TargetLowering.cpp revision a2e9485e34f1348526ed104dbdc194673e291077
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
94  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
95  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
96  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
97  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
98  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
99  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
100  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
101  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
102  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
103  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
104  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
105  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
106  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
107  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
108  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
109  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
110  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
111  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
112  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
113  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
114  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
115  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
116  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
117  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
118  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
119  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
120  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
121  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
122  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
123  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
124  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
125  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
126  Names[RTLIB::OEQ_F32] = "__eqsf2";
127  Names[RTLIB::OEQ_F64] = "__eqdf2";
128  Names[RTLIB::UNE_F32] = "__nesf2";
129  Names[RTLIB::UNE_F64] = "__nedf2";
130  Names[RTLIB::OGE_F32] = "__gesf2";
131  Names[RTLIB::OGE_F64] = "__gedf2";
132  Names[RTLIB::OLT_F32] = "__ltsf2";
133  Names[RTLIB::OLT_F64] = "__ltdf2";
134  Names[RTLIB::OLE_F32] = "__lesf2";
135  Names[RTLIB::OLE_F64] = "__ledf2";
136  Names[RTLIB::OGT_F32] = "__gtsf2";
137  Names[RTLIB::OGT_F64] = "__gtdf2";
138  Names[RTLIB::UO_F32] = "__unordsf2";
139  Names[RTLIB::UO_F64] = "__unorddf2";
140  Names[RTLIB::O_F32] = "__unordsf2";
141  Names[RTLIB::O_F64] = "__unorddf2";
142}
143
144/// InitCmpLibcallCCs - Set default comparison libcall CC.
145///
146static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
147  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
148  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
149  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
150  CCs[RTLIB::UNE_F32] = ISD::SETNE;
151  CCs[RTLIB::UNE_F64] = ISD::SETNE;
152  CCs[RTLIB::OGE_F32] = ISD::SETGE;
153  CCs[RTLIB::OGE_F64] = ISD::SETGE;
154  CCs[RTLIB::OLT_F32] = ISD::SETLT;
155  CCs[RTLIB::OLT_F64] = ISD::SETLT;
156  CCs[RTLIB::OLE_F32] = ISD::SETLE;
157  CCs[RTLIB::OLE_F64] = ISD::SETLE;
158  CCs[RTLIB::OGT_F32] = ISD::SETGT;
159  CCs[RTLIB::OGT_F64] = ISD::SETGT;
160  CCs[RTLIB::UO_F32] = ISD::SETNE;
161  CCs[RTLIB::UO_F64] = ISD::SETNE;
162  CCs[RTLIB::O_F32] = ISD::SETEQ;
163  CCs[RTLIB::O_F64] = ISD::SETEQ;
164}
165
166TargetLowering::TargetLowering(TargetMachine &tm)
167  : TM(tm), TD(TM.getTargetData()) {
168  assert(ISD::BUILTIN_OP_END <= 156 &&
169         "Fixed size array in TargetLowering is not large enough!");
170  // All operations default to being supported.
171  memset(OpActions, 0, sizeof(OpActions));
172  memset(LoadXActions, 0, sizeof(LoadXActions));
173  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
174  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
175  memset(ConvertActions, 0, sizeof(ConvertActions));
176
177  // Set default actions for various operations.
178  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
179    // Default all indexed load / store to expand.
180    for (unsigned IM = (unsigned)ISD::PRE_INC;
181         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
182      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
183      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
184    }
185
186    // These operations default to expand.
187    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
188  }
189
190  // Most targets ignore the @llvm.prefetch intrinsic.
191  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
192
193  // ConstantFP nodes default to expand.  Targets can either change this to
194  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
195  // to optimize expansions for certain constants.
196  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
197  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
198  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
199
200  // Default ISD::TRAP to expand (which turns it into abort).
201  setOperationAction(ISD::TRAP, MVT::Other, Expand);
202
203  IsLittleEndian = TD->isLittleEndian();
204  UsesGlobalOffsetTable = false;
205  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
206  ShiftAmtHandling = Undefined;
207  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
208  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
209  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
210  allowUnalignedMemoryAccesses = false;
211  UseUnderscoreSetJmp = false;
212  UseUnderscoreLongJmp = false;
213  SelectIsExpensive = false;
214  IntDivIsCheap = false;
215  Pow2DivIsCheap = false;
216  StackPointerRegisterToSaveRestore = 0;
217  ExceptionPointerRegister = 0;
218  ExceptionSelectorRegister = 0;
219  SetCCResultContents = UndefinedSetCCResult;
220  SchedPreferenceInfo = SchedulingForLatency;
221  JumpBufSize = 0;
222  JumpBufAlignment = 0;
223  IfCvtBlockSizeLimit = 2;
224  IfCvtDupBlockSizeLimit = 0;
225  PrefLoopAlignment = 0;
226
227  InitLibcallNames(LibcallRoutineNames);
228  InitCmpLibcallCCs(CmpLibcallCCs);
229
230  // Tell Legalize whether the assembler supports DEBUG_LOC.
231  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
232    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
233}
234
235TargetLowering::~TargetLowering() {}
236
237
238SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
239  assert(getSubtarget() && "Subtarget not defined");
240  SDOperand ChainOp = Op.getOperand(0);
241  SDOperand DestOp = Op.getOperand(1);
242  SDOperand SourceOp = Op.getOperand(2);
243  SDOperand CountOp = Op.getOperand(3);
244  SDOperand AlignOp = Op.getOperand(4);
245  SDOperand AlwaysInlineOp = Op.getOperand(5);
246
247  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
248  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
249  if (Align == 0) Align = 1;
250
251  // If size is unknown, call memcpy.
252  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
253  if (!I) {
254    assert(!AlwaysInline && "Cannot inline copy of unknown size");
255    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
256  }
257
258  // If not DWORD aligned or if size is more than threshold, then call memcpy.
259  // The libc version is likely to be faster for the following cases. It can
260  // use the address value and run time information about the CPU.
261  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
262  unsigned Size = I->getValue();
263  if (AlwaysInline ||
264      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
265       (Align & 3) == 0))
266    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
267  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
268}
269
270
271SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
272                                          SDOperand Dest,
273                                          SDOperand Source,
274                                          SDOperand Count,
275                                          SelectionDAG &DAG) {
276  MVT::ValueType IntPtr = getPointerTy();
277  TargetLowering::ArgListTy Args;
278  TargetLowering::ArgListEntry Entry;
279  Entry.Ty = getTargetData()->getIntPtrType();
280  Entry.Node = Dest; Args.push_back(Entry);
281  Entry.Node = Source; Args.push_back(Entry);
282  Entry.Node = Count; Args.push_back(Entry);
283  std::pair<SDOperand,SDOperand> CallResult =
284      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
285                  false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
286  return CallResult.second;
287}
288
289
290/// computeRegisterProperties - Once all of the register classes are added,
291/// this allows us to compute derived properties we expose.
292void TargetLowering::computeRegisterProperties() {
293  assert(MVT::LAST_VALUETYPE <= 32 &&
294         "Too many value types for ValueTypeActions to hold!");
295
296  // Everything defaults to needing one register.
297  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
298    NumRegistersForVT[i] = 1;
299    RegisterTypeForVT[i] = TransformToType[i] = i;
300  }
301  // ...except isVoid, which doesn't need any registers.
302  NumRegistersForVT[MVT::isVoid] = 0;
303
304  // Find the largest integer register class.
305  unsigned LargestIntReg = MVT::i128;
306  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
307    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
308
309  // Every integer value type larger than this largest register takes twice as
310  // many registers to represent as the previous ValueType.
