TargetLowering.cpp revision 8c574be2fec59a3d80e400a9a0409b28f7f34829
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include <cctype>
34using namespace llvm;
35
36/// InitLibcallNames - Set default libcall names.
37///
38static void InitLibcallNames(const char **Names) {
39  Names[RTLIB::SHL_I16] = "__ashlhi3";
40  Names[RTLIB::SHL_I32] = "__ashlsi3";
41  Names[RTLIB::SHL_I64] = "__ashldi3";
42  Names[RTLIB::SHL_I128] = "__ashlti3";
43  Names[RTLIB::SRL_I16] = "__lshrhi3";
44  Names[RTLIB::SRL_I32] = "__lshrsi3";
45  Names[RTLIB::SRL_I64] = "__lshrdi3";
46  Names[RTLIB::SRL_I128] = "__lshrti3";
47  Names[RTLIB::SRA_I16] = "__ashrhi3";
48  Names[RTLIB::SRA_I32] = "__ashrsi3";
49  Names[RTLIB::SRA_I64] = "__ashrdi3";
50  Names[RTLIB::SRA_I128] = "__ashrti3";
51  Names[RTLIB::MUL_I8] = "__mulqi3";
52  Names[RTLIB::MUL_I16] = "__mulhi3";
53  Names[RTLIB::MUL_I32] = "__mulsi3";
54  Names[RTLIB::MUL_I64] = "__muldi3";
55  Names[RTLIB::MUL_I128] = "__multi3";
56  Names[RTLIB::MULO_I32] = "__mulosi4";
57  Names[RTLIB::MULO_I64] = "__mulodi4";
58  Names[RTLIB::MULO_I128] = "__muloti4";
59  Names[RTLIB::SDIV_I8] = "__divqi3";
60  Names[RTLIB::SDIV_I16] = "__divhi3";
61  Names[RTLIB::SDIV_I32] = "__divsi3";
62  Names[RTLIB::SDIV_I64] = "__divdi3";
63  Names[RTLIB::SDIV_I128] = "__divti3";
64  Names[RTLIB::UDIV_I8] = "__udivqi3";
65  Names[RTLIB::UDIV_I16] = "__udivhi3";
66  Names[RTLIB::UDIV_I32] = "__udivsi3";
67  Names[RTLIB::UDIV_I64] = "__udivdi3";
68  Names[RTLIB::UDIV_I128] = "__udivti3";
69  Names[RTLIB::SREM_I8] = "__modqi3";
70  Names[RTLIB::SREM_I16] = "__modhi3";
71  Names[RTLIB::SREM_I32] = "__modsi3";
72  Names[RTLIB::SREM_I64] = "__moddi3";
73  Names[RTLIB::SREM_I128] = "__modti3";
74  Names[RTLIB::UREM_I8] = "__umodqi3";
75  Names[RTLIB::UREM_I16] = "__umodhi3";
76  Names[RTLIB::UREM_I32] = "__umodsi3";
77  Names[RTLIB::UREM_I64] = "__umoddi3";
78  Names[RTLIB::UREM_I128] = "__umodti3";
79
80  // These are generally not available.
81  Names[RTLIB::SDIVREM_I8] = 0;
82  Names[RTLIB::SDIVREM_I16] = 0;
83  Names[RTLIB::SDIVREM_I32] = 0;
84  Names[RTLIB::SDIVREM_I64] = 0;
85  Names[RTLIB::SDIVREM_I128] = 0;
86  Names[RTLIB::UDIVREM_I8] = 0;
87  Names[RTLIB::UDIVREM_I16] = 0;
88  Names[RTLIB::UDIVREM_I32] = 0;
89  Names[RTLIB::UDIVREM_I64] = 0;
90  Names[RTLIB::UDIVREM_I128] = 0;
91
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
98  Names[RTLIB::SUB_F32] = "__subsf3";
99  Names[RTLIB::SUB_F64] = "__subdf3";
100  Names[RTLIB::SUB_F80] = "__subxf3";
101  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
102  Names[RTLIB::MUL_F32] = "__mulsf3";
103  Names[RTLIB::MUL_F64] = "__muldf3";
104  Names[RTLIB::MUL_F80] = "__mulxf3";
105  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
106  Names[RTLIB::DIV_F32] = "__divsf3";
107  Names[RTLIB::DIV_F64] = "__divdf3";
108  Names[RTLIB::DIV_F80] = "__divxf3";
109  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
110  Names[RTLIB::REM_F32] = "fmodf";
111  Names[RTLIB::REM_F64] = "fmod";
112  Names[RTLIB::REM_F80] = "fmodl";
113  Names[RTLIB::REM_PPCF128] = "fmodl";
114  Names[RTLIB::FMA_F32] = "fmaf";
115  Names[RTLIB::FMA_F64] = "fma";
116  Names[RTLIB::FMA_F80] = "fmal";
117  Names[RTLIB::FMA_PPCF128] = "fmal";
118  Names[RTLIB::POWI_F32] = "__powisf2";
119  Names[RTLIB::POWI_F64] = "__powidf2";
120  Names[RTLIB::POWI_F80] = "__powixf2";
121  Names[RTLIB::POWI_PPCF128] = "__powitf2";
122  Names[RTLIB::SQRT_F32] = "sqrtf";
123  Names[RTLIB::SQRT_F64] = "sqrt";
124  Names[RTLIB::SQRT_F80] = "sqrtl";
125  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
126  Names[RTLIB::LOG_F32] = "logf";
127  Names[RTLIB::LOG_F64] = "log";
128  Names[RTLIB::LOG_F80] = "logl";
129  Names[RTLIB::LOG_PPCF128] = "logl";
130  Names[RTLIB::LOG2_F32] = "log2f";
131  Names[RTLIB::LOG2_F64] = "log2";
132  Names[RTLIB::LOG2_F80] = "log2l";
133  Names[RTLIB::LOG2_PPCF128] = "log2l";
134  Names[RTLIB::LOG10_F32] = "log10f";
135  Names[RTLIB::LOG10_F64] = "log10";
136  Names[RTLIB::LOG10_F80] = "log10l";
137  Names[RTLIB::LOG10_PPCF128] = "log10l";
138  Names[RTLIB::EXP_F32] = "expf";
139  Names[RTLIB::EXP_F64] = "exp";
140  Names[RTLIB::EXP_F80] = "expl";
141  Names[RTLIB::EXP_PPCF128] = "expl";
142  Names[RTLIB::EXP2_F32] = "exp2f";
143  Names[RTLIB::EXP2_F64] = "exp2";
144  Names[RTLIB::EXP2_F80] = "exp2l";
145  Names[RTLIB::EXP2_PPCF128] = "exp2l";
146  Names[RTLIB::SIN_F32] = "sinf";
147  Names[RTLIB::SIN_F64] = "sin";
148  Names[RTLIB::SIN_F80] = "sinl";
149  Names[RTLIB::SIN_PPCF128] = "sinl";
150  Names[RTLIB::COS_F32] = "cosf";
151  Names[RTLIB::COS_F64] = "cos";
152  Names[RTLIB::COS_F80] = "cosl";
153  Names[RTLIB::COS_PPCF128] = "cosl";
154  Names[RTLIB::POW_F32] = "powf";
155  Names[RTLIB::POW_F64] = "pow";
156  Names[RTLIB::POW_F80] = "powl";
157  Names[RTLIB::POW_PPCF128] = "powl";
158  Names[RTLIB::CEIL_F32] = "ceilf";
159  Names[RTLIB::CEIL_F64] = "ceil";
160  Names[RTLIB::CEIL_F80] = "ceill";
161  Names[RTLIB::CEIL_PPCF128] = "ceill";
162  Names[RTLIB::TRUNC_F32] = "truncf";
163  Names[RTLIB::TRUNC_F64] = "trunc";
164  Names[RTLIB::TRUNC_F80] = "truncl";
165  Names[RTLIB::TRUNC_PPCF128] = "truncl";
166  Names[RTLIB::RINT_F32] = "rintf";
167  Names[RTLIB::RINT_F64] = "rint";
168  Names[RTLIB::RINT_F80] = "rintl";
169  Names[RTLIB::RINT_PPCF128] = "rintl";
170  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
171  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
172  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
173  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
174  Names[RTLIB::FLOOR_F32] = "floorf";
175  Names[RTLIB::FLOOR_F64] = "floor";
176  Names[RTLIB::FLOOR_F80] = "floorl";
177  Names[RTLIB::FLOOR_PPCF128] = "floorl";
178  Names[RTLIB::COPYSIGN_F32] = "copysignf";
179  Names[RTLIB::COPYSIGN_F64] = "copysign";
180  Names[RTLIB::COPYSIGN_F80] = "copysignl";
181  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
182  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
183  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
184  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
185  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
186  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
187  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
188  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
189  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
190  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
191  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
192  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
193  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
194  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
195  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
196  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
197  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
198  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
199  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
200  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
201  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
202  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
203  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
204  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
205  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
206  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
207  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
208  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
209  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
210  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
211  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
212  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
213  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
214  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
215  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
216  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
217  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
218  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
219  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
220  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
221  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
222  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
223  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
224  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
225  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
226  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
227  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
228  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
229  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
230  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
231  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
232  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
233  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
234  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
235  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
236  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
237  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
238  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
239  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
240  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
241  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
242  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
243  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
244  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
245  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
246  Names[RTLIB::OEQ_F32] = "__eqsf2";
247  Names[RTLIB::OEQ_F64] = "__eqdf2";
248  Names[RTLIB::UNE_F32] = "__nesf2";
249  Names[RTLIB::UNE_F64] = "__nedf2";
250  Names[RTLIB::OGE_F32] = "__gesf2";
251  Names[RTLIB::OGE_F64] = "__gedf2";
252  Names[RTLIB::OLT_F32] = "__ltsf2";
253  Names[RTLIB::OLT_F64] = "__ltdf2";
254  Names[RTLIB::OLE_F32] = "__lesf2";
255  Names[RTLIB::OLE_F64] = "__ledf2";
256  Names[RTLIB::OGT_F32] = "__gtsf2";
257  Names[RTLIB::OGT_F64] = "__gtdf2";
258  Names[RTLIB::UO_F32] = "__unordsf2";
259  Names[RTLIB::UO_F64] = "__unorddf2";
260  Names[RTLIB::O_F32] = "__unordsf2";
261  Names[RTLIB::O_F64] = "__unorddf2";
262  Names[RTLIB::MEMCPY] = "memcpy";
263  Names[RTLIB::MEMMOVE] = "memmove";
264  Names[RTLIB::MEMSET] = "memset";
265  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
269  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
273  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
277  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
281  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
282  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
283  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
284  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
285  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
286  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
287  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
288  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
289  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
293  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
297  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
298}
299
300/// InitLibcallCallingConvs - Set default libcall CallingConvs.
301///
302static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
303  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
304    CCs[i] = CallingConv::C;
305  }
306}
307
308/// getFPEXT - Return the FPEXT_*_* value for the given types, or
309/// UNKNOWN_LIBCALL if there is none.
310RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
311  if (OpVT == MVT::f32) {
312    if (RetVT == MVT::f64)
313      return FPEXT_F32_F64;
314  }
315
316  return UNKNOWN_LIBCALL;
317}
318
319/// getFPROUND - Return the FPROUND_*_* value for the given types, or
320/// UNKNOWN_LIBCALL if there is none.
321RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
322  if (RetVT == MVT::f32) {
323    if (OpVT == MVT::f64)
324      return FPROUND_F64_F32;
325    if (OpVT == MVT::f80)
326      return FPROUND_F80_F32;
327    if (OpVT == MVT::ppcf128)
328      return FPROUND_PPCF128_F32;
329  } else if (RetVT == MVT::f64) {
330    if (OpVT == MVT::f80)
331      return FPROUND_F80_F64;
332    if (OpVT == MVT::ppcf128)
333      return FPROUND_PPCF128_F64;
334  }
335
336  return UNKNOWN_LIBCALL;
337}
338
339/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
342  if (OpVT == MVT::f32) {
343    if (RetVT == MVT::i8)
344      return FPTOSINT_F32_I8;
345    if (RetVT == MVT::i16)
346      return FPTOSINT_F32_I16;
347    if (RetVT == MVT::i32)
348      return FPTOSINT_F32_I32;
349    if (RetVT == MVT::i64)
350      return FPTOSINT_F32_I64;
351    if (RetVT == MVT::i128)
352      return FPTOSINT_F32_I128;
353  } else if (OpVT == MVT::f64) {
354    if (RetVT == MVT::i8)
355      return FPTOSINT_F64_I8;
356    if (RetVT == MVT::i16)
357      return FPTOSINT_F64_I16;
358    if (RetVT == MVT::i32)
359      return FPTOSINT_F64_I32;
360    if (RetVT == MVT::i64)
361      return FPTOSINT_F64_I64;
362    if (RetVT == MVT::i128)
363      return FPTOSINT_F64_I128;
364  } else if (OpVT == MVT::f80) {
365    if (RetVT == MVT::i32)
366      return FPTOSINT_F80_I32;
367    if (RetVT == MVT::i64)
368      return FPTOSINT_F80_I64;
369    if (RetVT == MVT::i128)
370      return FPTOSINT_F80_I128;
371  } else if (OpVT == MVT::ppcf128) {
372    if (RetVT == MVT::i32)
373      return FPTOSINT_PPCF128_I32;
374    if (RetVT == MVT::i64)
375      return FPTOSINT_PPCF128_I64;
376    if (RetVT == MVT::i128)
377      return FPTOSINT_PPCF128_I128;
378  }
379  return UNKNOWN_LIBCALL;
380}
381
382/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
383/// UNKNOWN_LIBCALL if there is none.
384RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
385  if (OpVT == MVT::f32) {
386    if (RetVT == MVT::i8)
387      return FPTOUINT_F32_I8;
388    if (RetVT == MVT::i16)
389      return FPTOUINT_F32_I16;
390    if (RetVT == MVT::i32)
391      return FPTOUINT_F32_I32;
392    if (RetVT == MVT::i64)
393      return FPTOUINT_F32_I64;
394    if (RetVT == MVT::i128)
395      return FPTOUINT_F32_I128;
396  } else if (OpVT == MVT::f64) {
397    if (RetVT == MVT::i8)
398      return FPTOUINT_F64_I8;
399    if (RetVT == MVT::i16)
400      return FPTOUINT_F64_I16;
401    if (RetVT == MVT::i32)
402      return FPTOUINT_F64_I32;
403    if (RetVT == MVT::i64)
404      return FPTOUINT_F64_I64;
405    if (RetVT == MVT::i128)
406      return FPTOUINT_F64_I128;
407  } else if (OpVT == MVT::f80) {
408    if (RetVT == MVT::i32)
409      return FPTOUINT_F80_I32;
410    if (RetVT == MVT::i64)
411      return FPTOUINT_F80_I64;
412    if (RetVT == MVT::i128)
413      return FPTOUINT_F80_I128;
414  } else if (OpVT == MVT::ppcf128) {
415    if (RetVT == MVT::i32)
416      return FPTOUINT_PPCF128_I32;
417    if (RetVT == MVT::i64)
418      return FPTOUINT_PPCF128_I64;
419    if (RetVT == MVT::i128)
420      return FPTOUINT_PPCF128_I128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
428  if (OpVT == MVT::i32) {
429    if (RetVT == MVT::f32)
430      return SINTTOFP_I32_F32;
431    else if (RetVT == MVT::f64)
432      return SINTTOFP_I32_F64;
433    else if (RetVT == MVT::f80)
434      return SINTTOFP_I32_F80;
435    else if (RetVT == MVT::ppcf128)
436      return SINTTOFP_I32_PPCF128;
437  } else if (OpVT == MVT::i64) {
438    if (RetVT == MVT::f32)
439      return SINTTOFP_I64_F32;
440    else if (RetVT == MVT::f64)
441      return SINTTOFP_I64_F64;
442    else if (RetVT == MVT::f80)
443      return SINTTOFP_I64_F80;
444    else if (RetVT == MVT::ppcf128)
445      return SINTTOFP_I64_PPCF128;
446  } else if (OpVT == MVT::i128) {
447    if (RetVT == MVT::f32)
448      return SINTTOFP_I128_F32;
449    else if (RetVT == MVT::f64)
450      return SINTTOFP_I128_F64;
451    else if (RetVT == MVT::f80)
452      return SINTTOFP_I128_F80;
453    else if (RetVT == MVT::ppcf128)
454      return SINTTOFP_I128_PPCF128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
461RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
462  if (OpVT == MVT::i32) {
463    if (RetVT == MVT::f32)
464      return UINTTOFP_I32_F32;
465    else if (RetVT == MVT::f64)
466      return UINTTOFP_I32_F64;
467    else if (RetVT == MVT::f80)
468      return UINTTOFP_I32_F80;
469    else if (RetVT == MVT::ppcf128)
470      return UINTTOFP_I32_PPCF128;
471  } else if (OpVT == MVT::i64) {
472    if (RetVT == MVT::f32)
473      return UINTTOFP_I64_F32;
474    else if (RetVT == MVT::f64)
475      return UINTTOFP_I64_F64;
476    else if (RetVT == MVT::f80)
477      return UINTTOFP_I64_F80;
478    else if (RetVT == MVT::ppcf128)
479      return UINTTOFP_I64_PPCF128;
480  } else if (OpVT == MVT::i128) {
481    if (RetVT == MVT::f32)
482      return UINTTOFP_I128_F32;
483    else if (RetVT == MVT::f64)
484      return UINTTOFP_I128_F64;
485    else if (RetVT == MVT::f80)
486      return UINTTOFP_I128_F80;
487    else if (RetVT == MVT::ppcf128)
488      return UINTTOFP_I128_PPCF128;
489  }
490  return UNKNOWN_LIBCALL;
491}
492
493/// InitCmpLibcallCCs - Set default comparison libcall CC.
494///
495static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499  CCs[RTLIB::UNE_F32] = ISD::SETNE;
500  CCs[RTLIB::UNE_F64] = ISD::SETNE;
501  CCs[RTLIB::OGE_F32] = ISD::SETGE;
502  CCs[RTLIB::OGE_F64] = ISD::SETGE;
503  CCs[RTLIB::OLT_F32] = ISD::SETLT;
504  CCs[RTLIB::OLT_F64] = ISD::SETLT;
505  CCs[RTLIB::OLE_F32] = ISD::SETLE;
506  CCs[RTLIB::OLE_F64] = ISD::SETLE;
507  CCs[RTLIB::OGT_F32] = ISD::SETGT;
508  CCs[RTLIB::OGT_F64] = ISD::SETGT;
509  CCs[RTLIB::UO_F32] = ISD::SETNE;
510  CCs[RTLIB::UO_F64] = ISD::SETNE;
511  CCs[RTLIB::O_F32] = ISD::SETEQ;
512  CCs[RTLIB::O_F64] = ISD::SETEQ;
513}
514
515/// NOTE: The constructor takes ownership of TLOF.
516TargetLowering::TargetLowering(const TargetMachine &tm,
517                               const TargetLoweringObjectFile *tlof)
518  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
519  // All operations default to being supported.
520  memset(OpActions, 0, sizeof(OpActions));
521  memset(LoadExtActions, 0, sizeof(LoadExtActions));
522  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
523  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
524  memset(CondCodeActions, 0, sizeof(CondCodeActions));
525
526  // Set default actions for various operations.
527  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
528    // Default all indexed load / store to expand.
529    for (unsigned IM = (unsigned)ISD::PRE_INC;
530         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
531      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
532      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
533    }
534
535    // These operations default to expand.
536    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
538  }
539
540  // Most targets ignore the @llvm.prefetch intrinsic.
541  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542
543  // ConstantFP nodes default to expand.  Targets can either change this to
544  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
545  // to optimize expansions for certain constants.
546  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
548  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
549  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
550
551  // These library functions default to expand.
552  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
553  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
554  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
555  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
556  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
557  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
558  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
559  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
560  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
561  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
562  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
563  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
564  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
565  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
566  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
567  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
568  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
569  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
570  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
571  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
572  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
573  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
574  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
575  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
576  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
577  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
578  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
579  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
580  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
581  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
582
583  // Default ISD::TRAP to expand (which turns it into abort).
584  setOperationAction(ISD::TRAP, MVT::Other, Expand);
585
586  IsLittleEndian = TD->isLittleEndian();
587  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
588  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
589  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
590  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
591  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
592    = maxStoresPerMemmoveOptSize = 4;
593  benefitFromCodePlacementOpt = false;
594  UseUnderscoreSetJmp = false;
595  UseUnderscoreLongJmp = false;
596  SelectIsExpensive = false;
597  IntDivIsCheap = false;
598  Pow2DivIsCheap = false;
599  JumpIsExpensive = false;
600  predictableSelectIsExpensive = false;
601  StackPointerRegisterToSaveRestore = 0;
602  ExceptionPointerRegister = 0;
603  ExceptionSelectorRegister = 0;
604  BooleanContents = UndefinedBooleanContent;
605  BooleanVectorContents = UndefinedBooleanContent;
606  SchedPreferenceInfo = Sched::ILP;
607  JumpBufSize = 0;
608  JumpBufAlignment = 0;
609  MinFunctionAlignment = 0;
610  PrefFunctionAlignment = 0;
611  PrefLoopAlignment = 0;
612  MinStackArgumentAlignment = 1;
613  ShouldFoldAtomicFences = false;
614  InsertFencesForAtomic = false;
615  SupportJumpTables = true;
616
617  InitLibcallNames(LibcallRoutineNames);
618  InitCmpLibcallCCs(CmpLibcallCCs);
619  InitLibcallCallingConvs(LibcallCallingConvs);
620}
621
622TargetLowering::~TargetLowering() {
623  delete &TLOF;
624}
625
626MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
627  return MVT::getIntegerVT(8*TD->getPointerSize());
628}
629
630/// canOpTrap - Returns true if the operation can trap for the value type.
631/// VT must be a legal type.
632bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
633  assert(isTypeLegal(VT));
634  switch (Op) {
635  default:
636    return false;
637  case ISD::FDIV:
638  case ISD::FREM:
639  case ISD::SDIV:
640  case ISD::UDIV:
641  case ISD::SREM:
642  case ISD::UREM:
643    return true;
644  }
645}
646
647
648static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
649                                          unsigned &NumIntermediates,
650                                          EVT &RegisterVT,
651                                          TargetLowering *TLI) {
652  // Figure out the right, legal destination reg to copy into.
653  unsigned NumElts = VT.getVectorNumElements();
654  MVT EltTy = VT.getVectorElementType();
655
656  unsigned NumVectorRegs = 1;
657
658  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
659  // could break down into LHS/RHS like LegalizeDAG does.
660  if (!isPowerOf2_32(NumElts)) {
661    NumVectorRegs = NumElts;
662    NumElts = 1;
663  }
664
665  // Divide the input until we get to a supported size.  This will always
666  // end with a scalar if the target doesn't support vectors.
667  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
668    NumElts >>= 1;
669    NumVectorRegs <<= 1;
670  }
671
672  NumIntermediates = NumVectorRegs;
673
674  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
675  if (!TLI->isTypeLegal(NewVT))
676    NewVT = EltTy;
677  IntermediateVT = NewVT;
678
679  unsigned NewVTSize = NewVT.getSizeInBits();
680
681  // Convert sizes such as i33 to i64.
682  if (!isPowerOf2_32(NewVTSize))
683    NewVTSize = NextPowerOf2(NewVTSize);
684
685  EVT DestVT = TLI->getRegisterType(NewVT);
686  RegisterVT = DestVT;
687  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
688    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
689
690  // Otherwise, promotion or legal types use the same number of registers as
691  // the vector decimated to the appropriate level.
692  return NumVectorRegs;
693}
694
695/// isLegalRC - Return true if the value types that can be represented by the
696/// specified register class are all legal.
697bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
698  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
699       I != E; ++I) {
700    if (isTypeLegal(*I))
701      return true;
702  }
703  return false;
704}
705
706/// findRepresentativeClass - Return the largest legal super-reg register class
707/// of the register class for the specified type and its associated "cost".
708std::pair<const TargetRegisterClass*, uint8_t>
709TargetLowering::findRepresentativeClass(EVT VT) const {
710  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
711  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
712  if (!RC)
713    return std::make_pair(RC, 0);
714
715  // Compute the set of all super-register classes.
716  BitVector SuperRegRC(TRI->getNumRegClasses());
717  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
718    SuperRegRC.setBitsInMask(RCI.getMask());
719
720  // Find the first legal register class with the largest spill size.
721  const TargetRegisterClass *BestRC = RC;
722  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
723    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
724    // We want the largest possible spill size.
725    if (SuperRC->getSize() <= BestRC->getSize())
726      continue;
727    if (!isLegalRC(SuperRC))
728      continue;
729    BestRC = SuperRC;
730  }
731  return std::make_pair(BestRC, 1);
732}
733
734/// computeRegisterProperties - Once all of the register classes are added,
735/// this allows us to compute derived properties we expose.
736void TargetLowering::computeRegisterProperties() {
737  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
738         "Too many value types for ValueTypeActions to hold!");
739
740  // Everything defaults to needing one register.
741  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
742    NumRegistersForVT[i] = 1;
743    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
744  }
745  // ...except isVoid, which doesn't need any registers.
746  NumRegistersForVT[MVT::isVoid] = 0;
747
748  // Find the largest integer register class.
749  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
750  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
751    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
752
753  // Every integer value type larger than this largest register takes twice as
754  // many registers to represent as the previous ValueType.
755  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
756    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
757    if (!ExpandedVT.isInteger())
758      break;
759    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
760    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
761    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
762    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
763  }
764
765  // Inspect all of the ValueType's smaller than the largest integer
766  // register to see which ones need promotion.
767  unsigned LegalIntReg = LargestIntReg;
768  for (unsigned IntReg = LargestIntReg - 1;
769       IntReg >= (unsigned)MVT::i1; --IntReg) {
770    EVT IVT = (MVT::SimpleValueType)IntReg;
771    if (isTypeLegal(IVT)) {
772      LegalIntReg = IntReg;
773    } else {
774      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
775        (MVT::SimpleValueType)LegalIntReg;
776      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
777    }
778  }
779
780  // ppcf128 type is really two f64's.
781  if (!isTypeLegal(MVT::ppcf128)) {
782    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
783    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
784    TransformToType[MVT::ppcf128] = MVT::f64;
785    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
786  }
787
788  // Decide how to handle f64. If the target does not have native f64 support,
789  // expand it to i64 and we will be generating soft float library calls.
790  if (!isTypeLegal(MVT::f64)) {
791    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
792    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
793    TransformToType[MVT::f64] = MVT::i64;
794    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
795  }
796
797  // Decide how to handle f32. If the target does not have native support for
798  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
799  if (!isTypeLegal(MVT::f32)) {
800    if (isTypeLegal(MVT::f64)) {
801      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
802      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
803      TransformToType[MVT::f32] = MVT::f64;
804      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
805    } else {
806      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
807      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
808      TransformToType[MVT::f32] = MVT::i32;
809      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
810    }
811  }
812
813  // Loop over all of the vector value types to see which need transformations.
814  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
815       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
816    MVT VT = (MVT::SimpleValueType)i;
817    if (isTypeLegal(VT)) continue;
818
819    // Determine if there is a legal wider type.  If so, we should promote to
820    // that wider vector type.
821    EVT EltVT = VT.getVectorElementType();
822    unsigned NElts = VT.getVectorNumElements();
823    if (NElts != 1) {
824      bool IsLegalWiderType = false;
825      // First try to promote the elements of integer vectors. If no legal
826      // promotion was found, fallback to the widen-vector method.
