TargetLowering.cpp revision 9a77bb65128afa9cccbdc68d1db076eb0dc52107
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
94  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
95  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
96  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
97  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
98  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
99  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
100  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
101  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
102  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
103  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
104  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
105  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
106  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
107  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
108  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
109  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
110  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
111  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
112  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
113  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
114  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
115  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
116  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
117  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
118  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
119  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
120  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
121  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
122  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
123  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
124  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
125  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
126  Names[RTLIB::OEQ_F32] = "__eqsf2";
127  Names[RTLIB::OEQ_F64] = "__eqdf2";
128  Names[RTLIB::UNE_F32] = "__nesf2";
129  Names[RTLIB::UNE_F64] = "__nedf2";
130  Names[RTLIB::OGE_F32] = "__gesf2";
131  Names[RTLIB::OGE_F64] = "__gedf2";
132  Names[RTLIB::OLT_F32] = "__ltsf2";
133  Names[RTLIB::OLT_F64] = "__ltdf2";
134  Names[RTLIB::OLE_F32] = "__lesf2";
135  Names[RTLIB::OLE_F64] = "__ledf2";
136  Names[RTLIB::OGT_F32] = "__gtsf2";
137  Names[RTLIB::OGT_F64] = "__gtdf2";
138  Names[RTLIB::UO_F32] = "__unordsf2";
139  Names[RTLIB::UO_F64] = "__unorddf2";
140  Names[RTLIB::O_F32] = "__unordsf2";
141  Names[RTLIB::O_F64] = "__unorddf2";
142}
143
144/// InitCmpLibcallCCs - Set default comparison libcall CC.
145///
146static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
147  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
148  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
149  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
150  CCs[RTLIB::UNE_F32] = ISD::SETNE;
151  CCs[RTLIB::UNE_F64] = ISD::SETNE;
152  CCs[RTLIB::OGE_F32] = ISD::SETGE;
153  CCs[RTLIB::OGE_F64] = ISD::SETGE;
154  CCs[RTLIB::OLT_F32] = ISD::SETLT;
155  CCs[RTLIB::OLT_F64] = ISD::SETLT;
156  CCs[RTLIB::OLE_F32] = ISD::SETLE;
157  CCs[RTLIB::OLE_F64] = ISD::SETLE;
158  CCs[RTLIB::OGT_F32] = ISD::SETGT;
159  CCs[RTLIB::OGT_F64] = ISD::SETGT;
160  CCs[RTLIB::UO_F32] = ISD::SETNE;
161  CCs[RTLIB::UO_F64] = ISD::SETNE;
162  CCs[RTLIB::O_F32] = ISD::SETEQ;
163  CCs[RTLIB::O_F64] = ISD::SETEQ;
164}
165
166TargetLowering::TargetLowering(TargetMachine &tm)
167  : TM(tm), TD(TM.getTargetData()) {
168  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
169         "Fixed size array in TargetLowering is not large enough!");
170  // All operations default to being supported.
171  memset(OpActions, 0, sizeof(OpActions));
172  memset(LoadXActions, 0, sizeof(LoadXActions));
173  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
174  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
175  memset(ConvertActions, 0, sizeof(ConvertActions));
176
177  // Set default actions for various operations.
178  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
179    // Default all indexed load / store to expand.
180    for (unsigned IM = (unsigned)ISD::PRE_INC;
181         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
182      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
183      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
184    }
185
186    // These operations default to expand.
187    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
188  }
189
190  // Most targets ignore the @llvm.prefetch intrinsic.
191  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
192
193  // ConstantFP nodes default to expand.  Targets can either change this to
194  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
195  // to optimize expansions for certain constants.
196  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
197  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
198  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
199
200  // Default ISD::TRAP to expand (which turns it into abort).
201  setOperationAction(ISD::TRAP, MVT::Other, Expand);
202
203  IsLittleEndian = TD->isLittleEndian();
204  UsesGlobalOffsetTable = false;
205  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
206  ShiftAmtHandling = Undefined;
207  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
208  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
209  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
210  allowUnalignedMemoryAccesses = false;
211  UseUnderscoreSetJmp = false;
212  UseUnderscoreLongJmp = false;
213  SelectIsExpensive = false;
214  IntDivIsCheap = false;
215  Pow2DivIsCheap = false;
216  StackPointerRegisterToSaveRestore = 0;
217  ExceptionPointerRegister = 0;
218  ExceptionSelectorRegister = 0;
219  SetCCResultContents = UndefinedSetCCResult;
220  SchedPreferenceInfo = SchedulingForLatency;
221  JumpBufSize = 0;
222  JumpBufAlignment = 0;
223  IfCvtBlockSizeLimit = 2;
224  IfCvtDupBlockSizeLimit = 0;
225  PrefLoopAlignment = 0;
226
227  InitLibcallNames(LibcallRoutineNames);
228  InitCmpLibcallCCs(CmpLibcallCCs);
229
230  // Tell Legalize whether the assembler supports DEBUG_LOC.
231  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
232    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
233}
234
235TargetLowering::~TargetLowering() {}
236
237/// computeRegisterProperties - Once all of the register classes are added,
238/// this allows us to compute derived properties we expose.
239void TargetLowering::computeRegisterProperties() {
240  assert(MVT::LAST_VALUETYPE <= 32 &&
241         "Too many value types for ValueTypeActions to hold!");
242
243  // Everything defaults to needing one register.
244  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
245    NumRegistersForVT[i] = 1;
246    RegisterTypeForVT[i] = TransformToType[i] = i;
247  }
248  // ...except isVoid, which doesn't need any registers.
249  NumRegistersForVT[MVT::isVoid] = 0;
250
251  // Find the largest integer register class.
252  unsigned LargestIntReg = MVT::i128;
253  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
254    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
255
256  // Every integer value type larger than this largest register takes twice as
257  // many registers to represent as the previous ValueType.
258  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
259       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
260    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
261    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
262    TransformToType[ExpandedReg] = ExpandedReg - 1;
263    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
264  }
265
266  // Inspect all of the ValueType's smaller than the largest integer
267  // register to see which ones need promotion.
268  MVT::ValueType LegalIntReg = LargestIntReg;
269  for (MVT::ValueType IntReg = LargestIntReg - 1;
270       IntReg >= MVT::i1; --IntReg) {
271    if (isTypeLegal(IntReg)) {
272      LegalIntReg = IntReg;
273    } else {
274      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
275      ValueTypeActions.setTypeAction(IntReg, Promote);
276    }
277  }
278
279  // ppcf128 type is really two f64's.
280  if (!isTypeLegal(MVT::ppcf128)) {
281    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
282    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
283    TransformToType[MVT::ppcf128] = MVT::f64;
284    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
285  }
286
287  // Decide how to handle f64. If the target does not have native f64 support,
288  // expand it to i64 and we will be generating soft float library calls.
289  if (!isTypeLegal(MVT::f64)) {
290    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
291    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
292    TransformToType[MVT::f64] = MVT::i64;
293    ValueTypeActions.setTypeAction(MVT::f64, Expand);
294  }
295
296  // Decide how to handle f32. If the target does not have native support for
297  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
298  if (!isTypeLegal(MVT::f32)) {
299    if (isTypeLegal(MVT::f64)) {
300      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
301      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
302      TransformToType[MVT::f32] = MVT::f64;
303      ValueTypeActions.setTypeAction(MVT::f32, Promote);
304    } else {
305      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
306      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
307      TransformToType[MVT::f32] = MVT::i32;
308      ValueTypeActions.setTypeAction(MVT::f32, Expand);
309    }
310  }
311
312  // Loop over all of the vector value types to see which need transformations.
