TargetLowering.cpp revision 927411b7ce0b7852fe4f392d8cd4faaa3881f852
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtarget.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
178  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
179  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
180  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
181  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
182  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
183  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
184  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
185  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
186  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
187  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
188  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
189  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
190  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
191  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
192  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
193  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
194  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
195  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
196  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
197  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
198  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
199  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
200  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
201  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
202  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
203  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
204  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
205  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
206  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
207  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
208  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
209  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
210  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
211  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
212  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
213  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
214  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
215  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
216  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
217  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
218  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
219  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
220  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
221  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
222  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
223  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
224  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
225  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
226  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
227  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
228  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
229  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
230  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
231  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
232  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
233  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
234  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
235  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
236  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
237  Names[RTLIB::OEQ_F32] = "__eqsf2";
238  Names[RTLIB::OEQ_F64] = "__eqdf2";
239  Names[RTLIB::UNE_F32] = "__nesf2";
240  Names[RTLIB::UNE_F64] = "__nedf2";
241  Names[RTLIB::OGE_F32] = "__gesf2";
242  Names[RTLIB::OGE_F64] = "__gedf2";
243  Names[RTLIB::OLT_F32] = "__ltsf2";
244  Names[RTLIB::OLT_F64] = "__ltdf2";
245  Names[RTLIB::OLE_F32] = "__lesf2";
246  Names[RTLIB::OLE_F64] = "__ledf2";
247  Names[RTLIB::OGT_F32] = "__gtsf2";
248  Names[RTLIB::OGT_F64] = "__gtdf2";
249  Names[RTLIB::UO_F32] = "__unordsf2";
250  Names[RTLIB::UO_F64] = "__unorddf2";
251  Names[RTLIB::O_F32] = "__unordsf2";
252  Names[RTLIB::O_F64] = "__unorddf2";
253  Names[RTLIB::MEMCPY] = "memcpy";
254  Names[RTLIB::MEMMOVE] = "memmove";
255  Names[RTLIB::MEMSET] = "memset";
256  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
257}
258
259/// InitLibcallCallingConvs - Set default libcall CallingConvs.
260///
261static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
262  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
263    CCs[i] = CallingConv::C;
264  }
265}
266
267/// getFPEXT - Return the FPEXT_*_* value for the given types, or
268/// UNKNOWN_LIBCALL if there is none.
269RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
270  if (OpVT == MVT::f32) {
271    if (RetVT == MVT::f64)
272      return FPEXT_F32_F64;
273  }
274
275  return UNKNOWN_LIBCALL;
276}
277
278/// getFPROUND - Return the FPROUND_*_* value for the given types, or
279/// UNKNOWN_LIBCALL if there is none.
280RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
281  if (RetVT == MVT::f32) {
282    if (OpVT == MVT::f64)
283      return FPROUND_F64_F32;
284    if (OpVT == MVT::f80)
285      return FPROUND_F80_F32;
286    if (OpVT == MVT::ppcf128)
287      return FPROUND_PPCF128_F32;
288  } else if (RetVT == MVT::f64) {
289    if (OpVT == MVT::f80)
290      return FPROUND_F80_F64;
291    if (OpVT == MVT::ppcf128)
292      return FPROUND_PPCF128_F64;
293  }
294
295  return UNKNOWN_LIBCALL;
296}
297
298/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
299/// UNKNOWN_LIBCALL if there is none.
300RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
301  if (OpVT == MVT::f32) {
302    if (RetVT == MVT::i8)
303      return FPTOSINT_F32_I8;
304    if (RetVT == MVT::i16)
305      return FPTOSINT_F32_I16;
306    if (RetVT == MVT::i32)
307      return FPTOSINT_F32_I32;
308    if (RetVT == MVT::i64)
309      return FPTOSINT_F32_I64;
310    if (RetVT == MVT::i128)
311      return FPTOSINT_F32_I128;
312  } else if (OpVT == MVT::f64) {
313    if (RetVT == MVT::i32)
314      return FPTOSINT_F64_I32;
315    if (RetVT == MVT::i64)
316      return FPTOSINT_F64_I64;
317    if (RetVT == MVT::i128)
318      return FPTOSINT_F64_I128;
319  } else if (OpVT == MVT::f80) {
320    if (RetVT == MVT::i32)
321      return FPTOSINT_F80_I32;
322    if (RetVT == MVT::i64)
323      return FPTOSINT_F80_I64;
324    if (RetVT == MVT::i128)
325      return FPTOSINT_F80_I128;
326  } else if (OpVT == MVT::ppcf128) {
327    if (RetVT == MVT::i32)
328      return FPTOSINT_PPCF128_I32;
329    if (RetVT == MVT::i64)
330      return FPTOSINT_PPCF128_I64;
331    if (RetVT == MVT::i128)
332      return FPTOSINT_PPCF128_I128;
333  }
334  return UNKNOWN_LIBCALL;
335}
336
337/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
338/// UNKNOWN_LIBCALL if there is none.
339RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
340  if (OpVT == MVT::f32) {
341    if (RetVT == MVT::i8)
342      return FPTOUINT_F32_I8;
343    if (RetVT == MVT::i16)
344      return FPTOUINT_F32_I16;
345    if (RetVT == MVT::i32)
346      return FPTOUINT_F32_I32;
347    if (RetVT == MVT::i64)
348      return FPTOUINT_F32_I64;
349    if (RetVT == MVT::i128)
350      return FPTOUINT_F32_I128;
351  } else if (OpVT == MVT::f64) {
352    if (RetVT == MVT::i32)
353      return FPTOUINT_F64_I32;
354    if (RetVT == MVT::i64)
355      return FPTOUINT_F64_I64;
356    if (RetVT == MVT::i128)
357      return FPTOUINT_F64_I128;
358  } else if (OpVT == MVT::f80) {
359    if (RetVT == MVT::i32)
360      return FPTOUINT_F80_I32;
361    if (RetVT == MVT::i64)
362      return FPTOUINT_F80_I64;
363    if (RetVT == MVT::i128)
364      return FPTOUINT_F80_I128;
365  } else if (OpVT == MVT::ppcf128) {
366    if (RetVT == MVT::i32)
367      return FPTOUINT_PPCF128_I32;
368    if (RetVT == MVT::i64)
369      return FPTOUINT_PPCF128_I64;
370    if (RetVT == MVT::i128)
371      return FPTOUINT_PPCF128_I128;
372  }
373  return UNKNOWN_LIBCALL;
374}
375
376/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
377/// UNKNOWN_LIBCALL if there is none.
378RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
379  if (OpVT == MVT::i32) {
380    if (RetVT == MVT::f32)
381      return SINTTOFP_I32_F32;
382    else if (RetVT == MVT::f64)
383      return SINTTOFP_I32_F64;
384    else if (RetVT == MVT::f80)
385      return SINTTOFP_I32_F80;
386    else if (RetVT == MVT::ppcf128)
387      return SINTTOFP_I32_PPCF128;
388  } else if (OpVT == MVT::i64) {
389    if (RetVT == MVT::f32)
390      return SINTTOFP_I64_F32;
391    else if (RetVT == MVT::f64)
392      return SINTTOFP_I64_F64;
393    else if (RetVT == MVT::f80)
394      return SINTTOFP_I64_F80;
395    else if (RetVT == MVT::ppcf128)
396      return SINTTOFP_I64_PPCF128;
397  } else if (OpVT == MVT::i128) {
398    if (RetVT == MVT::f32)
399      return SINTTOFP_I128_F32;
400    else if (RetVT == MVT::f64)
401      return SINTTOFP_I128_F64;
402    else if (RetVT == MVT::f80)
403      return SINTTOFP_I128_F80;
404    else if (RetVT == MVT::ppcf128)
405      return SINTTOFP_I128_PPCF128;
406  }
407  return UNKNOWN_LIBCALL;
408}
409
410/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
411/// UNKNOWN_LIBCALL if there is none.
412RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
413  if (OpVT == MVT::i32) {
414    if (RetVT == MVT::f32)
415      return UINTTOFP_I32_F32;
416    else if (RetVT == MVT::f64)
417      return UINTTOFP_I32_F64;
418    else if (RetVT == MVT::f80)
419      return UINTTOFP_I32_F80;
420    else if (RetVT == MVT::ppcf128)
421      return UINTTOFP_I32_PPCF128;
422  } else if (OpVT == MVT::i64) {
423    if (RetVT == MVT::f32)
424      return UINTTOFP_I64_F32;
425    else if (RetVT == MVT::f64)
426      return UINTTOFP_I64_F64;
427    else if (RetVT == MVT::f80)
428      return UINTTOFP_I64_F80;
429    else if (RetVT == MVT::ppcf128)
430      return UINTTOFP_I64_PPCF128;
431  } else if (OpVT == MVT::i128) {
432    if (RetVT == MVT::f32)
433      return UINTTOFP_I128_F32;
434    else if (RetVT == MVT::f64)
435      return UINTTOFP_I128_F64;
436    else if (RetVT == MVT::f80)
437      return UINTTOFP_I128_F80;
438    else if (RetVT == MVT::ppcf128)
439      return UINTTOFP_I128_PPCF128;
440  }
441  return UNKNOWN_LIBCALL;
442}
443
444/// InitCmpLibcallCCs - Set default comparison libcall CC.
445///
446static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
447  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
448  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
449  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
450  CCs[RTLIB::UNE_F32] = ISD::SETNE;
451  CCs[RTLIB::UNE_F64] = ISD::SETNE;
452  CCs[RTLIB::OGE_F32] = ISD::SETGE;
453  CCs[RTLIB::OGE_F64] = ISD::SETGE;
454  CCs[RTLIB::OLT_F32] = ISD::SETLT;
455  CCs[RTLIB::OLT_F64] = ISD::SETLT;
456  CCs[RTLIB::OLE_F32] = ISD::SETLE;
457  CCs[RTLIB::OLE_F64] = ISD::SETLE;
458  CCs[RTLIB::OGT_F32] = ISD::SETGT;
459  CCs[RTLIB::OGT_F64] = ISD::SETGT;
460  CCs[RTLIB::UO_F32] = ISD::SETNE;
461  CCs[RTLIB::UO_F64] = ISD::SETNE;
462  CCs[RTLIB::O_F32] = ISD::SETEQ;
463  CCs[RTLIB::O_F64] = ISD::SETEQ;
464}
465
466/// NOTE: The constructor takes ownership of TLOF.
467TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
468  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
469  // All operations default to being supported.
470  memset(OpActions, 0, sizeof(OpActions));
471  memset(LoadExtActions, 0, sizeof(LoadExtActions));
472  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
473  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
474  memset(ConvertActions, 0, sizeof(ConvertActions));
475  memset(CondCodeActions, 0, sizeof(CondCodeActions));
476
477  // Set default actions for various operations.
478  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
479    // Default all indexed load / store to expand.
480    for (unsigned IM = (unsigned)ISD::PRE_INC;
481         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
482      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
483      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
484    }
485
486    // These operations default to expand.
487    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
488    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
489  }
490
491  // Most targets ignore the @llvm.prefetch intrinsic.
492  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
493
494  // ConstantFP nodes default to expand.  Targets can either change this to
495  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
496  // to optimize expansions for certain constants.
497  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
498  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
499  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
500
501  // These library functions default to expand.
502  setOperationAction(ISD::FLOG , MVT::f64, Expand);
503  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
504  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
505  setOperationAction(ISD::FEXP , MVT::f64, Expand);
506  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
507  setOperationAction(ISD::FLOG , MVT::f32, Expand);
508  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
509  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
510  setOperationAction(ISD::FEXP , MVT::f32, Expand);
511  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
512
513  // Default ISD::TRAP to expand (which turns it into abort).
514  setOperationAction(ISD::TRAP, MVT::Other, Expand);
515
516  IsLittleEndian = TD->isLittleEndian();
517  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
518  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
519  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
520  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
521  benefitFromCodePlacementOpt = false;
522  UseUnderscoreSetJmp = false;
523  UseUnderscoreLongJmp = false;
524  SelectIsExpensive = false;
525  IntDivIsCheap = false;
526  Pow2DivIsCheap = false;
527  StackPointerRegisterToSaveRestore = 0;
528  ExceptionPointerRegister = 0;
529  ExceptionSelectorRegister = 0;
530  BooleanContents = UndefinedBooleanContent;
531  SchedPreferenceInfo = SchedulingForLatency;
532  JumpBufSize = 0;
533  JumpBufAlignment = 0;
534  IfCvtBlockSizeLimit = 2;
535  IfCvtDupBlockSizeLimit = 0;
536  PrefLoopAlignment = 0;
537
538  InitLibcallNames(LibcallRoutineNames);
539  InitCmpLibcallCCs(CmpLibcallCCs);
540  InitLibcallCallingConvs(LibcallCallingConvs);
541}
542
543TargetLowering::~TargetLowering() {
544  delete &TLOF;
545}
546
547/// canOpTrap - Returns true if the operation can trap for the value type.
548/// VT must be a legal type.
549bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
550  assert(isTypeLegal(VT));
551  switch (Op) {
552  default:
553    return false;
554  case ISD::FDIV:
555  case ISD::FREM:
556  case ISD::SDIV:
557  case ISD::UDIV:
558  case ISD::SREM:
559  case ISD::UREM:
560    return true;
561  }
562}
563
564
565static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
566                                       unsigned &NumIntermediates,
567                                       EVT &RegisterVT,
568                                       TargetLowering* TLI) {
569  // Figure out the right, legal destination reg to copy into.
570  unsigned NumElts = VT.getVectorNumElements();
571  MVT EltTy = VT.getVectorElementType();
572
573  unsigned NumVectorRegs = 1;
574
575  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
576  // could break down into LHS/RHS like LegalizeDAG does.
577  if (!isPowerOf2_32(NumElts)) {
578    NumVectorRegs = NumElts;
579    NumElts = 1;
580  }
581
582  // Divide the input until we get to a supported size.  This will always
583  // end with a scalar if the target doesn't support vectors.
584  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
585    NumElts >>= 1;
586    NumVectorRegs <<= 1;
587  }
588
589  NumIntermediates = NumVectorRegs;
590
591  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
592  if (!TLI->isTypeLegal(NewVT))
593    NewVT = EltTy;
594  IntermediateVT = NewVT;
595
596  EVT DestVT = TLI->getRegisterType(NewVT);
597  RegisterVT = DestVT;
598  if (EVT(DestVT).bitsLT(NewVT)) {
599    // Value is expanded, e.g. i64 -> i16.
600    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
601  } else {
602    // Otherwise, promotion or legal types use the same number of registers as
603    // the vector decimated to the appropriate level.
604    return NumVectorRegs;
605  }
606
607  return 1;
608}
609
610/// computeRegisterProperties - Once all of the register classes are added,
611/// this allows us to compute derived properties we expose.
612void TargetLowering::computeRegisterProperties() {
613  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
614         "Too many value types for ValueTypeActions to hold!");
615
616  // Everything defaults to needing one register.
617  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
618    NumRegistersForVT[i] = 1;
619    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
620  }
621  // ...except isVoid, which doesn't need any registers.
622  NumRegistersForVT[MVT::isVoid] = 0;
623
624  // Find the largest integer register class.
625  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
626  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
627    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
628
629  // Every integer value type larger than this largest register takes twice as
630  // many registers to represent as the previous ValueType.
631  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
632    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
633    if (!ExpandedVT.isInteger())
634      break;
635    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
636    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
637    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
638    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
639  }
640
641  // Inspect all of the ValueType's smaller than the largest integer
642  // register to see which ones need promotion.
643  unsigned LegalIntReg = LargestIntReg;
644  for (unsigned IntReg = LargestIntReg - 1;
645       IntReg >= (unsigned)MVT::i1; --IntReg) {
646    EVT IVT = (MVT::SimpleValueType)IntReg;
647    if (isTypeLegal(IVT)) {
648      LegalIntReg = IntReg;
649    } else {
650      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
651        (MVT::SimpleValueType)LegalIntReg;
652      ValueTypeActions.setTypeAction(IVT, Promote);
653    }
654  }
655
656  // ppcf128 type is really two f64's.
657  if (!isTypeLegal(MVT::ppcf128)) {
658    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
659    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
660    TransformToType[MVT::ppcf128] = MVT::f64;
661    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
662  }
663
664  // Decide how to handle f64. If the target does not have native f64 support,
665  // expand it to i64 and we will be generating soft float library calls.
666  if (!isTypeLegal(MVT::f64)) {
667    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
668    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
669    TransformToType[MVT::f64] = MVT::i64;
670    ValueTypeActions.setTypeAction(MVT::f64, Expand);
671  }
672
673  // Decide how to handle f32. If the target does not have native support for
674  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
675  if (!isTypeLegal(MVT::f32)) {
676    if (isTypeLegal(MVT::f64)) {
677      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
678      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
679      TransformToType[MVT::f32] = MVT::f64;
680      ValueTypeActions.setTypeAction(MVT::f32, Promote);
681    } else {
682      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
683      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
684      TransformToType[MVT::f32] = MVT::i32;
685      ValueTypeActions.setTypeAction(MVT::f32, Expand);
686    }
687  }
688
689  // Loop over all of the vector value types to see which need transformations.
690  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
691       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
692    MVT VT = (MVT::SimpleValueType)i;
693    if (!isTypeLegal(VT)) {
694      MVT IntermediateVT;
695      EVT RegisterVT;
696      unsigned NumIntermediates;
697      NumRegistersForVT[i] =
698        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
699                                  RegisterVT, this);
700      RegisterTypeForVT[i] = RegisterVT;
701
702      // Determine if there is a legal wider type.
703      bool IsLegalWiderType = false;
704      EVT EltVT = VT.getVectorElementType();
705      unsigned NElts = VT.getVectorNumElements();
706      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
707        EVT SVT = (MVT::SimpleValueType)nVT;
708        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
709            SVT.getVectorNumElements() > NElts && NElts != 1) {
710          TransformToType[i] = SVT;
711          ValueTypeActions.setTypeAction(VT, Promote);
712          IsLegalWiderType = true;
713          break;
714        }
715      }
716      if (!IsLegalWiderType) {
717        EVT NVT = VT.getPow2VectorType();
718        if (NVT == VT) {
719          // Type is already a power of 2.  The default action is to split.
720          TransformToType[i] = MVT::Other;
721          ValueTypeActions.setTypeAction(VT, Expand);
722        } else {
723          TransformToType[i] = NVT;
724          ValueTypeActions.setTypeAction(VT, Promote);
725        }
726      }
727    }
728  }
729}
730
731const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
732  return NULL;
733}
734
735
736MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
737  return PointerTy.SimpleTy;
738}
739
740MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
741  return MVT::i32; // return the default value
742}
743
744/// getVectorTypeBreakdown - Vector types are broken down into some number of
745/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
746/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
747/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
748///
749/// This method returns the number of registers needed, and the VT for each
750/// register.  It also returns the VT and quantity of the intermediate values
751/// before they are promoted/expanded.
752///
753unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
754                                                EVT &IntermediateVT,
755                                                unsigned &NumIntermediates,
756                                                EVT &RegisterVT) const {
757  // Figure out the right, legal destination reg to copy into.
758  unsigned NumElts = VT.getVectorNumElements();
759  EVT EltTy = VT.getVectorElementType();
760
761  unsigned NumVectorRegs = 1;
762
763  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
764  // could break down into LHS/RHS like LegalizeDAG does.
765  if (!isPowerOf2_32(NumElts)) {
766    NumVectorRegs = NumElts;
767    NumElts = 1;
768  }
769
770  // Divide the input until we get to a supported size.  This will always
771  // end with a scalar if the target doesn't support vectors.
772  while (NumElts > 1 && !isTypeLegal(
773                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
774    NumElts >>= 1;
775    NumVectorRegs <<= 1;
776  }
777
778  NumIntermediates = NumVectorRegs;
779
780  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
781  if (!isTypeLegal(NewVT))
782    NewVT = EltTy;
783  IntermediateVT = NewVT;
784
785  EVT DestVT = getRegisterType(Context, NewVT);
786  RegisterVT = DestVT;
787  if (DestVT.bitsLT(NewVT)) {
788    // Value is expanded, e.g. i64 -> i16.
