TargetLowering.cpp revision a81a770f0f290e9f1f6c71a886d5294a0adeef8d
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
52  Names[RTLIB::SUB_F32] = "__subsf3";
53  Names[RTLIB::SUB_F64] = "__subdf3";
54  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
55  Names[RTLIB::MUL_F32] = "__mulsf3";
56  Names[RTLIB::MUL_F64] = "__muldf3";
57  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
58  Names[RTLIB::DIV_F32] = "__divsf3";
59  Names[RTLIB::DIV_F64] = "__divdf3";
60  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
61  Names[RTLIB::REM_F32] = "fmodf";
62  Names[RTLIB::REM_F64] = "fmod";
63  Names[RTLIB::REM_PPCF128] = "fmodl";
64  Names[RTLIB::NEG_F32] = "__negsf2";
65  Names[RTLIB::NEG_F64] = "__negdf2";
66  Names[RTLIB::POWI_F32] = "__powisf2";
67  Names[RTLIB::POWI_F64] = "__powidf2";
68  Names[RTLIB::POWI_F80] = "__powixf2";
69  Names[RTLIB::POWI_PPCF128] = "__powitf2";
70  Names[RTLIB::SQRT_F32] = "sqrtf";
71  Names[RTLIB::SQRT_F64] = "sqrt";
72  Names[RTLIB::SQRT_F80] = "sqrtl";
73  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
74  Names[RTLIB::SIN_F32] = "sinf";
75  Names[RTLIB::SIN_F64] = "sin";
76  Names[RTLIB::COS_F32] = "cosf";
77  Names[RTLIB::COS_F64] = "cos";
78  Names[RTLIB::POW_F32] = "powf";
79  Names[RTLIB::POW_F64] = "pow";
80  Names[RTLIB::POW_F80] = "powl";
81  Names[RTLIB::POW_PPCF128] = "powl";
82  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
88  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
90  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
94  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
97  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
101  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
103  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107  Names[RTLIB::OEQ_F32] = "__eqsf2";
108  Names[RTLIB::OEQ_F64] = "__eqdf2";
109  Names[RTLIB::UNE_F32] = "__nesf2";
110  Names[RTLIB::UNE_F64] = "__nedf2";
111  Names[RTLIB::OGE_F32] = "__gesf2";
112  Names[RTLIB::OGE_F64] = "__gedf2";
113  Names[RTLIB::OLT_F32] = "__ltsf2";
114  Names[RTLIB::OLT_F64] = "__ltdf2";
115  Names[RTLIB::OLE_F32] = "__lesf2";
116  Names[RTLIB::OLE_F64] = "__ledf2";
117  Names[RTLIB::OGT_F32] = "__gtsf2";
118  Names[RTLIB::OGT_F64] = "__gtdf2";
119  Names[RTLIB::UO_F32] = "__unordsf2";
120  Names[RTLIB::UO_F64] = "__unorddf2";
121  Names[RTLIB::O_F32] = "__unordsf2";
122  Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131  CCs[RTLIB::UNE_F32] = ISD::SETNE;
132  CCs[RTLIB::UNE_F64] = ISD::SETNE;
133  CCs[RTLIB::OGE_F32] = ISD::SETGE;
134  CCs[RTLIB::OGE_F64] = ISD::SETGE;
135  CCs[RTLIB::OLT_F32] = ISD::SETLT;
136  CCs[RTLIB::OLT_F64] = ISD::SETLT;
137  CCs[RTLIB::OLE_F32] = ISD::SETLE;
138  CCs[RTLIB::OLE_F64] = ISD::SETLE;
139  CCs[RTLIB::OGT_F32] = ISD::SETGT;
140  CCs[RTLIB::OGT_F64] = ISD::SETGT;
141  CCs[RTLIB::UO_F32] = ISD::SETNE;
142  CCs[RTLIB::UO_F64] = ISD::SETNE;
143  CCs[RTLIB::O_F32] = ISD::SETEQ;
144  CCs[RTLIB::O_F64] = ISD::SETEQ;
145}
146
147TargetLowering::TargetLowering(TargetMachine &tm)
148  : TM(tm), TD(TM.getTargetData()) {
149  assert(ISD::BUILTIN_OP_END <= 156 &&
150         "Fixed size array in TargetLowering is not large enough!");
151  // All operations default to being supported.