311  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
312       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
313    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
314    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
315    TransformToType[ExpandedReg] = ExpandedReg - 1;
316    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
317  }
318
319  // Inspect all of the ValueType's smaller than the largest integer
320  // register to see which ones need promotion.
321  MVT::ValueType LegalIntReg = LargestIntReg;
322  for (MVT::ValueType IntReg = LargestIntReg - 1;
323       IntReg >= MVT::i1; --IntReg) {
324    if (isTypeLegal(IntReg)) {
325      LegalIntReg = IntReg;
326    } else {
327      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
328      ValueTypeActions.setTypeAction(IntReg, Promote);
329    }
330  }
331
332  // ppcf128 type is really two f64's.
333  if (!isTypeLegal(MVT::ppcf128)) {
334    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
335    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
336    TransformToType[MVT::ppcf128] = MVT::f64;
337    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
338  }
339
340  // Decide how to handle f64. If the target does not have native f64 support,
341  // expand it to i64 and we will be generating soft float library calls.
342  if (!isTypeLegal(MVT::f64)) {
343    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
344    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
345    TransformToType[MVT::f64] = MVT::i64;
346    ValueTypeActions.setTypeAction(MVT::f64, Expand);
347  }
348
349  // Decide how to handle f32. If the target does not have native support for
350  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
351  if (!isTypeLegal(MVT::f32)) {
352    if (isTypeLegal(MVT::f64)) {
353      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
354      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
355      TransformToType[MVT::f32] = MVT::f64;
356      ValueTypeActions.setTypeAction(MVT::f32, Promote);
357    } else {
358      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
359      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
360      TransformToType[MVT::f32] = MVT::i32;
361      ValueTypeActions.setTypeAction(MVT::f32, Expand);
362    }
363  }
364
365  // Loop over all of the vector value types to see which need transformations.
366  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
367       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
368    if (!isTypeLegal(i)) {
369      MVT::ValueType IntermediateVT, RegisterVT;
370      unsigned NumIntermediates;
371      NumRegistersForVT[i] =
372        getVectorTypeBreakdown(i,
373                               IntermediateVT, NumIntermediates,
374                               RegisterVT);
375      RegisterTypeForVT[i] = RegisterVT;
376      TransformToType[i] = MVT::Other; // this isn't actually used
377      ValueTypeActions.setTypeAction(i, Expand);
378    }
379  }
380}
381
382const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
383  return NULL;
384}
385
386
387MVT::ValueType
388TargetLowering::getSetCCResultType(const SDOperand &) const {
389  return getValueType(TD->getIntPtrType());
390}
391
392
393/// getVectorTypeBreakdown - Vector types are broken down into some number of
394/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
395/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
396/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
397///
398/// This method returns the number of registers needed, and the VT for each
399/// register.  It also returns the VT and quantity of the intermediate values
400/// before they are promoted/expanded.
401///
402unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
403                                                MVT::ValueType &IntermediateVT,
404                                                unsigned &NumIntermediates,
405                                      MVT::ValueType &RegisterVT) const {
406  // Figure out the right, legal destination reg to copy into.
407  unsigned NumElts = MVT::getVectorNumElements(VT);
408  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
409
410  unsigned NumVectorRegs = 1;
411
412  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
413  // could break down into LHS/RHS like LegalizeDAG does.
414  if (!isPowerOf2_32(NumElts)) {
415    NumVectorRegs = NumElts;
416    NumElts = 1;
417  }
418
419  // Divide the input until we get to a supported size.  This will always
420  // end with a scalar if the target doesn't support vectors.
421  while (NumElts > 1 &&
422         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
423    NumElts >>= 1;
424    NumVectorRegs <<= 1;
425  }
426
427  NumIntermediates = NumVectorRegs;
428
429  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
430  if (!isTypeLegal(NewVT))
431    NewVT = EltTy;
432  IntermediateVT = NewVT;
433
434  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
435  RegisterVT = DestVT;
436  if (DestVT < NewVT) {
437    // Value is expanded, e.g. i64 -> i16.
438    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
439  } else {
440    // Otherwise, promotion or legal types use the same number of registers as
441    // the vector decimated to the appropriate level.
442    return NumVectorRegs;
443  }
444
445  return 1;
446}
447
448/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
449/// function arguments in the caller parameter area.  This is the actual
450/// alignment, not its logarithm.
451unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
452  return TD->getCallFrameTypeAlignment(Ty);
453}
454
455SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
456                                                   SelectionDAG &DAG) const {
457  if (usesGlobalOffsetTable())
458    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
459  return Table;
460}
461
462//===----------------------------------------------------------------------===//
463//  Optimization Methods
464//===----------------------------------------------------------------------===//
465
466/// ShrinkDemandedConstant - Check to see if the specified operand of the
467/// specified instruction is a constant integer.  If so, check to see if there
468/// are any bits set in the constant that are not demanded.  If so, shrink the
469/// constant and return true.
470bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
471                                                        const APInt &Demanded) {
472  // FIXME: ISD::SELECT, ISD::SELECT_CC
473  switch(Op.getOpcode()) {
474  default: break;
475  case ISD::AND:
476  case ISD::OR:
477  case ISD::XOR:
478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
479      if (C->getAPIntValue().intersects(~Demanded)) {
480        MVT::ValueType VT = Op.getValueType();
481        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
482                                    DAG.getConstant(Demanded &
483                                                      C->getAPIntValue(),
484                                                    VT));
485        return CombineTo(Op, New);
486      }
487    break;
488  }
489  return false;
490}
491
492/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
493/// DemandedMask bits of the result of Op are ever used downstream.  If we can
494/// use this information to simplify Op, create a new simplified DAG node and
495/// return true, returning the original and new nodes in Old and New. Otherwise,
496/// analyze the expression and return a mask of KnownOne and KnownZero bits for
497/// the expression (used to simplify the caller).  The KnownZero/One bits may
498/// only be accurate for those bits in the DemandedMask.
499bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
500                                          const APInt &DemandedMask,
501                                          APInt &KnownZero,
502                                          APInt &KnownOne,
503                                          TargetLoweringOpt &TLO,
504                                          unsigned Depth) const {
505  unsigned BitWidth = DemandedMask.getBitWidth();
506  assert(Op.getValueSizeInBits() == BitWidth &&
507         "Mask size mismatches value type size!");
508  APInt NewMask = DemandedMask;
509
510  // Don't know anything.
511  KnownZero = KnownOne = APInt(BitWidth, 0);
512
513  // Other users may use these bits.
514  if (!Op.Val->hasOneUse()) {
515    if (Depth != 0) {
516      // If not at the root, Just compute the KnownZero/KnownOne bits to
517      // simplify things downstream.
518      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
519      return false;
520    }
521    // If this is the root being simplified, allow it to have multiple uses,
522    // just set the NewMask to all bits.
523    NewMask = APInt::getAllOnesValue(BitWidth);
524  } else if (DemandedMask == 0) {
525    // Not demanding any bits from Op.
526    if (Op.getOpcode() != ISD::UNDEF)
527      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
528    return false;
529  } else if (Depth == 6) {        // Limit search depth.
530    return false;
531  }
532
533  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
534  switch (Op.getOpcode()) {
535  case ISD::Constant:
536    // We know all of the bits for a constant!
537    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
538    KnownZero = ~KnownOne & NewMask;
539    return false;   // Don't fall through, will infinitely loop.
540  case ISD::AND:
541    // If the RHS is a constant, check to see if the LHS would be zero without
542    // using the bits from the RHS.  Below, we use knowledge about the RHS to
543    // simplify the LHS, here we're using information from the LHS to simplify
544    // the RHS.