789    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
790  } else {
791    // Otherwise, promotion or legal types use the same number of registers as
792    // the vector decimated to the appropriate level.
793    return NumVectorRegs;
794  }
795
796  return 1;
797}
798
799/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
800/// function arguments in the caller parameter area.  This is the actual
801/// alignment, not its logarithm.
802unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
803  return TD->getCallFrameTypeAlignment(Ty);
804}
805
806/// getJumpTableEncoding - Return the entry encoding for a jump table in the
807/// current function.  The returned value is a member of the
808/// MachineJumpTableInfo::JTEntryKind enum.
809unsigned TargetLowering::getJumpTableEncoding() const {
810  // In non-pic modes, just use the address of a block.
811  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
812    return MachineJumpTableInfo::EK_BlockAddress;
813
814  // In PIC mode, if the target supports a GPRel32 directive, use it.
815  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
816    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
817
818  // Otherwise, use a label difference.
819  return MachineJumpTableInfo::EK_LabelDifference32;
820}
821
822SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
823                                                 SelectionDAG &DAG) const {
824  // If our PIC model is GP relative, use the global offset table as the base.
825  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
826    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
827  return Table;
828}
829
830/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
831/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
832/// MCExpr.
833const MCExpr *
834TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
835                                             unsigned JTI,MCContext &Ctx) const{
836  // The normal PIC reloc base is the label at the start of the jump table.
837  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
838}
839
840bool
841TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
842  // Assume that everything is safe in static mode.
843  if (getTargetMachine().getRelocationModel() == Reloc::Static)
844    return true;
845
846  // In dynamic-no-pic mode, assume that known defined values are safe.
847  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
848      GA &&
849      !GA->getGlobal()->isDeclaration() &&
850      !GA->getGlobal()->isWeakForLinker())
851    return true;
852
853  // Otherwise assume nothing is safe.
854  return false;
855}
856
857//===----------------------------------------------------------------------===//
858//  Optimization Methods
859//===----------------------------------------------------------------------===//
860
861/// ShrinkDemandedConstant - Check to see if the specified operand of the
862/// specified instruction is a constant integer.  If so, check to see if there
863/// are any bits set in the constant that are not demanded.  If so, shrink the
864/// constant and return true.
865bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
866                                                        const APInt &Demanded) {
867  DebugLoc dl = Op.getDebugLoc();
868
869  // FIXME: ISD::SELECT, ISD::SELECT_CC
870  switch (Op.getOpcode()) {
871  default: break;
872  case ISD::XOR:
873  case ISD::AND:
874  case ISD::OR: {
875    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
876    if (!C) return false;
877
878    if (Op.getOpcode() == ISD::XOR &&
879        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
880      return false;
881
882    // if we can expand it to have all bits set, do it
883    if (C->getAPIntValue().intersects(~Demanded)) {
884      EVT VT = Op.getValueType();
885      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
886                                DAG.getConstant(Demanded &
887                                                C->getAPIntValue(),
888                                                VT));
889      return CombineTo(Op, New);
890    }
891
892    break;
893  }
894  }
895
896  return false;
897}
898
899/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
900/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
901/// cast, but it could be generalized for targets with other types of
902/// implicit widening casts.
903bool
904TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
905                                                    unsigned BitWidth,
906                                                    const APInt &Demanded,
907                                                    DebugLoc dl) {
908  assert(Op.getNumOperands() == 2 &&
909         "ShrinkDemandedOp only supports binary operators!");
910  assert(Op.getNode()->getNumValues() == 1 &&
911         "ShrinkDemandedOp only supports nodes with one result!");
912
913  // Don't do this if the node has another user, which may require the
914  // full value.
915  if (!Op.getNode()->hasOneUse())
916    return false;
917
918  // Search for the smallest integer type with free casts to and from
919  // Op's type. For expedience, just check power-of-2 integer types.
920  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
921  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
922  if (!isPowerOf2_32(SmallVTBits))
923    SmallVTBits = NextPowerOf2(SmallVTBits);
924  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
925    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
926    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
927        TLI.isZExtFree(SmallVT, Op.getValueType())) {
928      // We found a type with free casts.
929      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
930                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
931                                          Op.getNode()->getOperand(0)),
932                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
933                                          Op.getNode()->getOperand(1)));
934      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
935      return CombineTo(Op, Z);
936    }
937  }
938  return false;
939}
940
941/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
942/// DemandedMask bits of the result of Op are ever used downstream.  If we can
943/// use this information to simplify Op, create a new simplified DAG node and
944/// return true, returning the original and new nodes in Old and New. Otherwise,
945/// analyze the expression and return a mask of KnownOne and KnownZero bits for
946/// the expression (used to simplify the caller).  The KnownZero/One bits may
947/// only be accurate for those bits in the DemandedMask.
948bool TargetLowering::SimplifyDemandedBits(SDValue Op,
949                                          const APInt &DemandedMask,
950                                          APInt &KnownZero,
951                                          APInt &KnownOne,
952                                          TargetLoweringOpt &TLO,
953                                          unsigned Depth) const {
954  unsigned BitWidth = DemandedMask.getBitWidth();
955  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
956         "Mask size mismatches value type size!");
957  APInt NewMask = DemandedMask;
958  DebugLoc dl = Op.getDebugLoc();
959
960  // Don't know anything.
961  KnownZero = KnownOne = APInt(BitWidth, 0);
962
963  // Other users may use these bits.
964  if (!Op.getNode()->hasOneUse()) {
965    if (Depth != 0) {
966      // If not at the root, Just compute the KnownZero/KnownOne bits to
967      // simplify things downstream.
968      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
969      return false;
970    }
971    // If this is the root being simplified, allow it to have multiple uses,
972    // just set the NewMask to all bits.
973    NewMask = APInt::getAllOnesValue(BitWidth);
974  } else if (DemandedMask == 0) {
975    // Not demanding any bits from Op.
976    if (Op.getOpcode() != ISD::UNDEF)
977      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
978    return false;
979  } else if (Depth == 6) {        // Limit search depth.
980    return false;
981  }
982
983  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
984  switch (Op.getOpcode()) {
985  case ISD::Constant:
986    // We know all of the bits for a constant!
987    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
988    KnownZero = ~KnownOne & NewMask;
989    return false;   // Don't fall through, will infinitely loop.
990  case ISD::AND:
991    // If the RHS is a constant, check to see if the LHS would be zero without
992    // using the bits from the RHS.  Below, we use knowledge about the RHS to
993    // simplify the LHS, here we're using information from the LHS to simplify
994    // the RHS.
995    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
996      APInt LHSZero, LHSOne;
997      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
998                                LHSZero, LHSOne, Depth+1);
999      // If the LHS already has zeros where RHSC does, this and is dead.
1000      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1001        return TLO.CombineTo(Op, Op.getOperand(0));
1002      // If any of the set bits in the RHS are known zero on the LHS, shrink
1003      // the constant.
1004      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1005        return true;
1006    }
1007
1008    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1009                             KnownOne, TLO, Depth+1))
1010      return true;
1011    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1012    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1013                             KnownZero2, KnownOne2, TLO, Depth+1))
1014      return true;
1015    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1016
1017    // If all of the demanded bits are known one on one side, return the other.
1018    // These bits cannot contribute to the result of the 'and'.
1019    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1020      return TLO.CombineTo(Op, Op.getOperand(0));
1021    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1022      return TLO.CombineTo(Op, Op.getOperand(1));
1023    // If all of the demanded bits in the inputs are known zeros, return zero.
1024    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1025      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1026    // If the RHS is a constant, see if we can simplify it.
1027    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1028      return true;
1029    // If the operation can be done in a smaller type, do so.
1030    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1031      return true;
1032
1033    // Output known-1 bits are only known if set in both the LHS & RHS.
1034    KnownOne &= KnownOne2;
1035    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1036    KnownZero |= KnownZero2;
1037    break;
1038  case ISD::OR:
1039    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1040                             KnownOne, TLO, Depth+1))
1041      return true;
1042    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1043    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1044                             KnownZero2, KnownOne2, TLO, Depth+1))
1045      return true;
1046    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1047
1048    // If all of the demanded bits are known zero on one side, return the other.
1049    // These bits cannot contribute to the result of the 'or'.
1050    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1051      return TLO.CombineTo(Op, Op.getOperand(0));
1052    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1053      return TLO.CombineTo(Op, Op.getOperand(1));
1054    // If all of the potentially set bits on one side are known to be set on
1055    // the other side, just use the 'other' side.
1056    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1057      return TLO.CombineTo(Op, Op.getOperand(0));
1058    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1059      return TLO.CombineTo(Op, Op.getOperand(1));
1060    // If the RHS is a constant, see if we can simplify it.
1061    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1062      return true;
1063    // If the operation can be done in a smaller type, do so.
1064    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1065      return true;
1066
1067    // Output known-0 bits are only known if clear in both the LHS & RHS.
1068    KnownZero &= KnownZero2;
1069    // Output known-1 are known to be set if set in either the LHS | RHS.
1070    KnownOne |= KnownOne2;
1071    break;
1072  case ISD::XOR:
1073    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1074                             KnownOne, TLO, Depth+1))
1075      return true;
1076    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1077    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1078                             KnownOne2, TLO, Depth+1))
1079      return true;
1080    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1081
1082    // If all of the demanded bits are known zero on one side, return the other.
1083    // These bits cannot contribute to the result of the 'xor'.
1084    if ((KnownZero & NewMask) == NewMask)
1085      return TLO.CombineTo(Op, Op.getOperand(0));
1086    if ((KnownZero2 & NewMask) == NewMask)
1087      return TLO.CombineTo(Op, Op.getOperand(1));
1088    // If the operation can be done in a smaller type, do so.
1089    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1090      return true;
1091
1092    // If all of the unknown bits are known to be zero on one side or the other
1093    // (but not both) turn this into an *inclusive* or.
1094    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1095    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1096      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1097                                               Op.getOperand(0),
1098                                               Op.getOperand(1)));
1099
1100    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1101    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1102    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1103    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1104
1105    // If all of the demanded bits on one side are known, and all of the set
1106    // bits on that side are also known to be set on the other side, turn this
1107    // into an AND, as we know the bits will be cleared.