152  memset(OpActions, 0, sizeof(OpActions));
153  memset(LoadXActions, 0, sizeof(LoadXActions));
154  memset(&StoreXActions, 0, sizeof(StoreXActions));
155  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
156  memset(&ConvertActions, 0, sizeof(ConvertActions));
157
158  // Set all indexed load / store to expand.
159  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160    for (unsigned IM = (unsigned)ISD::PRE_INC;
161         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
162      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
163      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
164    }
165  }
166
167  IsLittleEndian = TD->isLittleEndian();
168  UsesGlobalOffsetTable = false;
169  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
170  ShiftAmtHandling = Undefined;
171  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
172  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
173  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
174  allowUnalignedMemoryAccesses = false;
175  UseUnderscoreSetJmp = false;
176  UseUnderscoreLongJmp = false;
177  SelectIsExpensive = false;
178  IntDivIsCheap = false;
179  Pow2DivIsCheap = false;
180  StackPointerRegisterToSaveRestore = 0;
181  ExceptionPointerRegister = 0;
182  ExceptionSelectorRegister = 0;
183  SetCCResultContents = UndefinedSetCCResult;
184  SchedPreferenceInfo = SchedulingForLatency;
185  JumpBufSize = 0;
186  JumpBufAlignment = 0;
187  IfCvtBlockSizeLimit = 2;
188
189  InitLibcallNames(LibcallRoutineNames);
190  InitCmpLibcallCCs(CmpLibcallCCs);
191
192  // Tell Legalize whether the assembler supports DEBUG_LOC.
193  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
194    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
195}
196
197TargetLowering::~TargetLowering() {}
198
199
200SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
201  assert(getSubtarget() && "Subtarget not defined");
202  SDOperand ChainOp = Op.getOperand(0);
203  SDOperand DestOp = Op.getOperand(1);
204  SDOperand SourceOp = Op.getOperand(2);
205  SDOperand CountOp = Op.getOperand(3);
206  SDOperand AlignOp = Op.getOperand(4);
207  SDOperand AlwaysInlineOp = Op.getOperand(5);
208
209  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
210  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
211  if (Align == 0) Align = 1;
212
213  // If size is unknown, call memcpy.
214  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
215  if (!I) {
216    assert(!AlwaysInline && "Cannot inline copy of unknown size");
217    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
218  }
219
220  // If not DWORD aligned or if size is more than threshold, then call memcpy.
221  // The libc version is likely to be faster for the following cases. It can
222  // use the address value and run time information about the CPU.
223  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
224  unsigned Size = I->getValue();
225  if (AlwaysInline ||
226      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
227       (Align & 3) == 0))
228    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
229  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
230}
231
232
233SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
234                                          SDOperand Dest,
235                                          SDOperand Source,
236                                          SDOperand Count,
237                                          SelectionDAG &DAG) {
238  MVT::ValueType IntPtr = getPointerTy();
239  TargetLowering::ArgListTy Args;
240  TargetLowering::ArgListEntry Entry;
241  Entry.Ty = getTargetData()->getIntPtrType();
242  Entry.Node = Dest; Args.push_back(Entry);
243  Entry.Node = Source; Args.push_back(Entry);
244  Entry.Node = Count; Args.push_back(Entry);
245  std::pair<SDOperand,SDOperand> CallResult =
246      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
247                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
248  return CallResult.second;
249}
250
251
252/// computeRegisterProperties - Once all of the register classes are added,
253/// this allows us to compute derived properties we expose.
254void TargetLowering::computeRegisterProperties() {
255  assert(MVT::LAST_VALUETYPE <= 32 &&
256         "Too many value types for ValueTypeActions to hold!");
257
258  // Everything defaults to needing one register.
259  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
260    NumRegistersForVT[i] = 1;
261    RegisterTypeForVT[i] = TransformToType[i] = i;
262  }
263  // ...except isVoid, which doesn't need any registers.
264  NumRegistersForVT[MVT::isVoid] = 0;
265
266  // Find the largest integer register class.
267  unsigned LargestIntReg = MVT::i128;
268  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
269    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
270
271  // Every integer value type larger than this largest register takes twice as
272  // many registers to represent as the previous ValueType.