313  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
314       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
315    if (!isTypeLegal(i)) {
316      MVT::ValueType IntermediateVT, RegisterVT;
317      unsigned NumIntermediates;
318      NumRegistersForVT[i] =
319        getVectorTypeBreakdown(i,
320                               IntermediateVT, NumIntermediates,
321                               RegisterVT);
322      RegisterTypeForVT[i] = RegisterVT;
323      TransformToType[i] = MVT::Other; // this isn't actually used
324      ValueTypeActions.setTypeAction(i, Expand);
325    }
326  }
327}
328
329const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
330  return NULL;
331}
332
333
334MVT::ValueType
335TargetLowering::getSetCCResultType(const SDOperand &) const {
336  return getValueType(TD->getIntPtrType());
337}
338
339
340/// getVectorTypeBreakdown - Vector types are broken down into some number of
341/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
342/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
343/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
344///
345/// This method returns the number of registers needed, and the VT for each
346/// register.  It also returns the VT and quantity of the intermediate values
347/// before they are promoted/expanded.
348///
349unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
350                                                MVT::ValueType &IntermediateVT,
351                                                unsigned &NumIntermediates,
352                                      MVT::ValueType &RegisterVT) const {
353  // Figure out the right, legal destination reg to copy into.
354  unsigned NumElts = MVT::getVectorNumElements(VT);
355  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
356
357  unsigned NumVectorRegs = 1;
358
359  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
360  // could break down into LHS/RHS like LegalizeDAG does.
361  if (!isPowerOf2_32(NumElts)) {
362    NumVectorRegs = NumElts;
363    NumElts = 1;
364  }
365
366  // Divide the input until we get to a supported size.  This will always
367  // end with a scalar if the target doesn't support vectors.
368  while (NumElts > 1 &&
369         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
370    NumElts >>= 1;
371    NumVectorRegs <<= 1;
372  }
373
374  NumIntermediates = NumVectorRegs;
375
376  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
377  if (!isTypeLegal(NewVT))
378    NewVT = EltTy;
379  IntermediateVT = NewVT;
380
381  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
382  RegisterVT = DestVT;
383  if (DestVT < NewVT) {
384    // Value is expanded, e.g. i64 -> i16.
385    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
386  } else {
387    // Otherwise, promotion or legal types use the same number of registers as
388    // the vector decimated to the appropriate level.
389    return NumVectorRegs;
390  }
391
392  return 1;
393}
394
395/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
396/// function arguments in the caller parameter area.  This is the actual
397/// alignment, not its logarithm.
398unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
399  return TD->getCallFrameTypeAlignment(Ty);
400}
401
402SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
403                                                   SelectionDAG &DAG) const {
404  if (usesGlobalOffsetTable())
405    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
406  return Table;
407}
408
409//===----------------------------------------------------------------------===//
410//  Optimization Methods
411//===----------------------------------------------------------------------===//
412
413/// ShrinkDemandedConstant - Check to see if the specified operand of the
414/// specified instruction is a constant integer.  If so, check to see if there
415/// are any bits set in the constant that are not demanded.  If so, shrink the
416/// constant and return true.
417bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
418                                                        const APInt &Demanded) {
419  // FIXME: ISD::SELECT, ISD::SELECT_CC
420  switch(Op.getOpcode()) {
421  default: break;
422  case ISD::AND:
423  case ISD::OR:
424  case ISD::XOR:
425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
426      if (C->getAPIntValue().intersects(~Demanded)) {
427        MVT::ValueType VT = Op.getValueType();
428        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
429                                    DAG.getConstant(Demanded &
430                                                      C->getAPIntValue(),
431                                                    VT));
432        return CombineTo(Op, New);
433      }
434    break;
435  }
436  return false;
437}
438
439/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
440/// DemandedMask bits of the result of Op are ever used downstream.  If we can
441/// use this information to simplify Op, create a new simplified DAG node and
442/// return true, returning the original and new nodes in Old and New. Otherwise,
443/// analyze the expression and return a mask of KnownOne and KnownZero bits for
444/// the expression (used to simplify the caller).  The KnownZero/One bits may
445/// only be accurate for those bits in the DemandedMask.
446bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
447                                          const APInt &DemandedMask,
448                                          APInt &KnownZero,
449                                          APInt &KnownOne,
450                                          TargetLoweringOpt &TLO,
451                                          unsigned Depth) const {
452  unsigned BitWidth = DemandedMask.getBitWidth();
453  assert(Op.getValueSizeInBits() == BitWidth &&
454         "Mask size mismatches value type size!");
455  APInt NewMask = DemandedMask;
456
457  // Don't know anything.
458  KnownZero = KnownOne = APInt(BitWidth, 0);
459
460  // Other users may use these bits.
461  if (!Op.Val->hasOneUse()) {
462    if (Depth != 0) {
463      // If not at the root, Just compute the KnownZero/KnownOne bits to
464      // simplify things downstream.
465      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
466      return false;
467    }
468    // If this is the root being simplified, allow it to have multiple uses,
469    // just set the NewMask to all bits.
470    NewMask = APInt::getAllOnesValue(BitWidth);
471  } else if (DemandedMask == 0) {
472    // Not demanding any bits from Op.
473    if (Op.getOpcode() != ISD::UNDEF)
474      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
475    return false;
476  } else if (Depth == 6) {        // Limit search depth.
477    return false;
478  }
479
480  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
481  switch (Op.getOpcode()) {
482  case ISD::Constant:
483    // We know all of the bits for a constant!
484    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
485    KnownZero = ~KnownOne & NewMask;
486    return false;   // Don't fall through, will infinitely loop.
487  case ISD::AND:
488    // If the RHS is a constant, check to see if the LHS would be zero without
489    // using the bits from the RHS.  Below, we use knowledge about the RHS to
490    // simplify the LHS, here we're using information from the LHS to simplify
491    // the RHS.
492    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
493      APInt LHSZero, LHSOne;
494      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
495                                LHSZero, LHSOne, Depth+1);
496      // If the LHS already has zeros where RHSC does, this and is dead.
497      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
498        return TLO.CombineTo(Op, Op.getOperand(0));
499      // If any of the set bits in the RHS are known zero on the LHS, shrink
500      // the constant.
501      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
502        return true;
503    }
504
505    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
506                             KnownOne, TLO, Depth+1))
507      return true;
508    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
509    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
510                             KnownZero2, KnownOne2, TLO, Depth+1))
511      return true;
512    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
513
514    // If all of the demanded bits are known one on one side, return the other.
515    // These bits cannot contribute to the result of the 'and'.
516    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
517      return TLO.CombineTo(Op, Op.getOperand(0));
518    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
519      return TLO.CombineTo(Op, Op.getOperand(1));
520    // If all of the demanded bits in the inputs are known zeros, return zero.
521    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
522      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
523    // If the RHS is a constant, see if we can simplify it.
524    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
525      return true;
526
527    // Output known-1 bits are only known if set in both the LHS & RHS.
528    KnownOne &= KnownOne2;
529    // Output known-0 are known to be clear if zero in either the LHS | RHS.
530    KnownZero |= KnownZero2;
531    break;
532  case ISD::OR:
533    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
534                             KnownOne, TLO, Depth+1))
535      return true;
536    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
537    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
538                             KnownZero2, KnownOne2, TLO, Depth+1))
539      return true;
540    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
541
542    // If all of the demanded bits are known zero on one side, return the other.
543    // These bits cannot contribute to the result of the 'or'.
544    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
545      return TLO.CombineTo(Op, Op.getOperand(0));
546    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
547      return TLO.CombineTo(Op, Op.getOperand(1));
548    // If all of the potentially set bits on one side are known to be set on
549    // the other side, just use the 'other' side.
550    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
551      return TLO.CombineTo(Op, Op.getOperand(0));
552    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
553      return TLO.CombineTo(Op, Op.getOperand(1));
554    // If the RHS is a constant, see if we can simplify it.
555    if (TLO.ShrinkDemandedConstant(Op, NewMask))
556      return true;
557
558    // Output known-0 bits are only known if clear in both the LHS & RHS.
559    KnownZero &= KnownZero2;
560    // Output known-1 are known to be set if set in either the LHS | RHS.