1108    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1109    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1110      if ((KnownOne & KnownOne2) == KnownOne) {
1111        EVT VT = Op.getValueType();
1112        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1113        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1114                                                 Op.getOperand(0), ANDC));
1115      }
1116    }
1117
1118    // If the RHS is a constant, see if we can simplify it.
1119    // for XOR, we prefer to force bits to 1 if they will make a -1.
1120    // if we can't force bits, try to shrink constant
1121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1122      APInt Expanded = C->getAPIntValue() | (~NewMask);
1123      // if we can expand it to have all bits set, do it
1124      if (Expanded.isAllOnesValue()) {
1125        if (Expanded != C->getAPIntValue()) {
1126          EVT VT = Op.getValueType();
1127          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1128                                          TLO.DAG.getConstant(Expanded, VT));
1129          return TLO.CombineTo(Op, New);
1130        }
1131        // if it already has all the bits set, nothing to change
1132        // but don't shrink either!
1133      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1134        return true;
1135      }
1136    }
1137
1138    KnownZero = KnownZeroOut;
1139    KnownOne  = KnownOneOut;
1140    break;
1141  case ISD::SELECT:
1142    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1143                             KnownOne, TLO, Depth+1))
1144      return true;
1145    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1146                             KnownOne2, TLO, Depth+1))
1147      return true;
1148    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1149    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1150
1151    // If the operands are constants, see if we can simplify them.
1152    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1153      return true;
1154
1155    // Only known if known in both the LHS and RHS.
1156    KnownOne &= KnownOne2;
1157    KnownZero &= KnownZero2;
1158    break;
1159  case ISD::SELECT_CC:
1160    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1161                             KnownOne, TLO, Depth+1))
1162      return true;
1163    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1164                             KnownOne2, TLO, Depth+1))
1165      return true;
1166    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1167    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1168
1169    // If the operands are constants, see if we can simplify them.
1170    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1171      return true;
1172
1173    // Only known if known in both the LHS and RHS.
1174    KnownOne &= KnownOne2;
1175    KnownZero &= KnownZero2;
1176    break;
1177  case ISD::SHL:
1178    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1179      unsigned ShAmt = SA->getZExtValue();
1180      SDValue InOp = Op.getOperand(0);
1181
1182      // If the shift count is an invalid immediate, don't do anything.
1183      if (ShAmt >= BitWidth)
1184        break;
1185
1186      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1187      // single shift.  We can do this if the bottom bits (which are shifted
1188      // out) are never demanded.
1189      if (InOp.getOpcode() == ISD::SRL &&
1190          isa<ConstantSDNode>(InOp.getOperand(1))) {
1191        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1192          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1193          unsigned Opc = ISD::SHL;
1194          int Diff = ShAmt-C1;
1195          if (Diff < 0) {
1196            Diff = -Diff;
1197            Opc = ISD::SRL;
1198          }
1199
1200          SDValue NewSA =
1201            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1202          EVT VT = Op.getValueType();
1203          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1204                                                   InOp.getOperand(0), NewSA));
1205        }
1206      }
1207
1208      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1209                               KnownZero, KnownOne, TLO, Depth+1))
1210        return true;
1211      KnownZero <<= SA->getZExtValue();
1212      KnownOne  <<= SA->getZExtValue();
1213      // low bits known zero.
1214      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1215    }
1216    break;
1217  case ISD::SRL:
1218    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1219      EVT VT = Op.getValueType();
1220      unsigned ShAmt = SA->getZExtValue();
1221      unsigned VTSize = VT.getSizeInBits();
1222      SDValue InOp = Op.getOperand(0);
1223
1224      // If the shift count is an invalid immediate, don't do anything.
1225      if (ShAmt >= BitWidth)
1226        break;
1227
1228      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1229      // single shift.  We can do this if the top bits (which are shifted out)
1230      // are never demanded.
1231      if (InOp.getOpcode() == ISD::SHL &&
1232          isa<ConstantSDNode>(InOp.getOperand(1))) {
1233        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1234          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1235          unsigned Opc = ISD::SRL;
1236          int Diff = ShAmt-C1;
1237          if (Diff < 0) {
1238            Diff = -Diff;
1239            Opc = ISD::SHL;
1240          }
1241
1242          SDValue NewSA =
1243            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1244          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1245                                                   InOp.getOperand(0), NewSA));
1246        }
1247      }
1248
1249      // Compute the new bits that are at the top now.
1250      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1251                               KnownZero, KnownOne, TLO, Depth+1))
1252        return true;
1253      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1254      KnownZero = KnownZero.lshr(ShAmt);
1255      KnownOne  = KnownOne.lshr(ShAmt);
1256
1257      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1258      KnownZero |= HighBits;  // High bits known zero.
1259    }
1260    break;
1261  case ISD::SRA:
1262    // If this is an arithmetic shift right and only the low-bit is set, we can
1263    // always convert this into a logical shr, even if the shift amount is
1264    // variable.  The low bit of the shift cannot be an input sign bit unless
1265    // the shift amount is >= the size of the datatype, which is undefined.
1266    if (DemandedMask == 1)
1267      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1268                                               Op.getOperand(0), Op.getOperand(1)));
1269
1270    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1271      EVT VT = Op.getValueType();
1272      unsigned ShAmt = SA->getZExtValue();
1273
1274      // If the shift count is an invalid immediate, don't do anything.
1275      if (ShAmt >= BitWidth)
1276        break;
1277
1278      APInt InDemandedMask = (NewMask << ShAmt);
1279
1280      // If any of the demanded bits are produced by the sign extension, we also
1281      // demand the input sign bit.
1282      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1283      if (HighBits.intersects(NewMask))
1284        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1285
1286      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1287                               KnownZero, KnownOne, TLO, Depth+1))
1288        return true;
1289      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1290      KnownZero = KnownZero.lshr(ShAmt);
1291      KnownOne  = KnownOne.lshr(ShAmt);
1292
1293      // Handle the sign bit, adjusted to where it is now in the mask.
1294      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1295
1296      // If the input sign bit is known to be zero, or if none of the top bits
1297      // are demanded, turn this into an unsigned shift right.
1298      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1299        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1300                                                 Op.getOperand(0),
1301                                                 Op.getOperand(1)));
1302      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1303        KnownOne |= HighBits;
1304      }
1305    }
1306    break;
1307  case ISD::SIGN_EXTEND_INREG: {
1308    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1309
1310    // Sign extension.  Compute the demanded bits in the result that are not
1311    // present in the input.
1312    APInt NewBits =
1313      APInt::getHighBitsSet(BitWidth,
1314                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1315      NewMask;
1316
1317    // If none of the extended bits are demanded, eliminate the sextinreg.
1318    if (NewBits == 0)
1319      return TLO.CombineTo(Op, Op.getOperand(0));
1320
1321    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1322    InSignBit.zext(BitWidth);
1323    APInt InputDemandedBits =
1324      APInt::getLowBitsSet(BitWidth,
1325                           EVT.getScalarType().getSizeInBits()) &
1326      NewMask;
1327
1328    // Since the sign extended bits are demanded, we know that the sign
1329    // bit is demanded.
1330    InputDemandedBits |= InSignBit;
1331
1332    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1333                             KnownZero, KnownOne, TLO, Depth+1))
1334      return true;
1335    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336
1337    // If the sign bit of the input is known set or clear, then we know the
1338    // top bits of the result.
1339
1340    // If the input sign bit is known zero, convert this into a zero extension.
1341    if (KnownZero.intersects(InSignBit))
1342      return TLO.CombineTo(Op,
1343                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1344
1345    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1346      KnownOne |= NewBits;
1347      KnownZero &= ~NewBits;
1348    } else {                       // Input sign bit unknown
1349      KnownZero &= ~NewBits;
1350      KnownOne &= ~NewBits;
1351    }
1352    break;
1353  }
1354  case ISD::ZERO_EXTEND: {
1355    unsigned OperandBitWidth =
1356      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1357    APInt InMask = NewMask;
1358    InMask.trunc(OperandBitWidth);
1359
1360    // If none of the top bits are demanded, convert this into an any_extend.
1361    APInt NewBits =
1362      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1363    if (!NewBits.intersects(NewMask))
1364      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1365                                               Op.getValueType(),
1366                                               Op.getOperand(0)));
1367
1368    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1369                             KnownZero, KnownOne, TLO, Depth+1))
1370      return true;
1371    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1372    KnownZero.zext(BitWidth);
1373    KnownOne.zext(BitWidth);
1374    KnownZero |= NewBits;
1375    break;
1376  }
1377  case ISD::SIGN_EXTEND: {
1378    EVT InVT = Op.getOperand(0).getValueType();
1379    unsigned InBits = InVT.getScalarType().getSizeInBits();
1380    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1381    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1382    APInt NewBits   = ~InMask & NewMask;
1383
1384    // If none of the top bits are demanded, convert this into an any_extend.
1385    if (NewBits == 0)
1386      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1387                                              Op.getValueType(),
1388                                              Op.getOperand(0)));
1389
1390    // Since some of the sign extended bits are demanded, we know that the sign
1391    // bit is demanded.
1392    APInt InDemandedBits = InMask & NewMask;
1393    InDemandedBits |= InSignBit;
1394    InDemandedBits.trunc(InBits);
1395
1396    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1397                             KnownOne, TLO, Depth+1))
1398      return true;
1399    KnownZero.zext(BitWidth);
1400    KnownOne.zext(BitWidth);
1401
1402    // If the sign bit is known zero, convert this to a zero extend.
1403    if (KnownZero.intersects(InSignBit))
1404      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1405                                               Op.getValueType(),
1406                                               Op.getOperand(0)));
1407
1408    // If the sign bit is known one, the top bits match.
1409    if (KnownOne.intersects(InSignBit)) {
1410      KnownOne  |= NewBits;
1411      KnownZero &= ~NewBits;
1412    } else {   // Otherwise, top bits aren't known.
