDIVREM_I128] = 0;
111  Names[RTLIB::UDIVREM_I8] = 0;
112  Names[RTLIB::UDIVREM_I16] = 0;
113  Names[RTLIB::UDIVREM_I32] = 0;
114  Names[RTLIB::UDIVREM_I64] = 0;
115  Names[RTLIB::UDIVREM_I128] = 0;
116
117  Names[RTLIB::NEG_I32] = "__negsi2";
118  Names[RTLIB::NEG_I64] = "__negdi2";
119  Names[RTLIB::ADD_F32] = "__addsf3";
120  Names[RTLIB::ADD_F64] = "__adddf3";
121  Names[RTLIB::ADD_F80] = "__addxf3";
122  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
123  Names[RTLIB::SUB_F32] = "__subsf3";
124  Names[RTLIB::SUB_F64] = "__subdf3";
125  Names[RTLIB::SUB_F80] = "__subxf3";
126  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
127  Names[RTLIB::MUL_F32] = "__mulsf3";
128  Names[RTLIB::MUL_F64] = "__muldf3";
129  Names[RTLIB::MUL_F80] = "__mulxf3";
130  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
131  Names[RTLIB::DIV_F32] = "__divsf3";
132  Names[RTLIB::DIV_F64] = "__divdf3";
133  Names[RTLIB::DIV_F80] = "__divxf3";
134  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
135  Names[RTLIB::REM_F32] = "fmodf";
136  Names[RTLIB::REM_F64] = "fmod";
137  Names[RTLIB::REM_F80] = "fmodl";
138  Names[RTLIB::REM_PPCF128] = "fmodl";
139  Names[RTLIB::POWI_F32] = "__powisf2";
140  Names[RTLIB::POWI_F64] = "__powidf2";
141  Names[RTLIB::POWI_F80] = "__powixf2";
142  Names[RTLIB::POWI_PPCF128] = "__powitf2";
143  Names[RTLIB::SQRT_F32] = "sqrtf";
144  Names[RTLIB::SQRT_F64] = "sqrt";
145  Names[RTLIB::SQRT_F80] = "sqrtl";
146  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
147  Names[RTLIB::LOG_F32] = "logf";
148  Names[RTLIB::LOG_F64] = "log";
149  Names[RTLIB::LOG_F80] = "logl";
150  Names[RTLIB::LOG_PPCF128] = "logl";
151  Names[RTLIB::LOG2_F32] = "log2f";
152  Names[RTLIB::LOG2_F64] = "log2";
153  Names[RTLIB::LOG2_F80] = "log2l";
154  Names[RTLIB::LOG2_PPCF128] = "log2l";
155  Names[RTLIB::LOG10_F32] = "log10f";
156  Names[RTLIB::LOG10_F64] = "log10";
157  Names[RTLIB::LOG10_F80] = "log10l";
158  Names[RTLIB::LOG10_PPCF128] = "log10l";
159  Names[RTLIB::EXP_F32] = "expf";
160  Names[RTLIB::EXP_F64] = "exp";
161  Names[RTLIB::EXP_F80] = "expl";
162  Names[RTLIB::EXP_PPCF128] = "expl";
163  Names[RTLIB::EXP2_F32] = "exp2f";
164  Names[RTLIB::EXP2_F64] = "exp2";
165  Names[RTLIB::EXP2_F80] = "exp2l";
166  Names[RTLIB::EXP2_PPCF128] = "exp2l";
167  Names[RTLIB::SIN_F32] = "sinf";
168  Names[RTLIB::SIN_F64] = "sin";
169  Names[RTLIB::SIN_F80] = "sinl";
170  Names[RTLIB::SIN_PPCF128] = "sinl";
171  Names[RTLIB::COS_F32] = "cosf";
172  Names[RTLIB::COS_F64] = "cos";
173  Names[RTLIB::COS_F80] = "cosl";
174  Names[RTLIB::COS_PPCF128] = "cosl";
175  Names[RTLIB::POW_F32] = "powf";
176  Names[RTLIB::POW_F64] = "pow";
177  Names[RTLIB::POW_F80] = "powl";
178  Names[RTLIB::POW_PPCF128] = "powl";
179  Names[RTLIB::CEIL_F32] = "ceilf";
180  Names[RTLIB::CEIL_F64] = "ceil";
181  Names[RTLIB::CEIL_F80] = "ceill";
182  Names[RTLIB::CEIL_PPCF128] = "ceill";
183  Names[RTLIB::TRUNC_F32] = "truncf";
184  Names[RTLIB::TRUNC_F64] = "trunc";
185  Names[RTLIB::TRUNC_F80] = "truncl";
186  Names[RTLIB::TRUNC_PPCF128] = "truncl";
187  Names[RTLIB::RINT_F32] = "rintf";
188  Names[RTLIB::RINT_F64] = "rint";
189  Names[RTLIB::RINT_F80] = "rintl";
190  Names[RTLIB::RINT_PPCF128] = "rintl";
191  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
192  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
193  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
194  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
195  Names[RTLIB::FLOOR_F32] = "floorf";
196  Names[RTLIB::FLOOR_F64] = "floor";
197  Names[RTLIB::FLOOR_F80] = "floorl";
198  Names[RTLIB::FLOOR_PPCF128] = "floorl";
199  Names[RTLIB::COPYSIGN_F32] = "copysignf";
200  Names[RTLIB::COPYSIGN_F64] = "copysign";
201  Names[RTLIB::COPYSIGN_F80] = "copysignl";
202  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
203  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
204  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
205  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
206  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
207  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
208  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
209  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
210  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
211  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
212  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
213  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
214  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
215  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
216  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
217  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
218  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
219  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
220  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
221  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
222  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
223  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
224  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
225  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
226  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
227  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
228  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
229  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
230  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
231  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
232  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
233  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
234  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
235  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
236  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
237  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
238  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
239  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
240  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
241  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
242  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
243  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
244  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
245  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
246  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
247  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
248  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
249  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
250  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
251  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
252  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
253  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
254  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
255  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
256  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
257  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
258  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
259  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
260  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
261  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
262  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
263  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
264  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
265  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
266  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
267  Names[RTLIB::OEQ_F32] = "__eqsf2";
268  Names[RTLIB::OEQ_F64] = "__eqdf2";
269  Names[RTLIB::UNE_F32] = "__nesf2";
270  Names[RTLIB::UNE_F64] = "__nedf2";
271  Names[RTLIB::OGE_F32] = "__gesf2";
272  Names[RTLIB::OGE_F64] = "__gedf2";
273  Names[RTLIB::OLT_F32] = "__ltsf2";
274  Names[RTLIB::OLT_F64] = "__ltdf2";
275  Names[RTLIB::OLE_F32] = "__lesf2";
276  Names[RTLIB::OLE_F64] = "__ledf2";
277  Names[RTLIB::OGT_F32] = "__gtsf2";
278  Names[RTLIB::OGT_F64] = "__gtdf2";
279  Names[RTLIB::UO_F32] = "__unordsf2";
280  Names[RTLIB::UO_F64] = "__unorddf2";
281  Names[RTLIB::O_F32] = "__unordsf2";
282  Names[RTLIB::O_F64] = "__unorddf2";
283  Names[RTLIB::MEMCPY] = "memcpy";
284  Names[RTLIB::MEMMOVE] = "memmove";
285  Names[RTLIB::MEMSET] = "memset";
286  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
287  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
288  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
289  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
290  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
291  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
292  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
293  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
294  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
295  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
296  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
297  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
298  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
299  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
300  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
301  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
302  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
303  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
304  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
305  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
306  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
307  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
308  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
309  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
310  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
311  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
312  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
313  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
314  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
315  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
316  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
317  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
318  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
319}
320
321/// InitLibcallCallingConvs - Set default libcall CallingConvs.
322///
323static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
324  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
325    CCs[i] = CallingConv::C;
326  }
327}
328
329/// getFPEXT - Return the FPEXT_*_* value for the given types, or
330/// UNKNOWN_LIBCALL if there is none.
331RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
332  if (OpVT == MVT::f32) {
333    if (RetVT == MVT::f64)
334      return FPEXT_F32_F64;
335  }
336
337  return UNKNOWN_LIBCALL;
338}
339
340/// getFPROUND - Return the FPROUND_*_* value for the given types, or
341/// UNKNOWN_LIBCALL if there is none.
342RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
343  if (RetVT == MVT::f32) {
344    if (OpVT == MVT::f64)
345      return FPROUND_F64_F32;
346    if (OpVT == MVT::f80)
347      return FPROUND_F80_F32;
348    if (OpVT == MVT::ppcf128)
349      return FPROUND_PPCF128_F32;
350  } else if (RetVT == MVT::f64) {
351    if (OpVT == MVT::f80)
352      return FPROUND_F80_F64;
353    if (OpVT == MVT::ppcf128)
354      return FPROUND_PPCF128_F64;
355  }
356
357  return UNKNOWN_LIBCALL;
358}
359
360/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
361/// UNKNOWN_LIBCALL if there is none.
362RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
363  if (OpVT == MVT::f32) {
364    if (RetVT == MVT::i8)
365      return FPTOSINT_F32_I8;
366    if (RetVT == MVT::i16)
367      return FPTOSINT_F32_I16;
368    if (RetVT == MVT::i32)
369      return FPTOSINT_F32_I32;
370    if (RetVT == MVT::i64)
371      return FPTOSINT_F32_I64;
372    if (RetVT == MVT::i128)
373      return FPTOSINT_F32_I128;
374  } else if (OpVT == MVT::f64) {
375    if (RetVT == MVT::i8)
376      return FPTOSINT_F64_I8;
377    if (RetVT == MVT::i16)
378      return FPTOSINT_F64_I16;
379    if (RetVT == MVT::i32)
380      return FPTOSINT_F64_I32;
381    if (RetVT == MVT::i64)
382      return FPTOSINT_F64_I64;
383    if (RetVT == MVT::i128)
384      return FPTOSINT_F64_I128;
385  } else if (OpVT == MVT::f80) {
386    if (RetVT == MVT::i32)
387      return FPTOSINT_F80_I32;
388    if (RetVT == MVT::i64)
389      return FPTOSINT_F80_I64;
390    if (RetVT == MVT::i128)
391      return FPTOSINT_F80_I128;
392  } else if (OpVT == MVT::ppcf128) {
393    if (RetVT == MVT::i32)
394      return FPTOSINT_PPCF128_I32;
395    if (RetVT == MVT::i64)
396      return FPTOSINT_PPCF128_I64;
397    if (RetVT == MVT::i128)
398      return FPTOSINT_PPCF128_I128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
404/// UNKNOWN_LIBCALL if there is none.
405RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
406  if (OpVT == MVT::f32) {
407    if (RetVT == MVT::i8)
408      return FPTOUINT_F32_I8;
409    if (RetVT == MVT::i16)
410      return FPTOUINT_F32_I16;
411    if (RetVT == MVT::i32)
412      return FPTOUINT_F32_I32;
413    if (RetVT == MVT::i64)
414      return FPTOUINT_F32_I64;
415    if (RetVT == MVT::i128)
416      return FPTOUINT_F32_I128;
417  } else if (OpVT == MVT::f64) {
418    if (RetVT == MVT::i8)
419      return FPTOUINT_F64_I8;
420    if (RetVT == MVT::i16)
421      return FPTOUINT_F64_I16;
422    if (RetVT == MVT::i32)
423      return FPTOUINT_F64_I32;
424    if (RetVT == MVT::i64)
425      return FPTOUINT_F64_I64;
426    if (RetVT == MVT::i128)
427      return FPTOUINT_F64_I128;
428  } else if (OpVT == MVT::f80) {
429    if (RetVT == MVT::i32)
430      return FPTOUINT_F80_I32;
431    if (RetVT == MVT::i64)
432      return FPTOUINT_F80_I64;
433    if (RetVT == MVT::i128)
434      return FPTOUINT_F80_I128;
435  } else if (OpVT == MVT::ppcf128) {
436    if (RetVT == MVT::i32)
437      return FPTOUINT_PPCF128_I32;
438    if (RetVT == MVT::i64)
439      return FPTOUINT_PPCF128_I64;
440    if (RetVT == MVT::i128)
441      return FPTOUINT_PPCF128_I128;
442  }
443  return UNKNOWN_LIBCALL;
444}
445
446/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
447/// UNKNOWN_LIBCALL if there is none.
448RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
449  if (OpVT == MVT::i32) {
450    if (RetVT == MVT::f32)
451      return SINTTOFP_I32_F32;
452    else if (RetVT == MVT::f64)
453      return SINTTOFP_I32_F64;
454    else if (RetVT == MVT::f80)
455      return SINTTOFP_I32_F80;
456    else if (RetVT == MVT::ppcf128)
457      return SINTTOFP_I32_PPCF128;
458  } else if (OpVT == MVT::i64) {
459    if (RetVT == MVT::f32)
460      return SINTTOFP_I64_F32;
461    else if (RetVT == MVT::f64)
462      return SINTTOFP_I64_F64;
463    else if (RetVT == MVT::f80)
464      return SINTTOFP_I64_F80;
465    else if (RetVT == MVT::ppcf128)
466      return SINTTOFP_I64_PPCF128;
467  } else if (OpVT == MVT::i128) {
468    if (RetVT == MVT::f32)
469      return SINTTOFP_I128_F32;
470    else if (RetVT == MVT::f64)
471      return SINTTOFP_I128_F64;
472    else if (RetVT == MVT::f80)
473      return SINTTOFP_I128_F80;
474    else if (RetVT == MVT::ppcf128)
475      return SINTTOFP_I128_PPCF128;
476  }
477  return UNKNOWN_LIBCALL;
478}
479
480/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
481/// UNKNOWN_LIBCALL if there is none.
482RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
483  if (OpVT == MVT::i32) {
484    if (RetVT == MVT::f32)
485      return UINTTOFP_I32_F32;
486    else if (RetVT == MVT::f64)
487      return UINTTOFP_I32_F64;
488    else if (RetVT == MVT::f80)
489      return UINTTOFP_I32_F80;
490    else if (RetVT == MVT::ppcf128)
491      return UINTTOFP_I32_PPCF128;
492  } else if (OpVT == MVT::i64) {
493    if (RetVT == MVT::f32)
494      return UINTTOFP_I64_F32;
495    else if (RetVT == MVT::f64)
496      return UINTTOFP_I64_F64;
497    else if (RetVT == MVT::f80)
498      return UINTTOFP_I64_F80;
499    else if (RetVT == MVT::ppcf128)
500      return UINTTOFP_I64_PPCF128;
501  } else if (OpVT == MVT::i128) {
502    if (RetVT == MVT::f32)
503      return UINTTOFP_I128_F32;
504    else if (RetVT == MVT::f64)
505      return UINTTOFP_I128_F64;
506    else if (RetVT == MVT::f80)
507      return UINTTOFP_I128_F80;
508    else if (RetVT == MVT::ppcf128)
509      return UINTTOFP_I128_PPCF128;
510  }
511  return UNKNOWN_LIBCALL;
512}
513
514/// InitCmpLibcallCCs - Set default comparison libcall CC.
515///
516static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
517  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
518  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
519  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
520  CCs[RTLIB::UNE_F32] = ISD::SETNE;
521  CCs[RTLIB::UNE_F64] = ISD::SETNE;
522  CCs[RTLIB::OGE_F32] = ISD::SETGE;
523  CCs[RTLIB::OGE_F64] = ISD::SETGE;
524  CCs[RTLIB::OLT_F32] = ISD::SETLT;
525  CCs[RTLIB::OLT_F64] = ISD::SETLT;
526  CCs[RTLIB::OLE_F32] = ISD::SETLE;
527  CCs[RTLIB::OLE_F64] = ISD::SETLE;
528  CCs[RTLIB::OGT_F32] = ISD::SETGT;
529  CCs[RTLIB::OGT_F64] = ISD::SETGT;
530  CCs[RTLIB::UO_F32] = ISD::SETNE;
531  CCs[RTLIB::UO_F64] = ISD::SETNE;
532  CCs[RTLIB::O_F32] = ISD::SETEQ;
533  CCs[RTLIB::O_F64] = ISD::SETEQ;
534}
535
536/// NOTE: The constructor takes ownership of TLOF.
537TargetLowering::TargetLowering(const TargetMachine &tm,
538                               const TargetLoweringObjectFile *tlof)
539  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
540  mayPromoteElements(AllowPromoteIntElem) {
541  // All operations default to being supported.
542  memset(OpActions, 0, sizeof(OpActions));
543  memset(LoadExtActions, 0, sizeof(LoadExtActions));
544  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
545  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
546  memset(CondCodeActions, 0, sizeof(CondCodeActions));
547
548  // Set default actions for various operations.
549  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
550    // Default all indexed load / store to expand.
551    for (unsigned IM = (unsigned)ISD::PRE_INC;
552         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
553      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
554      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
555    }
556
557    // These operations default to expand.
558    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
560  }
561
562  // Most targets ignore the @llvm.prefetch intrinsic.
563  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
564
565  // ConstantFP nodes default to expand.  Targets can either change this to
566  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
567  // to optimize expansions for certain constants.
568  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
569  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
570  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
571
572  // These library functions default to expand.
573  setOperationAction(ISD::FLOG , MVT::f64, Expand);
574  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
575  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
576  setOperationAction(ISD::FEXP , MVT::f64, Expand);
577  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
578  setOperationAction(ISD::FLOG , MVT::f32, Expand);
579  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
580  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
581  setOperationAction(ISD::FEXP , MVT::f32, Expand);
582  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
583
584  // Default ISD::TRAP to expand (which turns it into abort).
585  setOperationAction(ISD::TRAP, MVT::Other, Expand);
586
587  IsLittleEndian = TD->isLittleEndian();
588  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
589  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
590  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
591  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
592  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
593    = maxStoresPerMemmoveOptSize = 4;
594  benefitFromCodePlacementOpt = false;
595  UseUnderscoreSetJmp = false;
596  UseUnderscoreLongJmp = false;
597  SelectIsExpensive = false;
598  IntDivIsCheap = false;
599  Pow2DivIsCheap = false;
600  JumpIsExpensive = false;
601  StackPointerRegisterToSaveRestore = 0;
602  ExceptionPointerRegister = 0;
603  ExceptionSelectorRegister = 0;
604  BooleanContents = UndefinedBooleanContent;
605  SchedPreferenceInfo = Sched::Latency;
606  JumpBufSize = 0;
607  JumpBufAlignment = 0;
608  MinFunctionAlignment = 0;
609  PrefFunctionAlignment = 0;
610  PrefLoopAlignment = 0;
611  MinStackArgumentAlignment = 1;
612  ShouldFoldAtomicFences = false;
613
614  InitLibcallNames(LibcallRoutineNames);
615  InitCmpLibcallCCs(CmpLibcallCCs);
616  InitLibcallCallingConvs(LibcallCallingConvs);
617}
618
619TargetLowering::~TargetLowering() {
620  delete &TLOF;
621}
622
623MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
624  return MVT::getIntegerVT(8*TD->getPointerSize());
625}
626
627/// canOpTrap - Returns true if the operation can trap for the value type.
628/// VT must be a legal type.
629bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
630  assert(isTypeLegal(VT));
631  switch (Op) {
632  default:
633    return false;
634  case ISD::FDIV:
635  case ISD::FREM:
636  case ISD::SDIV:
637  case ISD::UDIV:
638  case ISD::SREM:
639  case ISD::UREM:
640    return true;
641  }
642}
643
644
645static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
646                                          unsigned &NumIntermediates,
647                                          EVT &RegisterVT,
648                                          TargetLowering *TLI) {
649  // Figure out the right, legal destination reg to copy into.
650  unsigned NumElts = VT.getVectorNumElements();
651  MVT EltTy = VT.getVectorElementType();
652
653  unsigned NumVectorRegs = 1;
654
655  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
656  // could break down into LHS/RHS like LegalizeDAG does.
657  if (!isPowerOf2_32(NumElts)) {
658    NumVectorRegs = NumElts;
659    NumElts = 1;
660  }
661
662  // Divide the input until we get to a supported size.  This will always
663  // end with a scalar if the target doesn't support vectors.
664  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
665    NumElts >>= 1;
666    NumVectorRegs <<= 1;
667  }
668
669  NumIntermediates = NumVectorRegs;
670
671  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
672  if (!TLI->isTypeLegal(NewVT))
673    NewVT = EltTy;
674  IntermediateVT = NewVT;
675
676  EVT DestVT = TLI->getRegisterType(NewVT);
677  RegisterVT = DestVT;
678  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
679    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
680
681  // Otherwise, promotion or legal types use the same number of registers as
682  // the vector decimated to the appropriate level.
683  return NumVectorRegs;
684}
685
686/// isLegalRC - Return true if the value types that can be represented by the
687/// specified register class are all legal.
688bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
689  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
690       I != E; ++I) {
691    if (isTypeLegal(*I))
692      return true;
693  }
694  return false;
695}
696
697/// hasLegalSuperRegRegClasses - Return true if the specified register class
698/// has one or more super-reg register classes that are legal.
699bool
700TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
701  if (*RC->superregclasses_begin() == 0)
702    return false;
703  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
704         E = RC->superregclasses_end(); I != E; ++I) {
705    const TargetRegisterClass *RRC = *I;
706    if (isLegalRC(RRC))
707      return true;
708  }
709  return false;
710}
711
712/// findRepresentativeClass - Return the largest legal super-reg register class
713/// of the register class for the specified type and its associated "cost".
714std::pair<const TargetRegisterClass*, uint8_t>
715TargetLowering::findRepresentativeClass(EVT VT) const {
716  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
717  if (!RC)
718    return std::make_pair(RC, 0);
719  const TargetRegisterClass *BestRC = RC;
720  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
721         E = RC->superregclasses_end(); I != E; ++I) {
722    const TargetRegisterClass *RRC = *I;
723    if (RRC->isASubClass() || !isLegalRC(RRC))
724      continue;
725    if (!hasLegalSuperRegRegClasses(RRC))
726      return std::make_pair(RRC, 1);
727    BestRC = RRC;
728  }
729  return std::make_pair(BestRC, 1);
730}
731
732
733/// computeRegisterProperties - Once all of the register classes are added,
734/// this allows us to compute derived properties we expose.
735void TargetLowering::computeRegisterProperties() {
736  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
737         "Too many value types for ValueTypeActions to hold!");
738
739  // Everything defaults to needing one register.
740  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
741    NumRegistersForVT[i] = 1;
742    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
743  }
744  // ...except isVoid, which doesn't need any registers.
745  NumRegistersForVT[MVT::isVoid] = 0;
746
747  // Find the largest integer register class.
748  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
749  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
750    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
751
752  // Every integer value type larger than this largest register takes twice as
753  // many registers to represent as the previous ValueType.
754  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
755    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
756    if (!ExpandedVT.isInteger())
757      break;
758    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
759    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
760    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
761    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
762  }
763
764  // Inspect all of the ValueType's smaller than the largest integer
765  // register to see which ones need promotion.
766  unsigned LegalIntReg = LargestIntReg;
767  for (unsigned IntReg = LargestIntReg - 1;
768       IntReg >= (unsigned)MVT::i1; --IntReg) {
769    EVT IVT = (MVT::SimpleValueType)IntReg;
770    if (isTypeLegal(IVT)) {
771      LegalIntReg = IntReg;
772    } else {
773      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
774        (MVT::SimpleValueType)LegalIntReg;
775      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
776    }
777  }
778
779  // ppcf128 type is really two f64's.
780  if (!isTypeLegal(MVT::ppcf128)) {
781    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
782    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
783    TransformToType[MVT::ppcf128] = MVT::f64;
784    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
785  }
786
787  // Decide how to handle f64. If the target does not have native f64 support,
788  // expand it to i64 and we will be generating soft float library calls.
789  if (!isTypeLegal(MVT::f64)) {
790    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
791    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
792    TransformToType[MVT::f64] = MVT::i64;
793    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
794  }
795
796  // Decide how to handle f32. If the target does not have native support for
797  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
798  if (!isTypeLegal(MVT::f32)) {
799    if (isTypeLegal(MVT::f64)) {
800      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
801      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
802      TransformToType[MVT::f32] = MVT::f64;
803      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
804    } else {
805      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
806      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
807      TransformToType[MVT::f32] = MVT::i32;
808      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
809    }
810  }
811
812  // Loop over all of the vector value types to see which need transformations.
813  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
814       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
815    MVT VT = (MVT::SimpleValueType)i;
816    if (isTypeLegal(VT)) continue;
817
818    // Determine if there is a legal wider type.  If so, we should promote to
819    // that wider vector type.
820    EVT EltVT = VT.getVectorElementType();
821    unsigned NElts = VT.getVectorNumElements();
822    if (NElts != 1) {
823      bool IsLegalWiderType = false;
824      // If we allow the promotion of vector elements using a flag,
825      // then return TypePromoteInteger on vector elements.
826      // First try to promote the elements of integer vectors. If no legal
827      // promotion was found, fallback to the widen-vector method.
828      if (mayPromoteElements)
829      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
830        EVT SVT = (MVT::SimpleValueType)nVT;
831        // Promote vectors of integers to vectors with the same number
832        // of elements, with a wider element type.
833        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
834            && SVT.getVectorNumElements() == NElts &&
835            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
836          TransformToType[i] = SVT;
837          RegisterTypeForVT[i] = SVT;
838          NumRegistersForVT[i] = 1;
839          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
840          IsLegalWiderType = true;
841          break;
842        }
843      }
844
845      if (IsLegalWiderType) continue;
846
847      // Try to widen the vector.