273  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
274       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
275    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
276    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
277    TransformToType[ExpandedReg] = ExpandedReg - 1;
278    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
279  }
280
281  // Inspect all of the ValueType's smaller than the largest integer
282  // register to see which ones need promotion.
283  MVT::ValueType LegalIntReg = LargestIntReg;
284  for (MVT::ValueType IntReg = LargestIntReg - 1;
285       IntReg >= MVT::i1; --IntReg) {
286    if (isTypeLegal(IntReg)) {
287      LegalIntReg = IntReg;
288    } else {
289      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
290      ValueTypeActions.setTypeAction(IntReg, Promote);
291    }
292  }
293
294  // ppcf128 type is really two f64's.
295  if (!isTypeLegal(MVT::ppcf128)) {
296    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
297    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
298    TransformToType[MVT::ppcf128] = MVT::f64;
299    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
300  }
301
302  // Decide how to handle f64. If the target does not have native f64 support,
303  // expand it to i64 and we will be generating soft float library calls.
304  if (!isTypeLegal(MVT::f64)) {
305    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
306    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
307    TransformToType[MVT::f64] = MVT::i64;
308    ValueTypeActions.setTypeAction(MVT::f64, Expand);
309  }
310
311  // Decide how to handle f32. If the target does not have native support for
312  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
313  if (!isTypeLegal(MVT::f32)) {
314    if (isTypeLegal(MVT::f64)) {
315      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
316      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
317      TransformToType[MVT::f32] = MVT::f64;
318      ValueTypeActions.setTypeAction(MVT::f32, Promote);
319    } else {
320      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
321      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
322      TransformToType[MVT::f32] = MVT::i32;
323      ValueTypeActions.setTypeAction(MVT::f32, Expand);
324    }
325  }
326
327  // Loop over all of the vector value types to see which need transformations.
328  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
329       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
330    if (!isTypeLegal(i)) {
331      MVT::ValueType IntermediateVT, RegisterVT;
332      unsigned NumIntermediates;
333      NumRegistersForVT[i] =
334        getVectorTypeBreakdown(i,
335                               IntermediateVT, NumIntermediates,
336                               RegisterVT);
337      RegisterTypeForVT[i] = RegisterVT;
338      TransformToType[i] = MVT::Other; // this isn't actually used
339      ValueTypeActions.setTypeAction(i, Expand);
340    }
341  }
342}
343
344const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
345  return NULL;
346}
347
348/// getVectorTypeBreakdown - Vector types are broken down into some number of
349/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
350/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
351/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
352///
353/// This method returns the number of registers needed, and the VT for each
354/// register.  It also returns the VT and quantity of the intermediate values
355/// before they are promoted/expanded.
356///
357unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
358                                                MVT::ValueType &IntermediateVT,
359                                                unsigned &NumIntermediates,
360                                      MVT::ValueType &RegisterVT) const {
361  // Figure out the right, legal destination reg to copy into.
362  unsigned NumElts = MVT::getVectorNumElements(VT);
363  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
364
365  unsigned NumVectorRegs = 1;
366
367  // Divide the input until we get to a supported size.  This will always
368  // end with a scalar if the target doesn't support vectors.
369  while (NumElts > 1 &&
370         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
371    NumElts >>= 1;
372    NumVectorRegs <<= 1;
373  }
374
375  NumIntermediates = NumVectorRegs;
376
377  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
378  if (!isTypeLegal(NewVT))
379    NewVT = EltTy;
380  IntermediateVT = NewVT;
381
382  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
383  RegisterVT = DestVT;
384  if (DestVT < NewVT) {
385    // Value is expanded, e.g. i64 -> i16.
386    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
387  } else {
388    // Otherwise, promotion or legal types use the same number of registers as
389    // the vector decimated to the appropriate level.
390    return NumVectorRegs;
391  }
392
393  return 1;
394}
395
396SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
397                                                   SelectionDAG &DAG) const {
398  if (usesGlobalOffsetTable())
399    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
400  return Table;
401}
402
403//===----------------------------------------------------------------------===//
404//  Optimization Methods
405//===----------------------------------------------------------------------===//
406
407/// ShrinkDemandedConstant - Check to see if the specified operand of the
408/// specified instruction is a constant integer.  If so, check to see if there
409/// are any bits set in the constant that are not demanded.  If so, shrink the
410/// constant and return true.
411bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
412                                                            uint64_t Demanded) {
413  // FIXME: ISD::SELECT, ISD::SELECT_CC
414  switch(Op.getOpcode()) {
415  default: break;
416  case ISD::AND:
417  case ISD::OR:
418  case ISD::XOR:
419    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
420      if ((~Demanded & C->getValue()) != 0) {
421        MVT::ValueType VT = Op.getValueType();
422        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
423                                    DAG.getConstant(Demanded & C->getValue(),
424                                                    VT));
425        return CombineTo(Op, New);
426      }
427    break;
428  }
429  return false;
430}
431
432/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
433/// DemandedMask bits of the result of Op are ever used downstream.  If we can
434/// use this information to simplify Op, create a new simplified DAG node and
435/// return true, returning the original and new nodes in Old and New. Otherwise,
436/// analyze the expression and return a mask of KnownOne and KnownZero bits for
437/// the expression (used to simplify the caller).  The KnownZero/One bits may
438/// only be accurate for those bits in the DemandedMask.
439bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
440                                          uint64_t &KnownZero,
441                                          uint64_t &KnownOne,
442                                          TargetLoweringOpt &TLO,
443                                          unsigned Depth) const {
444  KnownZero = KnownOne = 0;   // Don't know anything.
445
446  // The masks are not wide enough to represent this type!  Should use APInt.
447  if (Op.getValueType() == MVT::i128)
448    return false;
449
450  // Other users may use these bits.
451  if (!Op.Val->hasOneUse()) {
452    if (Depth != 0) {
453      // If not at the root, Just compute the KnownZero/KnownOne bits to
454      // simplify things downstream.
455      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
456      return false;
457    }
458    // If this is the root being simplified, allow it to have multiple uses,
459    // just set the DemandedMask to all bits.
460    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
461  } else if (DemandedMask == 0) {
462    // Not demanding any bits from Op.
463    if (Op.getOpcode() != ISD::UNDEF)
464      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
465    return false;
466  } else if (Depth == 6) {        // Limit search depth.
467    return false;
468  }
469
470  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
471  switch (Op.getOpcode()) {
472  case ISD::Constant:
473    // We know all of the bits for a constant!
474    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
475    KnownZero = ~KnownOne & DemandedMask;
476    return false;   // Don't fall through, will infinitely loop.
477  case ISD::AND:
478    // If the RHS is a constant, check to see if the LHS would be zero without
479    // using the bits from the RHS.  Below, we use knowledge about the RHS to
480    // simplify the LHS, here we're using information from the LHS to simplify
481    // the RHS.
482    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
483      uint64_t LHSZero, LHSOne;
484      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
485                                LHSZero, LHSOne, Depth+1);
486      // If the LHS already has zeros where RHSC does, this and is dead.
487      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
488        return TLO.CombineTo(Op, Op.getOperand(0));
489      // If any of the set bits in the RHS are known zero on the LHS, shrink
490      // the constant.
491      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
492        return true;
493    }
494
495    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
496                             KnownOne, TLO, Depth+1))
497      return true;
498    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
499    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
500                             KnownZero2, KnownOne2, TLO, Depth+1))
501      return true;
502    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
503
504    // If all of the demanded bits are known one on one side, return the other.
505    // These bits cannot contribute to the result of the 'and'.
506    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
507      return TLO.CombineTo(Op, Op.getOperand(0));
508    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
509      return TLO.CombineTo(Op, Op.getOperand(1));
510    // If all of the demanded bits in the inputs are known zeros, return zero.
511    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
512      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
513    // If the RHS is a constant, see if we can simplify it.
514    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
515      return true;
516
517    // Output known-1 bits are only known if set in both the LHS & RHS.
518    KnownOne &= KnownOne2;
519    // Output known-0 are known to be clear if zero in either the LHS | RHS.
520    KnownZero |= KnownZero2;
521    break;
522  case ISD::OR:
523    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
524                             KnownOne, TLO, Depth+1))
525      return true;
526    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
527    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
528                             KnownZero2, KnownOne2, TLO, Depth+1))
529      return true;
530    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
531
532    // If all of the demanded bits are known zero on one side, return the other.
533    // These bits cannot contribute to the result of the 'or'.