1413      KnownOne  &= ~NewBits;
1414      KnownZero &= ~NewBits;
1415    }
1416    break;
1417  }
1418  case ISD::ANY_EXTEND: {
1419    unsigned OperandBitWidth =
1420      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1421    APInt InMask = NewMask;
1422    InMask.trunc(OperandBitWidth);
1423    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1424                             KnownZero, KnownOne, TLO, Depth+1))
1425      return true;
1426    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1427    KnownZero.zext(BitWidth);
1428    KnownOne.zext(BitWidth);
1429    break;
1430  }
1431  case ISD::TRUNCATE: {
1432    // Simplify the input, using demanded bit information, and compute the known
1433    // zero/one bits live out.
1434    unsigned OperandBitWidth =
1435      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1436    APInt TruncMask = NewMask;
1437    TruncMask.zext(OperandBitWidth);
1438    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1439                             KnownZero, KnownOne, TLO, Depth+1))
1440      return true;
1441    KnownZero.trunc(BitWidth);
1442    KnownOne.trunc(BitWidth);
1443
1444    // If the input is only used by this truncate, see if we can shrink it based
1445    // on the known demanded bits.
1446    if (Op.getOperand(0).getNode()->hasOneUse()) {
1447      SDValue In = Op.getOperand(0);
1448      switch (In.getOpcode()) {
1449      default: break;
1450      case ISD::SRL:
1451        // Shrink SRL by a constant if none of the high bits shifted in are
1452        // demanded.
1453        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1454          APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1455                                                 OperandBitWidth - BitWidth);
1456          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1457          HighBits.trunc(BitWidth);
1458
1459          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1460            // None of the shifted in bits are needed.  Add a truncate of the
1461            // shift input, then shift it.
1462            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1463                                                 Op.getValueType(),
1464                                                 In.getOperand(0));
1465            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1466                                                     Op.getValueType(),
1467                                                     NewTrunc,
1468                                                     In.getOperand(1)));
1469          }
1470        }
1471        break;
1472      }
1473    }
1474
1475    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1476    break;
1477  }
1478  case ISD::AssertZext: {
1479    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1480    APInt InMask = APInt::getLowBitsSet(BitWidth,
1481                                        VT.getSizeInBits());
1482    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1483                             KnownZero, KnownOne, TLO, Depth+1))
1484      return true;
1485    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1486    KnownZero |= ~InMask & NewMask;
1487    break;
1488  }
1489  case ISD::BIT_CONVERT:
1490#if 0
1491    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1492    // is demanded, turn this into a FGETSIGN.
1493    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1494        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1495        !MVT::isVector(Op.getOperand(0).getValueType())) {
1496      // Only do this xform if FGETSIGN is valid or if before legalize.
1497      if (!TLO.AfterLegalize ||
1498          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1499        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1500        // place.  We expect the SHL to be eliminated by other optimizations.
1501        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1502                                         Op.getOperand(0));
1503        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1504        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1505        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1506                                                 Sign, ShAmt));
1507      }
1508    }
1509#endif
1510    break;
1511  case ISD::ADD:
1512  case ISD::MUL:
1513  case ISD::SUB: {
1514    // Add, Sub, and Mul don't demand any bits in positions beyond that
1515    // of the highest bit demanded of them.
1516    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1517                                        BitWidth - NewMask.countLeadingZeros());
1518    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1519                             KnownOne2, TLO, Depth+1))
1520      return true;
1521    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1522                             KnownOne2, TLO, Depth+1))
1523      return true;
1524    // See if the operation should be performed at a smaller bit width.
1525    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1526      return true;
1527  }
1528  // FALL THROUGH
1529  default:
1530    // Just use ComputeMaskedBits to compute output bits.
1531    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1532    break;
1533  }
1534
1535  // If we know the value of all of the demanded bits, return this as a
1536  // constant.
1537  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1538    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1539
1540  return false;
1541}
1542
1543/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1544/// in Mask are known to be either zero or one and return them in the
1545/// KnownZero/KnownOne bitsets.
1546void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1547                                                    const APInt &Mask,
1548                                                    APInt &KnownZero,
1549                                                    APInt &KnownOne,
1550                                                    const SelectionDAG &DAG,
1551                                                    unsigned Depth) const {
1552  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1553          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1554          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1555          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1556         "Should use MaskedValueIsZero if you don't know whether Op"
1557         " is a target node!");
1558  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1559}
1560
1561/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1562/// targets that want to expose additional information about sign bits to the
1563/// DAG Combiner.
1564unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1565                                                         unsigned Depth) const {
1566  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1567          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1568          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1569          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1570         "Should use ComputeNumSignBits if you don't know whether Op"
1571         " is a target node!");
1572  return 1;
1573}
1574
1575/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1576/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1577/// determine which bit is set.
1578///
1579static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1580  // A left-shift of a constant one will have exactly one bit set, because
1581  // shifting the bit off the end is undefined.
1582  if (Val.getOpcode() == ISD::SHL)
1583    if (ConstantSDNode *C =
1584         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1585      if (C->getAPIntValue() == 1)
1586        return true;
1587
1588  // Similarly, a right-shift of a constant sign-bit will have exactly
1589  // one bit set.
1590  if (Val.getOpcode() == ISD::SRL)
1591    if (ConstantSDNode *C =
1592         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1593      if (C->getAPIntValue().isSignBit())
1594        return true;
1595
1596  // More could be done here, though the above checks are enough
1597  // to handle some common cases.
1598
1599  // Fall back to ComputeMaskedBits to catch other known cases.
1600  EVT OpVT = Val.getValueType();
1601  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1602  APInt Mask = APInt::getAllOnesValue(BitWidth);
1603  APInt KnownZero, KnownOne;
1604  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1605  return (KnownZero.countPopulation() == BitWidth - 1) &&
1606         (KnownOne.countPopulation() == 1);
1607}
1608
1609/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1610/// and cc. If it is unable to simplify it, return a null SDValue.
1611SDValue
1612TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1613                              ISD::CondCode Cond, bool foldBooleans,
1614                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1615  SelectionDAG &DAG = DCI.DAG;
1616  LLVMContext &Context = *DAG.getContext();
1617
1618  // These setcc operations always fold.
1619  switch (Cond) {
1620  default: break;
1621  case ISD::SETFALSE:
1622  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1623  case ISD::SETTRUE:
1624  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1625  }
1626
1627  if (isa<ConstantSDNode>(N0.getNode())) {
1628    // Ensure that the constant occurs on the RHS, and fold constant
1629    // comparisons.
1630    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1631  }
1632
1633  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1634    const APInt &C1 = N1C->getAPIntValue();
1635
1636    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1637    // equality comparison, then we're just comparing whether X itself is
1638    // zero.
1639    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1640        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1641        N0.getOperand(1).getOpcode() == ISD::Constant) {
1642      const APInt &ShAmt
1643        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1644      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1645          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1646        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1647          // (srl (ctlz x), 5) == 0  -> X != 0
1648          // (srl (ctlz x), 5) != 1  -> X != 0
1649          Cond = ISD::SETNE;
1650        } else {
1651          // (srl (ctlz x), 5) != 0  -> X == 0
1652          // (srl (ctlz x), 5) == 1  -> X == 0
1653          Cond = ISD::SETEQ;
1654        }
1655        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1656        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1657                            Zero, Cond);
1658      }
1659    }
1660
1661    // If the LHS is '(and load, const)', the RHS is 0,
1662    // the test is for equality or unsigned, and all 1 bits of the const are
1663    // in the same partial word, see if we can shorten the load.
1664    if (DCI.isBeforeLegalize() &&
1665        N0.getOpcode() == ISD::AND && C1 == 0 &&
1666        N0.getNode()->hasOneUse() &&
1667        isa<LoadSDNode>(N0.getOperand(0)) &&
1668        N0.getOperand(0).getNode()->hasOneUse() &&
1669        isa<ConstantSDNode>(N0.getOperand(1))) {
1670      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1671      APInt bestMask;
1672      unsigned bestWidth = 0, bestOffset = 0;
1673      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1674        unsigned origWidth = N0.getValueType().getSizeInBits();
1675        unsigned maskWidth = origWidth;
1676        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1677        // 8 bits, but have to be careful...
1678        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1679          origWidth = Lod->getMemoryVT().getSizeInBits();
1680        const APInt &Mask =
1681          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1682        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1683          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1684          for (unsigned offset=0; offset<origWidth/width; offset++) {
1685            if ((newMask & Mask) == Mask) {
1686              if (!TD->isLittleEndian())
1687                bestOffset = (origWidth/width - offset - 1) * (width/8);
1688              else
1689                bestOffset = (uint64_t)offset * (width/8);
1690              bestMask = Mask.lshr(offset * (width/8) * 8);
1691              bestWidth = width;
1692              break;
1693            }
1694            newMask = newMask << width;
1695          }
1696        }
1697      }
1698      if (bestWidth) {
1699        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1700        if (newVT.isRound()) {
1701          EVT PtrType = Lod->getOperand(1).getValueType();
1702          SDValue Ptr = Lod->getBasePtr();
1703          if (bestOffset != 0)
1704            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1705                              DAG.getConstant(bestOffset, PtrType));
1706          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1707          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1708                                        Lod->getSrcValue(),
1709                                        Lod->getSrcValueOffset() + bestOffset,
1710                                        false, false, NewAlign);
1711          return DAG.getSetCC(dl, VT,
1712                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1713                                      DAG.getConstant(bestMask.trunc(bestWidth),
1714                                                      newVT)),
1715                              DAG.getConstant(0LL, newVT), Cond);
1716        }
1717      }
1718    }
1719
1720    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1721    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1722      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1723
1724      // If the comparison constant has bits in the upper part, the
1725      // zero-extended value could never match.
1726      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1727                                              C1.getBitWidth() - InSize))) {
1728        switch (Cond) {
1729        case ISD::SETUGT:
1730        case ISD::SETUGE:
1731        case ISD::SETEQ: return DAG.getConstant(0, VT);
1732        case ISD::SETULT:
1733        case ISD::SETULE:
1734        case ISD::SETNE: return DAG.getConstant(1, VT);
1735        case ISD::SETGT:
1736        case ISD::SETGE:
1737          // True if the sign bit of C1 is set.