848      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
849        EVT SVT = (MVT::SimpleValueType)nVT;
850        if (SVT.getVectorElementType() == EltVT &&
851            SVT.getVectorNumElements() > NElts &&
852            isTypeLegal(SVT)) {
853          TransformToType[i] = SVT;
854          RegisterTypeForVT[i] = SVT;
855          NumRegistersForVT[i] = 1;
856          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
857          IsLegalWiderType = true;
858          break;
859        }
860      }
861      if (IsLegalWiderType) continue;
862    }
863
864    MVT IntermediateVT;
865    EVT RegisterVT;
866    unsigned NumIntermediates;
867    NumRegistersForVT[i] =
868      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
869                                RegisterVT, this);
870    RegisterTypeForVT[i] = RegisterVT;
871
872    EVT NVT = VT.getPow2VectorType();
873    if (NVT == VT) {
874      // Type is already a power of 2.  The default action is to split.
875      TransformToType[i] = MVT::Other;
876      unsigned NumElts = VT.getVectorNumElements();
877      ValueTypeActions.setTypeAction(VT,
878            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
879    } else {
880      TransformToType[i] = NVT;
881      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
882    }
883  }
884
885  // Determine the 'representative' register class for each value type.
886  // An representative register class is the largest (meaning one which is
887  // not a sub-register class / subreg register class) legal register class for
888  // a group of value types. For example, on i386, i8, i16, and i32
889  // representative would be GR32; while on x86_64 it's GR64.
890  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
891    const TargetRegisterClass* RRC;
892    uint8_t Cost;
893    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
894    RepRegClassForVT[i] = RRC;
895    RepRegClassCostForVT[i] = Cost;
896  }
897}
898
899const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
900  return NULL;
901}
902
903
904MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
905  return PointerTy.SimpleTy;
906}
907
908MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
909  return MVT::i32; // return the default value
910}
911
912/// getVectorTypeBreakdown - Vector types are broken down into some number of
913/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
914/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
915/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
916///
917/// This method returns the number of registers needed, and the VT for each
918/// register.  It also returns the VT and quantity of the intermediate values
919/// before they are promoted/expanded.
920///
921unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
922                                                EVT &IntermediateVT,
923                                                unsigned &NumIntermediates,
924                                                EVT &RegisterVT) const {
925  unsigned NumElts = VT.getVectorNumElements();
926
927  // If there is a wider vector type with the same element type as this one,
928  // we should widen to that legal vector type.  This handles things like
929  // <2 x float> -> <4 x float>.
930  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
931    RegisterVT = getTypeToTransformTo(Context, VT);
932    if (isTypeLegal(RegisterVT)) {
933      IntermediateVT = RegisterVT;
934      NumIntermediates = 1;
935      return 1;
936    }
937  }
938
939  // Figure out the right, legal destination reg to copy into.
940  EVT EltTy = VT.getVectorElementType();
941
942  unsigned NumVectorRegs = 1;
943
944  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
945  // could break down into LHS/RHS like LegalizeDAG does.
946  if (!isPowerOf2_32(NumElts)) {
947    NumVectorRegs = NumElts;
948    NumElts = 1;
949  }
950
951  // Divide the input until we get to a supported size.  This will always
952  // end with a scalar if the target doesn't support vectors.
953  while (NumElts > 1 && !isTypeLegal(
954                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
955    NumElts >>= 1;
956    NumVectorRegs <<= 1;
957  }
958
959  NumIntermediates = NumVectorRegs;
960
961  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
962  if (!isTypeLegal(NewVT))
963    NewVT = EltTy;
964  IntermediateVT = NewVT;
965
966  EVT DestVT = getRegisterType(Context, NewVT);
967  RegisterVT = DestVT;
968  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
969    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
970
971  // Otherwise, promotion or legal types use the same number of registers as
972  // the vector decimated to the appropriate level.
973  return NumVectorRegs;
974}
975
976/// Get the EVTs and ArgFlags collections that represent the legalized return
977/// type of the given function.  This does not require a DAG or a return value,
978/// and is suitable for use before any DAGs for the function are constructed.
979/// TODO: Move this out of TargetLowering.cpp.
980void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
981                         SmallVectorImpl<ISD::OutputArg> &Outs,
982                         const TargetLowering &TLI,
983                         SmallVectorImpl<uint64_t> *Offsets) {
984  SmallVector<EVT, 4> ValueVTs;
985  ComputeValueVTs(TLI, ReturnType, ValueVTs);
986  unsigned NumValues = ValueVTs.size();
987  if (NumValues == 0) return;
988  unsigned Offset = 0;
989
990  for (unsigned j = 0, f = NumValues; j != f; ++j) {
991    EVT VT = ValueVTs[j];
992    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
993
994    if (attr & Attribute::SExt)
995      ExtendKind = ISD::SIGN_EXTEND;
996    else if (attr & Attribute::ZExt)
997      ExtendKind = ISD::ZERO_EXTEND;
998
999    // FIXME: C calling convention requires the return type to be promoted to
1000    // at least 32-bit. But this is not necessary for non-C calling
1001    // conventions. The frontend should mark functions whose return values
1002    // require promoting with signext or zeroext attributes.
1003    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1004      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1005      if (VT.bitsLT(MinVT))
1006        VT = MinVT;
1007    }
1008
1009    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1010    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1011    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1012                        PartVT.getTypeForEVT(ReturnType->getContext()));
1013
1014    // 'inreg' on function refers to return value
1015    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1016    if (attr & Attribute::InReg)
1017      Flags.setInReg();
1018
1019    // Propagate extension type if any
1020    if (attr & Attribute::SExt)
1021      Flags.setSExt();
1022    else if (attr & Attribute::ZExt)
1023      Flags.setZExt();
1024
1025    for (unsigned i = 0; i < NumParts; ++i) {
1026      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1027      if (Offsets) {
1028        Offsets->push_back(Offset);
1029        Offset += PartSize;
1030      }
1031    }
1032  }
1033}
1034
1035/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1036/// function arguments in the caller parameter area.  This is the actual
1037/// alignment, not its logarithm.
1038unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1039  return TD->getCallFrameTypeAlignment(Ty);
1040}
1041
1042/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1043/// current function.  The returned value is a member of the
1044/// MachineJumpTableInfo::JTEntryKind enum.
1045unsigned TargetLowering::getJumpTableEncoding() const {
1046  // In non-pic modes, just use the address of a block.
1047  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1048    return MachineJumpTableInfo::EK_BlockAddress;
1049
1050  // In PIC mode, if the target supports a GPRel32 directive, use it.
1051  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1052    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1053
1054  // Otherwise, use a label difference.
1055  return MachineJumpTableInfo::EK_LabelDifference32;
1056}
1057
1058SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1059                                                 SelectionDAG &DAG) const {
1060  // If our PIC model is GP relative, use the global offset table as the base.
1061  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1062    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1063  return Table;
1064}
1065
1066/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1067/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1068/// MCExpr.
1069const MCExpr *
1070TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1071                                             unsigned JTI,MCContext &Ctx) const{
1072  // The normal PIC reloc base is the label at the start of the jump table.
1073  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1074}
1075
1076bool
1077TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1078  // Assume that everything is safe in static mode.
1079  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1080    return true;
1081
1082  // In dynamic-no-pic mode, assume that known defined values are safe.
1083  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1084      GA &&
1085      !GA->getGlobal()->isDeclaration() &&
1086      !GA->getGlobal()->isWeakForLinker())
1087    return true;
1088
1089  // Otherwise assume nothing is safe.
1090  return false;
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  Optimization Methods
1095//===----------------------------------------------------------------------===//
1096
1097/// ShrinkDemandedConstant - Check to see if the specified operand of the
1098/// specified instruction is a constant integer.  If so, check to see if there
1099/// are any bits set in the constant that are not demanded.  If so, shrink the
1100/// constant and return true.
1101bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1102                                                        const APInt &Demanded) {
1103  DebugLoc dl = Op.getDebugLoc();
1104
1105  // FIXME: ISD::SELECT, ISD::SELECT_CC
1106  switch (Op.getOpcode()) {
1107  default: break;
1108  case ISD::XOR:
1109  case ISD::AND:
1110  case ISD::OR: {
1111    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1112    if (!C) return false;
1113
1114    if (Op.getOpcode() == ISD::XOR &&
1115        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1116      return false;
1117
1118    // if we can expand it to have all bits set, do it
1119    if (C->getAPIntValue().intersects(~Demanded)) {
1120      EVT VT = Op.getValueType();
1121      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1122                                DAG.getConstant(Demanded &
1123                                                C->getAPIntValue(),
1124                                                VT));
1125      return CombineTo(Op, New);
1126    }
1127
1128    break;
1129  }
1130  }
1131
1132  return false;
1133}
1134
1135/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1136/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1137/// cast, but it could be generalized for targets with other types of
1138/// implicit widening casts.
1139bool
1140TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1141                                                    unsigned BitWidth,
1142                                                    const APInt &Demanded,
1143                                                    DebugLoc dl) {
1144  assert(Op.getNumOperands() == 2 &&
1145         "ShrinkDemandedOp only supports binary operators!");
1146  assert(Op.getNode()->getNumValues() == 1 &&
1147         "ShrinkDemandedOp only supports nodes with one result!");
1148
1149  // Don't do this if the node has another user, which may require the
1150  // full value.
1151  if (!Op.getNode()->hasOneUse())
1152    return false;
1153
1154  // Search for the smallest integer type with free casts to and from
1155  // Op's type. For expedience, just check power-of-2 integer types.
1156  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1157  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1158  if (!isPowerOf2_32(SmallVTBits))
1159    SmallVTBits = NextPowerOf2(SmallVTBits);
1160  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1161    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1162    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1163        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1164      // We found a type with free casts.
1165      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1166                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1167                                          Op.getNode()->getOperand(0)),
1168                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1169                                          Op.getNode()->getOperand(1)));
1170      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1171      return CombineTo(Op, Z);
1172    }
1173  }
1174  return false;
1175}
1176
1177/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1178/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1179/// use this information to simplify Op, create a new simplified DAG node and
1180/// return true, returning the original and new nodes in Old and New. Otherwise,
1181/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1182/// the expression (used to simplify the caller).  The KnownZero/One bits may
1183/// only be accurate for those bits in the DemandedMask.
1184bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1185                                          const APInt &DemandedMask,
1186                                          APInt &KnownZero,
1187                                          APInt &KnownOne,
1188                                          TargetLoweringOpt &TLO,
1189                                          unsigned Depth) const {
1190  unsigned BitWidth = DemandedMask.getBitWidth();
1191  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1192         "Mask size mismatches value type size!");
1193  APInt NewMask = DemandedMask;
1194  DebugLoc dl = Op.getDebugLoc();
1195
1196  // Don't know anything.
1197  KnownZero = KnownOne = APInt(BitWidth, 0);
1198
1199  // Other users may use these bits.
1200  if (!Op.getNode()->hasOneUse()) {
1201    if (Depth != 0) {
1202      // If not at the root, Just compute the KnownZero/KnownOne bits to
1203      // simplify things downstream.
1204      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1205      return false;
1206    }
1207    // If this is the root being simplified, allow it to have multiple uses,
1208    // just set the NewMask to all bits.
1209    NewMask = APInt::getAllOnesValue(BitWidth);
1210  } else if (DemandedMask == 0) {
1211    // Not demanding any bits from Op.
1212    if (Op.getOpcode() != ISD::UNDEF)
1213      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1214    return false;
1215  } else if (Depth == 6) {        // Limit search depth.
1216    return false;
1217  }
1218
1219  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1220  switch (Op.getOpcode()) {
1221  case ISD::Constant:
1222    // We know all of the bits for a constant!
1223    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1224    KnownZero = ~KnownOne & NewMask;
1225    return false;   // Don't fall through, will infinitely loop.
1226  case ISD::AND:
1227    // If the RHS is a constant, check to see if the LHS would be zero without
1228    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1229    // simplify the LHS, here we're using information from the LHS to simplify
1230    // the RHS.
1231    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1232      APInt LHSZero, LHSOne;
1233      // Do not increment Depth here; that can cause an infinite loop.
1234      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1235                                LHSZero, LHSOne, Depth);
1236      // If the LHS already has zeros where RHSC does, this and is dead.
1237      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1238        return TLO.CombineTo(Op, Op.getOperand(0));
1239      // If any of the set bits in the RHS are known zero on the LHS, shrink
1240      // the constant.
1241      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1242        return true;
1243    }
1244
1245    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1246                             KnownOne, TLO, Depth+1))
1247      return true;
1248    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1249    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1250                             KnownZero2, KnownOne2, TLO, Depth+1))
1251      return true;
1252    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1253
1254    // If all of the demanded bits are known one on one side, return the other.
1255    // These bits cannot contribute to the result of the 'and'.
1256    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1257      return TLO.CombineTo(Op, Op.getOperand(0));
1258    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1259      return TLO.CombineTo(Op, Op.getOperand(1));
1260    // If all of the demanded bits in the inputs are known zeros, return zero.
1261    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1262      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1263    // If the RHS is a constant, see if we can simplify it.
1264    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1265      return true;
1266    // If the operation can be done in a smaller type, do so.
1267    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1268      return true;
1269
1270    // Output known-1 bits are only known if set in both the LHS & RHS.