827      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
828        EVT SVT = (MVT::SimpleValueType)nVT;
829        // Promote vectors of integers to vectors with the same number
830        // of elements, with a wider element type.
831        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
832            && SVT.getVectorNumElements() == NElts &&
833            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
834          TransformToType[i] = SVT;
835          RegisterTypeForVT[i] = SVT;
836          NumRegistersForVT[i] = 1;
837          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
838          IsLegalWiderType = true;
839          break;
840        }
841      }
842
843      if (IsLegalWiderType) continue;
844
845      // Try to widen the vector.
846      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
847        EVT SVT = (MVT::SimpleValueType)nVT;
848        if (SVT.getVectorElementType() == EltVT &&
849            SVT.getVectorNumElements() > NElts &&
850            isTypeLegal(SVT)) {
851          TransformToType[i] = SVT;
852          RegisterTypeForVT[i] = SVT;
853          NumRegistersForVT[i] = 1;
854          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
855          IsLegalWiderType = true;
856          break;
857        }
858      }
859      if (IsLegalWiderType) continue;
860    }
861
862    MVT IntermediateVT;
863    EVT RegisterVT;
864    unsigned NumIntermediates;
865    NumRegistersForVT[i] =
866      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
867                                RegisterVT, this);
868    RegisterTypeForVT[i] = RegisterVT;
869
870    EVT NVT = VT.getPow2VectorType();
871    if (NVT == VT) {
872      // Type is already a power of 2.  The default action is to split.
873      TransformToType[i] = MVT::Other;
874      unsigned NumElts = VT.getVectorNumElements();
875      ValueTypeActions.setTypeAction(VT,
876            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
877    } else {
878      TransformToType[i] = NVT;
879      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
880    }
881  }
882
883  // Determine the 'representative' register class for each value type.
884  // An representative register class is the largest (meaning one which is
885  // not a sub-register class / subreg register class) legal register class for
886  // a group of value types. For example, on i386, i8, i16, and i32
887  // representative would be GR32; while on x86_64 it's GR64.
888  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
889    const TargetRegisterClass* RRC;
890    uint8_t Cost;
891    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
892    RepRegClassForVT[i] = RRC;
893    RepRegClassCostForVT[i] = Cost;
894  }
895}
896
897const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
898  return NULL;
899}
900
901
902EVT TargetLowering::getSetCCResultType(EVT VT) const {
903  assert(!VT.isVector() && "No default SetCC type for vectors!");
904  return PointerTy.SimpleTy;
905}
906
907MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
908  return MVT::i32; // return the default value
909}
910
911/// getVectorTypeBreakdown - Vector types are broken down into some number of
912/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
913/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
914/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
915///
916/// This method returns the number of registers needed, and the VT for each
917/// register.  It also returns the VT and quantity of the intermediate values
918/// before they are promoted/expanded.
919///
920unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
921                                                EVT &IntermediateVT,
922                                                unsigned &NumIntermediates,
923                                                EVT &RegisterVT) const {
924  unsigned NumElts = VT.getVectorNumElements();
925
926  // If there is a wider vector type with the same element type as this one,
927  // or a promoted vector type that has the same number of elements which
928  // are wider, then we should convert to that legal vector type.
929  // This handles things like <2 x float> -> <4 x float> and
930  // <4 x i1> -> <4 x i32>.
931  LegalizeTypeAction TA = getTypeAction(Context, VT);
932  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
933    RegisterVT = getTypeToTransformTo(Context, VT);
934    if (isTypeLegal(RegisterVT)) {
935      IntermediateVT = RegisterVT;
936      NumIntermediates = 1;
937      return 1;
938    }
939  }
940
941  // Figure out the right, legal destination reg to copy into.
942  EVT EltTy = VT.getVectorElementType();
943
944  unsigned NumVectorRegs = 1;
945
946  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
947  // could break down into LHS/RHS like LegalizeDAG does.
948  if (!isPowerOf2_32(NumElts)) {
949    NumVectorRegs = NumElts;
950    NumElts = 1;
951  }
952
953  // Divide the input until we get to a supported size.  This will always
954  // end with a scalar if the target doesn't support vectors.
955  while (NumElts > 1 && !isTypeLegal(
956                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
957    NumElts >>= 1;
958    NumVectorRegs <<= 1;
959  }
960
961  NumIntermediates = NumVectorRegs;
962
963  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
964  if (!isTypeLegal(NewVT))
965    NewVT = EltTy;
966  IntermediateVT = NewVT;
967
968  EVT DestVT = getRegisterType(Context, NewVT);
969  RegisterVT = DestVT;
970  unsigned NewVTSize = NewVT.getSizeInBits();
971
972  // Convert sizes such as i33 to i64.
973  if (!isPowerOf2_32(NewVTSize))
974    NewVTSize = NextPowerOf2(NewVTSize);
975
976  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
977    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
978
979  // Otherwise, promotion or legal types use the same number of registers as
980  // the vector decimated to the appropriate level.
981  return NumVectorRegs;
982}
983
984/// Get the EVTs and ArgFlags collections that represent the legalized return
985/// type of the given function.  This does not require a DAG or a return value,
986/// and is suitable for use before any DAGs for the function are constructed.
987/// TODO: Move this out of TargetLowering.cpp.
988void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
989                         SmallVectorImpl<ISD::OutputArg> &Outs,
990                         const TargetLowering &TLI) {
991  SmallVector<EVT, 4> ValueVTs;
992  ComputeValueVTs(TLI, ReturnType, ValueVTs);
993  unsigned NumValues = ValueVTs.size();
994  if (NumValues == 0) return;
995
996  for (unsigned j = 0, f = NumValues; j != f; ++j) {
997    EVT VT = ValueVTs[j];
998    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
999
1000    if (attr & Attribute::SExt)
1001      ExtendKind = ISD::SIGN_EXTEND;
1002    else if (attr & Attribute::ZExt)
1003      ExtendKind = ISD::ZERO_EXTEND;
1004
1005    // FIXME: C calling convention requires the return type to be promoted to
1006    // at least 32-bit. But this is not necessary for non-C calling
1007    // conventions. The frontend should mark functions whose return values
1008    // require promoting with signext or zeroext attributes.
1009    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1010      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1011      if (VT.bitsLT(MinVT))
1012        VT = MinVT;
1013    }
1014
1015    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1016    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1017
1018    // 'inreg' on function refers to return value
1019    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1020    if (attr & Attribute::InReg)
1021      Flags.setInReg();
1022
1023    // Propagate extension type if any
1024    if (attr & Attribute::SExt)
1025      Flags.setSExt();
1026    else if (attr & Attribute::ZExt)
1027      Flags.setZExt();
1028
1029    for (unsigned i = 0; i < NumParts; ++i) {
1030      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1031    }
1032  }
1033}
1034
1035/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1036/// function arguments in the caller parameter area.  This is the actual
1037/// alignment, not its logarithm.
1038unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1039  return TD->getCallFrameTypeAlignment(Ty);
1040}
1041
1042/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1043/// current function.  The returned value is a member of the
1044/// MachineJumpTableInfo::JTEntryKind enum.
1045unsigned TargetLowering::getJumpTableEncoding() const {
1046  // In non-pic modes, just use the address of a block.
1047  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1048    return MachineJumpTableInfo::EK_BlockAddress;
1049
1050  // In PIC mode, if the target supports a GPRel32 directive, use it.
1051  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1052    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1053
1054  // Otherwise, use a label difference.
1055  return MachineJumpTableInfo::EK_LabelDifference32;
1056}
1057
1058SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1059                                                 SelectionDAG &DAG) const {
1060  // If our PIC model is GP relative, use the global offset table as the base.
1061  unsigned JTEncoding = getJumpTableEncoding();
1062
1063  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
1064      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
1065    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1066
1067  return Table;
1068}
1069
1070/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1071/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1072/// MCExpr.
1073const MCExpr *
1074TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1075                                             unsigned JTI,MCContext &Ctx) const{
1076  // The normal PIC reloc base is the label at the start of the jump table.
1077  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1078}
1079
1080bool
1081TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1082  // Assume that everything is safe in static mode.
1083  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1084    return true;
1085
1086  // In dynamic-no-pic mode, assume that known defined values are safe.
1087  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1088      GA &&
1089      !GA->getGlobal()->isDeclaration() &&
1090      !GA->getGlobal()->isWeakForLinker())
1091    return true;
1092
1093  // Otherwise assume nothing is safe.
1094  return false;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  Optimization Methods
1099//===----------------------------------------------------------------------===//
1100
1101/// ShrinkDemandedConstant - Check to see if the specified operand of the
1102/// specified instruction is a constant integer.  If so, check to see if there
1103/// are any bits set in the constant that are not demanded.  If so, shrink the
1104/// constant and return true.
1105bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1106                                                        const APInt &Demanded) {
1107  DebugLoc dl = Op.getDebugLoc();
1108
1109  // FIXME: ISD::SELECT, ISD::SELECT_CC
1110  switch (Op.getOpcode()) {
1111  default: break;
1112  case ISD::XOR:
1113  case ISD::AND:
1114  case ISD::OR: {
1115    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1116    if (!C) return false;
1117
1118    if (Op.getOpcode() == ISD::XOR &&
1119        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1120      return false;
1121
1122    // if we can expand it to have all bits set, do it
1123    if (C->getAPIntValue().intersects(~Demanded)) {
1124      EVT VT = Op.getValueType();
1125      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1126                                DAG.getConstant(Demanded &
1127                                                C->getAPIntValue(),
1128                                                VT));
1129      return CombineTo(Op, New);
1130    }
1131
1132    break;
1133  }
1134  }
1135
1136  return false;
1137}
1138
1139/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1140/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1141/// cast, but it could be generalized for targets with other types of
1142/// implicit widening casts.
1143bool
1144TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1145                                                    unsigned BitWidth,
1146                                                    const APInt &Demanded,
1147                                                    DebugLoc dl) {
1148  assert(Op.getNumOperands() == 2 &&
1149         "ShrinkDemandedOp only supports binary operators!");
1150  assert(Op.getNode()->getNumValues() == 1 &&
1151         "ShrinkDemandedOp only supports nodes with one result!");
1152
1153  // Don't do this if the node has another user, which may require the
1154  // full value.
1155  if (!Op.getNode()->hasOneUse())
1156    return false;
1157
1158  // Search for the smallest integer type with free casts to and from
1159  // Op's type. For expedience, just check power-of-2 integer types.
1160  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1161  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1162  if (!isPowerOf2_32(SmallVTBits))
1163    SmallVTBits = NextPowerOf2(SmallVTBits);
1164  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1165    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1166    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1167        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1168      // We found a type with free casts.
1169      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1170                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1171                                          Op.getNode()->getOperand(0)),
1172                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1173                                          Op.getNode()->getOperand(1)));
1174      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1175      return CombineTo(Op, Z);
1176    }
1177  }
1178  return false;
1179}
1180
1181/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1182/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1183/// use this information to simplify Op, create a new simplified DAG node and
1184/// return true, returning the original and new nodes in Old and New. Otherwise,
1185/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1186/// the expression (used to simplify the caller).  The KnownZero/One bits may
1187/// only be accurate for those bits in the DemandedMask.
1188bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1189                                          const APInt &DemandedMask,
1190                                          APInt &KnownZero,
1191                                          APInt &KnownOne,
1192                                          TargetLoweringOpt &TLO,
1193                                          unsigned Depth) const {
1194  unsigned BitWidth = DemandedMask.getBitWidth();
1195  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1196         "Mask size mismatches value type size!");
1197  APInt NewMask = DemandedMask;
1198  DebugLoc dl = Op.getDebugLoc();
1199
1200  // Don't know anything.
1201  KnownZero = KnownOne = APInt(BitWidth, 0);
1202
1203  // Other users may use these bits.
1204  if (!Op.getNode()->hasOneUse()) {
1205    if (Depth != 0) {
1206      // If not at the root, Just compute the KnownZero/KnownOne bits to
1207      // simplify things downstream.
1208      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1209      return false;
1210    }
1211    // If this is the root being simplified, allow it to have multiple uses,
1212    // just set the NewMask to all bits.
1213    NewMask = APInt::getAllOnesValue(BitWidth);
1214  } else if (DemandedMask == 0) {
1215    // Not demanding any bits from Op.
1216    if (Op.getOpcode() != ISD::UNDEF)
1217      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1218    return false;
1219  } else if (Depth == 6) {        // Limit search depth.
1220    return false;
1221  }
1222
1223  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1224  switch (Op.getOpcode()) {
1225  case ISD::Constant:
1226    // We know all of the bits for a constant!
1227    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1228    KnownZero = ~KnownOne;
1229    return false;   // Don't fall through, will infinitely loop.
1230  case ISD::AND:
1231    // If the RHS is a constant, check to see if the LHS would be zero without
1232    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1233    // simplify the LHS, here we're using information from the LHS to simplify
1234    // the RHS.
1235    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1236      APInt LHSZero, LHSOne;
1237      // Do not increment Depth here; that can cause an infinite loop.
1238      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1239      // If the LHS already has zeros where RHSC does, this and is dead.
1240      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1241        return TLO.CombineTo(Op, Op.getOperand(0));
1242      // If any of the set bits in the RHS are known zero on the LHS, shrink
1243      // the constant.
1244      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1245        return true;
1246    }
1247
1248    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1249                             KnownOne, TLO, Depth+1))
1250      return true;
1251    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1252    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1253                             KnownZero2, KnownOne2, TLO, Depth+1))
1254      return true;
1255    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1256
1257    // If all of the demanded bits are known one on one side, return the other.
1258    // These bits cannot contribute to the result of the 'and'.
1259    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1260      return TLO.CombineTo(Op, Op.getOperand(0));
1261    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1262      return TLO.CombineTo(Op, Op.getOperand(1));
1263    // If all of the demanded bits in the inputs are known zeros, return zero.