1738          return DAG.getConstant(C1.isNegative(), VT);
1739        case ISD::SETLT:
1740        case ISD::SETLE:
1741          // True if the sign bit of C1 isn't set.
1742          return DAG.getConstant(C1.isNonNegative(), VT);
1743        default:
1744          break;
1745        }
1746      }
1747
1748      // Otherwise, we can perform the comparison with the low bits.
1749      switch (Cond) {
1750      case ISD::SETEQ:
1751      case ISD::SETNE:
1752      case ISD::SETUGT:
1753      case ISD::SETUGE:
1754      case ISD::SETULT:
1755      case ISD::SETULE: {
1756        EVT newVT = N0.getOperand(0).getValueType();
1757        if (DCI.isBeforeLegalizeOps() ||
1758            (isOperationLegal(ISD::SETCC, newVT) &&
1759              getCondCodeAction(Cond, newVT)==Legal))
1760          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1761                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1762                              Cond);
1763        break;
1764      }
1765      default:
1766        break;   // todo, be more careful with signed comparisons
1767      }
1768    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1769               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1770      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1771      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1772      EVT ExtDstTy = N0.getValueType();
1773      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1774
1775      // If the extended part has any inconsistent bits, it cannot ever
1776      // compare equal.  In other words, they have to be all ones or all
1777      // zeros.
1778      APInt ExtBits =
1779        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1780      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1781        return DAG.getConstant(Cond == ISD::SETNE, VT);
1782
1783      SDValue ZextOp;
1784      EVT Op0Ty = N0.getOperand(0).getValueType();
1785      if (Op0Ty == ExtSrcTy) {
1786        ZextOp = N0.getOperand(0);
1787      } else {
1788        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1789        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1790                              DAG.getConstant(Imm, Op0Ty));
1791      }
1792      if (!DCI.isCalledByLegalizer())
1793        DCI.AddToWorklist(ZextOp.getNode());
1794      // Otherwise, make this a use of a zext.
1795      return DAG.getSetCC(dl, VT, ZextOp,
1796                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1797                                                              ExtDstTyBits,
1798                                                              ExtSrcTyBits),
1799                                          ExtDstTy),
1800                          Cond);
1801    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1802                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1803      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1804      if (N0.getOpcode() == ISD::SETCC &&
1805          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1806        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1807        if (TrueWhenTrue)
1808          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1809        // Invert the condition.
1810        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1811        CC = ISD::getSetCCInverse(CC,
1812                                  N0.getOperand(0).getValueType().isInteger());
1813        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1814      }
1815
1816      if ((N0.getOpcode() == ISD::XOR ||
1817           (N0.getOpcode() == ISD::AND &&
1818            N0.getOperand(0).getOpcode() == ISD::XOR &&
1819            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1820          isa<ConstantSDNode>(N0.getOperand(1)) &&
1821          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1822        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1823        // can only do this if the top bits are known zero.
1824        unsigned BitWidth = N0.getValueSizeInBits();
1825        if (DAG.MaskedValueIsZero(N0,
1826                                  APInt::getHighBitsSet(BitWidth,
1827                                                        BitWidth-1))) {
1828          // Okay, get the un-inverted input value.
1829          SDValue Val;
1830          if (N0.getOpcode() == ISD::XOR)
1831            Val = N0.getOperand(0);
1832          else {
1833            assert(N0.getOpcode() == ISD::AND &&
1834                    N0.getOperand(0).getOpcode() == ISD::XOR);
1835            // ((X^1)&1)^1 -> X & 1
1836            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1837                              N0.getOperand(0).getOperand(0),
1838                              N0.getOperand(1));
1839          }
1840
1841          return DAG.getSetCC(dl, VT, Val, N1,
1842                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1843        }
1844      } else if (N1C->getAPIntValue() == 1 &&
1845                 (VT == MVT::i1 ||
1846                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1847        SDValue Op0 = N0;
1848        if (Op0.getOpcode() == ISD::TRUNCATE)
1849          Op0 = Op0.getOperand(0);
1850
1851        if ((Op0.getOpcode() == ISD::XOR) &&
1852            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1853            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1854          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1855          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1856          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1857                              Cond);
1858        } else if (Op0.getOpcode() == ISD::AND &&
1859                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1860                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1861          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1862          if (Op0.getValueType() != VT)
1863            Op0 = DAG.getNode(ISD::AND, dl, VT,
1864                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1865                          DAG.getConstant(1, VT));
1866          return DAG.getSetCC(dl, VT, Op0,
1867                              DAG.getConstant(0, Op0.getValueType()),
1868                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1869        }
1870      }
1871    }
1872
1873    APInt MinVal, MaxVal;
1874    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1875    if (ISD::isSignedIntSetCC(Cond)) {
1876      MinVal = APInt::getSignedMinValue(OperandBitSize);
1877      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1878    } else {
1879      MinVal = APInt::getMinValue(OperandBitSize);
1880      MaxVal = APInt::getMaxValue(OperandBitSize);
1881    }
1882
1883    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1884    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1885      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1886      // X >= C0 --> X > (C0-1)
1887      return DAG.getSetCC(dl, VT, N0,
1888                          DAG.getConstant(C1-1, N1.getValueType()),
1889                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1890    }
1891
1892    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1893      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1894      // X <= C0 --> X < (C0+1)
1895      return DAG.getSetCC(dl, VT, N0,
1896                          DAG.getConstant(C1+1, N1.getValueType()),
1897                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1898    }
1899
1900    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1901      return DAG.getConstant(0, VT);      // X < MIN --> false
1902    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1903      return DAG.getConstant(1, VT);      // X >= MIN --> true
1904    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1905      return DAG.getConstant(0, VT);      // X > MAX --> false
1906    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1907      return DAG.getConstant(1, VT);      // X <= MAX --> true
1908
1909    // Canonicalize setgt X, Min --> setne X, Min
1910    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1911      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1912    // Canonicalize setlt X, Max --> setne X, Max
1913    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1914      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1915
1916    // If we have setult X, 1, turn it into seteq X, 0
1917    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1918      return DAG.getSetCC(dl, VT, N0,
1919                          DAG.getConstant(MinVal, N0.getValueType()),
1920                          ISD::SETEQ);
1921    // If we have setugt X, Max-1, turn it into seteq X, Max
1922    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1923      return DAG.getSetCC(dl, VT, N0,
1924                          DAG.getConstant(MaxVal, N0.getValueType()),
1925                          ISD::SETEQ);
1926
1927    // If we have "setcc X, C0", check to see if we can shrink the immediate
1928    // by changing cc.
1929
1930    // SETUGT X, SINTMAX  -> SETLT X, 0
1931    if (Cond == ISD::SETUGT &&
1932        C1 == APInt::getSignedMaxValue(OperandBitSize))
1933      return DAG.getSetCC(dl, VT, N0,
1934                          DAG.getConstant(0, N1.getValueType()),
1935                          ISD::SETLT);
1936
1937    // SETULT X, SINTMIN  -> SETGT X, -1
1938    if (Cond == ISD::SETULT &&
1939        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1940      SDValue ConstMinusOne =
1941          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1942                          N1.getValueType());
1943      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1944    }
1945
1946    // Fold bit comparisons when we can.
1947    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1948        (VT == N0.getValueType() ||
1949         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1950        N0.getOpcode() == ISD::AND)
1951      if (ConstantSDNode *AndRHS =
1952                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1953        EVT ShiftTy = DCI.isBeforeLegalize() ?
1954          getPointerTy() : getShiftAmountTy();
1955        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1956          // Perform the xform if the AND RHS is a single bit.
1957          if (AndRHS->getAPIntValue().isPowerOf2()) {
1958            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1959                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1960                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1961          }
1962        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1963          // (X & 8) == 8  -->  (X & 8) >> 3
1964          // Perform the xform if C1 is a single bit.
1965          if (C1.isPowerOf2()) {
1966            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1967                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1968                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1969          }
1970        }
1971      }
1972  }
1973
1974  if (isa<ConstantFPSDNode>(N0.getNode())) {
1975    // Constant fold or commute setcc.
1976    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1977    if (O.getNode()) return O;
1978  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1979    // If the RHS of an FP comparison is a constant, simplify it away in
1980    // some cases.
1981    if (CFP->getValueAPF().isNaN()) {
1982      // If an operand is known to be a nan, we can fold it.
1983      switch (ISD::getUnorderedFlavor(Cond)) {
1984      default: llvm_unreachable("Unknown flavor!");
1985      case 0:  // Known false.
1986        return DAG.getConstant(0, VT);
1987      case 1:  // Known true.
1988        return DAG.getConstant(1, VT);
1989      case 2:  // Undefined.
1990        return DAG.getUNDEF(VT);
1991      }
1992    }
1993
1994    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1995    // constant if knowing that the operand is non-nan is enough.  We prefer to
1996    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1997    // materialize 0.0.
1998    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1999      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2000
2001    // If the condition is not legal, see if we can find an equivalent one
2002    // which is legal.
2003    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2004      // If the comparison was an awkward floating-point == or != and one of
2005      // the comparison operands is infinity or negative infinity, convert the
2006      // condition to a less-awkward <= or >=.
2007      if (CFP->getValueAPF().isInfinity()) {
2008        if (CFP->getValueAPF().isNegative()) {
2009          if (Cond == ISD::SETOEQ &&
2010              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2011            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2012          if (Cond == ISD::SETUEQ &&
2013              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2014            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2015          if (Cond == ISD::SETUNE &&
2016              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2017            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2018          if (Cond == ISD::SETONE &&
2019              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2020            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2021        } else {
2022          if (Cond == ISD::SETOEQ &&
2023              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2024            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2025          if (Cond == ISD::SETUEQ &&
2026              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2027            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2028          if (Cond == ISD::SETUNE &&
2029              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2030            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2031          if (Cond == ISD::SETONE &&
2032              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2033            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2034        }
2035      }
2036    }
2037  }
2038
2039  if (N0 == N1) {
2040    // We can always fold X == X for integer setcc's.
2041    if (N0.getValueType().isInteger())
2042      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2043    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2044    if (UOF == 2)   // FP operators that are undefined on NaNs.