561    KnownOne |= KnownOne2;
562    break;
563  case ISD::XOR:
564    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
565                             KnownOne, TLO, Depth+1))
566      return true;
567    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
569                             KnownOne2, TLO, Depth+1))
570      return true;
571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
572
573    // If all of the demanded bits are known zero on one side, return the other.
574    // These bits cannot contribute to the result of the 'xor'.
575    if ((KnownZero & NewMask) == NewMask)
576      return TLO.CombineTo(Op, Op.getOperand(0));
577    if ((KnownZero2 & NewMask) == NewMask)
578      return TLO.CombineTo(Op, Op.getOperand(1));
579
580    // If all of the unknown bits are known to be zero on one side or the other
581    // (but not both) turn this into an *inclusive* or.
582    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
583    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
584      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
585                                               Op.getOperand(0),
586                                               Op.getOperand(1)));
587
588    // Output known-0 bits are known if clear or set in both the LHS & RHS.
589    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
590    // Output known-1 are known to be set if set in only one of the LHS, RHS.
591    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
592
593    // If all of the demanded bits on one side are known, and all of the set
594    // bits on that side are also known to be set on the other side, turn this
595    // into an AND, as we know the bits will be cleared.
596    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
597    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
598      if ((KnownOne & KnownOne2) == KnownOne) {
599        MVT::ValueType VT = Op.getValueType();
600        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
601        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
602                                                 ANDC));
603      }
604    }
605
606    // If the RHS is a constant, see if we can simplify it.
607    // for XOR, we prefer to force bits to 1 if they will make a -1.
608    // if we can't force bits, try to shrink constant
609    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
610      APInt Expanded = C->getAPIntValue() | (~NewMask);
611      // if we can expand it to have all bits set, do it
612      if (Expanded.isAllOnesValue()) {
613        if (Expanded != C->getAPIntValue()) {
614          MVT::ValueType VT = Op.getValueType();
615          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
616                                          TLO.DAG.getConstant(Expanded, VT));
617          return TLO.CombineTo(Op, New);
618        }
619        // if it already has all the bits set, nothing to change
620        // but don't shrink either!
621      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
622        return true;
623      }
624    }
625
626    KnownZero = KnownZeroOut;
627    KnownOne  = KnownOneOut;
628    break;
629  case ISD::SELECT:
630    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
631                             KnownOne, TLO, Depth+1))
632      return true;
633    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
634                             KnownOne2, TLO, Depth+1))
635      return true;
636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
638
639    // If the operands are constants, see if we can simplify them.
640    if (TLO.ShrinkDemandedConstant(Op, NewMask))
641      return true;
642
643    // Only known if known in both the LHS and RHS.
644    KnownOne &= KnownOne2;
645    KnownZero &= KnownZero2;
646    break;
647  case ISD::SELECT_CC:
648    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
649                             KnownOne, TLO, Depth+1))
650      return true;
651    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
652                             KnownOne2, TLO, Depth+1))
653      return true;
654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
655    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
656
657    // If the operands are constants, see if we can simplify them.
658    if (TLO.ShrinkDemandedConstant(Op, NewMask))
659      return true;
660
661    // Only known if known in both the LHS and RHS.
662    KnownOne &= KnownOne2;
663    KnownZero &= KnownZero2;
664    break;
665  case ISD::SHL:
666    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
667      unsigned ShAmt = SA->getValue();
668      SDOperand InOp = Op.getOperand(0);
669
670      // If the shift count is an invalid immediate, don't do anything.
671      if (ShAmt >= BitWidth)
672        break;
673
674      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
675      // single shift.  We can do this if the bottom bits (which are shifted
676      // out) are never demanded.
677      if (InOp.getOpcode() == ISD::SRL &&
678          isa<ConstantSDNode>(InOp.getOperand(1))) {
679        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
680          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
681          unsigned Opc = ISD::SHL;
682          int Diff = ShAmt-C1;
683          if (Diff < 0) {
684            Diff = -Diff;
685            Opc = ISD::SRL;
686          }
687
688          SDOperand NewSA =
689            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
690          MVT::ValueType VT = Op.getValueType();
691          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
692                                                   InOp.getOperand(0), NewSA));
693        }
694      }
695
696      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
697                               KnownZero, KnownOne, TLO, Depth+1))
698        return true;
699      KnownZero <<= SA->getValue();
700      KnownOne  <<= SA->getValue();
701      // low bits known zero.
702      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
703    }
704    break;
705  case ISD::SRL:
706    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
707      MVT::ValueType VT = Op.getValueType();
708      unsigned ShAmt = SA->getValue();
709      unsigned VTSize = MVT::getSizeInBits(VT);
710      SDOperand InOp = Op.getOperand(0);
711
712      // If the shift count is an invalid immediate, don't do anything.
713      if (ShAmt >= BitWidth)
714        break;
715
716      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
717      // single shift.  We can do this if the top bits (which are shifted out)
718      // are never demanded.
719      if (InOp.getOpcode() == ISD::SHL &&
720          isa<ConstantSDNode>(InOp.getOperand(1))) {
721        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
722          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
723          unsigned Opc = ISD::SRL;
724          int Diff = ShAmt-C1;
725          if (Diff < 0) {
726            Diff = -Diff;
727            Opc = ISD::SHL;
728          }
729
730          SDOperand NewSA =
731            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
732          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
733                                                   InOp.getOperand(0), NewSA));
734        }
735      }
736
737      // Compute the new bits that are at the top now.
738      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
739                               KnownZero, KnownOne, TLO, Depth+1))
740        return true;
741      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
742      KnownZero = KnownZero.lshr(ShAmt);
743      KnownOne  = KnownOne.lshr(ShAmt);
744
745      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
746      KnownZero |= HighBits;  // High bits known zero.
747    }
748    break;
749  case ISD::SRA:
750    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
751      MVT::ValueType VT = Op.getValueType();
752      unsigned ShAmt = SA->getValue();
753
754      // If the shift count is an invalid immediate, don't do anything.
755      if (ShAmt >= BitWidth)
756        break;
757
758      APInt InDemandedMask = (NewMask << ShAmt);
759
760      // If any of the demanded bits are produced by the sign extension, we also
761      // demand the input sign bit.
762      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
763      if (HighBits.intersects(NewMask))
764        InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT));
765
766      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
767                               KnownZero, KnownOne, TLO, Depth+1))
768        return true;
769      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
770      KnownZero = KnownZero.lshr(ShAmt);
771      KnownOne  = KnownOne.lshr(ShAmt);
772
773      // Handle the sign bit, adjusted to where it is now in the mask.
774      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
775
776      // If the input sign bit is known to be zero, or if none of the top bits
777      // are demanded, turn this into an unsigned shift right.
778      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
779        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
780                                                 Op.getOperand(1)));
781      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
782        KnownOne |= HighBits;
783      }
784    }
785    break;
786  case ISD::SIGN_EXTEND_INREG: {
787    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
788
789    // Sign extension.  Compute the demanded bits in the result that are not
790    // present in the input.
791    APInt NewBits = APInt::getHighBitsSet(BitWidth,
792                                          BitWidth - MVT::getSizeInBits(EVT)) &
793                    NewMask;
794
795    // If none of the extended bits are demanded, eliminate the sextinreg.
796    if (NewBits == 0)
797      return TLO.CombineTo(Op, Op.getOperand(0));
798
799    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
800    InSignBit.zext(BitWidth);
801    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
802                                                   MVT::getSizeInBits(EVT)) &
803                              NewMask;
804
805    // Since the sign extended bits are demanded, we know that the sign
806    // bit is demanded.
807    InputDemandedBits |= InSignBit;
808
809    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
810                             KnownZero, KnownOne, TLO, Depth+1))
811      return true;
812    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
813
814    // If the sign bit of the input is known set or clear, then we know the
815    // top bits of the result.
816
817    // If the input sign bit is known zero, convert this into a zero extension.