1264    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1265      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1266    // If the RHS is a constant, see if we can simplify it.
1267    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1268      return true;
1269    // If the operation can be done in a smaller type, do so.
1270    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1271      return true;
1272
1273    // Output known-1 bits are only known if set in both the LHS & RHS.
1274    KnownOne &= KnownOne2;
1275    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1276    KnownZero |= KnownZero2;
1277    break;
1278  case ISD::OR:
1279    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1280                             KnownOne, TLO, Depth+1))
1281      return true;
1282    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1284                             KnownZero2, KnownOne2, TLO, Depth+1))
1285      return true;
1286    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1287
1288    // If all of the demanded bits are known zero on one side, return the other.
1289    // These bits cannot contribute to the result of the 'or'.
1290    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1291      return TLO.CombineTo(Op, Op.getOperand(0));
1292    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1293      return TLO.CombineTo(Op, Op.getOperand(1));
1294    // If all of the potentially set bits on one side are known to be set on
1295    // the other side, just use the 'other' side.
1296    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1297      return TLO.CombineTo(Op, Op.getOperand(0));
1298    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1299      return TLO.CombineTo(Op, Op.getOperand(1));
1300    // If the RHS is a constant, see if we can simplify it.
1301    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1302      return true;
1303    // If the operation can be done in a smaller type, do so.
1304    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1305      return true;
1306
1307    // Output known-0 bits are only known if clear in both the LHS & RHS.
1308    KnownZero &= KnownZero2;
1309    // Output known-1 are known to be set if set in either the LHS | RHS.
1310    KnownOne |= KnownOne2;
1311    break;
1312  case ISD::XOR:
1313    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1314                             KnownOne, TLO, Depth+1))
1315      return true;
1316    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1317    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1318                             KnownOne2, TLO, Depth+1))
1319      return true;
1320    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1321
1322    // If all of the demanded bits are known zero on one side, return the other.
1323    // These bits cannot contribute to the result of the 'xor'.
1324    if ((KnownZero & NewMask) == NewMask)
1325      return TLO.CombineTo(Op, Op.getOperand(0));
1326    if ((KnownZero2 & NewMask) == NewMask)
1327      return TLO.CombineTo(Op, Op.getOperand(1));
1328    // If the operation can be done in a smaller type, do so.
1329    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1330      return true;
1331
1332    // If all of the unknown bits are known to be zero on one side or the other
1333    // (but not both) turn this into an *inclusive* or.
1334    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1335    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1336      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1337                                               Op.getOperand(0),
1338                                               Op.getOperand(1)));
1339
1340    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1341    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1342    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1343    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1344
1345    // If all of the demanded bits on one side are known, and all of the set
1346    // bits on that side are also known to be set on the other side, turn this
1347    // into an AND, as we know the bits will be cleared.
1348    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1349    // NB: it is okay if more bits are known than are requested
1350    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
1351      if (KnownOne == KnownOne2) { // set bits are the same on both sides
1352        EVT VT = Op.getValueType();
1353        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1354        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1355                                                 Op.getOperand(0), ANDC));
1356      }
1357    }
1358
1359    // If the RHS is a constant, see if we can simplify it.
1360    // for XOR, we prefer to force bits to 1 if they will make a -1.
1361    // if we can't force bits, try to shrink constant
1362    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1363      APInt Expanded = C->getAPIntValue() | (~NewMask);
1364      // if we can expand it to have all bits set, do it
1365      if (Expanded.isAllOnesValue()) {
1366        if (Expanded != C->getAPIntValue()) {
1367          EVT VT = Op.getValueType();
1368          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1369                                          TLO.DAG.getConstant(Expanded, VT));
1370          return TLO.CombineTo(Op, New);
1371        }
1372        // if it already has all the bits set, nothing to change
1373        // but don't shrink either!
1374      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1375        return true;
1376      }
1377    }
1378
1379    KnownZero = KnownZeroOut;
1380    KnownOne  = KnownOneOut;
1381    break;
1382  case ISD::SELECT:
1383    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1384                             KnownOne, TLO, Depth+1))
1385      return true;
1386    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1387                             KnownOne2, TLO, Depth+1))
1388      return true;
1389    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1390    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1391
1392    // If the operands are constants, see if we can simplify them.
1393    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1394      return true;
1395
1396    // Only known if known in both the LHS and RHS.
1397    KnownOne &= KnownOne2;
1398    KnownZero &= KnownZero2;
1399    break;
1400  case ISD::SELECT_CC:
1401    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1402                             KnownOne, TLO, Depth+1))
1403      return true;
1404    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1405                             KnownOne2, TLO, Depth+1))
1406      return true;
1407    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410    // If the operands are constants, see if we can simplify them.
1411    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1412      return true;
1413
1414    // Only known if known in both the LHS and RHS.
1415    KnownOne &= KnownOne2;
1416    KnownZero &= KnownZero2;
1417    break;
1418  case ISD::SHL:
1419    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420      unsigned ShAmt = SA->getZExtValue();
1421      SDValue InOp = Op.getOperand(0);
1422
1423      // If the shift count is an invalid immediate, don't do anything.
1424      if (ShAmt >= BitWidth)
1425        break;
1426
1427      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1428      // single shift.  We can do this if the bottom bits (which are shifted
1429      // out) are never demanded.
1430      if (InOp.getOpcode() == ISD::SRL &&
1431          isa<ConstantSDNode>(InOp.getOperand(1))) {
1432        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1433          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1434          unsigned Opc = ISD::SHL;
1435          int Diff = ShAmt-C1;
1436          if (Diff < 0) {
1437            Diff = -Diff;
1438            Opc = ISD::SRL;
1439          }
1440
1441          SDValue NewSA =
1442            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1443          EVT VT = Op.getValueType();
1444          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1445                                                   InOp.getOperand(0), NewSA));
1446        }
1447      }
1448
1449      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1450                               KnownZero, KnownOne, TLO, Depth+1))
1451        return true;
1452
1453      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1454      // are not demanded. This will likely allow the anyext to be folded away.
1455      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1456        SDValue InnerOp = InOp.getNode()->getOperand(0);
1457        EVT InnerVT = InnerOp.getValueType();
1458        unsigned InnerBits = InnerVT.getSizeInBits();
1459        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1460            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1461          EVT ShTy = getShiftAmountTy(InnerVT);
1462          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1463            ShTy = InnerVT;
1464          SDValue NarrowShl =
1465            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1466                            TLO.DAG.getConstant(ShAmt, ShTy));
1467          return
1468            TLO.CombineTo(Op,
1469                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1470                                          NarrowShl));
1471        }
1472      }
1473
1474      KnownZero <<= SA->getZExtValue();
1475      KnownOne  <<= SA->getZExtValue();
1476      // low bits known zero.
1477      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1478    }
1479    break;
1480  case ISD::SRL:
1481    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1482      EVT VT = Op.getValueType();
1483      unsigned ShAmt = SA->getZExtValue();
1484      unsigned VTSize = VT.getSizeInBits();
1485      SDValue InOp = Op.getOperand(0);
1486
1487      // If the shift count is an invalid immediate, don't do anything.
1488      if (ShAmt >= BitWidth)
1489        break;
1490
1491      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1492      // single shift.  We can do this if the top bits (which are shifted out)
1493      // are never demanded.
1494      if (InOp.getOpcode() == ISD::SHL &&
1495          isa<ConstantSDNode>(InOp.getOperand(1))) {
1496        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1497          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1498          unsigned Opc = ISD::SRL;
1499          int Diff = ShAmt-C1;
1500          if (Diff < 0) {
1501            Diff = -Diff;
1502            Opc = ISD::SHL;
1503          }
1504
1505          SDValue NewSA =
1506            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1507          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1508                                                   InOp.getOperand(0), NewSA));
1509        }
1510      }
1511
1512      // Compute the new bits that are at the top now.
1513      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1514                               KnownZero, KnownOne, TLO, Depth+1))
1515        return true;
1516      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517      KnownZero = KnownZero.lshr(ShAmt);
1518      KnownOne  = KnownOne.lshr(ShAmt);
1519
1520      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1521      KnownZero |= HighBits;  // High bits known zero.
1522    }
1523    break;
1524  case ISD::SRA:
1525    // If this is an arithmetic shift right and only the low-bit is set, we can
1526    // always convert this into a logical shr, even if the shift amount is
1527    // variable.  The low bit of the shift cannot be an input sign bit unless
1528    // the shift amount is >= the size of the datatype, which is undefined.
1529    if (NewMask == 1)
1530      return TLO.CombineTo(Op,
1531                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1532                                           Op.getOperand(0), Op.getOperand(1)));
1533
1534    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1535      EVT VT = Op.getValueType();
1536      unsigned ShAmt = SA->getZExtValue();
1537
1538      // If the shift count is an invalid immediate, don't do anything.
1539      if (ShAmt >= BitWidth)
1540        break;
1541
1542      APInt InDemandedMask = (NewMask << ShAmt);
1543
1544      // If any of the demanded bits are produced by the sign extension, we also
1545      // demand the input sign bit.
1546      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1547      if (HighBits.intersects(NewMask))
1548        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1549
1550      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1551                               KnownZero, KnownOne, TLO, Depth+1))
1552        return true;
1553      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1554      KnownZero = KnownZero.lshr(ShAmt);
1555      KnownOne  = KnownOne.lshr(ShAmt);
1556
1557      // Handle the sign bit, adjusted to where it is now in the mask.
1558      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1559
1560      // If the input sign bit is known to be zero, or if none of the top bits
1561      // are demanded, turn this into an unsigned shift right.
1562      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1563        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1564                                                 Op.getOperand(0),
1565                                                 Op.getOperand(1)));
1566      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1567        KnownOne |= HighBits;
1568      }
1569    }
1570    break;
1571  case ISD::SIGN_EXTEND_INREG: {
1572    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1573
1574    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1575    // If we only care about the highest bit, don't bother shifting right.
1576    if (MsbMask == DemandedMask) {
1577      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1578      SDValue InOp = Op.getOperand(0);
1579
1580      // Compute the correct shift amount type, which must be getShiftAmountTy
1581      // for scalar types after legalization.
1582      EVT ShiftAmtTy = Op.getValueType();
1583      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1584        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1585
1586      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1587      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1588                                            Op.getValueType(), InOp, ShiftAmt));
1589    }
1590
1591    // Sign extension.  Compute the demanded bits in the result that are not
1592    // present in the input.
1593    APInt NewBits =
1594      APInt::getHighBitsSet(BitWidth,
1595                            BitWidth - ExVT.getScalarType().getSizeInBits());
1596
1597    // If none of the extended bits are demanded, eliminate the sextinreg.
1598    if ((NewBits & NewMask) == 0)
1599      return TLO.CombineTo(Op, Op.getOperand(0));
1600
1601    APInt InSignBit =
1602      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1603    APInt InputDemandedBits =
1604      APInt::getLowBitsSet(BitWidth,
1605                           ExVT.getScalarType().getSizeInBits()) &
1606      NewMask;
1607
1608    // Since the sign extended bits are demanded, we know that the sign
1609    // bit is demanded.
1610    InputDemandedBits |= InSignBit;
1611
1612    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1613                             KnownZero, KnownOne, TLO, Depth+1))
1614      return true;
1615    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1616
1617    // If the sign bit of the input is known set or clear, then we know the
1618    // top bits of the result.
1619
1620    // If the input sign bit is known zero, convert this into a zero extension.
1621    if (KnownZero.intersects(InSignBit))
1622      return TLO.CombineTo(Op,
1623                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1624
1625    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1626      KnownOne |= NewBits;
1627      KnownZero &= ~NewBits;
1628    } else {                       // Input sign bit unknown
1629      KnownZero &= ~NewBits;
1630      KnownOne &= ~NewBits;
1631    }
1632    break;
1633  }
1634  case ISD::ZERO_EXTEND: {
1635    unsigned OperandBitWidth =
1636      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1637    APInt InMask = NewMask.trunc(OperandBitWidth);
1638
1639    // If none of the top bits are demanded, convert this into an any_extend.
1640    APInt NewBits =
1641      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1642    if (!NewBits.intersects(NewMask))
1643      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1644                                               Op.getValueType(),
1645                                               Op.getOperand(0)));
1646
1647    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1648                             KnownZero, KnownOne, TLO, Depth+1))
1649      return true;
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    KnownZero = KnownZero.zext(BitWidth);
1652    KnownOne = KnownOne.zext(BitWidth);
1653    KnownZero |= NewBits;
1654    break;
1655  }
1656  case ISD::SIGN_EXTEND: {
1657    EVT InVT = Op.getOperand(0).getValueType();
1658    unsigned InBits = InVT.getScalarType().getSizeInBits();
1659    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1660    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1661    APInt NewBits   = ~InMask & NewMask;
1662
1663    // If none of the top bits are demanded, convert this into an any_extend.
1664    if (NewBits == 0)
1665      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1666                                              Op.getValueType(),
1667                                              Op.getOperand(0)));
1668
1669    // Since some of the sign extended bits are demanded, we know that the sign
1670    // bit is demanded.
1671    APInt InDemandedBits = InMask & NewMask;
1672    InDemandedBits |= InSignBit;
1673    InDemandedBits = InDemandedBits.trunc(InBits);
1674
1675    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1676                             KnownOne, TLO, Depth+1))
1677      return true;
1678    KnownZero = KnownZero.zext(BitWidth);
1679    KnownOne = KnownOne.zext(BitWidth);
1680
1681    // If the sign bit is known zero, convert this to a zero extend.
1682    if (KnownZero.intersects(InSignBit))
1683      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1684                                               Op.getValueType(),
1685                                               Op.getOperand(0)));
1686
1687    // If the sign bit is known one, the top bits match.
1688    if (KnownOne.intersects(InSignBit)) {
1689      KnownOne |= NewBits;
1690      assert((KnownZero & NewBits) == 0);
1691    } else {   // Otherwise, top bits aren't known.