1271    KnownOne &= KnownOne2;
1272    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1273    KnownZero |= KnownZero2;
1274    break;
1275  case ISD::OR:
1276    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1277                             KnownOne, TLO, Depth+1))
1278      return true;
1279    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1280    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1281                             KnownZero2, KnownOne2, TLO, Depth+1))
1282      return true;
1283    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1284
1285    // If all of the demanded bits are known zero on one side, return the other.
1286    // These bits cannot contribute to the result of the 'or'.
1287    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1288      return TLO.CombineTo(Op, Op.getOperand(0));
1289    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1290      return TLO.CombineTo(Op, Op.getOperand(1));
1291    // If all of the potentially set bits on one side are known to be set on
1292    // the other side, just use the 'other' side.
1293    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1294      return TLO.CombineTo(Op, Op.getOperand(0));
1295    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1296      return TLO.CombineTo(Op, Op.getOperand(1));
1297    // If the RHS is a constant, see if we can simplify it.
1298    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1299      return true;
1300    // If the operation can be done in a smaller type, do so.
1301    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1302      return true;
1303
1304    // Output known-0 bits are only known if clear in both the LHS & RHS.
1305    KnownZero &= KnownZero2;
1306    // Output known-1 are known to be set if set in either the LHS | RHS.
1307    KnownOne |= KnownOne2;
1308    break;
1309  case ISD::XOR:
1310    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1311                             KnownOne, TLO, Depth+1))
1312      return true;
1313    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1314    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1315                             KnownOne2, TLO, Depth+1))
1316      return true;
1317    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1318
1319    // If all of the demanded bits are known zero on one side, return the other.
1320    // These bits cannot contribute to the result of the 'xor'.
1321    if ((KnownZero & NewMask) == NewMask)
1322      return TLO.CombineTo(Op, Op.getOperand(0));
1323    if ((KnownZero2 & NewMask) == NewMask)
1324      return TLO.CombineTo(Op, Op.getOperand(1));
1325    // If the operation can be done in a smaller type, do so.
1326    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1327      return true;
1328
1329    // If all of the unknown bits are known to be zero on one side or the other
1330    // (but not both) turn this into an *inclusive* or.
1331    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1332    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1333      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1334                                               Op.getOperand(0),
1335                                               Op.getOperand(1)));
1336
1337    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1338    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1339    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1340    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1341
1342    // If all of the demanded bits on one side are known, and all of the set
1343    // bits on that side are also known to be set on the other side, turn this
1344    // into an AND, as we know the bits will be cleared.
1345    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1346    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1347      if ((KnownOne & KnownOne2) == KnownOne) {
1348        EVT VT = Op.getValueType();
1349        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1350        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1351                                                 Op.getOperand(0), ANDC));
1352      }
1353    }
1354
1355    // If the RHS is a constant, see if we can simplify it.
1356    // for XOR, we prefer to force bits to 1 if they will make a -1.
1357    // if we can't force bits, try to shrink constant
1358    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1359      APInt Expanded = C->getAPIntValue() | (~NewMask);
1360      // if we can expand it to have all bits set, do it
1361      if (Expanded.isAllOnesValue()) {
1362        if (Expanded != C->getAPIntValue()) {
1363          EVT VT = Op.getValueType();
1364          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1365                                          TLO.DAG.getConstant(Expanded, VT));
1366          return TLO.CombineTo(Op, New);
1367        }
1368        // if it already has all the bits set, nothing to change
1369        // but don't shrink either!
1370      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1371        return true;
1372      }
1373    }
1374
1375    KnownZero = KnownZeroOut;
1376    KnownOne  = KnownOneOut;
1377    break;
1378  case ISD::SELECT:
1379    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1380                             KnownOne, TLO, Depth+1))
1381      return true;
1382    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1383                             KnownOne2, TLO, Depth+1))
1384      return true;
1385    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1386    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1387
1388    // If the operands are constants, see if we can simplify them.
1389    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1390      return true;
1391
1392    // Only known if known in both the LHS and RHS.
1393    KnownOne &= KnownOne2;
1394    KnownZero &= KnownZero2;
1395    break;
1396  case ISD::SELECT_CC:
1397    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1398                             KnownOne, TLO, Depth+1))
1399      return true;
1400    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1401                             KnownOne2, TLO, Depth+1))
1402      return true;
1403    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1404    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1405
1406    // If the operands are constants, see if we can simplify them.
1407    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1408      return true;
1409
1410    // Only known if known in both the LHS and RHS.
1411    KnownOne &= KnownOne2;
1412    KnownZero &= KnownZero2;
1413    break;
1414  case ISD::SHL:
1415    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1416      unsigned ShAmt = SA->getZExtValue();
1417      SDValue InOp = Op.getOperand(0);
1418
1419      // If the shift count is an invalid immediate, don't do anything.
1420      if (ShAmt >= BitWidth)
1421        break;
1422
1423      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1424      // single shift.  We can do this if the bottom bits (which are shifted
1425      // out) are never demanded.
1426      if (InOp.getOpcode() == ISD::SRL &&
1427          isa<ConstantSDNode>(InOp.getOperand(1))) {
1428        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1429          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1430          unsigned Opc = ISD::SHL;
1431          int Diff = ShAmt-C1;
1432          if (Diff < 0) {
1433            Diff = -Diff;
1434            Opc = ISD::SRL;
1435          }
1436
1437          SDValue NewSA =
1438            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1439          EVT VT = Op.getValueType();
1440          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1441                                                   InOp.getOperand(0), NewSA));
1442        }
1443      }
1444
1445      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1446                               KnownZero, KnownOne, TLO, Depth+1))
1447        return true;
1448
1449      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1450      // are not demanded. This will likely allow the anyext to be folded away.
1451      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1452        SDValue InnerOp = InOp.getNode()->getOperand(0);
1453        EVT InnerVT = InnerOp.getValueType();
1454        if ((APInt::getHighBitsSet(BitWidth,
1455                                   BitWidth - InnerVT.getSizeInBits()) &
1456               DemandedMask) == 0 &&
1457            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1458          EVT ShTy = getShiftAmountTy(InnerVT);
1459          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1460            ShTy = InnerVT;
1461          SDValue NarrowShl =
1462            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1463                            TLO.DAG.getConstant(ShAmt, ShTy));
1464          return
1465            TLO.CombineTo(Op,
1466                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1467                                          NarrowShl));
1468        }
1469      }
1470
1471      KnownZero <<= SA->getZExtValue();
1472      KnownOne  <<= SA->getZExtValue();
1473      // low bits known zero.
1474      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1475    }
1476    break;
1477  case ISD::SRL:
1478    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1479      EVT VT = Op.getValueType();
1480      unsigned ShAmt = SA->getZExtValue();
1481      unsigned VTSize = VT.getSizeInBits();
1482      SDValue InOp = Op.getOperand(0);
1483
1484      // If the shift count is an invalid immediate, don't do anything.
1485      if (ShAmt >= BitWidth)
1486        break;
1487
1488      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1489      // single shift.  We can do this if the top bits (which are shifted out)
1490      // are never demanded.
1491      if (InOp.getOpcode() == ISD::SHL &&
1492          isa<ConstantSDNode>(InOp.getOperand(1))) {
1493        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1494          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1495          unsigned Opc = ISD::SRL;
1496          int Diff = ShAmt-C1;
1497          if (Diff < 0) {
1498            Diff = -Diff;
1499            Opc = ISD::SHL;
1500          }
1501
1502          SDValue NewSA =
1503            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1504          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1505                                                   InOp.getOperand(0), NewSA));
1506        }
1507      }
1508
1509      // Compute the new bits that are at the top now.
1510      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1511                               KnownZero, KnownOne, TLO, Depth+1))
1512        return true;
1513      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514      KnownZero = KnownZero.lshr(ShAmt);
1515      KnownOne  = KnownOne.lshr(ShAmt);
1516
1517      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1518      KnownZero |= HighBits;  // High bits known zero.
1519    }
1520    break;
1521  case ISD::SRA:
1522    // If this is an arithmetic shift right and only the low-bit is set, we can
1523    // always convert this into a logical shr, even if the shift amount is
1524    // variable.  The low bit of the shift cannot be an input sign bit unless
1525    // the shift amount is >= the size of the datatype, which is undefined.
1526    if (DemandedMask == 1)
1527      return TLO.CombineTo(Op,
1528                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1529                                           Op.getOperand(0), Op.getOperand(1)));
1530
1531    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1532      EVT VT = Op.getValueType();
1533      unsigned ShAmt = SA->getZExtValue();
1534
1535      // If the shift count is an invalid immediate, don't do anything.
1536      if (ShAmt >= BitWidth)
1537        break;
1538
1539      APInt InDemandedMask = (NewMask << ShAmt);
1540
1541      // If any of the demanded bits are produced by the sign extension, we also
1542      // demand the input sign bit.
1543      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1544      if (HighBits.intersects(NewMask))
1545        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1546
1547      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1548                               KnownZero, KnownOne, TLO, Depth+1))
1549        return true;
1550      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1551      KnownZero = KnownZero.lshr(ShAmt);
1552      KnownOne  = KnownOne.lshr(ShAmt);
1553
1554      // Handle the sign bit, adjusted to where it is now in the mask.
1555      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1556
1557      // If the input sign bit is known to be zero, or if none of the top bits
1558      // are demanded, turn this into an unsigned shift right.
1559      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1560        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1561                                                 Op.getOperand(0),
1562                                                 Op.getOperand(1)));
1563      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1564        KnownOne |= HighBits;
1565      }
1566    }
1567    break;
1568  case ISD::SIGN_EXTEND_INREG: {
1569    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1570
1571    // Sign extension.  Compute the demanded bits in the result that are not
1572    // present in the input.
1573    APInt NewBits =
1574      APInt::getHighBitsSet(BitWidth,
1575                            BitWidth - EVT.getScalarType().getSizeInBits());
1576
1577    // If none of the extended bits are demanded, eliminate the sextinreg.
1578    if ((NewBits & NewMask) == 0)
1579      return TLO.CombineTo(Op, Op.getOperand(0));
1580
1581    APInt InSignBit =
1582      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1583    APInt InputDemandedBits =
1584      APInt::getLowBitsSet(BitWidth,
1585                           EVT.getScalarType().getSizeInBits()) &
1586      NewMask;
1587
1588    // Since the sign extended bits are demanded, we know that the sign
1589    // bit is demanded.
1590    InputDemandedBits |= InSignBit;
1591
1592    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1593                             KnownZero, KnownOne, TLO, Depth+1))
1594      return true;
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596
1597    // If the sign bit of the input is known set or clear, then we know the
1598    // top bits of the result.
1599
1600    // If the input sign bit is known zero, convert this into a zero extension.
1601    if (KnownZero.intersects(InSignBit))
1602      return TLO.CombineTo(Op,
1603                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1604
1605    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1606      KnownOne |= NewBits;
1607      KnownZero &= ~NewBits;
1608    } else {                       // Input sign bit unknown
1609      KnownZero &= ~NewBits;
1610      KnownOne &= ~NewBits;
1611    }
1612    break;
1613  }
1614  case ISD::ZERO_EXTEND: {
1615    unsigned OperandBitWidth =
1616      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1617    APInt InMask = NewMask.trunc(OperandBitWidth);
1618
1619    // If none of the top bits are demanded, convert this into an any_extend.
1620    APInt NewBits =
1621      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1622    if (!NewBits.intersects(NewMask))
1623      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1624                                               Op.getValueType(),
1625                                               Op.getOperand(0)));
1626
1627    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1628                             KnownZero, KnownOne, TLO, Depth+1))
1629      return true;
1630    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1631    KnownZero = KnownZero.zext(BitWidth);
1632    KnownOne = KnownOne.zext(BitWidth);
1633    KnownZero |= NewBits;
1634    break;
1635  }
1636  case ISD::SIGN_EXTEND: {
1637    EVT InVT = Op.getOperand(0).getValueType();
1638    unsigned InBits = InVT.getScalarType().getSizeInBits();
1639    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1640    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1641    APInt NewBits   = ~InMask & NewMask;
1642
1643    // If none of the top bits are demanded, convert this into an any_extend.
1644    if (NewBits == 0)
1645      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1646                                              Op.getValueType(),
1647                                              Op.getOperand(0)));
1648
1649    // Since some of the sign extended bits are demanded, we know that the sign
1650    // bit is demanded.
1651    APInt InDemandedBits = InMask & NewMask;
1652    InDemandedBits |= InSignBit;
1653    InDemandedBits = InDemandedBits.trunc(InBits);
1654
1655    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1656                             KnownOne, TLO, Depth+1))
1657      return true;
1658    KnownZero = KnownZero.zext(BitWidth);
1659    KnownOne = KnownOne.zext(BitWidth);
1660
1661    // If the sign bit is known zero, convert this to a zero extend.
1662    if (KnownZero.intersects(InSignBit))
1663      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1664                                               Op.getValueType(),
1665                                               Op.getOperand(0)));
1666
1667    // If the sign bit is known one, the top bits match.