2045      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2046    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2047      return DAG.getConstant(UOF, VT);
2048    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2049    // if it is not already.
2050    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2051    if (NewCond != Cond)
2052      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2053  }
2054
2055  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2056      N0.getValueType().isInteger()) {
2057    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2058        N0.getOpcode() == ISD::XOR) {
2059      // Simplify (X+Y) == (X+Z) -->  Y == Z
2060      if (N0.getOpcode() == N1.getOpcode()) {
2061        if (N0.getOperand(0) == N1.getOperand(0))
2062          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2063        if (N0.getOperand(1) == N1.getOperand(1))
2064          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2065        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2066          // If X op Y == Y op X, try other combinations.
2067          if (N0.getOperand(0) == N1.getOperand(1))
2068            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2069                                Cond);
2070          if (N0.getOperand(1) == N1.getOperand(0))
2071            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2072                                Cond);
2073        }
2074      }
2075
2076      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2077        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2078          // Turn (X+C1) == C2 --> X == C2-C1
2079          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2080            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2081                                DAG.getConstant(RHSC->getAPIntValue()-
2082                                                LHSR->getAPIntValue(),
2083                                N0.getValueType()), Cond);
2084          }
2085
2086          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2087          if (N0.getOpcode() == ISD::XOR)
2088            // If we know that all of the inverted bits are zero, don't bother
2089            // performing the inversion.
2090            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2091              return
2092                DAG.getSetCC(dl, VT, N0.getOperand(0),
2093                             DAG.getConstant(LHSR->getAPIntValue() ^
2094                                               RHSC->getAPIntValue(),
2095                                             N0.getValueType()),
2096                             Cond);
2097        }
2098
2099        // Turn (C1-X) == C2 --> X == C1-C2
2100        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2101          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2102            return
2103              DAG.getSetCC(dl, VT, N0.getOperand(1),
2104                           DAG.getConstant(SUBC->getAPIntValue() -
2105                                             RHSC->getAPIntValue(),
2106                                           N0.getValueType()),
2107                           Cond);
2108          }
2109        }
2110      }
2111
2112      // Simplify (X+Z) == X -->  Z == 0
2113      if (N0.getOperand(0) == N1)
2114        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2115                        DAG.getConstant(0, N0.getValueType()), Cond);
2116      if (N0.getOperand(1) == N1) {
2117        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2118          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2119                          DAG.getConstant(0, N0.getValueType()), Cond);
2120        else if (N0.getNode()->hasOneUse()) {
2121          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2122          // (Z-X) == X  --> Z == X<<1
2123          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2124                                     N1,
2125                                     DAG.getConstant(1, getShiftAmountTy()));
2126          if (!DCI.isCalledByLegalizer())
2127            DCI.AddToWorklist(SH.getNode());
2128          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2129        }
2130      }
2131    }
2132
2133    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2134        N1.getOpcode() == ISD::XOR) {
2135      // Simplify  X == (X+Z) -->  Z == 0
2136      if (N1.getOperand(0) == N0) {
2137        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2138                        DAG.getConstant(0, N1.getValueType()), Cond);
2139      } else if (N1.getOperand(1) == N0) {
2140        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2141          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2142                          DAG.getConstant(0, N1.getValueType()), Cond);
2143        } else if (N1.getNode()->hasOneUse()) {
2144          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2145          // X == (Z-X)  --> X<<1 == Z
2146          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2147                                     DAG.getConstant(1, getShiftAmountTy()));
2148          if (!DCI.isCalledByLegalizer())
2149            DCI.AddToWorklist(SH.getNode());
2150          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2151        }
2152      }
2153    }
2154
2155    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2156    // Note that where y is variable and is known to have at most
2157    // one bit set (for example, if it is z&1) we cannot do this;
2158    // the expressions are not equivalent when y==0.
2159    if (N0.getOpcode() == ISD::AND)
2160      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2161        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2162          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2163          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2164          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2165        }
2166      }
2167    if (N1.getOpcode() == ISD::AND)
2168      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2169        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2170          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2171          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2172          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2173        }
2174      }
2175  }
2176
2177  // Fold away ALL boolean setcc's.
2178  SDValue Temp;
2179  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2180    switch (Cond) {
2181    default: llvm_unreachable("Unknown integer setcc!");
2182    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2183      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2184      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2185      if (!DCI.isCalledByLegalizer())
2186        DCI.AddToWorklist(Temp.getNode());
2187      break;
2188    case ISD::SETNE:  // X != Y   -->  (X^Y)
2189      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2190      break;
2191    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2192    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2193      Temp = DAG.getNOT(dl, N0, MVT::i1);
2194      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2195      if (!DCI.isCalledByLegalizer())
2196        DCI.AddToWorklist(Temp.getNode());
2197      break;
2198    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2199    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2200      Temp = DAG.getNOT(dl, N1, MVT::i1);
2201      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2202      if (!DCI.isCalledByLegalizer())
2203        DCI.AddToWorklist(Temp.getNode());
2204      break;
2205    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2206    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2207      Temp = DAG.getNOT(dl, N0, MVT::i1);
2208      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2209      if (!DCI.isCalledByLegalizer())
2210        DCI.AddToWorklist(Temp.getNode());
2211      break;
2212    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2213    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2214      Temp = DAG.getNOT(dl, N1, MVT::i1);
2215      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2216      break;
2217    }
2218    if (VT != MVT::i1) {
2219      if (!DCI.isCalledByLegalizer())
2220        DCI.AddToWorklist(N0.getNode());
2221      // FIXME: If running after legalize, we probably can't do this.
2222      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2223    }
2224    return N0;
2225  }
2226
2227  // Could not fold it.
2228  return SDValue();
2229}
2230
2231/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2232/// node is a GlobalAddress + offset.
2233bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2234                                    int64_t &Offset) const {
2235  if (isa<GlobalAddressSDNode>(N)) {
2236    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2237    GA = GASD->getGlobal();
2238    Offset += GASD->getOffset();
2239    return true;
2240  }
2241
2242  if (N->getOpcode() == ISD::ADD) {
2243    SDValue N1 = N->getOperand(0);
2244    SDValue N2 = N->getOperand(1);
2245    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2246      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2247      if (V) {
2248        Offset += V->getSExtValue();
2249        return true;
2250      }
2251    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2252      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2253      if (V) {
2254        Offset += V->getSExtValue();
2255        return true;
2256      }
2257    }
2258  }
2259  return false;
2260}
2261
2262
2263SDValue TargetLowering::
2264PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2265  // Default implementation: no optimization.
2266  return SDValue();
2267}
2268
2269//===----------------------------------------------------------------------===//
2270//  Inline Assembler Implementation Methods
2271//===----------------------------------------------------------------------===//
2272
2273
2274TargetLowering::ConstraintType
2275TargetLowering::getConstraintType(const std::string &Constraint) const {
2276  // FIXME: lots more standard ones to handle.
2277  if (Constraint.size() == 1) {
2278    switch (Constraint[0]) {
2279    default: break;
2280    case 'r': return C_RegisterClass;
2281    case 'm':    // memory
2282    case 'o':    // offsetable
2283    case 'V':    // not offsetable
2284      return C_Memory;
2285    case 'i':    // Simple Integer or Relocatable Constant
2286    case 'n':    // Simple Integer
2287    case 's':    // Relocatable Constant
2288    case 'X':    // Allow ANY value.
2289    case 'I':    // Target registers.
2290    case 'J':
2291    case 'K':
2292    case 'L':
2293    case 'M':
2294    case 'N':
2295    case 'O':
2296    case 'P':
2297      return C_Other;
2298    }
2299  }
2300
2301  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2302      Constraint[Constraint.size()-1] == '}')
2303    return C_Register;
2304  return C_Unknown;
2305}
2306
2307/// LowerXConstraint - try to replace an X constraint, which matches anything,
2308/// with another that has more specific requirements based on the type of the
2309/// corresponding operand.
2310const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2311  if (ConstraintVT.isInteger())
2312    return "r";
2313  if (ConstraintVT.isFloatingPoint())
2314    return "f";      // works for many targets
2315  return 0;
2316}
2317
2318/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2319/// vector.  If it is invalid, don't add anything to Ops.
2320void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2321                                                  char ConstraintLetter,
2322                                                  bool hasMemory,
2323                                                  std::vector<SDValue> &Ops,
2324                                                  SelectionDAG &DAG) const {
2325  switch (ConstraintLetter) {
2326  default: break;
2327  case 'X':     // Allows any operand; labels (basic block) use this.
2328    if (Op.getOpcode() == ISD::BasicBlock) {
2329      Ops.push_back(Op);
2330      return;
2331    }
2332    // fall through
2333  case 'i':    // Simple Integer or Relocatable Constant
2334  case 'n':    // Simple Integer
2335  case 's': {  // Relocatable Constant
2336    // These operands are interested in values of the form (GV+C), where C may
2337    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2338    // is possible and fine if either GV or C are missing.
2339    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2340    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2341
2342    // If we have "(add GV, C)", pull out GV/C
2343    if (Op.getOpcode() == ISD::ADD) {
2344      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2345      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2346      if (C == 0 || GA == 0) {
2347        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2348        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2349      }
2350      if (C == 0 || GA == 0)
2351        C = 0, GA = 0;
2352    }
2353
2354    // If we find a valid operand, map to the TargetXXX version so that the
2355    // value itself doesn't get selected.
2356    if (GA) {   // Either &GV   or   &GV+C
2357      if (ConstraintLetter != 'n') {
2358        int64_t Offs = GA->getOffset();
2359        if (C) Offs += C->getZExtValue();
2360        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2361                                                 Op.getValueType(), Offs));
2362        return;
2363      }
2364    }
2365    if (C) {   // just C, no GV.
2366      // Simple constants are not allowed for 's'.