1692      assert((KnownOne & NewBits) == 0);
1693      assert((KnownZero & NewBits) == 0);
1694    }
1695    break;
1696  }
1697  case ISD::ANY_EXTEND: {
1698    unsigned OperandBitWidth =
1699      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1700    APInt InMask = NewMask.trunc(OperandBitWidth);
1701    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1702                             KnownZero, KnownOne, TLO, Depth+1))
1703      return true;
1704    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1705    KnownZero = KnownZero.zext(BitWidth);
1706    KnownOne = KnownOne.zext(BitWidth);
1707    break;
1708  }
1709  case ISD::TRUNCATE: {
1710    // Simplify the input, using demanded bit information, and compute the known
1711    // zero/one bits live out.
1712    unsigned OperandBitWidth =
1713      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1714    APInt TruncMask = NewMask.zext(OperandBitWidth);
1715    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1716                             KnownZero, KnownOne, TLO, Depth+1))
1717      return true;
1718    KnownZero = KnownZero.trunc(BitWidth);
1719    KnownOne = KnownOne.trunc(BitWidth);
1720
1721    // If the input is only used by this truncate, see if we can shrink it based
1722    // on the known demanded bits.
1723    if (Op.getOperand(0).getNode()->hasOneUse()) {
1724      SDValue In = Op.getOperand(0);
1725      switch (In.getOpcode()) {
1726      default: break;
1727      case ISD::SRL:
1728        // Shrink SRL by a constant if none of the high bits shifted in are
1729        // demanded.
1730        if (TLO.LegalTypes() &&
1731            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1732          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1733          // undesirable.
1734          break;
1735        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1736        if (!ShAmt)
1737          break;
1738        SDValue Shift = In.getOperand(1);
1739        if (TLO.LegalTypes()) {
1740          uint64_t ShVal = ShAmt->getZExtValue();
1741          Shift =
1742            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1743        }
1744
1745        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1746                                               OperandBitWidth - BitWidth);
1747        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1748
1749        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1750          // None of the shifted in bits are needed.  Add a truncate of the
1751          // shift input, then shift it.
1752          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1753                                             Op.getValueType(),
1754                                             In.getOperand(0));
1755          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1756                                                   Op.getValueType(),
1757                                                   NewTrunc,
1758                                                   Shift));
1759        }
1760        break;
1761      }
1762    }
1763
1764    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1765    break;
1766  }
1767  case ISD::AssertZext: {
1768    // AssertZext demands all of the high bits, plus any of the low bits
1769    // demanded by its users.
1770    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1771    APInt InMask = APInt::getLowBitsSet(BitWidth,
1772                                        VT.getSizeInBits());
1773    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1774                             KnownZero, KnownOne, TLO, Depth+1))
1775      return true;
1776    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1777
1778    KnownZero |= ~InMask & NewMask;
1779    break;
1780  }
1781  case ISD::BITCAST:
1782    // If this is an FP->Int bitcast and if the sign bit is the only
1783    // thing demanded, turn this into a FGETSIGN.
1784    if (!TLO.LegalOperations() &&
1785        !Op.getValueType().isVector() &&
1786        !Op.getOperand(0).getValueType().isVector() &&
1787        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1788        Op.getOperand(0).getValueType().isFloatingPoint()) {
1789      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1790      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1791      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1792        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1793        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1794        // place.  We expect the SHL to be eliminated by other optimizations.
1795        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1796        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1797        if (!OpVTLegal && OpVTSizeInBits > 32)
1798          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1799        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1800        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1801        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1802                                                 Op.getValueType(),
1803                                                 Sign, ShAmt));
1804      }
1805    }
1806    break;
1807  case ISD::ADD:
1808  case ISD::MUL:
1809  case ISD::SUB: {
1810    // Add, Sub, and Mul don't demand any bits in positions beyond that
1811    // of the highest bit demanded of them.
1812    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1813                                        BitWidth - NewMask.countLeadingZeros());
1814    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1815                             KnownOne2, TLO, Depth+1))
1816      return true;
1817    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1818                             KnownOne2, TLO, Depth+1))
1819      return true;
1820    // See if the operation should be performed at a smaller bit width.
1821    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1822      return true;
1823  }
1824  // FALL THROUGH
1825  default:
1826    // Just use ComputeMaskedBits to compute output bits.
1827    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1828    break;
1829  }
1830
1831  // If we know the value of all of the demanded bits, return this as a
1832  // constant.
1833  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1834    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1835
1836  return false;
1837}
1838
1839/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1840/// in Mask are known to be either zero or one and return them in the
1841/// KnownZero/KnownOne bitsets.
1842void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1843                                                    APInt &KnownZero,
1844                                                    APInt &KnownOne,
1845                                                    const SelectionDAG &DAG,
1846                                                    unsigned Depth) const {
1847  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1848          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1849          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1850          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1851         "Should use MaskedValueIsZero if you don't know whether Op"
1852         " is a target node!");
1853  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1854}
1855
1856/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1857/// targets that want to expose additional information about sign bits to the
1858/// DAG Combiner.
1859unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1860                                                         unsigned Depth) const {
1861  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1862          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1863          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1864          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1865         "Should use ComputeNumSignBits if you don't know whether Op"
1866         " is a target node!");
1867  return 1;
1868}
1869
1870/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1871/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1872/// determine which bit is set.
1873///
1874static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1875  // A left-shift of a constant one will have exactly one bit set, because
1876  // shifting the bit off the end is undefined.
1877  if (Val.getOpcode() == ISD::SHL)
1878    if (ConstantSDNode *C =
1879         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1880      if (C->getAPIntValue() == 1)
1881        return true;
1882
1883  // Similarly, a right-shift of a constant sign-bit will have exactly
1884  // one bit set.
1885  if (Val.getOpcode() == ISD::SRL)
1886    if (ConstantSDNode *C =
1887         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1888      if (C->getAPIntValue().isSignBit())
1889        return true;
1890
1891  // More could be done here, though the above checks are enough
1892  // to handle some common cases.
1893
1894  // Fall back to ComputeMaskedBits to catch other known cases.
1895  EVT OpVT = Val.getValueType();
1896  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1897  APInt KnownZero, KnownOne;
1898  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1899  return (KnownZero.countPopulation() == BitWidth - 1) &&
1900         (KnownOne.countPopulation() == 1);
1901}
1902
1903/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1904/// and cc. If it is unable to simplify it, return a null SDValue.
1905SDValue
1906TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1907                              ISD::CondCode Cond, bool foldBooleans,
1908                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1909  SelectionDAG &DAG = DCI.DAG;
1910
1911  // These setcc operations always fold.
1912  switch (Cond) {
1913  default: break;
1914  case ISD::SETFALSE:
1915  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1916  case ISD::SETTRUE:
1917  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1918  }
1919
1920  // Ensure that the constant occurs on the RHS, and fold constant
1921  // comparisons.
1922  if (isa<ConstantSDNode>(N0.getNode()))
1923    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1924
1925  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1926    const APInt &C1 = N1C->getAPIntValue();
1927
1928    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1929    // equality comparison, then we're just comparing whether X itself is
1930    // zero.
1931    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1932        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1933        N0.getOperand(1).getOpcode() == ISD::Constant) {
1934      const APInt &ShAmt
1935        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1936      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1937          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1938        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1939          // (srl (ctlz x), 5) == 0  -> X != 0
1940          // (srl (ctlz x), 5) != 1  -> X != 0
1941          Cond = ISD::SETNE;
1942        } else {
1943          // (srl (ctlz x), 5) != 0  -> X == 0
1944          // (srl (ctlz x), 5) == 1  -> X == 0
1945          Cond = ISD::SETEQ;
1946        }
1947        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1948        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1949                            Zero, Cond);
1950      }
1951    }
1952
1953    SDValue CTPOP = N0;
1954    // Look through truncs that don't change the value of a ctpop.
1955    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1956      CTPOP = N0.getOperand(0);
1957
1958    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1959        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1960                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1961      EVT CTVT = CTPOP.getValueType();
1962      SDValue CTOp = CTPOP.getOperand(0);
1963
1964      // (ctpop x) u< 2 -> (x & x-1) == 0
1965      // (ctpop x) u> 1 -> (x & x-1) != 0
1966      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1967        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1968                                  DAG.getConstant(1, CTVT));
1969        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1970        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1971        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1972      }
1973
1974      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1975    }
1976
1977    // (zext x) == C --> x == (trunc C)
1978    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1979        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1980      unsigned MinBits = N0.getValueSizeInBits();
1981      SDValue PreZExt;
1982      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1983        // ZExt
1984        MinBits = N0->getOperand(0).getValueSizeInBits();
1985        PreZExt = N0->getOperand(0);
1986      } else if (N0->getOpcode() == ISD::AND) {
1987        // DAGCombine turns costly ZExts into ANDs
1988        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1989          if ((C->getAPIntValue()+1).isPowerOf2()) {
1990            MinBits = C->getAPIntValue().countTrailingOnes();
1991            PreZExt = N0->getOperand(0);
1992          }
1993      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1994        // ZEXTLOAD
1995        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1996          MinBits = LN0->getMemoryVT().getSizeInBits();
1997          PreZExt = N0;
1998        }
1999      }
2000
2001      // Make sure we're not losing bits from the constant.
2002      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2003        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2004        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2005          // Will get folded away.
2006          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2007          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2008          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2009        }
2010      }
2011    }
2012
2013    // If the LHS is '(and load, const)', the RHS is 0,
2014    // the test is for equality or unsigned, and all 1 bits of the const are
2015    // in the same partial word, see if we can shorten the load.
2016    if (DCI.isBeforeLegalize() &&
2017        N0.getOpcode() == ISD::AND && C1 == 0 &&
2018        N0.getNode()->hasOneUse() &&
2019        isa<LoadSDNode>(N0.getOperand(0)) &&
2020        N0.getOperand(0).getNode()->hasOneUse() &&
2021        isa<ConstantSDNode>(N0.getOperand(1))) {
2022      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2023      APInt bestMask;
2024      unsigned bestWidth = 0, bestOffset = 0;
2025      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2026        unsigned origWidth = N0.getValueType().getSizeInBits();
2027        unsigned maskWidth = origWidth;
2028        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2029        // 8 bits, but have to be careful...
2030        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2031          origWidth = Lod->getMemoryVT().getSizeInBits();
2032        const APInt &Mask =
2033          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2034        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2035          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2036          for (unsigned offset=0; offset<origWidth/width; offset++) {
2037            if ((newMask & Mask) == Mask) {
2038              if (!TD->isLittleEndian())
2039                bestOffset = (origWidth/width - offset - 1) * (width/8);
2040              else
2041                bestOffset = (uint64_t)offset * (width/8);
2042              bestMask = Mask.lshr(offset * (width/8) * 8);
2043              bestWidth = width;
2044              break;
2045            }
2046            newMask = newMask << width;
2047          }
2048        }
2049      }
2050      if (bestWidth) {
2051        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2052        if (newVT.isRound()) {
2053          EVT PtrType = Lod->getOperand(1).getValueType();
2054          SDValue Ptr = Lod->getBasePtr();
2055          if (bestOffset != 0)
2056            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2057                              DAG.getConstant(bestOffset, PtrType));
2058          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2059          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2060                                Lod->getPointerInfo().getWithOffset(bestOffset),
2061                                        false, false, false, NewAlign);
2062          return DAG.getSetCC(dl, VT,
2063                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2064                                      DAG.getConstant(bestMask.trunc(bestWidth),
2065                                                      newVT)),
2066                              DAG.getConstant(0LL, newVT), Cond);
2067        }
2068      }
2069    }
2070
2071    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2072    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2073      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2074
2075      // If the comparison constant has bits in the upper part, the
2076      // zero-extended value could never match.
2077      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2078                                              C1.getBitWidth() - InSize))) {
2079        switch (Cond) {
2080        case ISD::SETUGT:
2081        case ISD::SETUGE:
2082        case ISD::SETEQ: return DAG.getConstant(0, VT);
2083        case ISD::SETULT:
2084        case ISD::SETULE:
2085        case ISD::SETNE: return DAG.getConstant(1, VT);
2086        case ISD::SETGT:
2087        case ISD::SETGE:
2088          // True if the sign bit of C1 is set.
2089          return DAG.getConstant(C1.isNegative(), VT);
2090        case ISD::SETLT:
2091        case ISD::SETLE:
2092          // True if the sign bit of C1 isn't set.
2093          return DAG.getConstant(C1.isNonNegative(), VT);
2094        default:
2095          break;
2096        }
2097      }
2098
2099      // Otherwise, we can perform the comparison with the low bits.
2100      switch (Cond) {
2101      case ISD::SETEQ:
2102      case ISD::SETNE:
2103      case ISD::SETUGT:
2104      case ISD::SETUGE:
2105      case ISD::SETULT:
2106      case ISD::SETULE: {
2107        EVT newVT = N0.getOperand(0).getValueType();
2108        if (DCI.isBeforeLegalizeOps() ||
2109            (isOperationLegal(ISD::SETCC, newVT) &&
2110              getCondCodeAction(Cond, newVT)==Legal))
2111          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2112                              DAG.getConstant(C1.trunc(InSize), newVT),
2113                              Cond);
2114        break;
2115      }
2116      default:
2117        break;   // todo, be more careful with signed comparisons
2118      }
2119    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2120               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2121      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2122      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2123      EVT ExtDstTy = N0.getValueType();
2124      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2125
2126      // If the constant doesn't fit into the number of bits for the source of
2127      // the sign extension, it is impossible for both sides to be equal.