818    if (KnownZero.intersects(InSignBit))
819      return TLO.CombineTo(Op,
820                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
821
822    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
823      KnownOne |= NewBits;
824      KnownZero &= ~NewBits;
825    } else {                       // Input sign bit unknown
826      KnownZero &= ~NewBits;
827      KnownOne &= ~NewBits;
828    }
829    break;
830  }
831  case ISD::ZERO_EXTEND: {
832    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
833    APInt InMask = NewMask;
834    InMask.trunc(OperandBitWidth);
835
836    // If none of the top bits are demanded, convert this into an any_extend.
837    APInt NewBits =
838      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
839    if (!NewBits.intersects(NewMask))
840      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
841                                               Op.getValueType(),
842                                               Op.getOperand(0)));
843
844    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
845                             KnownZero, KnownOne, TLO, Depth+1))
846      return true;
847    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
848    KnownZero.zext(BitWidth);
849    KnownOne.zext(BitWidth);
850    KnownZero |= NewBits;
851    break;
852  }
853  case ISD::SIGN_EXTEND: {
854    MVT::ValueType InVT = Op.getOperand(0).getValueType();
855    unsigned InBits = MVT::getSizeInBits(InVT);
856    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
857    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
858    APInt NewBits   = ~InMask & NewMask;
859
860    // If none of the top bits are demanded, convert this into an any_extend.
861    if (NewBits == 0)
862      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
863                                           Op.getOperand(0)));
864
865    // Since some of the sign extended bits are demanded, we know that the sign
866    // bit is demanded.
867    APInt InDemandedBits = InMask & NewMask;
868    InDemandedBits |= InSignBit;
869    InDemandedBits.trunc(InBits);
870
871    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
872                             KnownOne, TLO, Depth+1))
873      return true;
874    KnownZero.zext(BitWidth);
875    KnownOne.zext(BitWidth);
876
877    // If the sign bit is known zero, convert this to a zero extend.
878    if (KnownZero.intersects(InSignBit))
879      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
880                                               Op.getValueType(),
881                                               Op.getOperand(0)));
882
883    // If the sign bit is known one, the top bits match.
884    if (KnownOne.intersects(InSignBit)) {
885      KnownOne  |= NewBits;
886      KnownZero &= ~NewBits;
887    } else {   // Otherwise, top bits aren't known.
888      KnownOne  &= ~NewBits;
889      KnownZero &= ~NewBits;
890    }
891    break;
892  }
893  case ISD::ANY_EXTEND: {
894    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
895    APInt InMask = NewMask;
896    InMask.trunc(OperandBitWidth);
897    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
898                             KnownZero, KnownOne, TLO, Depth+1))
899      return true;
900    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
901    KnownZero.zext(BitWidth);
902    KnownOne.zext(BitWidth);
903    break;
904  }
905  case ISD::TRUNCATE: {
906    // Simplify the input, using demanded bit information, and compute the known
907    // zero/one bits live out.
908    APInt TruncMask = NewMask;
909    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
910    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
911                             KnownZero, KnownOne, TLO, Depth+1))
912      return true;
913    KnownZero.trunc(BitWidth);
914    KnownOne.trunc(BitWidth);
915
916    // If the input is only used by this truncate, see if we can shrink it based
917    // on the known demanded bits.
918    if (Op.getOperand(0).Val->hasOneUse()) {
919      SDOperand In = Op.getOperand(0);
920      unsigned InBitWidth = In.getValueSizeInBits();
921      switch (In.getOpcode()) {
922      default: break;
923      case ISD::SRL:
924        // Shrink SRL by a constant if none of the high bits shifted in are
925        // demanded.
926        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
927          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
928                                                 InBitWidth - BitWidth);
929          HighBits = HighBits.lshr(ShAmt->getValue());
930          HighBits.trunc(BitWidth);
931
932          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
933            // None of the shifted in bits are needed.  Add a truncate of the
934            // shift input, then shift it.
935            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
936                                                 Op.getValueType(),
937                                                 In.getOperand(0));
938            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
939                                                   NewTrunc, In.getOperand(1)));
940          }
941        }
942        break;
943      }
944    }
945
946    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
947    break;
948  }
949  case ISD::AssertZext: {
950    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
951    APInt InMask = APInt::getLowBitsSet(BitWidth,
952                                        MVT::getSizeInBits(VT));
953    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
954                             KnownZero, KnownOne, TLO, Depth+1))
955      return true;
956    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
957    KnownZero |= ~InMask & NewMask;
958    break;
959  }
960  case ISD::BIT_CONVERT:
961#if 0
962    // If this is an FP->Int bitcast and if the sign bit is the only thing that
963    // is demanded, turn this into a FGETSIGN.
964    if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) &&
965        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
966        !MVT::isVector(Op.getOperand(0).getValueType())) {
967      // Only do this xform if FGETSIGN is valid or if before legalize.
968      if (!TLO.AfterLegalize ||
969          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
970        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
971        // place.  We expect the SHL to be eliminated by other optimizations.
972        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
973                                         Op.getOperand(0));
974        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
975        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
976        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
977                                                 Sign, ShAmt));
978      }
979    }
980#endif
981    break;
982  default:
983    // Just use ComputeMaskedBits to compute output bits.
984    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
985    break;
986  }
987
988  // If we know the value of all of the demanded bits, return this as a
989  // constant.
990  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
991    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
992
993  return false;
994}
995
996/// computeMaskedBitsForTargetNode - Determine which of the bits specified
997/// in Mask are known to be either zero or one and return them in the
998/// KnownZero/KnownOne bitsets.
999void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1000                                                    const APInt &Mask,
1001                                                    APInt &KnownZero,
1002                                                    APInt &KnownOne,
1003                                                    const SelectionDAG &DAG,
1004                                                    unsigned Depth) const {
1005  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1006          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1007          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1008          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1009         "Should use MaskedValueIsZero if you don't know whether Op"
1010         " is a target node!");
1011  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1012}
1013
1014/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1015/// targets that want to expose additional information about sign bits to the
1016/// DAG Combiner.
1017unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1018                                                         unsigned Depth) const {
1019  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1020          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1021          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1022          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1023         "Should use ComputeNumSignBits if you don't know whether Op"
1024         " is a target node!");
1025  return 1;
1026}
1027
1028
1029/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1030/// and cc. If it is unable to simplify it, return a null SDOperand.
1031SDOperand
1032TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1033                              ISD::CondCode Cond, bool foldBooleans,
1034                              DAGCombinerInfo &DCI) const {
1035  SelectionDAG &DAG = DCI.DAG;
1036
1037  // These setcc operations always fold.
1038  switch (Cond) {
1039  default: break;
1040  case ISD::SETFALSE:
1041  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1042  case ISD::SETTRUE:
1043  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1044  }
1045
1046  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1047    const APInt &C1 = N1C->getAPIntValue();
1048    if (isa<ConstantSDNode>(N0.Val)) {
1049      return DAG.FoldSetCC(VT, N0, N1, Cond);
1050    } else {
1051      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1052      // equality comparison, then we're just comparing whether X itself is
1053      // zero.
1054      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1055          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1056          N0.getOperand(1).getOpcode() == ISD::Constant) {
1057        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1058        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1059            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1060          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1061            // (srl (ctlz x), 5) == 0  -> X != 0
1062            // (srl (ctlz x), 5) != 1  -> X != 0
1063            Cond = ISD::SETNE;
1064          } else {
1065            // (srl (ctlz x), 5) != 0  -> X == 0
1066            // (srl (ctlz x), 5) == 1  -> X == 0
1067            Cond = ISD::SETEQ;
1068          }
1069          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1070          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1071                              Zero, Cond);
1072        }
1073      }
1074
1075      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1076      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1077        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1078
1079        // If the comparison constant has bits in the upper part, the
1080        // zero-extended value could never match.