1668    if (KnownOne.intersects(InSignBit)) {
1669      KnownOne  |= NewBits;
1670      KnownZero &= ~NewBits;
1671    } else {   // Otherwise, top bits aren't known.
1672      KnownOne  &= ~NewBits;
1673      KnownZero &= ~NewBits;
1674    }
1675    break;
1676  }
1677  case ISD::ANY_EXTEND: {
1678    unsigned OperandBitWidth =
1679      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1680    APInt InMask = NewMask.trunc(OperandBitWidth);
1681    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1682                             KnownZero, KnownOne, TLO, Depth+1))
1683      return true;
1684    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685    KnownZero = KnownZero.zext(BitWidth);
1686    KnownOne = KnownOne.zext(BitWidth);
1687    break;
1688  }
1689  case ISD::TRUNCATE: {
1690    // Simplify the input, using demanded bit information, and compute the known
1691    // zero/one bits live out.
1692    unsigned OperandBitWidth =
1693      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1694    APInt TruncMask = NewMask.zext(OperandBitWidth);
1695    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1696                             KnownZero, KnownOne, TLO, Depth+1))
1697      return true;
1698    KnownZero = KnownZero.trunc(BitWidth);
1699    KnownOne = KnownOne.trunc(BitWidth);
1700
1701    // If the input is only used by this truncate, see if we can shrink it based
1702    // on the known demanded bits.
1703    if (Op.getOperand(0).getNode()->hasOneUse()) {
1704      SDValue In = Op.getOperand(0);
1705      switch (In.getOpcode()) {
1706      default: break;
1707      case ISD::SRL:
1708        // Shrink SRL by a constant if none of the high bits shifted in are
1709        // demanded.
1710        if (TLO.LegalTypes() &&
1711            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1712          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1713          // undesirable.
1714          break;
1715        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1716        if (!ShAmt)
1717          break;
1718        SDValue Shift = In.getOperand(1);
1719        if (TLO.LegalTypes()) {
1720          uint64_t ShVal = ShAmt->getZExtValue();
1721          Shift =
1722            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1723        }
1724
1725        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1726                                               OperandBitWidth - BitWidth);
1727        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1728
1729        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1730          // None of the shifted in bits are needed.  Add a truncate of the
1731          // shift input, then shift it.
1732          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1733                                             Op.getValueType(),
1734                                             In.getOperand(0));
1735          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1736                                                   Op.getValueType(),
1737                                                   NewTrunc,
1738                                                   Shift));
1739        }
1740        break;
1741      }
1742    }
1743
1744    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1745    break;
1746  }
1747  case ISD::AssertZext: {
1748    // Demand all the bits of the input that are demanded in the output.
1749    // The low bits are obvious; the high bits are demanded because we're
1750    // asserting that they're zero here.
1751    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1752                             KnownZero, KnownOne, TLO, Depth+1))
1753      return true;
1754    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755
1756    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757    APInt InMask = APInt::getLowBitsSet(BitWidth,
1758                                        VT.getSizeInBits());
1759    KnownZero |= ~InMask & NewMask;
1760    break;
1761  }
1762  case ISD::BITCAST:
1763    // If this is an FP->Int bitcast and if the sign bit is the only
1764    // thing demanded, turn this into a FGETSIGN.
1765    if (NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1766        Op.getOperand(0).getValueType().isFloatingPoint() &&
1767        !Op.getOperand(0).getValueType().isVector()) {
1768      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1769      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1770      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1771        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1772        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1773        // place.  We expect the SHL to be eliminated by other optimizations.
1774        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1775        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1776        if (!OpVTLegal && OpVTSizeInBits > 32)
1777          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1778        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1779        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1780        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1781                                                 Op.getValueType(),
1782                                                 Sign, ShAmt));
1783      }
1784    }
1785    break;
1786  case ISD::ADD:
1787  case ISD::MUL:
1788  case ISD::SUB: {
1789    // Add, Sub, and Mul don't demand any bits in positions beyond that
1790    // of the highest bit demanded of them.
1791    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1792                                        BitWidth - NewMask.countLeadingZeros());
1793    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1794                             KnownOne2, TLO, Depth+1))
1795      return true;
1796    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1797                             KnownOne2, TLO, Depth+1))
1798      return true;
1799    // See if the operation should be performed at a smaller bit width.
1800    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1801      return true;
1802  }
1803  // FALL THROUGH
1804  default:
1805    // Just use ComputeMaskedBits to compute output bits.
1806    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1807    break;
1808  }
1809
1810  // If we know the value of all of the demanded bits, return this as a
1811  // constant.
1812  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1813    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1814
1815  return false;
1816}
1817
1818/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1819/// in Mask are known to be either zero or one and return them in the
1820/// KnownZero/KnownOne bitsets.
1821void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1822                                                    const APInt &Mask,
1823                                                    APInt &KnownZero,
1824                                                    APInt &KnownOne,
1825                                                    const SelectionDAG &DAG,
1826                                                    unsigned Depth) const {
1827  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1828          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1829          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1830          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1831         "Should use MaskedValueIsZero if you don't know whether Op"
1832         " is a target node!");
1833  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1834}
1835
1836/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1837/// targets that want to expose additional information about sign bits to the
1838/// DAG Combiner.
1839unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1840                                                         unsigned Depth) const {
1841  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1842          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1843          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1844          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1845         "Should use ComputeNumSignBits if you don't know whether Op"
1846         " is a target node!");
1847  return 1;
1848}
1849
1850/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1851/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1852/// determine which bit is set.
1853///
1854static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1855  // A left-shift of a constant one will have exactly one bit set, because
1856  // shifting the bit off the end is undefined.
1857  if (Val.getOpcode() == ISD::SHL)
1858    if (ConstantSDNode *C =
1859         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1860      if (C->getAPIntValue() == 1)
1861        return true;
1862
1863  // Similarly, a right-shift of a constant sign-bit will have exactly
1864  // one bit set.
1865  if (Val.getOpcode() == ISD::SRL)
1866    if (ConstantSDNode *C =
1867         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1868      if (C->getAPIntValue().isSignBit())
1869        return true;
1870
1871  // More could be done here, though the above checks are enough
1872  // to handle some common cases.
1873
1874  // Fall back to ComputeMaskedBits to catch other known cases.
1875  EVT OpVT = Val.getValueType();
1876  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1877  APInt Mask = APInt::getAllOnesValue(BitWidth);
1878  APInt KnownZero, KnownOne;
1879  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1880  return (KnownZero.countPopulation() == BitWidth - 1) &&
1881         (KnownOne.countPopulation() == 1);
1882}
1883
1884/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1885/// and cc. If it is unable to simplify it, return a null SDValue.
1886SDValue
1887TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1888                              ISD::CondCode Cond, bool foldBooleans,
1889                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1890  SelectionDAG &DAG = DCI.DAG;
1891
1892  // These setcc operations always fold.
1893  switch (Cond) {
1894  default: break;
1895  case ISD::SETFALSE:
1896  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1897  case ISD::SETTRUE:
1898  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1899  }
1900
1901  // Ensure that the constant occurs on the RHS, and fold constant
1902  // comparisons.
1903  if (isa<ConstantSDNode>(N0.getNode()))
1904    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1905
1906  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1907    const APInt &C1 = N1C->getAPIntValue();
1908
1909    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1910    // equality comparison, then we're just comparing whether X itself is
1911    // zero.
1912    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1913        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1914        N0.getOperand(1).getOpcode() == ISD::Constant) {
1915      const APInt &ShAmt
1916        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1917      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1918          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1919        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1920          // (srl (ctlz x), 5) == 0  -> X != 0
1921          // (srl (ctlz x), 5) != 1  -> X != 0
1922          Cond = ISD::SETNE;
1923        } else {
1924          // (srl (ctlz x), 5) != 0  -> X == 0
1925          // (srl (ctlz x), 5) == 1  -> X == 0
1926          Cond = ISD::SETEQ;
1927        }
1928        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1929        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1930                            Zero, Cond);
1931      }
1932    }
1933
1934    SDValue CTPOP = N0;
1935    // Look through truncs that don't change the value of a ctpop.
1936    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1937      CTPOP = N0.getOperand(0);
1938
1939    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1940        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1941                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1942      EVT CTVT = CTPOP.getValueType();
1943      SDValue CTOp = CTPOP.getOperand(0);
1944
1945      // (ctpop x) u< 2 -> (x & x-1) == 0
1946      // (ctpop x) u> 1 -> (x & x-1) != 0
1947      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1948        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1949                                  DAG.getConstant(1, CTVT));
1950        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1951        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1952        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1953      }
1954
1955      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1956    }
1957
1958    // (zext x) == C --> x == (trunc C)
1959    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1960        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1961      unsigned MinBits = N0.getValueSizeInBits();
1962      SDValue PreZExt;
1963      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1964        // ZExt
1965        MinBits = N0->getOperand(0).getValueSizeInBits();
1966        PreZExt = N0->getOperand(0);
1967      } else if (N0->getOpcode() == ISD::AND) {
1968        // DAGCombine turns costly ZExts into ANDs
1969        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1970          if ((C->getAPIntValue()+1).isPowerOf2()) {
1971            MinBits = C->getAPIntValue().countTrailingOnes();
1972            PreZExt = N0->getOperand(0);
1973          }
1974      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1975        // ZEXTLOAD
1976        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1977          MinBits = LN0->getMemoryVT().getSizeInBits();
1978          PreZExt = N0;
1979        }
1980      }
1981
1982      // Make sure we're not loosing bits from the constant.
1983      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1984        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1985        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1986          // Will get folded away.
1987          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1988          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1989          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1990        }
1991      }
1992    }
1993
1994    // If the LHS is '(and load, const)', the RHS is 0,
1995    // the test is for equality or unsigned, and all 1 bits of the const are
1996    // in the same partial word, see if we can shorten the load.
1997    if (DCI.isBeforeLegalize() &&
1998        N0.getOpcode() == ISD::AND && C1 == 0 &&
1999        N0.getNode()->hasOneUse() &&
2000        isa<LoadSDNode>(N0.getOperand(0)) &&
2001        N0.getOperand(0).getNode()->hasOneUse() &&
2002        isa<ConstantSDNode>(N0.getOperand(1))) {
2003      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2004      APInt bestMask;
2005      unsigned bestWidth = 0, bestOffset = 0;
2006      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2007        unsigned origWidth = N0.getValueType().getSizeInBits();
2008        unsigned maskWidth = origWidth;
2009        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2010        // 8 bits, but have to be careful...
2011        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2012          origWidth = Lod->getMemoryVT().getSizeInBits();
2013        const APInt &Mask =
2014          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2015        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2016          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2017          for (unsigned offset=0; offset<origWidth/width; offset++) {
2018            if ((newMask & Mask) == Mask) {
2019              if (!TD->isLittleEndian())
2020                bestOffset = (origWidth/width - offset - 1) * (width/8);
2021              else
2022                bestOffset = (uint64_t)offset * (width/8);
2023              bestMask = Mask.lshr(offset * (width/8) * 8);
2024              bestWidth = width;
2025              break;
2026            }
2027            newMask = newMask << width;
2028          }
2029        }
2030      }
2031      if (bestWidth) {
2032        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2033        if (newVT.isRound()) {
2034          EVT PtrType = Lod->getOperand(1).getValueType();
2035          SDValue Ptr = Lod->getBasePtr();
2036          if (bestOffset != 0)
2037            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2038                              DAG.getConstant(bestOffset, PtrType));
2039          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2040          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2041                                Lod->getPointerInfo().getWithOffset(bestOffset),
2042                                        false, false, NewAlign);
2043          return DAG.getSetCC(dl, VT,
2044                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2045                                      DAG.getConstant(bestMask.trunc(bestWidth),
2046                                                      newVT)),
2047                              DAG.getConstant(0LL, newVT), Cond);
2048        }
2049      }
2050    }
2051
2052    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2053    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2054      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2055
2056      // If the comparison constant has bits in the upper part, the
2057      // zero-extended value could never match.
2058      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2059                                              C1.getBitWidth() - InSize))) {
2060        switch (Cond) {
2061        case ISD::SETUGT:
2062        case ISD::SETUGE:
2063        case ISD::SETEQ: return DAG.getConstant(0, VT);
2064        case ISD::SETULT:
2065        case ISD::SETULE:
2066        case ISD::SETNE: return DAG.getConstant(1, VT);
2067        case ISD::SETGT:
2068        case ISD::SETGE:
2069          // True if the sign bit of C1 is set.
2070          return DAG.getConstant(C1.isNegative(), VT);
2071        case ISD::SETLT:
2072        case ISD::SETLE:
2073          // True if the sign bit of C1 isn't set.
2074          return DAG.getConstant(C1.isNonNegative(), VT);
2075        default:
2076          break;
2077        }
2078      }
2079
2080      // Otherwise, we can perform the comparison with the low bits.