2128      if (C1.getMinSignedBits() > ExtSrcTyBits)
2129        return DAG.getConstant(Cond == ISD::SETNE, VT);
2130
2131      SDValue ZextOp;
2132      EVT Op0Ty = N0.getOperand(0).getValueType();
2133      if (Op0Ty == ExtSrcTy) {
2134        ZextOp = N0.getOperand(0);
2135      } else {
2136        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2137        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2138                              DAG.getConstant(Imm, Op0Ty));
2139      }
2140      if (!DCI.isCalledByLegalizer())
2141        DCI.AddToWorklist(ZextOp.getNode());
2142      // Otherwise, make this a use of a zext.
2143      return DAG.getSetCC(dl, VT, ZextOp,
2144                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2145                                                              ExtDstTyBits,
2146                                                              ExtSrcTyBits),
2147                                          ExtDstTy),
2148                          Cond);
2149    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2150                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2151      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2152      if (N0.getOpcode() == ISD::SETCC &&
2153          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2154        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2155        if (TrueWhenTrue)
2156          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2157        // Invert the condition.
2158        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2159        CC = ISD::getSetCCInverse(CC,
2160                                  N0.getOperand(0).getValueType().isInteger());
2161        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2162      }
2163
2164      if ((N0.getOpcode() == ISD::XOR ||
2165           (N0.getOpcode() == ISD::AND &&
2166            N0.getOperand(0).getOpcode() == ISD::XOR &&
2167            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2168          isa<ConstantSDNode>(N0.getOperand(1)) &&
2169          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2170        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2171        // can only do this if the top bits are known zero.
2172        unsigned BitWidth = N0.getValueSizeInBits();
2173        if (DAG.MaskedValueIsZero(N0,
2174                                  APInt::getHighBitsSet(BitWidth,
2175                                                        BitWidth-1))) {
2176          // Okay, get the un-inverted input value.
2177          SDValue Val;
2178          if (N0.getOpcode() == ISD::XOR)
2179            Val = N0.getOperand(0);
2180          else {
2181            assert(N0.getOpcode() == ISD::AND &&
2182                    N0.getOperand(0).getOpcode() == ISD::XOR);
2183            // ((X^1)&1)^1 -> X & 1
2184            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2185                              N0.getOperand(0).getOperand(0),
2186                              N0.getOperand(1));
2187          }
2188
2189          return DAG.getSetCC(dl, VT, Val, N1,
2190                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2191        }
2192      } else if (N1C->getAPIntValue() == 1 &&
2193                 (VT == MVT::i1 ||
2194                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2195        SDValue Op0 = N0;
2196        if (Op0.getOpcode() == ISD::TRUNCATE)
2197          Op0 = Op0.getOperand(0);
2198
2199        if ((Op0.getOpcode() == ISD::XOR) &&
2200            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2201            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2202          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2203          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2204          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2205                              Cond);
2206        } else if (Op0.getOpcode() == ISD::AND &&
2207                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2208                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2209          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2210          if (Op0.getValueType().bitsGT(VT))
2211            Op0 = DAG.getNode(ISD::AND, dl, VT,
2212                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2213                          DAG.getConstant(1, VT));
2214          else if (Op0.getValueType().bitsLT(VT))
2215            Op0 = DAG.getNode(ISD::AND, dl, VT,
2216                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2217                        DAG.getConstant(1, VT));
2218
2219          return DAG.getSetCC(dl, VT, Op0,
2220                              DAG.getConstant(0, Op0.getValueType()),
2221                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2222        }
2223      }
2224    }
2225
2226    APInt MinVal, MaxVal;
2227    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2228    if (ISD::isSignedIntSetCC(Cond)) {
2229      MinVal = APInt::getSignedMinValue(OperandBitSize);
2230      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2231    } else {
2232      MinVal = APInt::getMinValue(OperandBitSize);
2233      MaxVal = APInt::getMaxValue(OperandBitSize);
2234    }
2235
2236    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2237    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2238      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2239      // X >= C0 --> X > (C0-1)
2240      return DAG.getSetCC(dl, VT, N0,
2241                          DAG.getConstant(C1-1, N1.getValueType()),
2242                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2243    }
2244
2245    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2246      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2247      // X <= C0 --> X < (C0+1)
2248      return DAG.getSetCC(dl, VT, N0,
2249                          DAG.getConstant(C1+1, N1.getValueType()),
2250                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2251    }
2252
2253    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2254      return DAG.getConstant(0, VT);      // X < MIN --> false
2255    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2256      return DAG.getConstant(1, VT);      // X >= MIN --> true
2257    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2258      return DAG.getConstant(0, VT);      // X > MAX --> false
2259    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2260      return DAG.getConstant(1, VT);      // X <= MAX --> true
2261
2262    // Canonicalize setgt X, Min --> setne X, Min
2263    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2264      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2265    // Canonicalize setlt X, Max --> setne X, Max
2266    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2267      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2268
2269    // If we have setult X, 1, turn it into seteq X, 0
2270    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2271      return DAG.getSetCC(dl, VT, N0,
2272                          DAG.getConstant(MinVal, N0.getValueType()),
2273                          ISD::SETEQ);
2274    // If we have setugt X, Max-1, turn it into seteq X, Max
2275    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2276      return DAG.getSetCC(dl, VT, N0,
2277                          DAG.getConstant(MaxVal, N0.getValueType()),
2278                          ISD::SETEQ);
2279
2280    // If we have "setcc X, C0", check to see if we can shrink the immediate
2281    // by changing cc.
2282
2283    // SETUGT X, SINTMAX  -> SETLT X, 0
2284    if (Cond == ISD::SETUGT &&
2285        C1 == APInt::getSignedMaxValue(OperandBitSize))
2286      return DAG.getSetCC(dl, VT, N0,
2287                          DAG.getConstant(0, N1.getValueType()),
2288                          ISD::SETLT);
2289
2290    // SETULT X, SINTMIN  -> SETGT X, -1
2291    if (Cond == ISD::SETULT &&
2292        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2293      SDValue ConstMinusOne =
2294          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2295                          N1.getValueType());
2296      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2297    }
2298
2299    // Fold bit comparisons when we can.
2300    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2301        (VT == N0.getValueType() ||
2302         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2303        N0.getOpcode() == ISD::AND)
2304      if (ConstantSDNode *AndRHS =
2305                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2306        EVT ShiftTy = DCI.isBeforeLegalize() ?
2307          getPointerTy() : getShiftAmountTy(N0.getValueType());
2308        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2309          // Perform the xform if the AND RHS is a single bit.
2310          if (AndRHS->getAPIntValue().isPowerOf2()) {
2311            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2312                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2313                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2314          }
2315        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2316          // (X & 8) == 8  -->  (X & 8) >> 3
2317          // Perform the xform if C1 is a single bit.
2318          if (C1.isPowerOf2()) {
2319            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2320                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2321                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2322          }
2323        }
2324      }
2325
2326    if (C1.getMinSignedBits() <= 64 &&
2327        !isLegalICmpImmediate(C1.getSExtValue())) {
2328      // (X & -256) == 256 -> (X >> 8) == 1
2329      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2330          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2331        if (ConstantSDNode *AndRHS =
2332            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2333          const APInt &AndRHSC = AndRHS->getAPIntValue();
2334          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2335            unsigned ShiftBits = AndRHSC.countTrailingZeros();
2336            EVT ShiftTy = DCI.isBeforeLegalize() ?
2337              getPointerTy() : getShiftAmountTy(N0.getValueType());
2338            EVT CmpTy = N0.getValueType();
2339            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2340                                        DAG.getConstant(ShiftBits, ShiftTy));
2341            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
2342            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2343          }
2344        }
2345      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2346                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2347        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2348        // X <  0x100000000 -> (X >> 32) <  1
2349        // X >= 0x100000000 -> (X >> 32) >= 1
2350        // X <= 0x0ffffffff -> (X >> 32) <  1
2351        // X >  0x0ffffffff -> (X >> 32) >= 1
2352        unsigned ShiftBits;
2353        APInt NewC = C1;
2354        ISD::CondCode NewCond = Cond;
2355        if (AdjOne) {
2356          ShiftBits = C1.countTrailingOnes();
2357          NewC = NewC + 1;
2358          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2359        } else {
2360          ShiftBits = C1.countTrailingZeros();
2361        }
2362        NewC = NewC.lshr(ShiftBits);
2363        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
2364          EVT ShiftTy = DCI.isBeforeLegalize() ?
2365            getPointerTy() : getShiftAmountTy(N0.getValueType());
2366          EVT CmpTy = N0.getValueType();
2367          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2368                                      DAG.getConstant(ShiftBits, ShiftTy));
2369          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
2370          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2371        }
2372      }
2373    }
2374  }
2375
2376  if (isa<ConstantFPSDNode>(N0.getNode())) {
2377    // Constant fold or commute setcc.
2378    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2379    if (O.getNode()) return O;
2380  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2381    // If the RHS of an FP comparison is a constant, simplify it away in
2382    // some cases.
2383    if (CFP->getValueAPF().isNaN()) {
2384      // If an operand is known to be a nan, we can fold it.
2385      switch (ISD::getUnorderedFlavor(Cond)) {
2386      default: llvm_unreachable("Unknown flavor!");
2387      case 0:  // Known false.
2388        return DAG.getConstant(0, VT);
2389      case 1:  // Known true.
2390        return DAG.getConstant(1, VT);
2391      case 2:  // Undefined.
2392        return DAG.getUNDEF(VT);
2393      }
2394    }
2395
2396    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2397    // constant if knowing that the operand is non-nan is enough.  We prefer to
2398    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2399    // materialize 0.0.
2400    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2401      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2402
2403    // If the condition is not legal, see if we can find an equivalent one
2404    // which is legal.
2405    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2406      // If the comparison was an awkward floating-point == or != and one of
2407      // the comparison operands is infinity or negative infinity, convert the
2408      // condition to a less-awkward <= or >=.
2409      if (CFP->getValueAPF().isInfinity()) {
2410        if (CFP->getValueAPF().isNegative()) {
2411          if (Cond == ISD::SETOEQ &&
2412              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2413            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2414          if (Cond == ISD::SETUEQ &&
2415              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2416            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2417          if (Cond == ISD::SETUNE &&
2418              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2419            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2420          if (Cond == ISD::SETONE &&
2421              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2422            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2423        } else {
2424          if (Cond == ISD::SETOEQ &&
2425              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2426            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2427          if (Cond == ISD::SETUEQ &&
2428              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2429            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2430          if (Cond == ISD::SETUNE &&
2431              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2432            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2433          if (Cond == ISD::SETONE &&
2434              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2435            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2436        }
2437      }
2438    }
2439  }
2440
2441  if (N0 == N1) {
2442    // The sext(setcc()) => setcc() optimization relies on the appropriate
2443    // constant being emitted.
2444    uint64_t EqVal;
2445    switch (getBooleanContents(N0.getValueType().isVector())) {
2446    case UndefinedBooleanContent:
2447    case ZeroOrOneBooleanContent:
2448      EqVal = ISD::isTrueWhenEqual(Cond);
2449      break;
2450    case ZeroOrNegativeOneBooleanContent:
2451      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2452      break;
2453    }
2454
2455    // We can always fold X == X for integer setcc's.
2456    if (N0.getValueType().isInteger()) {
2457      return DAG.getConstant(EqVal, VT);
2458    }
2459    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2460    if (UOF == 2)   // FP operators that are undefined on NaNs.
2461      return DAG.getConstant(EqVal, VT);
2462    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2463      return DAG.getConstant(EqVal, VT);
2464    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2465    // if it is not already.
2466    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2467    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2468          getCondCodeAction(NewCond, N0.getValueType()) == Legal))
2469      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2470  }
2471
2472  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2473      N0.getValueType().isInteger()) {
2474    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2475        N0.getOpcode() == ISD::XOR) {
2476      // Simplify (X+Y) == (X+Z) -->  Y == Z
2477      if (N0.getOpcode() == N1.getOpcode()) {
2478        if (N0.getOperand(0) == N1.getOperand(0))
2479          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2480        if (N0.getOperand(1) == N1.getOperand(1))
2481          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2482        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2483          // If X op Y == Y op X, try other combinations.
2484          if (N0.getOperand(0) == N1.getOperand(1))
2485            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2486                                Cond);
2487          if (N0.getOperand(1) == N1.getOperand(0))
2488            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2489                                Cond);
2490        }
2491      }
2492
2493      // If RHS is a legal immediate value for a compare instruction, we need
2494      // to be careful about increasing register pressure needlessly.
2495      bool LegalRHSImm = false;
2496
2497      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2498        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2499          // Turn (X+C1) == C2 --> X == C2-C1
2500          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2501            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2502                                DAG.getConstant(RHSC->getAPIntValue()-
2503                                                LHSR->getAPIntValue(),
2504                                N0.getValueType()), Cond);
2505          }
2506
2507          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2508          if (N0.getOpcode() == ISD::XOR)
2509            // If we know that all of the inverted bits are zero, don't bother
2510            // performing the inversion.
2511            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2512              return
2513                DAG.getSetCC(dl, VT, N0.getOperand(0),
2514                             DAG.getConstant(LHSR->getAPIntValue() ^
2515                                               RHSC->getAPIntValue(),
2516                                             N0.getValueType()),
2517                             Cond);
2518        }
2519
2520        // Turn (C1-X) == C2 --> X == C1-C2
2521        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2522          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2523            return
2524              DAG.getSetCC(dl, VT, N0.getOperand(1),
2525                           DAG.getConstant(SUBC->getAPIntValue() -
2526                                             RHSC->getAPIntValue(),
2527                                           N0.getValueType()),
2528                           Cond);
2529          }
2530        }
2531
2532        // Could RHSC fold directly into a compare?
2533        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2534          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2535      }
2536
2537      // Simplify (X+Z) == X -->  Z == 0
2538      // Don't do this if X is an immediate that can fold into a cmp
2539      // instruction and X+Z has other uses. It could be an induction variable
2540      // chain, and the transform would increase register pressure.