1081        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1082                                                C1.getBitWidth() - InSize))) {
1083          switch (Cond) {
1084          case ISD::SETUGT:
1085          case ISD::SETUGE:
1086          case ISD::SETEQ: return DAG.getConstant(0, VT);
1087          case ISD::SETULT:
1088          case ISD::SETULE:
1089          case ISD::SETNE: return DAG.getConstant(1, VT);
1090          case ISD::SETGT:
1091          case ISD::SETGE:
1092            // True if the sign bit of C1 is set.
1093            return DAG.getConstant(C1.isNegative(), VT);
1094          case ISD::SETLT:
1095          case ISD::SETLE:
1096            // True if the sign bit of C1 isn't set.
1097            return DAG.getConstant(C1.isNonNegative(), VT);
1098          default:
1099            break;
1100          }
1101        }
1102
1103        // Otherwise, we can perform the comparison with the low bits.
1104        switch (Cond) {
1105        case ISD::SETEQ:
1106        case ISD::SETNE:
1107        case ISD::SETUGT:
1108        case ISD::SETUGE:
1109        case ISD::SETULT:
1110        case ISD::SETULE:
1111          return DAG.getSetCC(VT, N0.getOperand(0),
1112                          DAG.getConstant(APInt(C1).trunc(InSize),
1113                                          N0.getOperand(0).getValueType()),
1114                          Cond);
1115        default:
1116          break;   // todo, be more careful with signed comparisons
1117        }
1118      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1119                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1120        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1121        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1122        MVT::ValueType ExtDstTy = N0.getValueType();
1123        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1124
1125        // If the extended part has any inconsistent bits, it cannot ever
1126        // compare equal.  In other words, they have to be all ones or all
1127        // zeros.
1128        APInt ExtBits =
1129          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1130        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1131          return DAG.getConstant(Cond == ISD::SETNE, VT);
1132
1133        SDOperand ZextOp;
1134        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1135        if (Op0Ty == ExtSrcTy) {
1136          ZextOp = N0.getOperand(0);
1137        } else {
1138          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1139          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1140                               DAG.getConstant(Imm, Op0Ty));
1141        }
1142        if (!DCI.isCalledByLegalizer())
1143          DCI.AddToWorklist(ZextOp.Val);
1144        // Otherwise, make this a use of a zext.
1145        return DAG.getSetCC(VT, ZextOp,
1146                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1147                                                               ExtDstTyBits,
1148                                                               ExtSrcTyBits),
1149                                            ExtDstTy),
1150                            Cond);
1151      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1152                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1153
1154        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1155        if (N0.getOpcode() == ISD::SETCC) {
1156          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1157          if (TrueWhenTrue)
1158            return N0;
1159
1160          // Invert the condition.
1161          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1162          CC = ISD::getSetCCInverse(CC,
1163                               MVT::isInteger(N0.getOperand(0).getValueType()));
1164          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1165        }
1166
1167        if ((N0.getOpcode() == ISD::XOR ||
1168             (N0.getOpcode() == ISD::AND &&
1169              N0.getOperand(0).getOpcode() == ISD::XOR &&
1170              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1171            isa<ConstantSDNode>(N0.getOperand(1)) &&
1172            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1173          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1174          // can only do this if the top bits are known zero.
1175          unsigned BitWidth = N0.getValueSizeInBits();
1176          if (DAG.MaskedValueIsZero(N0,
1177                                    APInt::getHighBitsSet(BitWidth,
1178                                                          BitWidth-1))) {
1179            // Okay, get the un-inverted input value.
1180            SDOperand Val;
1181            if (N0.getOpcode() == ISD::XOR)
1182              Val = N0.getOperand(0);
1183            else {
1184              assert(N0.getOpcode() == ISD::AND &&
1185                     N0.getOperand(0).getOpcode() == ISD::XOR);
1186              // ((X^1)&1)^1 -> X & 1
1187              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1188                                N0.getOperand(0).getOperand(0),
1189                                N0.getOperand(1));
1190            }
1191            return DAG.getSetCC(VT, Val, N1,
1192                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1193          }
1194        }
1195      }
1196
1197      APInt MinVal, MaxVal;
1198      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1199      if (ISD::isSignedIntSetCC(Cond)) {
1200        MinVal = APInt::getSignedMinValue(OperandBitSize);
1201        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1202      } else {
1203        MinVal = APInt::getMinValue(OperandBitSize);
1204        MaxVal = APInt::getMaxValue(OperandBitSize);
1205      }
1206
1207      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1208      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1209        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1210        // X >= C0 --> X > (C0-1)
1211        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1212                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1213      }
1214
1215      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1216        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1217        // X <= C0 --> X < (C0+1)
1218        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1219                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1220      }
1221
1222      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1223        return DAG.getConstant(0, VT);      // X < MIN --> false
1224      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1225        return DAG.getConstant(1, VT);      // X >= MIN --> true
1226      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1227        return DAG.getConstant(0, VT);      // X > MAX --> false
1228      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1229        return DAG.getConstant(1, VT);      // X <= MAX --> true
1230
1231      // Canonicalize setgt X, Min --> setne X, Min
1232      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1233        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1234      // Canonicalize setlt X, Max --> setne X, Max
1235      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1236        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1237
1238      // If we have setult X, 1, turn it into seteq X, 0
1239      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1240        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1241                        ISD::SETEQ);
1242      // If we have setugt X, Max-1, turn it into seteq X, Max
1243      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1244        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1245                        ISD::SETEQ);
1246
1247      // If we have "setcc X, C0", check to see if we can shrink the immediate
1248      // by changing cc.
1249
1250      // SETUGT X, SINTMAX  -> SETLT X, 0
1251      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1252          C1 == (~0ULL >> (65-OperandBitSize)))
1253        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1254                            ISD::SETLT);
1255
1256      // FIXME: Implement the rest of these.
1257
1258      // Fold bit comparisons when we can.
1259      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1260          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1261        if (ConstantSDNode *AndRHS =
1262                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1263          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1264            // Perform the xform if the AND RHS is a single bit.
1265            if (isPowerOf2_64(AndRHS->getValue())) {
1266              return DAG.getNode(ISD::SRL, VT, N0,
1267                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1268                                             getShiftAmountTy()));
1269            }
1270          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1271            // (X & 8) == 8  -->  (X & 8) >> 3
1272            // Perform the xform if C1 is a single bit.
1273            if (C1.isPowerOf2()) {
1274              return DAG.getNode(ISD::SRL, VT, N0,
1275                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1276            }
1277          }
1278        }
1279    }
1280  } else if (isa<ConstantSDNode>(N0.Val)) {
1281      // Ensure that the constant occurs on the RHS.
1282    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1283  }
1284
1285  if (isa<ConstantFPSDNode>(N0.Val)) {
1286    // Constant fold or commute setcc.
1287    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1288    if (O.Val) return O;
1289  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1290    // If the RHS of an FP comparison is a constant, simplify it away in
1291    // some cases.
1292    if (CFP->getValueAPF().isNaN()) {
1293      // If an operand is known to be a nan, we can fold it.
1294      switch (ISD::getUnorderedFlavor(Cond)) {
1295      default: assert(0 && "Unknown flavor!");
1296      case 0:  // Known false.
1297        return DAG.getConstant(0, VT);
1298      case 1:  // Known true.
1299        return DAG.getConstant(1, VT);
1300      case 2:  // Undefined.
1301        return DAG.getNode(ISD::UNDEF, VT);
1302      }
1303    }
1304
1305    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1306    // constant if knowing that the operand is non-nan is enough.  We prefer to
1307    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1308    // materialize 0.0.
1309    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1310      return DAG.getSetCC(VT, N0, N0, Cond);
1311  }
1312
1313  if (N0 == N1) {
1314    // We can always fold X == X for integer setcc's.
1315    if (MVT::isInteger(N0.getValueType()))
1316      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1317    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1318    if (UOF == 2)   // FP operators that are undefined on NaNs.