545    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
546      APInt LHSZero, LHSOne;
547      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
548                                LHSZero, LHSOne, Depth+1);
549      // If the LHS already has zeros where RHSC does, this and is dead.
550      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
551        return TLO.CombineTo(Op, Op.getOperand(0));
552      // If any of the set bits in the RHS are known zero on the LHS, shrink
553      // the constant.
554      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
555        return true;
556    }
557
558    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
559                             KnownOne, TLO, Depth+1))
560      return true;
561    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
562    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
563                             KnownZero2, KnownOne2, TLO, Depth+1))
564      return true;
565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
566
567    // If all of the demanded bits are known one on one side, return the other.
568    // These bits cannot contribute to the result of the 'and'.
569    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
570      return TLO.CombineTo(Op, Op.getOperand(0));
571    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
572      return TLO.CombineTo(Op, Op.getOperand(1));
573    // If all of the demanded bits in the inputs are known zeros, return zero.
574    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
575      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
576    // If the RHS is a constant, see if we can simplify it.
577    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
578      return true;
579
580    // Output known-1 bits are only known if set in both the LHS & RHS.
581    KnownOne &= KnownOne2;
582    // Output known-0 are known to be clear if zero in either the LHS | RHS.
583    KnownZero |= KnownZero2;
584    break;
585  case ISD::OR:
586    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
587                             KnownOne, TLO, Depth+1))
588      return true;
589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
590    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
591                             KnownZero2, KnownOne2, TLO, Depth+1))
592      return true;
593    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
594
595    // If all of the demanded bits are known zero on one side, return the other.
596    // These bits cannot contribute to the result of the 'or'.
597    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
598      return TLO.CombineTo(Op, Op.getOperand(0));
599    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
600      return TLO.CombineTo(Op, Op.getOperand(1));
601    // If all of the potentially set bits on one side are known to be set on
602    // the other side, just use the 'other' side.
603    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
604      return TLO.CombineTo(Op, Op.getOperand(0));
605    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
606      return TLO.CombineTo(Op, Op.getOperand(1));
607    // If the RHS is a constant, see if we can simplify it.
608    if (TLO.ShrinkDemandedConstant(Op, NewMask))
609      return true;
610
611    // Output known-0 bits are only known if clear in both the LHS & RHS.
612    KnownZero &= KnownZero2;
613    // Output known-1 are known to be set if set in either the LHS | RHS.
614    KnownOne |= KnownOne2;
615    break;
616  case ISD::XOR:
617    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
618                             KnownOne, TLO, Depth+1))
619      return true;
620    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
621    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
622                             KnownOne2, TLO, Depth+1))
623      return true;
624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
625
626    // If all of the demanded bits are known zero on one side, return the other.
627    // These bits cannot contribute to the result of the 'xor'.
628    if ((KnownZero & NewMask) == NewMask)
629      return TLO.CombineTo(Op, Op.getOperand(0));
630    if ((KnownZero2 & NewMask) == NewMask)
631      return TLO.CombineTo(Op, Op.getOperand(1));
632
633    // If all of the unknown bits are known to be zero on one side or the other
634    // (but not both) turn this into an *inclusive* or.
635    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
636    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
637      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
638                                               Op.getOperand(0),
639                                               Op.getOperand(1)));
640
641    // Output known-0 bits are known if clear or set in both the LHS & RHS.
642    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
643    // Output known-1 are known to be set if set in only one of the LHS, RHS.
644    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
645
646    // If all of the demanded bits on one side are known, and all of the set
647    // bits on that side are also known to be set on the other side, turn this
648    // into an AND, as we know the bits will be cleared.
649    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
650    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
651      if ((KnownOne & KnownOne2) == KnownOne) {
652        MVT::ValueType VT = Op.getValueType();
653        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
654        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
655                                                 ANDC));
656      }
657    }
658
659    // If the RHS is a constant, see if we can simplify it.
660    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
661    if (TLO.ShrinkDemandedConstant(Op, NewMask))
662      return true;
663
664    KnownZero = KnownZeroOut;
665    KnownOne  = KnownOneOut;
666    break;
667  case ISD::SELECT:
668    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
669                             KnownOne, TLO, Depth+1))
670      return true;
671    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
672                             KnownOne2, TLO, Depth+1))
673      return true;
674    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
675    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
676
677    // If the operands are constants, see if we can simplify them.
678    if (TLO.ShrinkDemandedConstant(Op, NewMask))
679      return true;
680
681    // Only known if known in both the LHS and RHS.
682    KnownOne &= KnownOne2;
683    KnownZero &= KnownZero2;
684    break;
685  case ISD::SELECT_CC:
686    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
687                             KnownOne, TLO, Depth+1))
688      return true;
689    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
690                             KnownOne2, TLO, Depth+1))
691      return true;
692    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
693    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
694
695    // If the operands are constants, see if we can simplify them.
696    if (TLO.ShrinkDemandedConstant(Op, NewMask))
697      return true;
698
699    // Only known if known in both the LHS and RHS.
700    KnownOne &= KnownOne2;
701    KnownZero &= KnownZero2;
702    break;
703  case ISD::SHL:
704    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
705      unsigned ShAmt = SA->getValue();
706      SDOperand InOp = Op.getOperand(0);
707
708      // If the shift count is an invalid immediate, don't do anything.
709      if (ShAmt >= BitWidth)
710        break;
711
712      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
713      // single shift.  We can do this if the bottom bits (which are shifted
714      // out) are never demanded.
715      if (InOp.getOpcode() == ISD::SRL &&
716          isa<ConstantSDNode>(InOp.getOperand(1))) {
717        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
718          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
719          unsigned Opc = ISD::SHL;
720          int Diff = ShAmt-C1;
721          if (Diff < 0) {
722            Diff = -Diff;
723            Opc = ISD::SRL;
724          }
725
726          SDOperand NewSA =
727            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
728          MVT::ValueType VT = Op.getValueType();
729          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
730                                                   InOp.getOperand(0), NewSA));
731        }
732      }
733
734      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
735                               KnownZero, KnownOne, TLO, Depth+1))
736        return true;
737      KnownZero <<= SA->getValue();
738      KnownOne  <<= SA->getValue();
739      // low bits known zero.
740      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
741    }
742    break;
743  case ISD::SRL:
744    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
745      MVT::ValueType VT = Op.getValueType();
746      unsigned ShAmt = SA->getValue();
747      unsigned VTSize = MVT::getSizeInBits(VT);
748      SDOperand InOp = Op.getOperand(0);
749
750      // If the shift count is an invalid immediate, don't do anything.
751      if (ShAmt >= BitWidth)
752        break;
753
754      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
755      // single shift.  We can do this if the top bits (which are shifted out)
756      // are never demanded.
757      if (InOp.getOpcode() == ISD::SHL &&
758          isa<ConstantSDNode>(InOp.getOperand(1))) {
759        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
760          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
761          unsigned Opc = ISD::SRL;
762          int Diff = ShAmt-C1;
763          if (Diff < 0) {
764            Diff = -Diff;
765            Opc = ISD::SHL;
766          }
767
768          SDOperand NewSA =
769            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
770          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
771                                                   InOp.getOperand(0), NewSA));
772        }
773      }
774
775      // Compute the new bits that are at the top now.
776      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
777                               KnownZero, KnownOne, TLO, Depth+1))
778        return true;
779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
780      KnownZero = KnownZero.lshr(ShAmt);
781      KnownOne  = KnownOne.lshr(ShAmt);
782
783      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
784      KnownZero |= HighBits;  // High bits known zero.
785    }
786    break;
787  case ISD::SRA:
788    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
789      MVT::ValueType VT = Op.getValueType();
790      unsigned ShAmt = SA->getValue();
791
792      // If the shift count is an invalid immediate, don't do anything.