534    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
535      return TLO.CombineTo(Op, Op.getOperand(0));
536    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
537      return TLO.CombineTo(Op, Op.getOperand(1));
538    // If all of the potentially set bits on one side are known to be set on
539    // the other side, just use the 'other' side.
540    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
541        (DemandedMask & (~KnownZero)))
542      return TLO.CombineTo(Op, Op.getOperand(0));
543    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
544        (DemandedMask & (~KnownZero2)))
545      return TLO.CombineTo(Op, Op.getOperand(1));
546    // If the RHS is a constant, see if we can simplify it.
547    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
548      return true;
549
550    // Output known-0 bits are only known if clear in both the LHS & RHS.
551    KnownZero &= KnownZero2;
552    // Output known-1 are known to be set if set in either the LHS | RHS.
553    KnownOne |= KnownOne2;
554    break;
555  case ISD::XOR:
556    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
557                             KnownOne, TLO, Depth+1))
558      return true;
559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
560    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
561                             KnownOne2, TLO, Depth+1))
562      return true;
563    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
564
565    // If all of the demanded bits are known zero on one side, return the other.
566    // These bits cannot contribute to the result of the 'xor'.
567    if ((DemandedMask & KnownZero) == DemandedMask)
568      return TLO.CombineTo(Op, Op.getOperand(0));
569    if ((DemandedMask & KnownZero2) == DemandedMask)
570      return TLO.CombineTo(Op, Op.getOperand(1));
571
572    // If all of the unknown bits are known to be zero on one side or the other
573    // (but not both) turn this into an *inclusive* or.
574    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
575    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
576      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
577                                               Op.getOperand(0),
578                                               Op.getOperand(1)));
579
580    // Output known-0 bits are known if clear or set in both the LHS & RHS.
581    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
582    // Output known-1 are known to be set if set in only one of the LHS, RHS.
583    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
584
585    // If all of the demanded bits on one side are known, and all of the set
586    // bits on that side are also known to be set on the other side, turn this
587    // into an AND, as we know the bits will be cleared.
588    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
589    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
590      if ((KnownOne & KnownOne2) == KnownOne) {
591        MVT::ValueType VT = Op.getValueType();
592        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
593        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
594                                                 ANDC));
595      }
596    }
597
598    // If the RHS is a constant, see if we can simplify it.
599    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
600    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
601      return true;
602
603    KnownZero = KnownZeroOut;
604    KnownOne  = KnownOneOut;
605    break;
606  case ISD::SETCC:
607    // If we know the result of a setcc has the top bits zero, use this info.
608    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
609      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
610    break;
611  case ISD::SELECT:
612    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
613                             KnownOne, TLO, Depth+1))
614      return true;
615    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
616                             KnownOne2, TLO, Depth+1))
617      return true;
618    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
619    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
620
621    // If the operands are constants, see if we can simplify them.
622    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
623      return true;
624
625    // Only known if known in both the LHS and RHS.
626    KnownOne &= KnownOne2;
627    KnownZero &= KnownZero2;
628    break;
629  case ISD::SELECT_CC:
630    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
631                             KnownOne, TLO, Depth+1))
632      return true;
633    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
634                             KnownOne2, TLO, Depth+1))
635      return true;
636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
638
639    // If the operands are constants, see if we can simplify them.
640    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
641      return true;
642
643    // Only known if known in both the LHS and RHS.
644    KnownOne &= KnownOne2;
645    KnownZero &= KnownZero2;
646    break;
647  case ISD::SHL:
648    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
649      unsigned ShAmt = SA->getValue();
650      SDOperand InOp = Op.getOperand(0);
651
652      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
653      // single shift.  We can do this if the bottom bits (which are shifted
654      // out) are never demanded.
655      if (InOp.getOpcode() == ISD::SRL &&
656          isa<ConstantSDNode>(InOp.getOperand(1))) {
657        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
658          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
659          unsigned Opc = ISD::SHL;
660          int Diff = ShAmt-C1;
661          if (Diff < 0) {
662            Diff = -Diff;
663            Opc = ISD::SRL;
664          }
665
666          SDOperand NewSA =
667            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
668          MVT::ValueType VT = Op.getValueType();
669          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
670                                                   InOp.getOperand(0), NewSA));
671        }
672      }
673
674      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
675                               KnownZero, KnownOne, TLO, Depth+1))
676        return true;
677      KnownZero <<= SA->getValue();
678      KnownOne  <<= SA->getValue();
679      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
680    }
681    break;
682  case ISD::SRL:
683    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
684      MVT::ValueType VT = Op.getValueType();
685      unsigned ShAmt = SA->getValue();
686      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
687      unsigned VTSize = MVT::getSizeInBits(VT);
688      SDOperand InOp = Op.getOperand(0);
689
690      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
691      // single shift.  We can do this if the top bits (which are shifted out)
692      // are never demanded.