1319      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1320    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1321      return DAG.getConstant(UOF, VT);
1322    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1323    // if it is not already.
1324    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1325    if (NewCond != Cond)
1326      return DAG.getSetCC(VT, N0, N1, NewCond);
1327  }
1328
1329  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1330      MVT::isInteger(N0.getValueType())) {
1331    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1332        N0.getOpcode() == ISD::XOR) {
1333      // Simplify (X+Y) == (X+Z) -->  Y == Z
1334      if (N0.getOpcode() == N1.getOpcode()) {
1335        if (N0.getOperand(0) == N1.getOperand(0))
1336          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1337        if (N0.getOperand(1) == N1.getOperand(1))
1338          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1339        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1340          // If X op Y == Y op X, try other combinations.
1341          if (N0.getOperand(0) == N1.getOperand(1))
1342            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1343          if (N0.getOperand(1) == N1.getOperand(0))
1344            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1345        }
1346      }
1347
1348      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1349        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1350          // Turn (X+C1) == C2 --> X == C2-C1
1351          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1352            return DAG.getSetCC(VT, N0.getOperand(0),
1353                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1354                                N0.getValueType()), Cond);
1355          }
1356
1357          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1358          if (N0.getOpcode() == ISD::XOR)
1359            // If we know that all of the inverted bits are zero, don't bother
1360            // performing the inversion.
1361            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1362              return
1363                DAG.getSetCC(VT, N0.getOperand(0),
1364                             DAG.getConstant(LHSR->getAPIntValue() ^
1365                                               RHSC->getAPIntValue(),
1366                                             N0.getValueType()),
1367                             Cond);
1368        }
1369
1370        // Turn (C1-X) == C2 --> X == C1-C2
1371        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1372          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1373            return
1374              DAG.getSetCC(VT, N0.getOperand(1),
1375                           DAG.getConstant(SUBC->getAPIntValue() -
1376                                             RHSC->getAPIntValue(),
1377                                           N0.getValueType()),
1378                           Cond);
1379          }
1380        }
1381      }
1382
1383      // Simplify (X+Z) == X -->  Z == 0
1384      if (N0.getOperand(0) == N1)
1385        return DAG.getSetCC(VT, N0.getOperand(1),
1386                        DAG.getConstant(0, N0.getValueType()), Cond);
1387      if (N0.getOperand(1) == N1) {
1388        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1389          return DAG.getSetCC(VT, N0.getOperand(0),
1390                          DAG.getConstant(0, N0.getValueType()), Cond);
1391        else if (N0.Val->hasOneUse()) {
1392          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1393          // (Z-X) == X  --> Z == X<<1
1394          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1395                                     N1,
1396                                     DAG.getConstant(1, getShiftAmountTy()));
1397          if (!DCI.isCalledByLegalizer())
1398            DCI.AddToWorklist(SH.Val);
1399          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1400        }
1401      }
1402    }
1403
1404    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1405        N1.getOpcode() == ISD::XOR) {
1406      // Simplify  X == (X+Z) -->  Z == 0
1407      if (N1.getOperand(0) == N0) {
1408        return DAG.getSetCC(VT, N1.getOperand(1),
1409                        DAG.getConstant(0, N1.getValueType()), Cond);
1410      } else if (N1.getOperand(1) == N0) {
1411        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1412          return DAG.getSetCC(VT, N1.getOperand(0),
1413                          DAG.getConstant(0, N1.getValueType()), Cond);
1414        } else if (N1.Val->hasOneUse()) {
1415          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1416          // X == (Z-X)  --> X<<1 == Z
1417          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1418                                     DAG.getConstant(1, getShiftAmountTy()));
1419          if (!DCI.isCalledByLegalizer())
1420            DCI.AddToWorklist(SH.Val);
1421          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1422        }
1423      }
1424    }
1425  }
1426
1427  // Fold away ALL boolean setcc's.
1428  SDOperand Temp;
1429  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1430    switch (Cond) {
1431    default: assert(0 && "Unknown integer setcc!");
1432    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1433      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1434      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1435      if (!DCI.isCalledByLegalizer())
1436        DCI.AddToWorklist(Temp.Val);
1437      break;
1438    case ISD::SETNE:  // X != Y   -->  (X^Y)
1439      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1440      break;
1441    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1442    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1443      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1444      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1445      if (!DCI.isCalledByLegalizer())
1446        DCI.AddToWorklist(Temp.Val);
1447      break;
1448    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1449    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1450      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1451      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1452      if (!DCI.isCalledByLegalizer())
1453        DCI.AddToWorklist(Temp.Val);
1454      break;
1455    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1456    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1457      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1458      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1459      if (!DCI.isCalledByLegalizer())
1460        DCI.AddToWorklist(Temp.Val);
1461      break;
1462    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1463    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1464      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1465      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1466      break;
1467    }
1468    if (VT != MVT::i1) {
1469      if (!DCI.isCalledByLegalizer())
1470        DCI.AddToWorklist(N0.Val);
1471      // FIXME: If running after legalize, we probably can't do this.
1472      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1473    }
1474    return N0;
1475  }
1476
1477  // Could not fold it.
1478  return SDOperand();
1479}
1480
1481SDOperand TargetLowering::
1482PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1483  // Default implementation: no optimization.
1484  return SDOperand();
1485}
1486
1487//===----------------------------------------------------------------------===//
1488//  Inline Assembler Implementation Methods
1489//===----------------------------------------------------------------------===//
1490
1491
1492TargetLowering::ConstraintType
1493TargetLowering::getConstraintType(const std::string &Constraint) const {
1494  // FIXME: lots more standard ones to handle.
1495  if (Constraint.size() == 1) {
1496    switch (Constraint[0]) {
1497    default: break;
1498    case 'r': return C_RegisterClass;
1499    case 'm':    // memory
1500    case 'o':    // offsetable
1501    case 'V':    // not offsetable
1502      return C_Memory;
1503    case 'i':    // Simple Integer or Relocatable Constant
1504    case 'n':    // Simple Integer
1505    case 's':    // Relocatable Constant
1506    case 'X':    // Allow ANY value.
1507    case 'I':    // Target registers.
1508    case 'J':
1509    case 'K':
1510    case 'L':
1511    case 'M':
1512    case 'N':
1513    case 'O':
1514    case 'P':
1515      return C_Other;
1516    }
1517  }
1518
1519  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1520      Constraint[Constraint.size()-1] == '}')
1521    return C_Register;
1522  return C_Unknown;
1523}
1524
1525/// LowerXConstraint - try to replace an X constraint, which matches anything,
1526/// with another that has more specific requirements based on the type of the
1527/// corresponding operand.
1528const char *TargetLowering::LowerXConstraint(MVT::ValueType ConstraintVT) const{
1529  if (MVT::isInteger(ConstraintVT))
1530    return "r";
1531  if (MVT::isFloatingPoint(ConstraintVT))
1532    return "f";      // works for many targets
1533  return 0;
1534}
1535
1536/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1537/// vector.  If it is invalid, don't add anything to Ops.
1538void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1539                                                  char ConstraintLetter,
1540                                                  std::vector<SDOperand> &Ops,
1541                                                  SelectionDAG &DAG) const {
1542  switch (ConstraintLetter) {
1543  default: break;
1544  case 'X':     // Allows any operand; labels (basic block) use this.
1545    if (Op.getOpcode() == ISD::BasicBlock) {
1546      Ops.push_back(Op);
1547      return;
1548    }
1549    // fall through
1550  case 'i':    // Simple Integer or Relocatable Constant
1551  case 'n':    // Simple Integer
1552  case 's': {  // Relocatable Constant
1553    // These operands are interested in values of the form (GV+C), where C may
1554    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1555    // is possible and fine if either GV or C are missing.