793      if (ShAmt >= BitWidth)
794        break;
795
796      APInt InDemandedMask = (NewMask << ShAmt);
797
798      // If any of the demanded bits are produced by the sign extension, we also
799      // demand the input sign bit.
800      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
801      if (HighBits.intersects(NewMask))
802        InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT));
803
804      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
805                               KnownZero, KnownOne, TLO, Depth+1))
806        return true;
807      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
808      KnownZero = KnownZero.lshr(ShAmt);
809      KnownOne  = KnownOne.lshr(ShAmt);
810
811      // Handle the sign bit, adjusted to where it is now in the mask.
812      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
813
814      // If the input sign bit is known to be zero, or if none of the top bits
815      // are demanded, turn this into an unsigned shift right.
816      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
817        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
818                                                 Op.getOperand(1)));
819      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
820        KnownOne |= HighBits;
821      }
822    }
823    break;
824  case ISD::SIGN_EXTEND_INREG: {
825    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
826
827    // Sign extension.  Compute the demanded bits in the result that are not
828    // present in the input.
829    APInt NewBits = APInt::getHighBitsSet(BitWidth,
830                                          BitWidth - MVT::getSizeInBits(EVT)) &
831                    NewMask;
832
833    // If none of the extended bits are demanded, eliminate the sextinreg.
834    if (NewBits == 0)
835      return TLO.CombineTo(Op, Op.getOperand(0));
836
837    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
838    InSignBit.zext(BitWidth);
839    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
840                                                   MVT::getSizeInBits(EVT)) &
841                              NewMask;
842
843    // Since the sign extended bits are demanded, we know that the sign
844    // bit is demanded.
845    InputDemandedBits |= InSignBit;
846
847    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
848                             KnownZero, KnownOne, TLO, Depth+1))
849      return true;
850    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
851
852    // If the sign bit of the input is known set or clear, then we know the
853    // top bits of the result.
854
855    // If the input sign bit is known zero, convert this into a zero extension.
856    if (KnownZero.intersects(InSignBit))
857      return TLO.CombineTo(Op,
858                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
859
860    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
861      KnownOne |= NewBits;
862      KnownZero &= ~NewBits;
863    } else {                       // Input sign bit unknown
864      KnownZero &= ~NewBits;
865      KnownOne &= ~NewBits;
866    }
867    break;
868  }
869  case ISD::ZERO_EXTEND: {
870    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
871    APInt InMask = NewMask;
872    InMask.trunc(OperandBitWidth);
873
874    // If none of the top bits are demanded, convert this into an any_extend.
875    APInt NewBits =
876      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
877    if (!NewBits.intersects(NewMask))
878      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
879                                               Op.getValueType(),
880                                               Op.getOperand(0)));
881
882    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
883                             KnownZero, KnownOne, TLO, Depth+1))
884      return true;
885    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
886    KnownZero.zext(BitWidth);
887    KnownOne.zext(BitWidth);
888    KnownZero |= NewBits;
889    break;
890  }
891  case ISD::SIGN_EXTEND: {
892    MVT::ValueType InVT = Op.getOperand(0).getValueType();
893    unsigned InBits = MVT::getSizeInBits(InVT);
894    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
895    APInt InSignBit = APInt::getLowBitsSet(BitWidth, InBits);
896    APInt NewBits   = ~InMask & NewMask;
897
898    // If none of the top bits are demanded, convert this into an any_extend.
899    if (NewBits == 0)
900      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
901                                           Op.getOperand(0)));
902
903    // Since some of the sign extended bits are demanded, we know that the sign
904    // bit is demanded.
905    APInt InDemandedBits = InMask & NewMask;
906    InDemandedBits |= InSignBit;
907    InDemandedBits.trunc(InBits);
908
909    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
910                             KnownOne, TLO, Depth+1))
911      return true;
912    KnownZero.zext(BitWidth);
913    KnownOne.zext(BitWidth);
914
915    // If the sign bit is known zero, convert this to a zero extend.
916    if (KnownZero.intersects(InSignBit))
917      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
918                                               Op.getValueType(),
919                                               Op.getOperand(0)));
920
921    // If the sign bit is known one, the top bits match.
922    if (KnownOne.intersects(InSignBit)) {
923      KnownOne  |= NewBits;
924      KnownZero &= ~NewBits;
925    } else {   // Otherwise, top bits aren't known.
926      KnownOne  &= ~NewBits;
927      KnownZero &= ~NewBits;
928    }
929    break;
930  }
931  case ISD::ANY_EXTEND: {
932    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
933    APInt InMask = NewMask;
934    InMask.trunc(OperandBitWidth);
935    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
936                             KnownZero, KnownOne, TLO, Depth+1))
937      return true;
938    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
939    KnownZero.zext(BitWidth);
940    KnownOne.zext(BitWidth);
941    break;
942  }
943  case ISD::TRUNCATE: {
944    // Simplify the input, using demanded bit information, and compute the known
945    // zero/one bits live out.
946    APInt TruncMask = NewMask;
947    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
948    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
949                             KnownZero, KnownOne, TLO, Depth+1))
950      return true;
951    KnownZero.trunc(BitWidth);
952    KnownOne.trunc(BitWidth);
953
954    // If the input is only used by this truncate, see if we can shrink it based
955    // on the known demanded bits.
956    if (Op.getOperand(0).Val->hasOneUse()) {
957      SDOperand In = Op.getOperand(0);
958      unsigned InBitWidth = In.getValueSizeInBits();
959      switch (In.getOpcode()) {
960      default: break;
961      case ISD::SRL:
962        // Shrink SRL by a constant if none of the high bits shifted in are
963        // demanded.
964        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
965          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
966                                                 InBitWidth - BitWidth);
967          HighBits = HighBits.lshr(ShAmt->getValue());
968          HighBits.trunc(BitWidth);
969
970          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
971            // None of the shifted in bits are needed.  Add a truncate of the
972            // shift input, then shift it.
973            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
974                                                 Op.getValueType(),
975                                                 In.getOperand(0));
976            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
977                                                   NewTrunc, In.getOperand(1)));
978          }
979        }
980        break;
981      }
982    }
983
984    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
985    break;
986  }
987  case ISD::AssertZext: {
988    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
989    APInt InMask = APInt::getLowBitsSet(BitWidth,
990                                        MVT::getSizeInBits(VT));
991    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
992                             KnownZero, KnownOne, TLO, Depth+1))
993      return true;
994    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
995    KnownZero |= ~InMask & NewMask;
996    break;
997  }
998  case ISD::BIT_CONVERT:
999#if 0
1000    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1001    // is demanded, turn this into a FGETSIGN.
1002    if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) &&
1003        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1004        !MVT::isVector(Op.getOperand(0).getValueType())) {
1005      // Only do this xform if FGETSIGN is valid or if before legalize.
1006      if (!TLO.AfterLegalize ||
1007          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1008        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1009        // place.  We expect the SHL to be eliminated by other optimizations.
1010        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1011                                         Op.getOperand(0));
1012        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
1013        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1014        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1015                                                 Sign, ShAmt));
1016      }
1017    }
1018#endif
1019    break;
1020  case ISD::ADD:
1021  case ISD::SUB:
1022  case ISD::INTRINSIC_WO_CHAIN:
1023  case ISD::INTRINSIC_W_CHAIN:
1024  case ISD::INTRINSIC_VOID:
1025  case ISD::CTTZ:
1026  case ISD::CTLZ:
1027  case ISD::CTPOP:
1028  case ISD::LOAD:
1029  case ISD::SETCC:
1030  case ISD::FGETSIGN:
1031    // Just use ComputeMaskedBits to compute output bits.