2367      if (ConstraintLetter != 's') {
2368        // gcc prints these as sign extended.  Sign extend value to 64 bits
2369        // now; without this it would get ZExt'd later in
2370        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2371        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2372                                            MVT::i64));
2373        return;
2374      }
2375    }
2376    break;
2377  }
2378  }
2379}
2380
2381std::vector<unsigned> TargetLowering::
2382getRegClassForInlineAsmConstraint(const std::string &Constraint,
2383                                  EVT VT) const {
2384  return std::vector<unsigned>();
2385}
2386
2387
2388std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2389getRegForInlineAsmConstraint(const std::string &Constraint,
2390                             EVT VT) const {
2391  if (Constraint[0] != '{')
2392    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2393  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2394
2395  // Remove the braces from around the name.
2396  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2397
2398  // Figure out which register class contains this reg.
2399  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2400  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2401       E = RI->regclass_end(); RCI != E; ++RCI) {
2402    const TargetRegisterClass *RC = *RCI;
2403
2404    // If none of the value types for this register class are valid, we
2405    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2406    bool isLegal = false;
2407    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2408         I != E; ++I) {
2409      if (isTypeLegal(*I)) {
2410        isLegal = true;
2411        break;
2412      }
2413    }
2414
2415    if (!isLegal) continue;
2416
2417    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2418         I != E; ++I) {
2419      if (RegName.equals_lower(RI->getName(*I)))
2420        return std::make_pair(*I, RC);
2421    }
2422  }
2423
2424  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2425}
2426
2427//===----------------------------------------------------------------------===//
2428// Constraint Selection.
2429
2430/// isMatchingInputConstraint - Return true of this is an input operand that is
2431/// a matching constraint like "4".
2432bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2433  assert(!ConstraintCode.empty() && "No known constraint!");
2434  return isdigit(ConstraintCode[0]);
2435}
2436
2437/// getMatchedOperand - If this is an input matching constraint, this method
2438/// returns the output operand it matches.
2439unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2440  assert(!ConstraintCode.empty() && "No known constraint!");
2441  return atoi(ConstraintCode.c_str());
2442}
2443
2444
2445/// getConstraintGenerality - Return an integer indicating how general CT
2446/// is.
2447static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2448  switch (CT) {
2449  default: llvm_unreachable("Unknown constraint type!");
2450  case TargetLowering::C_Other:
2451  case TargetLowering::C_Unknown:
2452    return 0;
2453  case TargetLowering::C_Register:
2454    return 1;
2455  case TargetLowering::C_RegisterClass:
2456    return 2;
2457  case TargetLowering::C_Memory:
2458    return 3;
2459  }
2460}
2461
2462/// ChooseConstraint - If there are multiple different constraints that we
2463/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2464/// This is somewhat tricky: constraints fall into four classes:
2465///    Other         -> immediates and magic values
2466///    Register      -> one specific register
2467///    RegisterClass -> a group of regs
2468///    Memory        -> memory
2469/// Ideally, we would pick the most specific constraint possible: if we have
2470/// something that fits into a register, we would pick it.  The problem here
2471/// is that if we have something that could either be in a register or in
2472/// memory that use of the register could cause selection of *other*
2473/// operands to fail: they might only succeed if we pick memory.  Because of
2474/// this the heuristic we use is:
2475///
2476///  1) If there is an 'other' constraint, and if the operand is valid for
2477///     that constraint, use it.  This makes us take advantage of 'i'
2478///     constraints when available.
2479///  2) Otherwise, pick the most general constraint present.  This prefers
2480///     'm' over 'r', for example.
2481///
2482static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2483                             bool hasMemory,  const TargetLowering &TLI,
2484                             SDValue Op, SelectionDAG *DAG) {
2485  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2486  unsigned BestIdx = 0;
2487  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2488  int BestGenerality = -1;
2489
2490  // Loop over the options, keeping track of the most general one.
2491  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2492    TargetLowering::ConstraintType CType =
2493      TLI.getConstraintType(OpInfo.Codes[i]);
2494
2495    // If this is an 'other' constraint, see if the operand is valid for it.
2496    // For example, on X86 we might have an 'rI' constraint.  If the operand
2497    // is an integer in the range [0..31] we want to use I (saving a load
2498    // of a register), otherwise we must use 'r'.
2499    if (CType == TargetLowering::C_Other && Op.getNode()) {
2500      assert(OpInfo.Codes[i].size() == 1 &&
2501             "Unhandled multi-letter 'other' constraint");
2502      std::vector<SDValue> ResultOps;
2503      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2504                                       ResultOps, *DAG);
2505      if (!ResultOps.empty()) {
2506        BestType = CType;
2507        BestIdx = i;
2508        break;
2509      }
2510    }
2511
2512    // This constraint letter is more general than the previous one, use it.
2513    int Generality = getConstraintGenerality(CType);
2514    if (Generality > BestGenerality) {
2515      BestType = CType;
2516      BestIdx = i;
2517      BestGenerality = Generality;
2518    }
2519  }
2520
2521  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2522  OpInfo.ConstraintType = BestType;
2523}
2524
2525/// ComputeConstraintToUse - Determines the constraint code and constraint
2526/// type to use for the specific AsmOperandInfo, setting
2527/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2528void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2529                                            SDValue Op,
2530                                            bool hasMemory,
2531                                            SelectionDAG *DAG) const {
2532  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2533
2534  // Single-letter constraints ('r') are very common.
2535  if (OpInfo.Codes.size() == 1) {
2536    OpInfo.ConstraintCode = OpInfo.Codes[0];
2537    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2538  } else {
2539    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2540  }
2541
2542  // 'X' matches anything.
2543  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2544    // Labels and constants are handled elsewhere ('X' is the only thing
2545    // that matches labels).  For Functions, the type here is the type of
2546    // the result, which is not what we want to look at; leave them alone.
2547    Value *v = OpInfo.CallOperandVal;
2548    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2549      OpInfo.CallOperandVal = v;
2550      return;
2551    }
2552
2553    // Otherwise, try to resolve it to something we know about by looking at
2554    // the actual operand type.
2555    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2556      OpInfo.ConstraintCode = Repl;
2557      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2558    }
2559  }
2560}
2561
2562//===----------------------------------------------------------------------===//
2563//  Loop Strength Reduction hooks
2564//===----------------------------------------------------------------------===//
2565
2566/// isLegalAddressingMode - Return true if the addressing mode represented
2567/// by AM is legal for this target, for a load/store of the specified type.
2568bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2569                                           const Type *Ty) const {
2570  // The default implementation of this implements a conservative RISCy, r+r and
2571  // r+i addr mode.
2572
2573  // Allows a sign-extended 16-bit immediate field.
2574  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2575    return false;
2576
2577  // No global is ever allowed as a base.
2578  if (AM.BaseGV)
2579    return false;
2580
2581  // Only support r+r,
2582  switch (AM.Scale) {
2583  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2584    break;
2585  case 1:
2586    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2587      return false;
2588    // Otherwise we have r+r or r+i.
2589    break;
2590  case 2:
2591    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2592      return false;
2593    // Allow 2*r as r+r.
2594    break;
2595  }
2596
2597  return true;
2598}
2599
2600/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2601/// return a DAG expression to select that will generate the same value by
2602/// multiplying by a magic number.  See:
2603/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2604SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2605                                  std::vector<SDNode*>* Created) const {
2606  EVT VT = N->getValueType(0);
2607  DebugLoc dl= N->getDebugLoc();
2608
2609  // Check to see if we can do this.
2610  // FIXME: We should be more aggressive here.
2611  if (!isTypeLegal(VT))
2612    return SDValue();
2613
2614  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2615  APInt::ms magics = d.magic();
2616
2617  // Multiply the numerator (operand 0) by the magic value
2618  // FIXME: We should support doing a MUL in a wider type
2619  SDValue Q;
2620  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2621    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2622                    DAG.getConstant(magics.m, VT));
2623  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2624    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2625                              N->getOperand(0),
2626                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2627  else
2628    return SDValue();       // No mulhs or equvialent
2629  // If d > 0 and m < 0, add the numerator
2630  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2631    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2632    if (Created)
2633      Created->push_back(Q.getNode());
2634  }
2635  // If d < 0 and m > 0, subtract the numerator.
2636  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2637    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2638    if (Created)
2639      Created->push_back(Q.getNode());
2640  }
2641  // Shift right algebraic if shift value is nonzero
2642  if (magics.s > 0) {
2643    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2644                    DAG.getConstant(magics.s, getShiftAmountTy()));
2645    if (Created)
2646      Created->push_back(Q.getNode());
2647  }
2648  // Extract the sign bit and add it to the quotient
2649  SDValue T =
2650    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2651                                                 getShiftAmountTy()));
2652  if (Created)
2653    Created->push_back(T.getNode());
2654  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2655}
2656
2657/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2658/// return a DAG expression to select that will generate the same value by
2659/// multiplying by a magic number.  See:
2660/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2661SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2662                                  std::vector<SDNode*>* Created) const {
2663  EVT VT = N->getValueType(0);
2664  DebugLoc dl = N->getDebugLoc();
2665
2666  // Check to see if we can do this.
2667  // FIXME: We should be more aggressive here.
2668  if (!isTypeLegal(VT))
2669    return SDValue();
2670
2671  // FIXME: We should use a narrower constant when the upper
2672  // bits are known to be zero.
2673  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2674  APInt::mu magics = N1C->getAPIntValue().magicu();
2675
2676  // Multiply the numerator (operand 0) by the magic value
2677  // FIXME: We should support doing a MUL in a wider type
2678  SDValue Q;
2679  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2680    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2681                    DAG.getConstant(magics.m, VT));
2682  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2683    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2684                              N->getOperand(0),
2685                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2686  else
2687    return SDValue();       // No mulhu or equvialent
2688  if (Created)
2689    Created->push_back(Q.getNode());
2690
2691  if (magics.a == 0) {
2692    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2693           "We shouldn't generate an undefined shift!");
2694    return DAG.getNode(ISD::SRL, dl, VT, Q,
2695                       DAG.getConstant(magics.s, getShiftAmountTy()));
2696  } else {
2697    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2698    if (Created)
2699      Created->push_back(NPQ.getNode());
2700    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2701                      DAG.getConstant(1, getShiftAmountTy()));
2702    if (Created)
2703      Created->push_back(NPQ.getNode());
2704    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2705    if (Created)
2706      Created->push_back(NPQ.getNode());
2707    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2708                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2709  }
2710}
2711