693      if (InOp.getOpcode() == ISD::SHL &&
694          isa<ConstantSDNode>(InOp.getOperand(1))) {
695        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
696          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
697          unsigned Opc = ISD::SRL;
698          int Diff = ShAmt-C1;
699          if (Diff < 0) {
700            Diff = -Diff;
701            Opc = ISD::SHL;
702          }
703
704          SDOperand NewSA =
705            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
706          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
707                                                   InOp.getOperand(0), NewSA));
708        }
709      }
710
711      // Compute the new bits that are at the top now.
712      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
713                               KnownZero, KnownOne, TLO, Depth+1))
714        return true;
715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
716      KnownZero &= TypeMask;
717      KnownOne  &= TypeMask;
718      KnownZero >>= ShAmt;
719      KnownOne  >>= ShAmt;
720
721      uint64_t HighBits = (1ULL << ShAmt)-1;
722      HighBits <<= VTSize - ShAmt;
723      KnownZero |= HighBits;  // High bits known zero.
724    }
725    break;
726  case ISD::SRA:
727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
728      MVT::ValueType VT = Op.getValueType();
729      unsigned ShAmt = SA->getValue();
730
731      // Compute the new bits that are at the top now.
732      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
733
734      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
735
736      // If any of the demanded bits are produced by the sign extension, we also
737      // demand the input sign bit.
738      uint64_t HighBits = (1ULL << ShAmt)-1;
739      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
740      if (HighBits & DemandedMask)
741        InDemandedMask |= MVT::getIntVTSignBit(VT);
742
743      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
744                               KnownZero, KnownOne, TLO, Depth+1))
745        return true;
746      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
747      KnownZero &= TypeMask;
748      KnownOne  &= TypeMask;
749      KnownZero >>= ShAmt;
750      KnownOne  >>= ShAmt;
751
752      // Handle the sign bits.
753      uint64_t SignBit = MVT::getIntVTSignBit(VT);
754      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
755
756      // If the input sign bit is known to be zero, or if none of the top bits
757      // are demanded, turn this into an unsigned shift right.
758      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
759        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
760                                                 Op.getOperand(1)));
761      } else if (KnownOne & SignBit) { // New bits are known one.
762        KnownOne |= HighBits;
763      }
764    }
765    break;
766  case ISD::SIGN_EXTEND_INREG: {
767    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
768
769    // Sign extension.  Compute the demanded bits in the result that are not
770    // present in the input.
771    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
772
773    // If none of the extended bits are demanded, eliminate the sextinreg.
774    if (NewBits == 0)
775      return TLO.CombineTo(Op, Op.getOperand(0));
776
777    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
778    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
779
780    // Since the sign extended bits are demanded, we know that the sign
781    // bit is demanded.
782    InputDemandedBits |= InSignBit;
783
784    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
785                             KnownZero, KnownOne, TLO, Depth+1))
786      return true;
787    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788
789    // If the sign bit of the input is known set or clear, then we know the
790    // top bits of the result.
791
792    // If the input sign bit is known zero, convert this into a zero extension.
793    if (KnownZero & InSignBit)
794      return TLO.CombineTo(Op,
795                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
796
797    if (KnownOne & InSignBit) {    // Input sign bit known set
798      KnownOne |= NewBits;
799      KnownZero &= ~NewBits;
800    } else {                       // Input sign bit unknown
801      KnownZero &= ~NewBits;
802      KnownOne &= ~NewBits;
803    }
804    break;
805  }
806  case ISD::CTTZ:
807  case ISD::CTLZ:
808  case ISD::CTPOP: {
809    MVT::ValueType VT = Op.getValueType();
810    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
811    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
812    KnownOne  = 0;
813    break;
814  }
815  case ISD::LOAD: {
816    if (ISD::isZEXTLoad(Op.Val)) {
817      LoadSDNode *LD = cast<LoadSDNode>(Op);
818      MVT::ValueType VT = LD->getLoadedVT();
819      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
820    }
821    break;
822  }
823  case ISD::ZERO_EXTEND: {
824    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
825
826    // If none of the top bits are demanded, convert this into an any_extend.