2541      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2542        if (N0.getOperand(0) == N1)
2543          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2544                              DAG.getConstant(0, N0.getValueType()), Cond);
2545        if (N0.getOperand(1) == N1) {
2546          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2547            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2548                                DAG.getConstant(0, N0.getValueType()), Cond);
2549          else if (N0.getNode()->hasOneUse()) {
2550            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2551            // (Z-X) == X  --> Z == X<<1
2552            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2553                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2554            if (!DCI.isCalledByLegalizer())
2555              DCI.AddToWorklist(SH.getNode());
2556            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2557          }
2558        }
2559      }
2560    }
2561
2562    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2563        N1.getOpcode() == ISD::XOR) {
2564      // Simplify  X == (X+Z) -->  Z == 0
2565      if (N1.getOperand(0) == N0) {
2566        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2567                        DAG.getConstant(0, N1.getValueType()), Cond);
2568      } else if (N1.getOperand(1) == N0) {
2569        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2570          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2571                          DAG.getConstant(0, N1.getValueType()), Cond);
2572        } else if (N1.getNode()->hasOneUse()) {
2573          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2574          // X == (Z-X)  --> X<<1 == Z
2575          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2576                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2577          if (!DCI.isCalledByLegalizer())
2578            DCI.AddToWorklist(SH.getNode());
2579          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2580        }
2581      }
2582    }
2583
2584    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2585    // Note that where y is variable and is known to have at most
2586    // one bit set (for example, if it is z&1) we cannot do this;
2587    // the expressions are not equivalent when y==0.
2588    if (N0.getOpcode() == ISD::AND)
2589      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2590        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2591          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2592          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2593          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2594        }
2595      }
2596    if (N1.getOpcode() == ISD::AND)
2597      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2598        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2599          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2600          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2601          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2602        }
2603      }
2604  }
2605
2606  // Fold away ALL boolean setcc's.
2607  SDValue Temp;
2608  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2609    switch (Cond) {
2610    default: llvm_unreachable("Unknown integer setcc!");
2611    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2612      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2613      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2614      if (!DCI.isCalledByLegalizer())
2615        DCI.AddToWorklist(Temp.getNode());
2616      break;
2617    case ISD::SETNE:  // X != Y   -->  (X^Y)
2618      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2619      break;
2620    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2621    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2622      Temp = DAG.getNOT(dl, N0, MVT::i1);
2623      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2624      if (!DCI.isCalledByLegalizer())
2625        DCI.AddToWorklist(Temp.getNode());
2626      break;
2627    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2628    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2629      Temp = DAG.getNOT(dl, N1, MVT::i1);
2630      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2631      if (!DCI.isCalledByLegalizer())
2632        DCI.AddToWorklist(Temp.getNode());
2633      break;
2634    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2635    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2636      Temp = DAG.getNOT(dl, N0, MVT::i1);
2637      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2638      if (!DCI.isCalledByLegalizer())
2639        DCI.AddToWorklist(Temp.getNode());
2640      break;
2641    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2642    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2643      Temp = DAG.getNOT(dl, N1, MVT::i1);
2644      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2645      break;
2646    }
2647    if (VT != MVT::i1) {
2648      if (!DCI.isCalledByLegalizer())
2649        DCI.AddToWorklist(N0.getNode());
2650      // FIXME: If running after legalize, we probably can't do this.
2651      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2652    }
2653    return N0;
2654  }
2655
2656  // Could not fold it.
2657  return SDValue();
2658}
2659
2660/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2661/// node is a GlobalAddress + offset.
2662bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2663                                    int64_t &Offset) const {
2664  if (isa<GlobalAddressSDNode>(N)) {
2665    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2666    GA = GASD->getGlobal();
2667    Offset += GASD->getOffset();
2668    return true;
2669  }
2670
2671  if (N->getOpcode() == ISD::ADD) {
2672    SDValue N1 = N->getOperand(0);
2673    SDValue N2 = N->getOperand(1);
2674    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2675      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2676      if (V) {
2677        Offset += V->getSExtValue();
2678        return true;
2679      }
2680    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2681      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2682      if (V) {
2683        Offset += V->getSExtValue();
2684        return true;
2685      }
2686    }
2687  }
2688
2689  return false;
2690}
2691
2692
2693SDValue TargetLowering::
2694PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2695  // Default implementation: no optimization.
2696  return SDValue();
2697}
2698
2699//===----------------------------------------------------------------------===//
2700//  Inline Assembler Implementation Methods
2701//===----------------------------------------------------------------------===//
2702
2703
2704TargetLowering::ConstraintType
2705TargetLowering::getConstraintType(const std::string &Constraint) const {
2706  if (Constraint.size() == 1) {
2707    switch (Constraint[0]) {
2708    default: break;
2709    case 'r': return C_RegisterClass;
2710    case 'm':    // memory
2711    case 'o':    // offsetable
2712    case 'V':    // not offsetable
2713      return C_Memory;
2714    case 'i':    // Simple Integer or Relocatable Constant
2715    case 'n':    // Simple Integer
2716    case 'E':    // Floating Point Constant
2717    case 'F':    // Floating Point Constant
2718    case 's':    // Relocatable Constant
2719    case 'p':    // Address.
2720    case 'X':    // Allow ANY value.
2721    case 'I':    // Target registers.
2722    case 'J':
2723    case 'K':
2724    case 'L':
2725    case 'M':
2726    case 'N':
2727    case 'O':
2728    case 'P':
2729    case '<':
2730    case '>':
2731      return C_Other;
2732    }
2733  }
2734
2735  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2736      Constraint[Constraint.size()-1] == '}')
2737    return C_Register;
2738  return C_Unknown;
2739}
2740
2741/// LowerXConstraint - try to replace an X constraint, which matches anything,
2742/// with another that has more specific requirements based on the type of the
2743/// corresponding operand.
2744const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2745  if (ConstraintVT.isInteger())
2746    return "r";
2747  if (ConstraintVT.isFloatingPoint())
2748    return "f";      // works for many targets
2749  return 0;
2750}
2751
2752/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2753/// vector.  If it is invalid, don't add anything to Ops.
2754void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2755                                                  std::string &Constraint,
2756                                                  std::vector<SDValue> &Ops,
2757                                                  SelectionDAG &DAG) const {
2758
2759  if (Constraint.length() > 1) return;
2760
2761  char ConstraintLetter = Constraint[0];
2762  switch (ConstraintLetter) {
2763  default: break;
2764  case 'X':     // Allows any operand; labels (basic block) use this.
2765    if (Op.getOpcode() == ISD::BasicBlock) {
2766      Ops.push_back(Op);
2767      return;
2768    }
2769    // fall through
2770  case 'i':    // Simple Integer or Relocatable Constant
2771  case 'n':    // Simple Integer
2772  case 's': {  // Relocatable Constant
2773    // These operands are interested in values of the form (GV+C), where C may
2774    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2775    // is possible and fine if either GV or C are missing.
2776    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2777    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2778
2779    // If we have "(add GV, C)", pull out GV/C
2780    if (Op.getOpcode() == ISD::ADD) {
2781      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2782      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2783      if (C == 0 || GA == 0) {
2784        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2785        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2786      }
2787      if (C == 0 || GA == 0)
2788        C = 0, GA = 0;
2789    }
2790
2791    // If we find a valid operand, map to the TargetXXX version so that the
2792    // value itself doesn't get selected.
2793    if (GA) {   // Either &GV   or   &GV+C
2794      if (ConstraintLetter != 'n') {
2795        int64_t Offs = GA->getOffset();
2796        if (C) Offs += C->getZExtValue();
2797        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2798                                                 C ? C->getDebugLoc() : DebugLoc(),
2799                                                 Op.getValueType(), Offs));
2800        return;
2801      }
2802    }
2803    if (C) {   // just C, no GV.
2804      // Simple constants are not allowed for 's'.
2805      if (ConstraintLetter != 's') {
2806        // gcc prints these as sign extended.  Sign extend value to 64 bits
2807        // now; without this it would get ZExt'd later in
2808        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2809        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2810                                            MVT::i64));
2811        return;
2812      }
2813    }
2814    break;
2815  }
2816  }
2817}
2818
2819std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2820getRegForInlineAsmConstraint(const std::string &Constraint,
2821                             EVT VT) const {
2822  if (Constraint[0] != '{')
2823    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2824  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2825
2826  // Remove the braces from around the name.
2827  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2828
2829  // Figure out which register class contains this reg.
2830  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2831  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2832       E = RI->regclass_end(); RCI != E; ++RCI) {
2833    const TargetRegisterClass *RC = *RCI;
2834
2835    // If none of the value types for this register class are valid, we
2836    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2837    if (!isLegalRC(RC))
2838      continue;
2839
2840    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2841         I != E; ++I) {
2842      if (RegName.equals_lower(RI->getName(*I)))
2843        return std::make_pair(*I, RC);
2844    }
2845  }
2846
2847  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2848}
2849
2850//===----------------------------------------------------------------------===//
2851// Constraint Selection.
2852
2853/// isMatchingInputConstraint - Return true of this is an input operand that is
2854/// a matching constraint like "4".
2855bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2856  assert(!ConstraintCode.empty() && "No known constraint!");
2857  return isdigit(ConstraintCode[0]);
2858}
2859
2860/// getMatchedOperand - If this is an input matching constraint, this method
2861/// returns the output operand it matches.
2862unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2863  assert(!ConstraintCode.empty() && "No known constraint!");
2864  return atoi(ConstraintCode.c_str());
2865}
2866
2867
2868/// ParseConstraints - Split up the constraint string from the inline
2869/// assembly value into the specific constraints and their prefixes,
2870/// and also tie in the associated operand values.
2871/// If this returns an empty vector, and if the constraint string itself
2872/// isn't empty, there was an error parsing.
2873TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2874    ImmutableCallSite CS) const {
2875  /// ConstraintOperands - Information about all of the constraints.
2876  AsmOperandInfoVector ConstraintOperands;
2877  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2878  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2879
2880  // Do a prepass over the constraints, canonicalizing them, and building up the
2881  // ConstraintOperands list.
2882  InlineAsm::ConstraintInfoVector
2883    ConstraintInfos = IA->ParseConstraints();
2884
2885  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2886  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2887
2888  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2889    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2890    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2891
2892    // Update multiple alternative constraint count.
2893    if (OpInfo.multipleAlternatives.size() > maCount)
2894      maCount = OpInfo.multipleAlternatives.size();
2895
2896    OpInfo.ConstraintVT = MVT::Other;
2897
2898    // Compute the value type for each operand.
2899    switch (OpInfo.Type) {
2900    case InlineAsm::isOutput:
2901      // Indirect outputs just consume an argument.
2902      if (OpInfo.isIndirect) {
2903        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2904        break;
2905      }
2906
2907      // The return value of the call is this value.  As such, there is no
2908      // corresponding argument.
2909      assert(!CS.getType()->isVoidTy() &&
2910             "Bad inline asm!");
2911      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2912        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2913      } else {
2914        assert(ResNo == 0 && "Asm only has one result!");
2915        OpInfo.ConstraintVT = getValueType(CS.getType());
2916      }
2917      ++ResNo;
2918      break;
2919    case InlineAsm::isInput:
2920      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2921      break;
2922    case InlineAsm::isClobber:
2923      // Nothing to do.
2924      break;
2925    }
2926
2927    if (OpInfo.CallOperandVal) {
2928      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2929      if (OpInfo.isIndirect) {
2930        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2931        if (!PtrTy)
2932          report_fatal_error("Indirect operand for inline asm not a pointer!");
2933        OpTy = PtrTy->getElementType();
2934      }
2935
2936      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2937      if (StructType *STy = dyn_cast<StructType>(OpTy))
2938        if (STy->getNumElements() == 1)
2939          OpTy = STy->getElementType(0);
2940
2941      // If OpTy is not a single value, it may be a struct/union that we
2942      // can tile with integers.
2943      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2944        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2945        switch (BitSize) {
2946        default: break;
2947        case 1:
2948        case 8:
2949        case 16:
2950        case 32:
2951        case 64:
2952        case 128:
2953          OpInfo.ConstraintVT =
2954              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2955          break;
2956        }
2957      } else if (dyn_cast<PointerType>(OpTy)) {
2958        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2959      } else {
2960        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2961      }
2962    }
2963  }
2964
2965  // If we have multiple alternative constraints, select the best alternative.
2966  if (ConstraintInfos.size()) {
2967    if (maCount) {
2968      unsigned bestMAIndex = 0;
2969      int bestWeight = -1;
2970      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2971      int weight = -1;
2972      unsigned maIndex;
2973      // Compute the sums of the weights for each alternative, keeping track
2974      // of the best (highest weight) one so far.
2975      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2976        int weightSum = 0;
2977        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2978            cIndex != eIndex; ++cIndex) {
2979          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2980          if (OpInfo.Type == InlineAsm::isClobber)
2981            continue;
2982
2983          // If this is an output operand with a matching input operand,
2984          // look up the matching input. If their types mismatch, e.g. one
2985          // is an integer, the other is floating point, or their sizes are
2986          // different, flag it as an maCantMatch.
2987          if (OpInfo.hasMatchingInput()) {
2988            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2989            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2990              if ((OpInfo.ConstraintVT.isInteger() !=
2991                   Input.ConstraintVT.isInteger()) ||
2992                  (OpInfo.ConstraintVT.getSizeInBits() !=
2993                   Input.ConstraintVT.getSizeInBits())) {
2994                weightSum = -1;  // Can't match.
2995                break;
2996              }
2997            }
2998          }
2999          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3000          if (weight == -1) {
3001            weightSum = -1;
3002            break;
3003          }
3004          weightSum += weight;
3005        }
3006        // Update best.
3007        if (weightSum > bestWeight) {
3008          bestWeight = weightSum;
3009          bestMAIndex = maIndex;
3010        }
3011      }
3012
3013      // Now select chosen alternative in each constraint.
3014      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3015          cIndex != eIndex; ++cIndex) {
3016        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3017        if (cInfo.Type == InlineAsm::isClobber)
3018          continue;
3019        cInfo.selectAlternative(bestMAIndex);
3020      }
3021    }
3022  }
3023
3024  // Check and hook up tied operands, choose constraint code to use.