2081      switch (Cond) {
2082      case ISD::SETEQ:
2083      case ISD::SETNE:
2084      case ISD::SETUGT:
2085      case ISD::SETUGE:
2086      case ISD::SETULT:
2087      case ISD::SETULE: {
2088        EVT newVT = N0.getOperand(0).getValueType();
2089        if (DCI.isBeforeLegalizeOps() ||
2090            (isOperationLegal(ISD::SETCC, newVT) &&
2091              getCondCodeAction(Cond, newVT)==Legal))
2092          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2093                              DAG.getConstant(C1.trunc(InSize), newVT),
2094                              Cond);
2095        break;
2096      }
2097      default:
2098        break;   // todo, be more careful with signed comparisons
2099      }
2100    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2101               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2102      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2103      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2104      EVT ExtDstTy = N0.getValueType();
2105      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2106
2107      // If the constant doesn't fit into the number of bits for the source of
2108      // the sign extension, it is impossible for both sides to be equal.
2109      if (C1.getMinSignedBits() > ExtSrcTyBits)
2110        return DAG.getConstant(Cond == ISD::SETNE, VT);
2111
2112      SDValue ZextOp;
2113      EVT Op0Ty = N0.getOperand(0).getValueType();
2114      if (Op0Ty == ExtSrcTy) {
2115        ZextOp = N0.getOperand(0);
2116      } else {
2117        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2118        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2119                              DAG.getConstant(Imm, Op0Ty));
2120      }
2121      if (!DCI.isCalledByLegalizer())
2122        DCI.AddToWorklist(ZextOp.getNode());
2123      // Otherwise, make this a use of a zext.
2124      return DAG.getSetCC(dl, VT, ZextOp,
2125                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2126                                                              ExtDstTyBits,
2127                                                              ExtSrcTyBits),
2128                                          ExtDstTy),
2129                          Cond);
2130    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2131                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2132      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2133      if (N0.getOpcode() == ISD::SETCC &&
2134          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2135        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2136        if (TrueWhenTrue)
2137          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2138        // Invert the condition.
2139        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2140        CC = ISD::getSetCCInverse(CC,
2141                                  N0.getOperand(0).getValueType().isInteger());
2142        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2143      }
2144
2145      if ((N0.getOpcode() == ISD::XOR ||
2146           (N0.getOpcode() == ISD::AND &&
2147            N0.getOperand(0).getOpcode() == ISD::XOR &&
2148            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2149          isa<ConstantSDNode>(N0.getOperand(1)) &&
2150          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2151        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2152        // can only do this if the top bits are known zero.
2153        unsigned BitWidth = N0.getValueSizeInBits();
2154        if (DAG.MaskedValueIsZero(N0,
2155                                  APInt::getHighBitsSet(BitWidth,
2156                                                        BitWidth-1))) {
2157          // Okay, get the un-inverted input value.
2158          SDValue Val;
2159          if (N0.getOpcode() == ISD::XOR)
2160            Val = N0.getOperand(0);
2161          else {
2162            assert(N0.getOpcode() == ISD::AND &&
2163                    N0.getOperand(0).getOpcode() == ISD::XOR);
2164            // ((X^1)&1)^1 -> X & 1
2165            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2166                              N0.getOperand(0).getOperand(0),
2167                              N0.getOperand(1));
2168          }
2169
2170          return DAG.getSetCC(dl, VT, Val, N1,
2171                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2172        }
2173      } else if (N1C->getAPIntValue() == 1 &&
2174                 (VT == MVT::i1 ||
2175                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2176        SDValue Op0 = N0;
2177        if (Op0.getOpcode() == ISD::TRUNCATE)
2178          Op0 = Op0.getOperand(0);
2179
2180        if ((Op0.getOpcode() == ISD::XOR) &&
2181            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2182            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2183          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2184          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2185          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2186                              Cond);
2187        } else if (Op0.getOpcode() == ISD::AND &&
2188                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2189                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2190          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2191          if (Op0.getValueType().bitsGT(VT))
2192            Op0 = DAG.getNode(ISD::AND, dl, VT,
2193                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2194                          DAG.getConstant(1, VT));
2195          else if (Op0.getValueType().bitsLT(VT))
2196            Op0 = DAG.getNode(ISD::AND, dl, VT,
2197                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2198                        DAG.getConstant(1, VT));
2199
2200          return DAG.getSetCC(dl, VT, Op0,
2201                              DAG.getConstant(0, Op0.getValueType()),
2202                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2203        }
2204      }
2205    }
2206
2207    APInt MinVal, MaxVal;
2208    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2209    if (ISD::isSignedIntSetCC(Cond)) {
2210      MinVal = APInt::getSignedMinValue(OperandBitSize);
2211      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2212    } else {
2213      MinVal = APInt::getMinValue(OperandBitSize);
2214      MaxVal = APInt::getMaxValue(OperandBitSize);
2215    }
2216
2217    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2218    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2219      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2220      // X >= C0 --> X > (C0-1)
2221      return DAG.getSetCC(dl, VT, N0,
2222                          DAG.getConstant(C1-1, N1.getValueType()),
2223                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2224    }
2225
2226    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2227      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2228      // X <= C0 --> X < (C0+1)
2229      return DAG.getSetCC(dl, VT, N0,
2230                          DAG.getConstant(C1+1, N1.getValueType()),
2231                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2232    }
2233
2234    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2235      return DAG.getConstant(0, VT);      // X < MIN --> false
2236    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2237      return DAG.getConstant(1, VT);      // X >= MIN --> true
2238    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2239      return DAG.getConstant(0, VT);      // X > MAX --> false
2240    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2241      return DAG.getConstant(1, VT);      // X <= MAX --> true
2242
2243    // Canonicalize setgt X, Min --> setne X, Min
2244    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2245      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2246    // Canonicalize setlt X, Max --> setne X, Max
2247    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2248      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2249
2250    // If we have setult X, 1, turn it into seteq X, 0
2251    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2252      return DAG.getSetCC(dl, VT, N0,
2253                          DAG.getConstant(MinVal, N0.getValueType()),
2254                          ISD::SETEQ);
2255    // If we have setugt X, Max-1, turn it into seteq X, Max
2256    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2257      return DAG.getSetCC(dl, VT, N0,
2258                          DAG.getConstant(MaxVal, N0.getValueType()),
2259                          ISD::SETEQ);
2260
2261    // If we have "setcc X, C0", check to see if we can shrink the immediate
2262    // by changing cc.
2263
2264    // SETUGT X, SINTMAX  -> SETLT X, 0
2265    if (Cond == ISD::SETUGT &&
2266        C1 == APInt::getSignedMaxValue(OperandBitSize))
2267      return DAG.getSetCC(dl, VT, N0,
2268                          DAG.getConstant(0, N1.getValueType()),
2269                          ISD::SETLT);
2270
2271    // SETULT X, SINTMIN  -> SETGT X, -1
2272    if (Cond == ISD::SETULT &&
2273        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2274      SDValue ConstMinusOne =
2275          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2276                          N1.getValueType());
2277      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2278    }
2279
2280    // Fold bit comparisons when we can.
2281    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2282        (VT == N0.getValueType() ||
2283         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2284        N0.getOpcode() == ISD::AND)
2285      if (ConstantSDNode *AndRHS =
2286                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2287        EVT ShiftTy = DCI.isBeforeLegalize() ?
2288          getPointerTy() : getShiftAmountTy(N0.getValueType());
2289        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2290          // Perform the xform if the AND RHS is a single bit.
2291          if (AndRHS->getAPIntValue().isPowerOf2()) {
2292            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2293                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2294                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2295          }
2296        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2297          // (X & 8) == 8  -->  (X & 8) >> 3
2298          // Perform the xform if C1 is a single bit.
2299          if (C1.isPowerOf2()) {
2300            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2301                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2302                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2303          }
2304        }
2305      }
2306  }
2307
2308  if (isa<ConstantFPSDNode>(N0.getNode())) {
2309    // Constant fold or commute setcc.
2310    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2311    if (O.getNode()) return O;
2312  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2313    // If the RHS of an FP comparison is a constant, simplify it away in
2314    // some cases.
2315    if (CFP->getValueAPF().isNaN()) {
2316      // If an operand is known to be a nan, we can fold it.
2317      switch (ISD::getUnorderedFlavor(Cond)) {
2318      default: llvm_unreachable("Unknown flavor!");
2319      case 0:  // Known false.
2320        return DAG.getConstant(0, VT);
2321      case 1:  // Known true.
2322        return DAG.getConstant(1, VT);
2323      case 2:  // Undefined.
2324        return DAG.getUNDEF(VT);
2325      }
2326    }
2327
2328    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2329    // constant if knowing that the operand is non-nan is enough.  We prefer to
2330    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2331    // materialize 0.0.
2332    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2333      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2334
2335    // If the condition is not legal, see if we can find an equivalent one
2336    // which is legal.
2337    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2338      // If the comparison was an awkward floating-point == or != and one of
2339      // the comparison operands is infinity or negative infinity, convert the
2340      // condition to a less-awkward <= or >=.
2341      if (CFP->getValueAPF().isInfinity()) {
2342        if (CFP->getValueAPF().isNegative()) {
2343          if (Cond == ISD::SETOEQ &&
2344              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2345            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2346          if (Cond == ISD::SETUEQ &&
2347              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2348            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2349          if (Cond == ISD::SETUNE &&
2350              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2351            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2352          if (Cond == ISD::SETONE &&
2353              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2354            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2355        } else {
2356          if (Cond == ISD::SETOEQ &&
2357              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2358            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2359          if (Cond == ISD::SETUEQ &&
2360              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2361            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2362          if (Cond == ISD::SETUNE &&
2363              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2364            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2365          if (Cond == ISD::SETONE &&
2366              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2367            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2368        }
2369      }
2370    }
2371  }
2372
2373  if (N0 == N1) {
2374    // We can always fold X == X for integer setcc's.
2375    if (N0.getValueType().isInteger())
2376      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2377    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2378    if (UOF == 2)   // FP operators that are undefined on NaNs.
2379      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2380    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2381      return DAG.getConstant(UOF, VT);
2382    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2383    // if it is not already.
2384    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2385    if (NewCond != Cond)
2386      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2387  }
2388
2389  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2390      N0.getValueType().isInteger()) {
2391    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2392        N0.getOpcode() == ISD::XOR) {
2393      // Simplify (X+Y) == (X+Z) -->  Y == Z
2394      if (N0.getOpcode() == N1.getOpcode()) {
2395        if (N0.getOperand(0) == N1.getOperand(0))
2396          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2397        if (N0.getOperand(1) == N1.getOperand(1))
2398          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2399        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2400          // If X op Y == Y op X, try other combinations.
2401          if (N0.getOperand(0) == N1.getOperand(1))
2402            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2403                                Cond);
2404          if (N0.getOperand(1) == N1.getOperand(0))
2405            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2406                                Cond);
2407        }
2408      }
2409
2410      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2411        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2412          // Turn (X+C1) == C2 --> X == C2-C1
2413          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2414            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2415                                DAG.getConstant(RHSC->getAPIntValue()-
2416                                                LHSR->getAPIntValue(),
2417                                N0.getValueType()), Cond);
2418          }
2419
2420          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2421          if (N0.getOpcode() == ISD::XOR)
2422            // If we know that all of the inverted bits are zero, don't bother
2423            // performing the inversion.
2424            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2425              return
2426                DAG.getSetCC(dl, VT, N0.getOperand(0),
2427                             DAG.getConstant(LHSR->getAPIntValue() ^
2428                                               RHSC->getAPIntValue(),
2429                                             N0.getValueType()),
2430                             Cond);
2431        }
2432
2433        // Turn (C1-X) == C2 --> X == C1-C2
2434        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2435          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2436            return
2437              DAG.getSetCC(dl, VT, N0.getOperand(1),
2438                           DAG.getConstant(SUBC->getAPIntValue() -
2439                                             RHSC->getAPIntValue(),
2440                                           N0.getValueType()),
2441                           Cond);
2442          }
2443        }
2444      }
2445
2446      // Simplify (X+Z) == X -->  Z == 0
2447      if (N0.getOperand(0) == N1)
2448        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2449                        DAG.getConstant(0, N0.getValueType()), Cond);
2450      if (N0.getOperand(1) == N1) {
2451        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2452          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2453                          DAG.getConstant(0, N0.getValueType()), Cond);
2454        else if (N0.getNode()->hasOneUse()) {
2455          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2456          // (Z-X) == X  --> Z == X<<1
2457          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2458                                     N1,
2459                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2460          if (!DCI.isCalledByLegalizer())
2461            DCI.AddToWorklist(SH.getNode());
2462          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2463        }
2464      }
2465    }
2466
2467    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2468        N1.getOpcode() == ISD::XOR) {
2469      // Simplify  X == (X+Z) -->  Z == 0
2470      if (N1.getOperand(0) == N0) {
2471        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2472                        DAG.getConstant(0, N1.getValueType()), Cond);
2473      } else if (N1.getOperand(1) == N0) {
2474        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2475          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2476                          DAG.getConstant(0, N1.getValueType()), Cond);
2477        } else if (N1.getNode()->hasOneUse()) {
2478          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2479          // X == (Z-X)  --> X<<1 == Z
2480          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2481                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2482          if (!DCI.isCalledByLegalizer())
2483            DCI.AddToWorklist(SH.getNode());
2484          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2485        }
2486      }
2487    }
2488
2489    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2490    // Note that where y is variable and is known to have at most
2491    // one bit set (for example, if it is z&1) we cannot do this;
2492    // the expressions are not equivalent when y==0.