827    uint64_t NewBits = (~InMask) & DemandedMask;
828    if (NewBits == 0)
829      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
830                                               Op.getValueType(),
831                                               Op.getOperand(0)));
832
833    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
834                             KnownZero, KnownOne, TLO, Depth+1))
835      return true;
836    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
837    KnownZero |= NewBits;
838    break;
839  }
840  case ISD::SIGN_EXTEND: {
841    MVT::ValueType InVT = Op.getOperand(0).getValueType();
842    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
843    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
844    uint64_t NewBits   = (~InMask) & DemandedMask;
845
846    // If none of the top bits are demanded, convert this into an any_extend.
847    if (NewBits == 0)
848      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
849                                           Op.getOperand(0)));
850
851    // Since some of the sign extended bits are demanded, we know that the sign
852    // bit is demanded.
853    uint64_t InDemandedBits = DemandedMask & InMask;
854    InDemandedBits |= InSignBit;
855
856    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
857                             KnownOne, TLO, Depth+1))
858      return true;
859
860    // If the sign bit is known zero, convert this to a zero extend.
861    if (KnownZero & InSignBit)
862      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
863                                               Op.getValueType(),
864                                               Op.getOperand(0)));
865
866    // If the sign bit is known one, the top bits match.
867    if (KnownOne & InSignBit) {
868      KnownOne  |= NewBits;
869      KnownZero &= ~NewBits;
870    } else {   // Otherwise, top bits aren't known.
871      KnownOne  &= ~NewBits;
872      KnownZero &= ~NewBits;
873    }
874    break;
875  }
876  case ISD::ANY_EXTEND: {
877    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
878    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
879                             KnownZero, KnownOne, TLO, Depth+1))
880      return true;
881    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
882    break;
883  }
884  case ISD::TRUNCATE: {
885    // Simplify the input, using demanded bit information, and compute the known
886    // zero/one bits live out.
887    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
888                             KnownZero, KnownOne, TLO, Depth+1))
889      return true;
890
891    // If the input is only used by this truncate, see if we can shrink it based
892    // on the known demanded bits.
893    if (Op.getOperand(0).Val->hasOneUse()) {
894      SDOperand In = Op.getOperand(0);
895      switch (In.getOpcode()) {
896      default: break;
897      case ISD::SRL:
898        // Shrink SRL by a constant if none of the high bits shifted in are
899        // demanded.
900        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
901          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
902          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
903          HighBits >>= ShAmt->getValue();
904
905          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
906              (DemandedMask & HighBits) == 0) {
907            // None of the shifted in bits are needed.  Add a truncate of the
908            // shift input, then shift it.
909            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
910                                                 Op.getValueType(),
911                                                 In.getOperand(0));
912            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
913                                                   NewTrunc, In.getOperand(1)));
914          }
915        }
916        break;
917      }
918    }
919
920    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
921    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
922    KnownZero &= OutMask;
923    KnownOne &= OutMask;
924    break;
925  }
926  case ISD::AssertZext: {
927    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
928    uint64_t InMask = MVT::getIntVTBitMask(VT);
929    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
930                             KnownZero, KnownOne, TLO, Depth+1))
931      return true;
932    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
933    KnownZero |= ~InMask & DemandedMask;
934    break;
935  }
936  case ISD::ADD:
937  case ISD::SUB:
938  case ISD::INTRINSIC_WO_CHAIN:
939  case ISD::INTRINSIC_W_CHAIN:
940  case ISD::INTRINSIC_VOID:
941    // Just use ComputeMaskedBits to compute output bits.
942    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
943    break;
944  }
945
946  // If we know the value of all of the demanded bits, return this as a
947  // constant.
948  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
949    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
950
951  return false;
952}
953
954/// computeMaskedBitsForTargetNode - Determine which of the bits specified
955/// in Mask are known to be either zero or one and return them in the
956/// KnownZero/KnownOne bitsets.