1032    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1033    break;
1034  }
1035
1036  // If we know the value of all of the demanded bits, return this as a
1037  // constant.
1038  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1039    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1040
1041  return false;
1042}
1043
1044/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1045/// in Mask are known to be either zero or one and return them in the
1046/// KnownZero/KnownOne bitsets.
1047void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1048                                                    const APInt &Mask,
1049                                                    APInt &KnownZero,
1050                                                    APInt &KnownOne,
1051                                                    const SelectionDAG &DAG,
1052                                                    unsigned Depth) const {
1053  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1054          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1055          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1056          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1057         "Should use MaskedValueIsZero if you don't know whether Op"
1058         " is a target node!");
1059  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1060}
1061
1062/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1063/// targets that want to expose additional information about sign bits to the
1064/// DAG Combiner.
1065unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1066                                                         unsigned Depth) const {
1067  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1068          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1069          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1070          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1071         "Should use ComputeNumSignBits if you don't know whether Op"
1072         " is a target node!");
1073  return 1;
1074}
1075
1076
1077/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1078/// and cc. If it is unable to simplify it, return a null SDOperand.
1079SDOperand
1080TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1081                              ISD::CondCode Cond, bool foldBooleans,
1082                              DAGCombinerInfo &DCI) const {
1083  SelectionDAG &DAG = DCI.DAG;
1084
1085  // These setcc operations always fold.
1086  switch (Cond) {
1087  default: break;
1088  case ISD::SETFALSE:
1089  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1090  case ISD::SETTRUE:
1091  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1092  }
1093
1094  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1095    const APInt &C1 = N1C->getAPIntValue();
1096    if (isa<ConstantSDNode>(N0.Val)) {
1097      return DAG.FoldSetCC(VT, N0, N1, Cond);
1098    } else {
1099      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1100      // equality comparison, then we're just comparing whether X itself is
1101      // zero.
1102      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1103          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1104          N0.getOperand(1).getOpcode() == ISD::Constant) {
1105        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1106        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1107            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1108          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1109            // (srl (ctlz x), 5) == 0  -> X != 0
1110            // (srl (ctlz x), 5) != 1  -> X != 0
1111            Cond = ISD::SETNE;
1112          } else {
1113            // (srl (ctlz x), 5) != 0  -> X == 0
1114            // (srl (ctlz x), 5) == 1  -> X == 0
1115            Cond = ISD::SETEQ;
1116          }
1117          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1118          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1119                              Zero, Cond);
1120        }
1121      }
1122
1123      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1124      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1125        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1126
1127        // If the comparison constant has bits in the upper part, the
1128        // zero-extended value could never match.
1129        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1130                                                C1.getBitWidth() - InSize))) {
1131          switch (Cond) {
1132          case ISD::SETUGT:
1133          case ISD::SETUGE:
1134          case ISD::SETEQ: return DAG.getConstant(0, VT);
1135          case ISD::SETULT:
1136          case ISD::SETULE:
1137          case ISD::SETNE: return DAG.getConstant(1, VT);
1138          case ISD::SETGT:
1139          case ISD::SETGE:
1140            // True if the sign bit of C1 is set.
1141            return DAG.getConstant(C1.isNegative(), VT);
1142          case ISD::SETLT:
1143          case ISD::SETLE:
1144            // True if the sign bit of C1 isn't set.
1145            return DAG.getConstant(C1.isNonNegative(), VT);
1146          default:
1147            break;
1148          }
1149        }
1150
1151        // Otherwise, we can perform the comparison with the low bits.
1152        switch (Cond) {
1153        case ISD::SETEQ:
1154        case ISD::SETNE:
1155        case ISD::SETUGT:
1156        case ISD::SETUGE:
1157        case ISD::SETULT:
1158        case ISD::SETULE:
1159          return DAG.getSetCC(VT, N0.getOperand(0),
1160                          DAG.getConstant(APInt(C1).trunc(InSize),
1161                                          N0.getOperand(0).getValueType()),
1162                          Cond);
1163        default:
1164          break;   // todo, be more careful with signed comparisons
1165        }
1166      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1167                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1168        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1169        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1170        MVT::ValueType ExtDstTy = N0.getValueType();
1171        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1172
1173        // If the extended part has any inconsistent bits, it cannot ever
1174        // compare equal.  In other words, they have to be all ones or all
1175        // zeros.
1176        APInt ExtBits =
1177          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1178        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1179          return DAG.getConstant(Cond == ISD::SETNE, VT);
1180
1181        SDOperand ZextOp;
1182        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1183        if (Op0Ty == ExtSrcTy) {
1184          ZextOp = N0.getOperand(0);
1185        } else {
1186          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1187          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1188                               DAG.getConstant(Imm, Op0Ty));
1189        }
1190        if (!DCI.isCalledByLegalizer())
1191          DCI.AddToWorklist(ZextOp.Val);
1192        // Otherwise, make this a use of a zext.
1193        return DAG.getSetCC(VT, ZextOp,
1194                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1195                                                               ExtDstTyBits,
1196                                                               ExtSrcTyBits),
1197                                            ExtDstTy),
1198                            Cond);
1199      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1200                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1201
1202        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1203        if (N0.getOpcode() == ISD::SETCC) {
1204          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1205          if (TrueWhenTrue)
1206            return N0;
1207
1208          // Invert the condition.
1209          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1210          CC = ISD::getSetCCInverse(CC,
1211                               MVT::isInteger(N0.getOperand(0).getValueType()));
1212          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1213        }
1214
1215        if ((N0.getOpcode() == ISD::XOR ||
1216             (N0.getOpcode() == ISD::AND &&
1217              N0.getOperand(0).getOpcode() == ISD::XOR &&
1218              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1219            isa<ConstantSDNode>(N0.getOperand(1)) &&
1220            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1221          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1222          // can only do this if the top bits are known zero.
1223          unsigned BitWidth = N0.getValueSizeInBits();
1224          if (DAG.MaskedValueIsZero(N0,
1225                                    APInt::getHighBitsSet(BitWidth,
1226                                                          BitWidth-1))) {
1227            // Okay, get the un-inverted input value.
1228            SDOperand Val;
1229            if (N0.getOpcode() == ISD::XOR)
1230              Val = N0.getOperand(0);
1231            else {
1232              assert(N0.getOpcode() == ISD::AND &&
1233                     N0.getOperand(0).getOpcode() == ISD::XOR);
1234              // ((X^1)&1)^1 -> X & 1
1235              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1236                                N0.getOperand(0).getOperand(0),
1237                                N0.getOperand(1));
1238            }
1239            return DAG.getSetCC(VT, Val, N1,
1240                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1241          }
1242        }
1243      }
1244
1245      APInt MinVal, MaxVal;
1246      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1247      if (ISD::isSignedIntSetCC(Cond)) {
1248        MinVal = APInt::getSignedMinValue(OperandBitSize);
1249        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1250      } else {
1251        MinVal = APInt::getMinValue(OperandBitSize);
1252        MaxVal = APInt::getMaxValue(OperandBitSize);
1253      }
1254
1255      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1256      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1257        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1258        // X >= C0 --> X > (C0-1)
1259        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1260                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1261      }
1262
1263      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1264        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1265        // X <= C0 --> X < (C0+1)
1266        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1267                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1268      }
1269
1270      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1271        return DAG.getConstant(0, VT);      // X < MIN --> false
1272      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1273        return DAG.getConstant(1, VT);      // X >= MIN --> true
1274      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1275        return DAG.getConstant(0, VT);      // X > MAX --> false
1276      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1277        return DAG.getConstant(1, VT);      // X <= MAX --> true
1278
1279      // Canonicalize setgt X, Min --> setne X, Min
1280      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1281        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1282      // Canonicalize setlt X, Max --> setne X, Max
1283      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1284        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1285
1286      // If we have setult X, 1, turn it into seteq X, 0
1287      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1288        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1289                        ISD::SETEQ);
1290      // If we have setugt X, Max-1, turn it into seteq X, Max
1291      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1292        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1293                        ISD::SETEQ);
1294
1295      // If we have "setcc X, C0", check to see if we can shrink the immediate
1296      // by changing cc.