1556    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1557    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1558
1559    // If we have "(add GV, C)", pull out GV/C
1560    if (Op.getOpcode() == ISD::ADD) {
1561      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1562      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1563      if (C == 0 || GA == 0) {
1564        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1565        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1566      }
1567      if (C == 0 || GA == 0)
1568        C = 0, GA = 0;
1569    }
1570
1571    // If we find a valid operand, map to the TargetXXX version so that the
1572    // value itself doesn't get selected.
1573    if (GA) {   // Either &GV   or   &GV+C
1574      if (ConstraintLetter != 'n') {
1575        int64_t Offs = GA->getOffset();
1576        if (C) Offs += C->getValue();
1577        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1578                                                 Op.getValueType(), Offs));
1579        return;
1580      }
1581    }
1582    if (C) {   // just C, no GV.
1583      // Simple constants are not allowed for 's'.
1584      if (ConstraintLetter != 's') {
1585        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1586        return;
1587      }
1588    }
1589    break;
1590  }
1591  }
1592}
1593
1594std::vector<unsigned> TargetLowering::
1595getRegClassForInlineAsmConstraint(const std::string &Constraint,
1596                                  MVT::ValueType VT) const {
1597  return std::vector<unsigned>();
1598}
1599
1600
1601std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1602getRegForInlineAsmConstraint(const std::string &Constraint,
1603                             MVT::ValueType VT) const {
1604  if (Constraint[0] != '{')
1605    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1606  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1607
1608  // Remove the braces from around the name.
1609  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1610
1611  // Figure out which register class contains this reg.
1612  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1613  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1614       E = RI->regclass_end(); RCI != E; ++RCI) {
1615    const TargetRegisterClass *RC = *RCI;
1616
1617    // If none of the the value types for this register class are valid, we
1618    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1619    bool isLegal = false;
1620    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1621         I != E; ++I) {
1622      if (isTypeLegal(*I)) {
1623        isLegal = true;
1624        break;
1625      }
1626    }
1627
1628    if (!isLegal) continue;
1629
1630    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1631         I != E; ++I) {
1632      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1633        return std::make_pair(*I, RC);
1634    }
1635  }
1636
1637  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1638}
1639
1640//===----------------------------------------------------------------------===//
1641// Constraint Selection.
1642
1643/// getConstraintGenerality - Return an integer indicating how general CT
1644/// is.
1645static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1646  switch (CT) {
1647  default: assert(0 && "Unknown constraint type!");
1648  case TargetLowering::C_Other:
1649  case TargetLowering::C_Unknown:
1650    return 0;
1651  case TargetLowering::C_Register:
1652    return 1;
1653  case TargetLowering::C_RegisterClass:
1654    return 2;
1655  case TargetLowering::C_Memory:
1656    return 3;
1657  }
1658}
1659
1660/// ChooseConstraint - If there are multiple different constraints that we
1661/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1662/// This is somewhat tricky: constraints fall into four classes:
1663///    Other         -> immediates and magic values
1664///    Register      -> one specific register
1665///    RegisterClass -> a group of regs
1666///    Memory        -> memory
1667/// Ideally, we would pick the most specific constraint possible: if we have
1668/// something that fits into a register, we would pick it.  The problem here
1669/// is that if we have something that could either be in a register or in
1670/// memory that use of the register could cause selection of *other*
1671/// operands to fail: they might only succeed if we pick memory.  Because of
1672/// this the heuristic we use is:
1673///
1674///  1) If there is an 'other' constraint, and if the operand is valid for
1675///     that constraint, use it.  This makes us take advantage of 'i'
1676///     constraints when available.
1677///  2) Otherwise, pick the most general constraint present.  This prefers
1678///     'm' over 'r', for example.
1679///
1680static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1681                             const TargetLowering &TLI,
1682                             SDOperand Op, SelectionDAG *DAG) {
1683  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1684  unsigned BestIdx = 0;
1685  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1686  int BestGenerality = -1;
1687
1688  // Loop over the options, keeping track of the most general one.
1689  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1690    TargetLowering::ConstraintType CType =
1691      TLI.getConstraintType(OpInfo.Codes[i]);
1692
1693    // If this is an 'other' constraint, see if the operand is valid for it.
1694    // For example, on X86 we might have an 'rI' constraint.  If the operand
1695    // is an integer in the range [0..31] we want to use I (saving a load
1696    // of a register), otherwise we must use 'r'.
1697    if (CType == TargetLowering::C_Other && Op.Val) {
1698      assert(OpInfo.Codes[i].size() == 1 &&
1699             "Unhandled multi-letter 'other' constraint");
1700      std::vector<SDOperand> ResultOps;
1701      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1702                                       ResultOps, *DAG);
1703      if (!ResultOps.empty()) {
1704        BestType = CType;
1705        BestIdx = i;
1706        break;
1707      }
1708    }
1709
1710    // This constraint letter is more general than the previous one, use it.
1711    int Generality = getConstraintGenerality(CType);
1712    if (Generality > BestGenerality) {
1713      BestType = CType;
1714      BestIdx = i;
1715      BestGenerality = Generality;
1716    }
1717  }
1718
1719  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1720  OpInfo.ConstraintType = BestType;
1721}
1722
1723/// ComputeConstraintToUse - Determines the constraint code and constraint
1724/// type to use for the specific AsmOperandInfo, setting
1725/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1726void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1727                                            SDOperand Op,
1728                                            SelectionDAG *DAG) const {
1729  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1730
1731  // Single-letter constraints ('r') are very common.
1732  if (OpInfo.Codes.size() == 1) {
1733    OpInfo.ConstraintCode = OpInfo.Codes[0];
1734    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1735  } else {
1736    ChooseConstraint(OpInfo, *this, Op, DAG);
1737  }
1738
1739  // 'X' matches anything.
1740  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1741    // Labels and constants are handled elsewhere ('X' is the only thing
1742    // that matches labels).
1743    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1744        isa<ConstantInt>(OpInfo.CallOperandVal))
1745      return;
1746
1747    // Otherwise, try to resolve it to something we know about by looking at
1748    // the actual operand type.
1749    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1750      OpInfo.ConstraintCode = Repl;
1751      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1752    }
1753  }
1754}
1755
1756//===----------------------------------------------------------------------===//
1757//  Loop Strength Reduction hooks
1758//===----------------------------------------------------------------------===//
1759
1760/// isLegalAddressingMode - Return true if the addressing mode represented
1761/// by AM is legal for this target, for a load/store of the specified type.
1762bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1763                                           const Type *Ty) const {
1764  // The default implementation of this implements a conservative RISCy, r+r and
1765  // r+i addr mode.
1766
1767  // Allows a sign-extended 16-bit immediate field.
1768  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1769    return false;
1770
1771  // No global is ever allowed as a base.
1772  if (AM.BaseGV)
1773    return false;
1774
1775  // Only support r+r,
1776  switch (AM.Scale) {
1777  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1778    break;
1779  case 1:
1780    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1781      return false;
1782    // Otherwise we have r+r or r+i.
1783    break;
1784  case 2:
1785    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1786      return false;
1787    // Allow 2*r as r+r.
1788    break;
1789  }
1790
1791  return true;
1792}
1793
1794// Magic for divide replacement
1795
1796struct ms {
1797  int64_t m;  // magic number
1798  int64_t s;  // shift amount
1799};
1800
1801struct mu {
1802  uint64_t m; // magic number
1803  int64_t a;  // add indicator
1804  int64_t s;  // shift amount
1805};
1806
1807/// magic - calculate the magic numbers required to codegen an integer sdiv as
1808/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1809/// or -1.