2493    if (N0.getOpcode() == ISD::AND)
2494      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2495        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2496          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2497          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2498          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2499        }
2500      }
2501    if (N1.getOpcode() == ISD::AND)
2502      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2503        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2504          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2505          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2506          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2507        }
2508      }
2509  }
2510
2511  // Fold away ALL boolean setcc's.
2512  SDValue Temp;
2513  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2514    switch (Cond) {
2515    default: llvm_unreachable("Unknown integer setcc!");
2516    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2517      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2518      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2519      if (!DCI.isCalledByLegalizer())
2520        DCI.AddToWorklist(Temp.getNode());
2521      break;
2522    case ISD::SETNE:  // X != Y   -->  (X^Y)
2523      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2524      break;
2525    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2526    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2527      Temp = DAG.getNOT(dl, N0, MVT::i1);
2528      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2529      if (!DCI.isCalledByLegalizer())
2530        DCI.AddToWorklist(Temp.getNode());
2531      break;
2532    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2533    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2534      Temp = DAG.getNOT(dl, N1, MVT::i1);
2535      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2536      if (!DCI.isCalledByLegalizer())
2537        DCI.AddToWorklist(Temp.getNode());
2538      break;
2539    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2540    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2541      Temp = DAG.getNOT(dl, N0, MVT::i1);
2542      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2543      if (!DCI.isCalledByLegalizer())
2544        DCI.AddToWorklist(Temp.getNode());
2545      break;
2546    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2547    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2548      Temp = DAG.getNOT(dl, N1, MVT::i1);
2549      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2550      break;
2551    }
2552    if (VT != MVT::i1) {
2553      if (!DCI.isCalledByLegalizer())
2554        DCI.AddToWorklist(N0.getNode());
2555      // FIXME: If running after legalize, we probably can't do this.
2556      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2557    }
2558    return N0;
2559  }
2560
2561  // Could not fold it.
2562  return SDValue();
2563}
2564
2565/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2566/// node is a GlobalAddress + offset.
2567bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2568                                    int64_t &Offset) const {
2569  if (isa<GlobalAddressSDNode>(N)) {
2570    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2571    GA = GASD->getGlobal();
2572    Offset += GASD->getOffset();
2573    return true;
2574  }
2575
2576  if (N->getOpcode() == ISD::ADD) {
2577    SDValue N1 = N->getOperand(0);
2578    SDValue N2 = N->getOperand(1);
2579    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2580      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2581      if (V) {
2582        Offset += V->getSExtValue();
2583        return true;
2584      }
2585    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2586      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2587      if (V) {
2588        Offset += V->getSExtValue();
2589        return true;
2590      }
2591    }
2592  }
2593
2594  return false;
2595}
2596
2597
2598SDValue TargetLowering::
2599PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2600  // Default implementation: no optimization.
2601  return SDValue();
2602}
2603
2604//===----------------------------------------------------------------------===//
2605//  Inline Assembler Implementation Methods
2606//===----------------------------------------------------------------------===//
2607
2608
2609TargetLowering::ConstraintType
2610TargetLowering::getConstraintType(const std::string &Constraint) const {
2611  // FIXME: lots more standard ones to handle.
2612  if (Constraint.size() == 1) {
2613    switch (Constraint[0]) {
2614    default: break;
2615    case 'r': return C_RegisterClass;
2616    case 'm':    // memory
2617    case 'o':    // offsetable
2618    case 'V':    // not offsetable
2619      return C_Memory;
2620    case 'i':    // Simple Integer or Relocatable Constant
2621    case 'n':    // Simple Integer
2622    case 'E':    // Floating Point Constant
2623    case 'F':    // Floating Point Constant
2624    case 's':    // Relocatable Constant
2625    case 'p':    // Address.
2626    case 'X':    // Allow ANY value.
2627    case 'I':    // Target registers.
2628    case 'J':
2629    case 'K':
2630    case 'L':
2631    case 'M':
2632    case 'N':
2633    case 'O':
2634    case 'P':
2635    case '<':
2636    case '>':
2637      return C_Other;
2638    }
2639  }
2640
2641  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2642      Constraint[Constraint.size()-1] == '}')
2643    return C_Register;
2644  return C_Unknown;
2645}
2646
2647/// LowerXConstraint - try to replace an X constraint, which matches anything,
2648/// with another that has more specific requirements based on the type of the
2649/// corresponding operand.
2650const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2651  if (ConstraintVT.isInteger())
2652    return "r";
2653  if (ConstraintVT.isFloatingPoint())
2654    return "f";      // works for many targets
2655  return 0;
2656}
2657
2658/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2659/// vector.  If it is invalid, don't add anything to Ops.
2660void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2661                                                  std::string &Constraint,
2662                                                  std::vector<SDValue> &Ops,
2663                                                  SelectionDAG &DAG) const {
2664
2665  if (Constraint.length() > 1) return;
2666
2667  char ConstraintLetter = Constraint[0];
2668  switch (ConstraintLetter) {
2669  default: break;
2670  case 'X':     // Allows any operand; labels (basic block) use this.
2671    if (Op.getOpcode() == ISD::BasicBlock) {
2672      Ops.push_back(Op);
2673      return;
2674    }
2675    // fall through
2676  case 'i':    // Simple Integer or Relocatable Constant
2677  case 'n':    // Simple Integer
2678  case 's': {  // Relocatable Constant
2679    // These operands are interested in values of the form (GV+C), where C may
2680    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2681    // is possible and fine if either GV or C are missing.
2682    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2683    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2684
2685    // If we have "(add GV, C)", pull out GV/C
2686    if (Op.getOpcode() == ISD::ADD) {
2687      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2688      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2689      if (C == 0 || GA == 0) {
2690        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2691        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2692      }
2693      if (C == 0 || GA == 0)
2694        C = 0, GA = 0;
2695    }
2696
2697    // If we find a valid operand, map to the TargetXXX version so that the
2698    // value itself doesn't get selected.
2699    if (GA) {   // Either &GV   or   &GV+C
2700      if (ConstraintLetter != 'n') {
2701        int64_t Offs = GA->getOffset();
2702        if (C) Offs += C->getZExtValue();
2703        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2704                                                 C ? C->getDebugLoc() : DebugLoc(),
2705                                                 Op.getValueType(), Offs));
2706        return;
2707      }
2708    }
2709    if (C) {   // just C, no GV.
2710      // Simple constants are not allowed for 's'.
2711      if (ConstraintLetter != 's') {
2712        // gcc prints these as sign extended.  Sign extend value to 64 bits
2713        // now; without this it would get ZExt'd later in
2714        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2715        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2716                                            MVT::i64));
2717        return;
2718      }
2719    }
2720    break;
2721  }
2722  }
2723}
2724
2725std::vector<unsigned> TargetLowering::
2726getRegClassForInlineAsmConstraint(const std::string &Constraint,
2727                                  EVT VT) const {
2728  return std::vector<unsigned>();
2729}
2730
2731
2732std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2733getRegForInlineAsmConstraint(const std::string &Constraint,
2734                             EVT VT) const {
2735  if (Constraint[0] != '{')
2736    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2737  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2738
2739  // Remove the braces from around the name.
2740  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2741
2742  // Figure out which register class contains this reg.
2743  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2744  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2745       E = RI->regclass_end(); RCI != E; ++RCI) {
2746    const TargetRegisterClass *RC = *RCI;
2747
2748    // If none of the value types for this register class are valid, we
2749    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2750    bool isLegal = false;
2751    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2752         I != E; ++I) {
2753      if (isTypeLegal(*I)) {
2754        isLegal = true;
2755        break;
2756      }
2757    }
2758
2759    if (!isLegal) continue;
2760
2761    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2762         I != E; ++I) {
2763      if (RegName.equals_lower(RI->getName(*I)))
2764        return std::make_pair(*I, RC);
2765    }
2766  }
2767
2768  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2769}
2770
2771//===----------------------------------------------------------------------===//
2772// Constraint Selection.
2773
2774/// isMatchingInputConstraint - Return true of this is an input operand that is
2775/// a matching constraint like "4".
2776bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2777  assert(!ConstraintCode.empty() && "No known constraint!");
2778  return isdigit(ConstraintCode[0]);
2779}
2780
2781/// getMatchedOperand - If this is an input matching constraint, this method
2782/// returns the output operand it matches.
2783unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2784  assert(!ConstraintCode.empty() && "No known constraint!");
2785  return atoi(ConstraintCode.c_str());
2786}
2787
2788
2789/// ParseConstraints - Split up the constraint string from the inline
2790/// assembly value into the specific constraints and their prefixes,
2791/// and also tie in the associated operand values.
2792/// If this returns an empty vector, and if the constraint string itself
2793/// isn't empty, there was an error parsing.
2794TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2795    ImmutableCallSite CS) const {
2796  /// ConstraintOperands - Information about all of the constraints.
2797  AsmOperandInfoVector ConstraintOperands;
2798  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2799  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2800
2801  // Do a prepass over the constraints, canonicalizing them, and building up the
2802  // ConstraintOperands list.
2803  InlineAsm::ConstraintInfoVector
2804    ConstraintInfos = IA->ParseConstraints();
2805
2806  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2807  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2808
2809  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2810    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2811    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2812
2813    // Update multiple alternative constraint count.
2814    if (OpInfo.multipleAlternatives.size() > maCount)
2815      maCount = OpInfo.multipleAlternatives.size();
2816
2817    OpInfo.ConstraintVT = MVT::Other;
2818
2819    // Compute the value type for each operand.
2820    switch (OpInfo.Type) {
2821    case InlineAsm::isOutput:
2822      // Indirect outputs just consume an argument.
2823      if (OpInfo.isIndirect) {
2824        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2825        break;
2826      }
2827
2828      // The return value of the call is this value.  As such, there is no
2829      // corresponding argument.
2830      assert(!CS.getType()->isVoidTy() &&
2831             "Bad inline asm!");
2832      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2833        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2834      } else {
2835        assert(ResNo == 0 && "Asm only has one result!");
2836        OpInfo.ConstraintVT = getValueType(CS.getType());
2837      }
2838      ++ResNo;
2839      break;
2840    case InlineAsm::isInput:
2841      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2842      break;
2843    case InlineAsm::isClobber:
2844      // Nothing to do.
2845      break;
2846    }
2847
2848    if (OpInfo.CallOperandVal) {
2849      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2850      if (OpInfo.isIndirect) {
2851        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2852        if (!PtrTy)
2853          report_fatal_error("Indirect operand for inline asm not a pointer!");
2854        OpTy = PtrTy->getElementType();
2855      }
2856
2857      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2858      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2859        if (STy->getNumElements() == 1)
2860          OpTy = STy->getElementType(0);
2861
2862      // If OpTy is not a single value, it may be a struct/union that we
2863      // can tile with integers.
2864      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2865        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2866        switch (BitSize) {
2867        default: break;
2868        case 1:
2869        case 8:
2870        case 16:
2871        case 32:
2872        case 64:
2873        case 128:
2874          OpInfo.ConstraintVT =
2875              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2876          break;
2877        }
2878      } else if (dyn_cast<PointerType>(OpTy)) {
2879        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2880      } else {
2881        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2882      }
2883    }
2884  }
2885
2886  // If we have multiple alternative constraints, select the best alternative.
2887  if (ConstraintInfos.size()) {
2888    if (maCount) {
2889      unsigned bestMAIndex = 0;
2890      int bestWeight = -1;
2891      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2892      int weight = -1;
2893      unsigned maIndex;
2894      // Compute the sums of the weights for each alternative, keeping track
2895      // of the best (highest weight) one so far.
2896      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2897        int weightSum = 0;
2898        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2899            cIndex != eIndex; ++cIndex) {
2900          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2901          if (OpInfo.Type == InlineAsm::isClobber)
2902            continue;
2903
2904          // If this is an output operand with a matching input operand,
2905          // look up the matching input. If their types mismatch, e.g. one
2906          // is an integer, the other is floating point, or their sizes are
2907          // different, flag it as an maCantMatch.
2908          if (OpInfo.hasMatchingInput()) {
2909            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2910            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2911              if ((OpInfo.ConstraintVT.isInteger() !=
2912                   Input.ConstraintVT.isInteger()) ||
2913                  (OpInfo.ConstraintVT.getSizeInBits() !=
2914                   Input.ConstraintVT.getSizeInBits())) {
2915                weightSum = -1;  // Can't match.
2916                break;
2917              }
2918            }
2919          }
2920          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2921          if (weight == -1) {
2922            weightSum = -1;
2923            break;
2924          }
2925          weightSum += weight;
2926        }
2927        // Update best.