1297
1298      // SETUGT X, SINTMAX  -> SETLT X, 0
1299      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1300          C1 == (~0ULL >> (65-OperandBitSize)))
1301        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1302                            ISD::SETLT);
1303
1304      // FIXME: Implement the rest of these.
1305
1306      // Fold bit comparisons when we can.
1307      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1308          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1309        if (ConstantSDNode *AndRHS =
1310                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1311          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1312            // Perform the xform if the AND RHS is a single bit.
1313            if (isPowerOf2_64(AndRHS->getValue())) {
1314              return DAG.getNode(ISD::SRL, VT, N0,
1315                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1316                                             getShiftAmountTy()));
1317            }
1318          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1319            // (X & 8) == 8  -->  (X & 8) >> 3
1320            // Perform the xform if C1 is a single bit.
1321            if (C1.isPowerOf2()) {
1322              return DAG.getNode(ISD::SRL, VT, N0,
1323                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1324            }
1325          }
1326        }
1327    }
1328  } else if (isa<ConstantSDNode>(N0.Val)) {
1329      // Ensure that the constant occurs on the RHS.
1330    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1331  }
1332
1333  if (isa<ConstantFPSDNode>(N0.Val)) {
1334    // Constant fold or commute setcc.
1335    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1336    if (O.Val) return O;
1337  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1338    // If the RHS of an FP comparison is a constant, simplify it away in
1339    // some cases.
1340    if (CFP->getValueAPF().isNaN()) {
1341      // If an operand is known to be a nan, we can fold it.
1342      switch (ISD::getUnorderedFlavor(Cond)) {
1343      default: assert(0 && "Unknown flavor!");
1344      case 0:  // Known false.
1345        return DAG.getConstant(0, VT);
1346      case 1:  // Known true.
1347        return DAG.getConstant(1, VT);
1348      case 2:  // Undefined.
1349        return DAG.getNode(ISD::UNDEF, VT);
1350      }
1351    }
1352
1353    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1354    // constant if knowing that the operand is non-nan is enough.  We prefer to
1355    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1356    // materialize 0.0.
1357    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1358      return DAG.getSetCC(VT, N0, N0, Cond);
1359  }
1360
1361  if (N0 == N1) {
1362    // We can always fold X == X for integer setcc's.
1363    if (MVT::isInteger(N0.getValueType()))
1364      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1365    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1366    if (UOF == 2)   // FP operators that are undefined on NaNs.
1367      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1368    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1369      return DAG.getConstant(UOF, VT);
1370    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1371    // if it is not already.
1372    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1373    if (NewCond != Cond)
1374      return DAG.getSetCC(VT, N0, N1, NewCond);
1375  }
1376
1377  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1378      MVT::isInteger(N0.getValueType())) {
1379    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1380        N0.getOpcode() == ISD::XOR) {
1381      // Simplify (X+Y) == (X+Z) -->  Y == Z
1382      if (N0.getOpcode() == N1.getOpcode()) {
1383        if (N0.getOperand(0) == N1.getOperand(0))
1384          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1385        if (N0.getOperand(1) == N1.getOperand(1))
1386          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1387        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1388          // If X op Y == Y op X, try other combinations.
1389          if (N0.getOperand(0) == N1.getOperand(1))
1390            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1391          if (N0.getOperand(1) == N1.getOperand(0))
1392            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1393        }
1394      }
1395
1396      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1397        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1398          // Turn (X+C1) == C2 --> X == C2-C1
1399          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1400            return DAG.getSetCC(VT, N0.getOperand(0),
1401                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1402                                N0.getValueType()), Cond);
1403          }
1404
1405          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1406          if (N0.getOpcode() == ISD::XOR)
1407            // If we know that all of the inverted bits are zero, don't bother
1408            // performing the inversion.
1409            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1410              return
1411                DAG.getSetCC(VT, N0.getOperand(0),
1412                             DAG.getConstant(LHSR->getAPIntValue() ^
1413                                               RHSC->getAPIntValue(),
1414                                             N0.getValueType()),
1415                             Cond);
1416        }
1417
1418        // Turn (C1-X) == C2 --> X == C1-C2
1419        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1420          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1421            return
1422              DAG.getSetCC(VT, N0.getOperand(1),
1423                           DAG.getConstant(SUBC->getAPIntValue() -
1424                                             RHSC->getAPIntValue(),
1425                                           N0.getValueType()),
1426                           Cond);
1427          }
1428        }
1429      }
1430
1431      // Simplify (X+Z) == X -->  Z == 0
1432      if (N0.getOperand(0) == N1)
1433        return DAG.getSetCC(VT, N0.getOperand(1),
1434                        DAG.getConstant(0, N0.getValueType()), Cond);
1435      if (N0.getOperand(1) == N1) {
1436        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1437          return DAG.getSetCC(VT, N0.getOperand(0),
1438                          DAG.getConstant(0, N0.getValueType()), Cond);
1439        else if (N0.Val->hasOneUse()) {
1440          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1441          // (Z-X) == X  --> Z == X<<1
1442          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1443                                     N1,
1444                                     DAG.getConstant(1, getShiftAmountTy()));
1445          if (!DCI.isCalledByLegalizer())
1446            DCI.AddToWorklist(SH.Val);
1447          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1448        }
1449      }
1450    }
1451
1452    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1453        N1.getOpcode() == ISD::XOR) {
1454      // Simplify  X == (X+Z) -->  Z == 0
1455      if (N1.getOperand(0) == N0) {
1456        return DAG.getSetCC(VT, N1.getOperand(1),
1457                        DAG.getConstant(0, N1.getValueType()), Cond);
1458      } else if (N1.getOperand(1) == N0) {
1459        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1460          return DAG.getSetCC(VT, N1.getOperand(0),
1461                          DAG.getConstant(0, N1.getValueType()), Cond);
1462        } else if (N1.Val->hasOneUse()) {
1463          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1464          // X == (Z-X)  --> X<<1 == Z
1465          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1466                                     DAG.getConstant(1, getShiftAmountTy()));
1467          if (!DCI.isCalledByLegalizer())
1468            DCI.AddToWorklist(SH.Val);
1469          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1470        }
1471      }
1472    }
1473  }
1474
1475  // Fold away ALL boolean setcc's.
1476  SDOperand Temp;
1477  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1478    switch (Cond) {
1479    default: assert(0 && "Unknown integer setcc!");
1480    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1481      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1482      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1483      if (!DCI.isCalledByLegalizer())
1484        DCI.AddToWorklist(Temp.Val);
1485      break;
1486    case ISD::SETNE:  // X != Y   -->  (X^Y)
1487      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1488      break;
1489    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1490    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1491      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1492      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1493      if (!DCI.isCalledByLegalizer())
1494        DCI.AddToWorklist(Temp.Val);
1495      break;
1496    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1497    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1498      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1499      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1500      if (!DCI.isCalledByLegalizer())
1501        DCI.AddToWorklist(Temp.Val);
1502      break;
1503    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1504    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1505      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1506      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1507      if (!DCI.isCalledByLegalizer())
1508        DCI.AddToWorklist(Temp.Val);
1509      break;
1510    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1511    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1512      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1513      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1514      break;
1515    }
1516    if (VT != MVT::i1) {
1517      if (!DCI.isCalledByLegalizer())
1518        DCI.AddToWorklist(N0.Val);
1519      // FIXME: If running after legalize, we probably can't do this.