1810static ms magic32(int32_t d) {
1811  int32_t p;
1812  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1813  const uint32_t two31 = 0x80000000U;
1814  struct ms mag;
1815
1816  ad = abs(d);
1817  t = two31 + ((uint32_t)d >> 31);
1818  anc = t - 1 - t%ad;   // absolute value of nc
1819  p = 31;               // initialize p
1820  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1821  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1822  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1823  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1824  do {
1825    p = p + 1;
1826    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1827    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1828    if (r1 >= anc) {  // must be unsigned comparison
1829      q1 = q1 + 1;
1830      r1 = r1 - anc;
1831    }
1832    q2 = 2*q2;        // update q2 = 2p/abs(d)
1833    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1834    if (r2 >= ad) {   // must be unsigned comparison
1835      q2 = q2 + 1;
1836      r2 = r2 - ad;
1837    }
1838    delta = ad - r2;
1839  } while (q1 < delta || (q1 == delta && r1 == 0));
1840
1841  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1842  if (d < 0) mag.m = -mag.m; // resulting magic number
1843  mag.s = p - 32;            // resulting shift
1844  return mag;
1845}
1846
1847/// magicu - calculate the magic numbers required to codegen an integer udiv as
1848/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1849static mu magicu32(uint32_t d) {
1850  int32_t p;
1851  uint32_t nc, delta, q1, r1, q2, r2;
1852  struct mu magu;
1853  magu.a = 0;               // initialize "add" indicator
1854  nc = - 1 - (-d)%d;
1855  p = 31;                   // initialize p
1856  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1857  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1858  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1859  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1860  do {
1861    p = p + 1;
1862    if (r1 >= nc - r1 ) {
1863      q1 = 2*q1 + 1;  // update q1
1864      r1 = 2*r1 - nc; // update r1
1865    }
1866    else {
1867      q1 = 2*q1; // update q1
1868      r1 = 2*r1; // update r1
1869    }
1870    if (r2 + 1 >= d - r2) {
1871      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1872      q2 = 2*q2 + 1;     // update q2
1873      r2 = 2*r2 + 1 - d; // update r2
1874    }
1875    else {
1876      if (q2 >= 0x80000000) magu.a = 1;
1877      q2 = 2*q2;     // update q2
1878      r2 = 2*r2 + 1; // update r2
1879    }
1880    delta = d - 1 - r2;
1881  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1882  magu.m = q2 + 1; // resulting magic number
1883  magu.s = p - 32;  // resulting shift
1884  return magu;
1885}
1886
1887/// magic - calculate the magic numbers required to codegen an integer sdiv as
1888/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1889/// or -1.
1890static ms magic64(int64_t d) {
1891  int64_t p;
1892  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1893  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1894  struct ms mag;
1895
1896  ad = d >= 0 ? d : -d;
1897  t = two63 + ((uint64_t)d >> 63);
1898  anc = t - 1 - t%ad;   // absolute value of nc
1899  p = 63;               // initialize p
1900  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1901  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1902  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1903  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1904  do {
1905    p = p + 1;
1906    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1907    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1908    if (r1 >= anc) {  // must be unsigned comparison
1909      q1 = q1 + 1;
1910      r1 = r1 - anc;
1911    }
1912    q2 = 2*q2;        // update q2 = 2p/abs(d)
1913    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1914    if (r2 >= ad) {   // must be unsigned comparison
1915      q2 = q2 + 1;
1916      r2 = r2 - ad;
1917    }
1918    delta = ad - r2;
1919  } while (q1 < delta || (q1 == delta && r1 == 0));
1920
1921  mag.m = q2 + 1;
1922  if (d < 0) mag.m = -mag.m; // resulting magic number
1923  mag.s = p - 64;            // resulting shift
1924  return mag;
1925}
1926
1927/// magicu - calculate the magic numbers required to codegen an integer udiv as
1928/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1929static mu magicu64(uint64_t d)
1930{
1931  int64_t p;
1932  uint64_t nc, delta, q1, r1, q2, r2;
1933  struct mu magu;
1934  magu.a = 0;               // initialize "add" indicator
1935  nc = - 1 - (-d)%d;
1936  p = 63;                   // initialize p
1937  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1938  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1939  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1940  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1941  do {
1942    p = p + 1;
1943    if (r1 >= nc - r1 ) {
1944      q1 = 2*q1 + 1;  // update q1
1945      r1 = 2*r1 - nc; // update r1
1946    }
1947    else {
1948      q1 = 2*q1; // update q1
1949      r1 = 2*r1; // update r1
1950    }
1951    if (r2 + 1 >= d - r2) {
1952      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1953      q2 = 2*q2 + 1;     // update q2
1954      r2 = 2*r2 + 1 - d; // update r2
1955    }
1956    else {
1957      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1958      q2 = 2*q2;     // update q2
1959      r2 = 2*r2 + 1; // update r2
1960    }
1961    delta = d - 1 - r2;
1962  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1963  magu.m = q2 + 1; // resulting magic number
1964  magu.s = p - 64;  // resulting shift
1965  return magu;
1966}
1967
1968/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1969/// return a DAG expression to select that will generate the same value by
1970/// multiplying by a magic number.  See:
1971/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1972SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1973                                    std::vector<SDNode*>* Created) const {
1974  MVT::ValueType VT = N->getValueType(0);
1975
1976  // Check to see if we can do this.
1977  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1978    return SDOperand();       // BuildSDIV only operates on i32 or i64
1979
1980  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1981  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1982
1983  // Multiply the numerator (operand 0) by the magic value
1984  SDOperand Q;
1985  if (isOperationLegal(ISD::MULHS, VT))
1986    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1987                    DAG.getConstant(magics.m, VT));
1988  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1989    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1990                              N->getOperand(0),
1991                              DAG.getConstant(magics.m, VT)).Val, 1);
1992  else
1993    return SDOperand();       // No mulhs or equvialent
1994  // If d > 0 and m < 0, add the numerator
1995  if (d > 0 && magics.m < 0) {
1996    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1997    if (Created)
1998      Created->push_back(Q.Val);
1999  }
2000  // If d < 0 and m > 0, subtract the numerator.
2001  if (d < 0 && magics.m > 0) {
2002    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2003    if (Created)
2004      Created->push_back(Q.Val);
2005  }
2006  // Shift right algebraic if shift value is nonzero
2007  if (magics.s > 0) {
2008    Q = DAG.getNode(ISD::SRA, VT, Q,
2009                    DAG.getConstant(magics.s, getShiftAmountTy()));
2010    if (Created)
2011      Created->push_back(Q.Val);
2012  }
2013  // Extract the sign bit and add it to the quotient
2014  SDOperand T =
2015    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
2016                                                 getShiftAmountTy()));
2017  if (Created)
2018    Created->push_back(T.Val);
2019  return DAG.getNode(ISD::ADD, VT, Q, T);
2020}
2021
2022/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2023/// return a DAG expression to select that will generate the same value by
2024/// multiplying by a magic number.  See:
2025/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2026SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2027                                    std::vector<SDNode*>* Created) const {
2028  MVT::ValueType VT = N->getValueType(0);
2029
2030  // Check to see if we can do this.
2031  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2032    return SDOperand();       // BuildUDIV only operates on i32 or i64
2033
2034  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2035  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2036
2037  // Multiply the numerator (operand 0) by the magic value
2038  SDOperand Q;
2039  if (isOperationLegal(ISD::MULHU, VT))
2040    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2041                    DAG.getConstant(magics.m, VT));
2042  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2043    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2044                              N->getOperand(0),
2045                              DAG.getConstant(magics.m, VT)).Val, 1);
2046  else
2047    return SDOperand();       // No mulhu or equvialent
2048  if (Created)
2049    Created->push_back(Q.Val);
2050
2051  if (magics.a == 0) {
2052    return DAG.getNode(ISD::SRL, VT, Q,
2053                       DAG.getConstant(magics.s, getShiftAmountTy()));
2054  } else {
2055    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2056    if (Created)
2057      Created->push_back(NPQ.Val);
2058    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2059                      DAG.getConstant(1, getShiftAmountTy()));
2060    if (Created)
2061      Created->push_back(NPQ.Val);
2062    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2063    if (Created)
2064      Created->push_back(NPQ.Val);
2065    return DAG.getNode(ISD::SRL, VT, NPQ,
2066                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2067  }
2068}
2069