2928        if (weightSum > bestWeight) {
2929          bestWeight = weightSum;
2930          bestMAIndex = maIndex;
2931        }
2932      }
2933
2934      // Now select chosen alternative in each constraint.
2935      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2936          cIndex != eIndex; ++cIndex) {
2937        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2938        if (cInfo.Type == InlineAsm::isClobber)
2939          continue;
2940        cInfo.selectAlternative(bestMAIndex);
2941      }
2942    }
2943  }
2944
2945  // Check and hook up tied operands, choose constraint code to use.
2946  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2947      cIndex != eIndex; ++cIndex) {
2948    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2949
2950    // If this is an output operand with a matching input operand, look up the
2951    // matching input. If their types mismatch, e.g. one is an integer, the
2952    // other is floating point, or their sizes are different, flag it as an
2953    // error.
2954    if (OpInfo.hasMatchingInput()) {
2955      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2956
2957      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2958        if ((OpInfo.ConstraintVT.isInteger() !=
2959             Input.ConstraintVT.isInteger()) ||
2960            (OpInfo.ConstraintVT.getSizeInBits() !=
2961             Input.ConstraintVT.getSizeInBits())) {
2962          report_fatal_error("Unsupported asm: input constraint"
2963                             " with a matching output constraint of"
2964                             " incompatible type!");
2965        }
2966      }
2967
2968    }
2969  }
2970
2971  return ConstraintOperands;
2972}
2973
2974
2975/// getConstraintGenerality - Return an integer indicating how general CT
2976/// is.
2977static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2978  switch (CT) {
2979  default: llvm_unreachable("Unknown constraint type!");
2980  case TargetLowering::C_Other:
2981  case TargetLowering::C_Unknown:
2982    return 0;
2983  case TargetLowering::C_Register:
2984    return 1;
2985  case TargetLowering::C_RegisterClass:
2986    return 2;
2987  case TargetLowering::C_Memory:
2988    return 3;
2989  }
2990}
2991
2992/// Examine constraint type and operand type and determine a weight value.
2993/// This object must already have been set up with the operand type
2994/// and the current alternative constraint selected.
2995TargetLowering::ConstraintWeight
2996  TargetLowering::getMultipleConstraintMatchWeight(
2997    AsmOperandInfo &info, int maIndex) const {
2998  InlineAsm::ConstraintCodeVector *rCodes;
2999  if (maIndex >= (int)info.multipleAlternatives.size())
3000    rCodes = &info.Codes;
3001  else
3002    rCodes = &info.multipleAlternatives[maIndex].Codes;
3003  ConstraintWeight BestWeight = CW_Invalid;
3004
3005  // Loop over the options, keeping track of the most general one.
3006  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3007    ConstraintWeight weight =
3008      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3009    if (weight > BestWeight)
3010      BestWeight = weight;
3011  }
3012
3013  return BestWeight;
3014}
3015
3016/// Examine constraint type and operand type and determine a weight value.
3017/// This object must already have been set up with the operand type
3018/// and the current alternative constraint selected.
3019TargetLowering::ConstraintWeight
3020  TargetLowering::getSingleConstraintMatchWeight(
3021    AsmOperandInfo &info, const char *constraint) const {
3022  ConstraintWeight weight = CW_Invalid;
3023  Value *CallOperandVal = info.CallOperandVal;
3024    // If we don't have a value, we can't do a match,
3025    // but allow it at the lowest weight.
3026  if (CallOperandVal == NULL)
3027    return CW_Default;
3028  // Look at the constraint type.
3029  switch (*constraint) {
3030    case 'i': // immediate integer.
3031    case 'n': // immediate integer with a known value.
3032      if (isa<ConstantInt>(CallOperandVal))
3033        weight = CW_Constant;
3034      break;
3035    case 's': // non-explicit intregal immediate.
3036      if (isa<GlobalValue>(CallOperandVal))
3037        weight = CW_Constant;
3038      break;
3039    case 'E': // immediate float if host format.
3040    case 'F': // immediate float.
3041      if (isa<ConstantFP>(CallOperandVal))
3042        weight = CW_Constant;
3043      break;
3044    case '<': // memory operand with autodecrement.
3045    case '>': // memory operand with autoincrement.
3046    case 'm': // memory operand.
3047    case 'o': // offsettable memory operand
3048    case 'V': // non-offsettable memory operand
3049      weight = CW_Memory;
3050      break;
3051    case 'r': // general register.
3052    case 'g': // general register, memory operand or immediate integer.
3053              // note: Clang converts "g" to "imr".
3054      if (CallOperandVal->getType()->isIntegerTy())
3055        weight = CW_Register;
3056      break;
3057    case 'X': // any operand.
3058    default:
3059      weight = CW_Default;
3060      break;
3061  }
3062  return weight;
3063}
3064
3065/// ChooseConstraint - If there are multiple different constraints that we
3066/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3067/// This is somewhat tricky: constraints fall into four classes:
3068///    Other         -> immediates and magic values
3069///    Register      -> one specific register
3070///    RegisterClass -> a group of regs
3071///    Memory        -> memory
3072/// Ideally, we would pick the most specific constraint possible: if we have
3073/// something that fits into a register, we would pick it.  The problem here
3074/// is that if we have something that could either be in a register or in
3075/// memory that use of the register could cause selection of *other*
3076/// operands to fail: they might only succeed if we pick memory.  Because of
3077/// this the heuristic we use is:
3078///
3079///  1) If there is an 'other' constraint, and if the operand is valid for
3080///     that constraint, use it.  This makes us take advantage of 'i'
3081///     constraints when available.
3082///  2) Otherwise, pick the most general constraint present.  This prefers
3083///     'm' over 'r', for example.
3084///
3085static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3086                             const TargetLowering &TLI,
3087                             SDValue Op, SelectionDAG *DAG) {
3088  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3089  unsigned BestIdx = 0;
3090  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3091  int BestGenerality = -1;
3092
3093  // Loop over the options, keeping track of the most general one.
3094  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3095    TargetLowering::ConstraintType CType =
3096      TLI.getConstraintType(OpInfo.Codes[i]);
3097
3098    // If this is an 'other' constraint, see if the operand is valid for it.
3099    // For example, on X86 we might have an 'rI' constraint.  If the operand
3100    // is an integer in the range [0..31] we want to use I (saving a load
3101    // of a register), otherwise we must use 'r'.
3102    if (CType == TargetLowering::C_Other && Op.getNode()) {
3103      assert(OpInfo.Codes[i].size() == 1 &&
3104             "Unhandled multi-letter 'other' constraint");
3105      std::vector<SDValue> ResultOps;
3106      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3107                                       ResultOps, *DAG);
3108      if (!ResultOps.empty()) {
3109        BestType = CType;
3110        BestIdx = i;
3111        break;
3112      }
3113    }
3114
3115    // Things with matching constraints can only be registers, per gcc
3116    // documentation.  This mainly affects "g" constraints.
3117    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3118      continue;
3119
3120    // This constraint letter is more general than the previous one, use it.
3121    int Generality = getConstraintGenerality(CType);
3122    if (Generality > BestGenerality) {
3123      BestType = CType;
3124      BestIdx = i;
3125      BestGenerality = Generality;
3126    }
3127  }
3128
3129  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3130  OpInfo.ConstraintType = BestType;
3131}
3132
3133/// ComputeConstraintToUse - Determines the constraint code and constraint
3134/// type to use for the specific AsmOperandInfo, setting
3135/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3136void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3137                                            SDValue Op,
3138                                            SelectionDAG *DAG) const {
3139  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3140
3141  // Single-letter constraints ('r') are very common.
3142  if (OpInfo.Codes.size() == 1) {
3143    OpInfo.ConstraintCode = OpInfo.Codes[0];
3144    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3145  } else {
3146    ChooseConstraint(OpInfo, *this, Op, DAG);
3147  }
3148
3149  // 'X' matches anything.
3150  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3151    // Labels and constants are handled elsewhere ('X' is the only thing
3152    // that matches labels).  For Functions, the type here is the type of
3153    // the result, which is not what we want to look at; leave them alone.
3154    Value *v = OpInfo.CallOperandVal;
3155    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3156      OpInfo.CallOperandVal = v;
3157      return;
3158    }
3159
3160    // Otherwise, try to resolve it to something we know about by looking at
3161    // the actual operand type.
3162    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3163      OpInfo.ConstraintCode = Repl;
3164      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3165    }
3166  }
3167}
3168
3169//===----------------------------------------------------------------------===//
3170//  Loop Strength Reduction hooks
3171//===----------------------------------------------------------------------===//
3172
3173/// isLegalAddressingMode - Return true if the addressing mode represented
3174/// by AM is legal for this target, for a load/store of the specified type.
3175bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3176                                           const Type *Ty) const {
3177  // The default implementation of this implements a conservative RISCy, r+r and
3178  // r+i addr mode.
3179
3180  // Allows a sign-extended 16-bit immediate field.
3181  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3182    return false;
3183
3184  // No global is ever allowed as a base.
3185  if (AM.BaseGV)
3186    return false;
3187
3188  // Only support r+r,
3189  switch (AM.Scale) {
3190  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3191    break;
3192  case 1:
3193    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3194      return false;
3195    // Otherwise we have r+r or r+i.
3196    break;
3197  case 2:
3198    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3199      return false;
3200    // Allow 2*r as r+r.
3201    break;
3202  }
3203
3204  return true;
3205}
3206
3207/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3208/// return a DAG expression to select that will generate the same value by
3209/// multiplying by a magic number.  See:
3210/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3211SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3212                                  std::vector<SDNode*>* Created) const {
3213  EVT VT = N->getValueType(0);
3214  DebugLoc dl= N->getDebugLoc();
3215
3216  // Check to see if we can do this.
3217  // FIXME: We should be more aggressive here.
3218  if (!isTypeLegal(VT))
3219    return SDValue();
3220
3221  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3222  APInt::ms magics = d.magic();
3223
3224  // Multiply the numerator (operand 0) by the magic value
3225  // FIXME: We should support doing a MUL in a wider type
3226  SDValue Q;
3227  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3228    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3229                    DAG.getConstant(magics.m, VT));
3230  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3231    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3232                              N->getOperand(0),
3233                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3234  else
3235    return SDValue();       // No mulhs or equvialent
3236  // If d > 0 and m < 0, add the numerator
3237  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3238    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3239    if (Created)
3240      Created->push_back(Q.getNode());
3241  }
3242  // If d < 0 and m > 0, subtract the numerator.
3243  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3244    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3245    if (Created)
3246      Created->push_back(Q.getNode());
3247  }
3248  // Shift right algebraic if shift value is nonzero
3249  if (magics.s > 0) {
3250    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3251                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3252    if (Created)
3253      Created->push_back(Q.getNode());
3254  }
3255  // Extract the sign bit and add it to the quotient
3256  SDValue T =
3257    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3258                                           getShiftAmountTy(Q.getValueType())));
3259  if (Created)
3260    Created->push_back(T.getNode());
3261  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3262}
3263
3264/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3265/// return a DAG expression to select that will generate the same value by
3266/// multiplying by a magic number.  See:
3267/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3268SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3269                                  std::vector<SDNode*>* Created) const {
3270  EVT VT = N->getValueType(0);
3271  DebugLoc dl = N->getDebugLoc();
3272
3273  // Check to see if we can do this.
3274  // FIXME: We should be more aggressive here.
3275  if (!isTypeLegal(VT))
3276    return SDValue();
3277
3278  // FIXME: We should use a narrower constant when the upper
3279  // bits are known to be zero.
3280  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3281  APInt::mu magics = N1C.magicu();
3282
3283  SDValue Q = N->getOperand(0);
3284
3285  // If the divisor is even, we can avoid using the expensive fixup by shifting
3286  // the divided value upfront.
3287  if (magics.a != 0 && !N1C[0]) {
3288    unsigned Shift = N1C.countTrailingZeros();
3289    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3290                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3291    if (Created)
3292      Created->push_back(Q.getNode());
3293
3294    // Get magic number for the shifted divisor.
3295    magics = N1C.lshr(Shift).magicu(Shift);
3296    assert(magics.a == 0 && "Should use cheap fixup now");
3297  }
3298
3299  // Multiply the numerator (operand 0) by the magic value
3300  // FIXME: We should support doing a MUL in a wider type
3301  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3302    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3303  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3304    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3305                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3306  else
3307    return SDValue();       // No mulhu or equvialent
3308  if (Created)
3309    Created->push_back(Q.getNode());
3310
3311  if (magics.a == 0) {
3312    assert(magics.s < N1C.getBitWidth() &&
3313           "We shouldn't generate an undefined shift!");
3314    return DAG.getNode(ISD::SRL, dl, VT, Q,
3315                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3316  } else {
3317    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3318    if (Created)
3319      Created->push_back(NPQ.getNode());
3320    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3321                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3322    if (Created)
3323      Created->push_back(NPQ.getNode());
3324    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3325    if (Created)
3326      Created->push_back(NPQ.getNode());
3327    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3328             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3329  }
3330}
3331