1520      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1521    }
1522    return N0;
1523  }
1524
1525  // Could not fold it.
1526  return SDOperand();
1527}
1528
1529SDOperand TargetLowering::
1530PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1531  // Default implementation: no optimization.
1532  return SDOperand();
1533}
1534
1535//===----------------------------------------------------------------------===//
1536//  Inline Assembler Implementation Methods
1537//===----------------------------------------------------------------------===//
1538
1539TargetLowering::ConstraintType
1540TargetLowering::getConstraintType(const std::string &Constraint) const {
1541  // FIXME: lots more standard ones to handle.
1542  if (Constraint.size() == 1) {
1543    switch (Constraint[0]) {
1544    default: break;
1545    case 'r': return C_RegisterClass;
1546    case 'm':    // memory
1547    case 'o':    // offsetable
1548    case 'V':    // not offsetable
1549      return C_Memory;
1550    case 'i':    // Simple Integer or Relocatable Constant
1551    case 'n':    // Simple Integer
1552    case 's':    // Relocatable Constant
1553    case 'X':    // Allow ANY value.
1554    case 'I':    // Target registers.
1555    case 'J':
1556    case 'K':
1557    case 'L':
1558    case 'M':
1559    case 'N':
1560    case 'O':
1561    case 'P':
1562      return C_Other;
1563    }
1564  }
1565
1566  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1567      Constraint[Constraint.size()-1] == '}')
1568    return C_Register;
1569  return C_Unknown;
1570}
1571
1572/// LowerXConstraint - try to replace an X constraint, which matches anything,
1573/// with another that has more specific requirements based on the type of the
1574/// corresponding operand.
1575void TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
1576                                      std::string& s) const {
1577  if (MVT::isInteger(ConstraintVT))
1578    s = "r";
1579  else if (MVT::isFloatingPoint(ConstraintVT))
1580    s = "f";      // works for many targets
1581  else
1582    s = "";
1583}
1584
1585/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1586/// vector.  If it is invalid, don't add anything to Ops.
1587void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1588                                                  char ConstraintLetter,
1589                                                  std::vector<SDOperand> &Ops,
1590                                                  SelectionDAG &DAG) {
1591  switch (ConstraintLetter) {
1592  default: break;
1593  case 'X':     // Allows any operand; labels (basic block) use this.
1594    if (Op.getOpcode() == ISD::BasicBlock) {
1595      Ops.push_back(Op);
1596      return;
1597    }
1598    // fall through
1599  case 'i':    // Simple Integer or Relocatable Constant
1600  case 'n':    // Simple Integer
1601  case 's': {  // Relocatable Constant
1602    // These operands are interested in values of the form (GV+C), where C may
1603    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1604    // is possible and fine if either GV or C are missing.
1605    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1606    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1607
1608    // If we have "(add GV, C)", pull out GV/C
1609    if (Op.getOpcode() == ISD::ADD) {
1610      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1611      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1612      if (C == 0 || GA == 0) {
1613        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1614        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1615      }
1616      if (C == 0 || GA == 0)
1617        C = 0, GA = 0;
1618    }
1619
1620    // If we find a valid operand, map to the TargetXXX version so that the
1621    // value itself doesn't get selected.
1622    if (GA) {   // Either &GV   or   &GV+C
1623      if (ConstraintLetter != 'n') {
1624        int64_t Offs = GA->getOffset();
1625        if (C) Offs += C->getValue();
1626        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1627                                                 Op.getValueType(), Offs));
1628        return;
1629      }
1630    }
1631    if (C) {   // just C, no GV.
1632      // Simple constants are not allowed for 's'.
1633      if (ConstraintLetter != 's') {
1634        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1635        return;
1636      }
1637    }
1638    break;
1639  }
1640  }
1641}
1642
1643std::vector<unsigned> TargetLowering::
1644getRegClassForInlineAsmConstraint(const std::string &Constraint,
1645                                  MVT::ValueType VT) const {
1646  return std::vector<unsigned>();
1647}
1648
1649
1650std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1651getRegForInlineAsmConstraint(const std::string &Constraint,
1652                             MVT::ValueType VT) const {
1653  if (Constraint[0] != '{')
1654    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1655  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1656
1657  // Remove the braces from around the name.
1658  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1659
1660  // Figure out which register class contains this reg.
1661  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1662  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1663       E = RI->regclass_end(); RCI != E; ++RCI) {
1664    const TargetRegisterClass *RC = *RCI;
1665
1666    // If none of the the value types for this register class are valid, we
1667    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1668    bool isLegal = false;
1669    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1670         I != E; ++I) {
1671      if (isTypeLegal(*I)) {
1672        isLegal = true;
1673        break;
1674      }
1675    }
1676
1677    if (!isLegal) continue;
1678
1679    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1680         I != E; ++I) {
1681      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1682        return std::make_pair(*I, RC);
1683    }
1684  }
1685
1686  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1687}
1688
1689//===----------------------------------------------------------------------===//
1690//  Loop Strength Reduction hooks
1691//===----------------------------------------------------------------------===//
1692
1693/// isLegalAddressingMode - Return true if the addressing mode represented
1694/// by AM is legal for this target, for a load/store of the specified type.
1695bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1696                                           const Type *Ty) const {
1697  // The default implementation of this implements a conservative RISCy, r+r and
1698  // r+i addr mode.
1699
1700  // Allows a sign-extended 16-bit immediate field.
1701  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1702    return false;
1703
1704  // No global is ever allowed as a base.
1705  if (AM.BaseGV)
1706    return false;
1707
1708  // Only support r+r,
1709  switch (AM.Scale) {
1710  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1711    break;
1712  case 1:
1713    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1714      return false;
1715    // Otherwise we have r+r or r+i.
1716    break;
1717  case 2:
1718    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1719      return false;
1720    // Allow 2*r as r+r.
1721    break;
1722  }
1723
1724  return true;
1725}
1726
1727// Magic for divide replacement
1728
1729struct ms {
1730  int64_t m;  // magic number
1731  int64_t s;  // shift amount
1732};
1733
1734struct mu {
1735  uint64_t m; // magic number
1736  int64_t a;  // add indicator
1737  int64_t s;  // shift amount
1738};
1739
1740/// magic - calculate the magic numbers required to codegen an integer sdiv as
1741/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1742/// or -1.