3025  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3026      cIndex != eIndex; ++cIndex) {
3027    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3028
3029    // If this is an output operand with a matching input operand, look up the
3030    // matching input. If their types mismatch, e.g. one is an integer, the
3031    // other is floating point, or their sizes are different, flag it as an
3032    // error.
3033    if (OpInfo.hasMatchingInput()) {
3034      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3035
3036      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3037        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
3038          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3039                                       OpInfo.ConstraintVT);
3040        std::pair<unsigned, const TargetRegisterClass*> InputRC =
3041          getRegForInlineAsmConstraint(Input.ConstraintCode,
3042                                       Input.ConstraintVT);
3043        if ((OpInfo.ConstraintVT.isInteger() !=
3044             Input.ConstraintVT.isInteger()) ||
3045            (MatchRC.second != InputRC.second)) {
3046          report_fatal_error("Unsupported asm: input constraint"
3047                             " with a matching output constraint of"
3048                             " incompatible type!");
3049        }
3050      }
3051
3052    }
3053  }
3054
3055  return ConstraintOperands;
3056}
3057
3058
3059/// getConstraintGenerality - Return an integer indicating how general CT
3060/// is.
3061static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3062  switch (CT) {
3063  case TargetLowering::C_Other:
3064  case TargetLowering::C_Unknown:
3065    return 0;
3066  case TargetLowering::C_Register:
3067    return 1;
3068  case TargetLowering::C_RegisterClass:
3069    return 2;
3070  case TargetLowering::C_Memory:
3071    return 3;
3072  }
3073  llvm_unreachable("Invalid constraint type");
3074}
3075
3076/// Examine constraint type and operand type and determine a weight value.
3077/// This object must already have been set up with the operand type
3078/// and the current alternative constraint selected.
3079TargetLowering::ConstraintWeight
3080  TargetLowering::getMultipleConstraintMatchWeight(
3081    AsmOperandInfo &info, int maIndex) const {
3082  InlineAsm::ConstraintCodeVector *rCodes;
3083  if (maIndex >= (int)info.multipleAlternatives.size())
3084    rCodes = &info.Codes;
3085  else
3086    rCodes = &info.multipleAlternatives[maIndex].Codes;
3087  ConstraintWeight BestWeight = CW_Invalid;
3088
3089  // Loop over the options, keeping track of the most general one.
3090  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3091    ConstraintWeight weight =
3092      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3093    if (weight > BestWeight)
3094      BestWeight = weight;
3095  }
3096
3097  return BestWeight;
3098}
3099
3100/// Examine constraint type and operand type and determine a weight value.
3101/// This object must already have been set up with the operand type
3102/// and the current alternative constraint selected.
3103TargetLowering::ConstraintWeight
3104  TargetLowering::getSingleConstraintMatchWeight(
3105    AsmOperandInfo &info, const char *constraint) const {
3106  ConstraintWeight weight = CW_Invalid;
3107  Value *CallOperandVal = info.CallOperandVal;
3108    // If we don't have a value, we can't do a match,
3109    // but allow it at the lowest weight.
3110  if (CallOperandVal == NULL)
3111    return CW_Default;
3112  // Look at the constraint type.
3113  switch (*constraint) {
3114    case 'i': // immediate integer.
3115    case 'n': // immediate integer with a known value.
3116      if (isa<ConstantInt>(CallOperandVal))
3117        weight = CW_Constant;
3118      break;
3119    case 's': // non-explicit intregal immediate.
3120      if (isa<GlobalValue>(CallOperandVal))
3121        weight = CW_Constant;
3122      break;
3123    case 'E': // immediate float if host format.
3124    case 'F': // immediate float.
3125      if (isa<ConstantFP>(CallOperandVal))
3126        weight = CW_Constant;
3127      break;
3128    case '<': // memory operand with autodecrement.
3129    case '>': // memory operand with autoincrement.
3130    case 'm': // memory operand.
3131    case 'o': // offsettable memory operand
3132    case 'V': // non-offsettable memory operand
3133      weight = CW_Memory;
3134      break;
3135    case 'r': // general register.
3136    case 'g': // general register, memory operand or immediate integer.
3137              // note: Clang converts "g" to "imr".
3138      if (CallOperandVal->getType()->isIntegerTy())
3139        weight = CW_Register;
3140      break;
3141    case 'X': // any operand.
3142    default:
3143      weight = CW_Default;
3144      break;
3145  }
3146  return weight;
3147}
3148
3149/// ChooseConstraint - If there are multiple different constraints that we
3150/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3151/// This is somewhat tricky: constraints fall into four classes:
3152///    Other         -> immediates and magic values
3153///    Register      -> one specific register
3154///    RegisterClass -> a group of regs
3155///    Memory        -> memory
3156/// Ideally, we would pick the most specific constraint possible: if we have
3157/// something that fits into a register, we would pick it.  The problem here
3158/// is that if we have something that could either be in a register or in
3159/// memory that use of the register could cause selection of *other*
3160/// operands to fail: they might only succeed if we pick memory.  Because of
3161/// this the heuristic we use is:
3162///
3163///  1) If there is an 'other' constraint, and if the operand is valid for
3164///     that constraint, use it.  This makes us take advantage of 'i'
3165///     constraints when available.
3166///  2) Otherwise, pick the most general constraint present.  This prefers
3167///     'm' over 'r', for example.
3168///
3169static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3170                             const TargetLowering &TLI,
3171                             SDValue Op, SelectionDAG *DAG) {
3172  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3173  unsigned BestIdx = 0;
3174  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3175  int BestGenerality = -1;
3176
3177  // Loop over the options, keeping track of the most general one.
3178  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3179    TargetLowering::ConstraintType CType =
3180      TLI.getConstraintType(OpInfo.Codes[i]);
3181
3182    // If this is an 'other' constraint, see if the operand is valid for it.
3183    // For example, on X86 we might have an 'rI' constraint.  If the operand
3184    // is an integer in the range [0..31] we want to use I (saving a load
3185    // of a register), otherwise we must use 'r'.
3186    if (CType == TargetLowering::C_Other && Op.getNode()) {
3187      assert(OpInfo.Codes[i].size() == 1 &&
3188             "Unhandled multi-letter 'other' constraint");
3189      std::vector<SDValue> ResultOps;
3190      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3191                                       ResultOps, *DAG);
3192      if (!ResultOps.empty()) {
3193        BestType = CType;
3194        BestIdx = i;
3195        break;
3196      }
3197    }
3198
3199    // Things with matching constraints can only be registers, per gcc
3200    // documentation.  This mainly affects "g" constraints.
3201    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3202      continue;
3203
3204    // This constraint letter is more general than the previous one, use it.
3205    int Generality = getConstraintGenerality(CType);
3206    if (Generality > BestGenerality) {
3207      BestType = CType;
3208      BestIdx = i;
3209      BestGenerality = Generality;
3210    }
3211  }
3212
3213  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3214  OpInfo.ConstraintType = BestType;
3215}
3216
3217/// ComputeConstraintToUse - Determines the constraint code and constraint
3218/// type to use for the specific AsmOperandInfo, setting
3219/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3220void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3221                                            SDValue Op,
3222                                            SelectionDAG *DAG) const {
3223  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3224
3225  // Single-letter constraints ('r') are very common.
3226  if (OpInfo.Codes.size() == 1) {
3227    OpInfo.ConstraintCode = OpInfo.Codes[0];
3228    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3229  } else {
3230    ChooseConstraint(OpInfo, *this, Op, DAG);
3231  }
3232
3233  // 'X' matches anything.
3234  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3235    // Labels and constants are handled elsewhere ('X' is the only thing
3236    // that matches labels).  For Functions, the type here is the type of
3237    // the result, which is not what we want to look at; leave them alone.
3238    Value *v = OpInfo.CallOperandVal;
3239    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3240      OpInfo.CallOperandVal = v;
3241      return;
3242    }
3243
3244    // Otherwise, try to resolve it to something we know about by looking at
3245    // the actual operand type.
3246    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3247      OpInfo.ConstraintCode = Repl;
3248      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3249    }
3250  }
3251}
3252
3253//===----------------------------------------------------------------------===//
3254//  Loop Strength Reduction hooks
3255//===----------------------------------------------------------------------===//
3256
3257/// isLegalAddressingMode - Return true if the addressing mode represented
3258/// by AM is legal for this target, for a load/store of the specified type.
3259bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3260                                           Type *Ty) const {
3261  // The default implementation of this implements a conservative RISCy, r+r and
3262  // r+i addr mode.
3263
3264  // Allows a sign-extended 16-bit immediate field.
3265  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3266    return false;
3267
3268  // No global is ever allowed as a base.
3269  if (AM.BaseGV)
3270    return false;
3271
3272  // Only support r+r,
3273  switch (AM.Scale) {
3274  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3275    break;
3276  case 1:
3277    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3278      return false;
3279    // Otherwise we have r+r or r+i.
3280    break;
3281  case 2:
3282    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3283      return false;
3284    // Allow 2*r as r+r.
3285    break;
3286  }
3287
3288  return true;
3289}
3290
3291/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3292/// with the multiplicative inverse of the constant.
3293SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3294                                       SelectionDAG &DAG) const {
3295  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3296  APInt d = C->getAPIntValue();
3297  assert(d != 0 && "Division by zero!");
3298
3299  // Shift the value upfront if it is even, so the LSB is one.
3300  unsigned ShAmt = d.countTrailingZeros();
3301  if (ShAmt) {
3302    // TODO: For UDIV use SRL instead of SRA.
3303    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3304    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3305    d = d.ashr(ShAmt);
3306  }
3307
3308  // Calculate the multiplicative inverse, using Newton's method.
3309  APInt t, xn = d;
3310  while ((t = d*xn) != 1)
3311    xn *= APInt(d.getBitWidth(), 2) - t;
3312
3313  Op2 = DAG.getConstant(xn, Op1.getValueType());
3314  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3315}
3316
3317/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3318/// return a DAG expression to select that will generate the same value by
3319/// multiplying by a magic number.  See:
3320/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3321SDValue TargetLowering::
3322BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3323          std::vector<SDNode*>* Created) const {
3324  EVT VT = N->getValueType(0);
3325  DebugLoc dl= N->getDebugLoc();
3326
3327  // Check to see if we can do this.
3328  // FIXME: We should be more aggressive here.
3329  if (!isTypeLegal(VT))
3330    return SDValue();
3331
3332  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3333  APInt::ms magics = d.magic();
3334
3335  // Multiply the numerator (operand 0) by the magic value
3336  // FIXME: We should support doing a MUL in a wider type
3337  SDValue Q;
3338  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3339                            isOperationLegalOrCustom(ISD::MULHS, VT))
3340    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3341                    DAG.getConstant(magics.m, VT));
3342  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3343                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3344    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3345                              N->getOperand(0),
3346                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3347  else
3348    return SDValue();       // No mulhs or equvialent
3349  // If d > 0 and m < 0, add the numerator
3350  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3351    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3352    if (Created)
3353      Created->push_back(Q.getNode());
3354  }
3355  // If d < 0 and m > 0, subtract the numerator.
3356  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3357    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3358    if (Created)
3359      Created->push_back(Q.getNode());
3360  }
3361  // Shift right algebraic if shift value is nonzero
3362  if (magics.s > 0) {
3363    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3364                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3365    if (Created)
3366      Created->push_back(Q.getNode());
3367  }
3368  // Extract the sign bit and add it to the quotient
3369  SDValue T =
3370    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3371                                           getShiftAmountTy(Q.getValueType())));
3372  if (Created)
3373    Created->push_back(T.getNode());
3374  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3375}
3376
3377/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3378/// return a DAG expression to select that will generate the same value by
3379/// multiplying by a magic number.  See:
3380/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3381SDValue TargetLowering::
3382BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3383          std::vector<SDNode*>* Created) const {
3384  EVT VT = N->getValueType(0);
3385  DebugLoc dl = N->getDebugLoc();
3386
3387  // Check to see if we can do this.
3388  // FIXME: We should be more aggressive here.
3389  if (!isTypeLegal(VT))
3390    return SDValue();
3391
3392  // FIXME: We should use a narrower constant when the upper
3393  // bits are known to be zero.
3394  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3395  APInt::mu magics = N1C.magicu();
3396
3397  SDValue Q = N->getOperand(0);
3398
3399  // If the divisor is even, we can avoid using the expensive fixup by shifting
3400  // the divided value upfront.
3401  if (magics.a != 0 && !N1C[0]) {
3402    unsigned Shift = N1C.countTrailingZeros();
3403    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3404                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3405    if (Created)
3406      Created->push_back(Q.getNode());
3407
3408    // Get magic number for the shifted divisor.
3409    magics = N1C.lshr(Shift).magicu(Shift);
3410    assert(magics.a == 0 && "Should use cheap fixup now");
3411  }
3412
3413  // Multiply the numerator (operand 0) by the magic value
3414  // FIXME: We should support doing a MUL in a wider type
3415  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3416                            isOperationLegalOrCustom(ISD::MULHU, VT))
3417    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3418  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3419                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3420    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3421                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3422  else
3423    return SDValue();       // No mulhu or equvialent
3424  if (Created)
3425    Created->push_back(Q.getNode());
3426
3427  if (magics.a == 0) {
3428    assert(magics.s < N1C.getBitWidth() &&
3429           "We shouldn't generate an undefined shift!");
3430    return DAG.getNode(ISD::SRL, dl, VT, Q,
3431                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3432  } else {
3433    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3434    if (Created)
3435      Created->push_back(NPQ.getNode());
3436    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3437                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3438    if (Created)
3439      Created->push_back(NPQ.getNode());
3440    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3441    if (Created)
3442      Created->push_back(NPQ.getNode());
3443    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3444             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3445  }
3446}
3447