1743static ms magic32(int32_t d) {
1744  int32_t p;
1745  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1746  const uint32_t two31 = 0x80000000U;
1747  struct ms mag;
1748
1749  ad = abs(d);
1750  t = two31 + ((uint32_t)d >> 31);
1751  anc = t - 1 - t%ad;   // absolute value of nc
1752  p = 31;               // initialize p
1753  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1754  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1755  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1756  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1757  do {
1758    p = p + 1;
1759    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1760    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1761    if (r1 >= anc) {  // must be unsigned comparison
1762      q1 = q1 + 1;
1763      r1 = r1 - anc;
1764    }
1765    q2 = 2*q2;        // update q2 = 2p/abs(d)
1766    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1767    if (r2 >= ad) {   // must be unsigned comparison
1768      q2 = q2 + 1;
1769      r2 = r2 - ad;
1770    }
1771    delta = ad - r2;
1772  } while (q1 < delta || (q1 == delta && r1 == 0));
1773
1774  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1775  if (d < 0) mag.m = -mag.m; // resulting magic number
1776  mag.s = p - 32;            // resulting shift
1777  return mag;
1778}
1779
1780/// magicu - calculate the magic numbers required to codegen an integer udiv as
1781/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1782static mu magicu32(uint32_t d) {
1783  int32_t p;
1784  uint32_t nc, delta, q1, r1, q2, r2;
1785  struct mu magu;
1786  magu.a = 0;               // initialize "add" indicator
1787  nc = - 1 - (-d)%d;
1788  p = 31;                   // initialize p
1789  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1790  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1791  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1792  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1793  do {
1794    p = p + 1;
1795    if (r1 >= nc - r1 ) {
1796      q1 = 2*q1 + 1;  // update q1
1797      r1 = 2*r1 - nc; // update r1
1798    }
1799    else {
1800      q1 = 2*q1; // update q1
1801      r1 = 2*r1; // update r1
1802    }
1803    if (r2 + 1 >= d - r2) {
1804      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1805      q2 = 2*q2 + 1;     // update q2
1806      r2 = 2*r2 + 1 - d; // update r2
1807    }
1808    else {
1809      if (q2 >= 0x80000000) magu.a = 1;
1810      q2 = 2*q2;     // update q2
1811      r2 = 2*r2 + 1; // update r2
1812    }
1813    delta = d - 1 - r2;
1814  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1815  magu.m = q2 + 1; // resulting magic number
1816  magu.s = p - 32;  // resulting shift
1817  return magu;
1818}
1819
1820/// magic - calculate the magic numbers required to codegen an integer sdiv as
1821/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1822/// or -1.
1823static ms magic64(int64_t d) {
1824  int64_t p;
1825  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1826  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1827  struct ms mag;
1828
1829  ad = d >= 0 ? d : -d;
1830  t = two63 + ((uint64_t)d >> 63);
1831  anc = t - 1 - t%ad;   // absolute value of nc
1832  p = 63;               // initialize p
1833  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1834  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1835  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1836  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1837  do {
1838    p = p + 1;
1839    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1840    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1841    if (r1 >= anc) {  // must be unsigned comparison
1842      q1 = q1 + 1;
1843      r1 = r1 - anc;
1844    }
1845    q2 = 2*q2;        // update q2 = 2p/abs(d)
1846    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1847    if (r2 >= ad) {   // must be unsigned comparison
1848      q2 = q2 + 1;
1849      r2 = r2 - ad;
1850    }
1851    delta = ad - r2;
1852  } while (q1 < delta || (q1 == delta && r1 == 0));
1853
1854  mag.m = q2 + 1;
1855  if (d < 0) mag.m = -mag.m; // resulting magic number
1856  mag.s = p - 64;            // resulting shift
1857  return mag;
1858}
1859
1860/// magicu - calculate the magic numbers required to codegen an integer udiv as
1861/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1862static mu magicu64(uint64_t d)
1863{
1864  int64_t p;
1865  uint64_t nc, delta, q1, r1, q2, r2;
1866  struct mu magu;
1867  magu.a = 0;               // initialize "add" indicator
1868  nc = - 1 - (-d)%d;
1869  p = 63;                   // initialize p
1870  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1871  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1872  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1873  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1874  do {
1875    p = p + 1;
1876    if (r1 >= nc - r1 ) {
1877      q1 = 2*q1 + 1;  // update q1
1878      r1 = 2*r1 - nc; // update r1
1879    }
1880    else {
1881      q1 = 2*q1; // update q1
1882      r1 = 2*r1; // update r1
1883    }
1884    if (r2 + 1 >= d - r2) {
1885      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1886      q2 = 2*q2 + 1;     // update q2
1887      r2 = 2*r2 + 1 - d; // update r2
1888    }
1889    else {
1890      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1891      q2 = 2*q2;     // update q2
1892      r2 = 2*r2 + 1; // update r2
1893    }
1894    delta = d - 1 - r2;
1895  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1896  magu.m = q2 + 1; // resulting magic number
1897  magu.s = p - 64;  // resulting shift
1898  return magu;
1899}
1900
1901/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1902/// return a DAG expression to select that will generate the same value by
1903/// multiplying by a magic number.  See:
1904/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1905SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1906                                    std::vector<SDNode*>* Created) const {
1907  MVT::ValueType VT = N->getValueType(0);
1908
1909  // Check to see if we can do this.
1910  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1911    return SDOperand();       // BuildSDIV only operates on i32 or i64
1912
1913  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1914  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1915
1916  // Multiply the numerator (operand 0) by the magic value
1917  SDOperand Q;
1918  if (isOperationLegal(ISD::MULHS, VT))
1919    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1920                    DAG.getConstant(magics.m, VT));
1921  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1922    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1923                              N->getOperand(0),
1924                              DAG.getConstant(magics.m, VT)).Val, 1);
1925  else
1926    return SDOperand();       // No mulhs or equvialent
1927  // If d > 0 and m < 0, add the numerator
1928  if (d > 0 && magics.m < 0) {
1929    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1930    if (Created)
1931      Created->push_back(Q.Val);
1932  }
1933  // If d < 0 and m > 0, subtract the numerator.
1934  if (d < 0 && magics.m > 0) {
1935    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1936    if (Created)
1937      Created->push_back(Q.Val);
1938  }
1939  // Shift right algebraic if shift value is nonzero
1940  if (magics.s > 0) {
1941    Q = DAG.getNode(ISD::SRA, VT, Q,
1942                    DAG.getConstant(magics.s, getShiftAmountTy()));
1943    if (Created)
1944      Created->push_back(Q.Val);
1945  }
1946  // Extract the sign bit and add it to the quotient
1947  SDOperand T =
1948    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1949                                                 getShiftAmountTy()));
1950  if (Created)
1951    Created->push_back(T.Val);
1952  return DAG.getNode(ISD::ADD, VT, Q, T);
1953}
1954
1955/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1956/// return a DAG expression to select that will generate the same value by
1957/// multiplying by a magic number.  See:
1958/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1959SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1960                                    std::vector<SDNode*>* Created) const {
1961  MVT::ValueType VT = N->getValueType(0);
1962
1963  // Check to see if we can do this.
1964  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1965    return SDOperand();       // BuildUDIV only operates on i32 or i64
1966
1967  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1968  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1969
1970  // Multiply the numerator (operand 0) by the magic value
1971  SDOperand Q;
1972  if (isOperationLegal(ISD::MULHU, VT))
1973    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1974                    DAG.getConstant(magics.m, VT));
1975  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1976    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1977                              N->getOperand(0),
1978                              DAG.getConstant(magics.m, VT)).Val, 1);
1979  else
1980    return SDOperand();       // No mulhu or equvialent
1981  if (Created)
1982    Created->push_back(Q.Val);
1983
1984  if (magics.a == 0) {
1985    return DAG.getNode(ISD::SRL, VT, Q,
1986                       DAG.getConstant(magics.s, getShiftAmountTy()));
1987  } else {
1988    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1989    if (Created)
1990      Created->push_back(NPQ.Val);
1991    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1992                      DAG.getConstant(1, getShiftAmountTy()));
1993    if (Created)
1994      Created->push_back(NPQ.Val);
1995    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1996    if (Created)
1997      Created->push_back(NPQ.Val);
1998    return DAG.getNode(ISD::SRL, VT, NPQ,
1999                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2000  }
2001}
2002