957void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
958                                                    uint64_t Mask,
959                                                    uint64_t &KnownZero,
960                                                    uint64_t &KnownOne,
961                                                    const SelectionDAG &DAG,
962                                                    unsigned Depth) const {
963  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
964          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
965          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
966          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
967         "Should use MaskedValueIsZero if you don't know whether Op"
968         " is a target node!");
969  KnownZero = 0;
970  KnownOne = 0;
971}
972
973/// ComputeNumSignBitsForTargetNode - This method can be implemented by
974/// targets that want to expose additional information about sign bits to the
975/// DAG Combiner.
976unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
977                                                         unsigned Depth) const {
978  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
979          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
980          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
981          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
982         "Should use ComputeNumSignBits if you don't know whether Op"
983         " is a target node!");
984  return 1;
985}
986
987
988/// SimplifySetCC - Try to simplify a setcc built with the specified operands
989/// and cc. If it is unable to simplify it, return a null SDOperand.
990SDOperand
991TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
992                              ISD::CondCode Cond, bool foldBooleans,
993                              DAGCombinerInfo &DCI) const {
994  SelectionDAG &DAG = DCI.DAG;
995
996  // These setcc operations always fold.
997  switch (Cond) {
998  default: break;
999  case ISD::SETFALSE:
1000  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1001  case ISD::SETTRUE:
1002  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1003  }
1004
1005  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1006    uint64_t C1 = N1C->getValue();
1007    if (isa<ConstantSDNode>(N0.Val)) {
1008      return DAG.FoldSetCC(VT, N0, N1, Cond);
1009    } else {
1010      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1011      // equality comparison, then we're just comparing whether X itself is
1012      // zero.
1013      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1014          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1015          N0.getOperand(1).getOpcode() == ISD::Constant) {
1016        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1017        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1018            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1019          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1020            // (srl (ctlz x), 5) == 0  -> X != 0
1021            // (srl (ctlz x), 5) != 1  -> X != 0
1022            Cond = ISD::SETNE;
1023          } else {
1024            // (srl (ctlz x), 5) != 0  -> X == 0
1025            // (srl (ctlz x), 5) == 1  -> X == 0
1026            Cond = ISD::SETEQ;
1027          }
1028          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1029          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1030                              Zero, Cond);
1031        }
1032      }
1033
1034      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1035      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1036        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1037
1038        // If the comparison constant has bits in the upper part, the
1039        // zero-extended value could never match.
1040        if (C1 & (~0ULL << InSize)) {
1041          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1042          switch (Cond) {
1043          case ISD::SETUGT:
1044          case ISD::SETUGE:
1045          case ISD::SETEQ: return DAG.getConstant(0, VT);
1046          case ISD::SETULT:
1047          case ISD::SETULE:
1048          case ISD::SETNE: return DAG.getConstant(1, VT);
1049          case ISD::SETGT:
1050          case ISD::SETGE:
1051            // True if the sign bit of C1 is set.
1052            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1053          case ISD::SETLT:
1054          case ISD::SETLE:
1055            // True if the sign bit of C1 isn't set.
1056            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1057          default:
1058            break;
1059          }
1060        }
1061
1062        // Otherwise, we can perform the comparison with the low bits.
1063        switch (Cond) {
1064        case ISD::SETEQ:
1065        case ISD::SETNE:
1066        case ISD::SETUGT:
1067        case ISD::SETUGE:
1068        case ISD::SETULT:
1069        case ISD::SETULE:
1070          return DAG.getSetCC(VT, N0.getOperand(0),
1071                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1072                          Cond);
1073        default:
1074          break;   // todo, be more careful with signed comparisons
1075        }
1076      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1077                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1078        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1079        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1080        MVT::ValueType ExtDstTy = N0.getValueType();
1081        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1082
1083        // If the extended part has any inconsistent bits, it cannot ever
1084        // compare equal.  In other words, they have to be all ones or all
1085        // zeros.
1086        uint64_t ExtBits =
1087          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1088        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1089          return DAG.getConstant(Cond == ISD::SETNE, VT);
1090
1091        SDOperand ZextOp;
1092        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1093        if (Op0Ty == ExtSrcTy) {
1094          ZextOp = N0.getOperand(0);
1095        } else {
1096          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1097          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1098                               DAG.getConstant(Imm, Op0Ty));
1099        }
1100        if (!DCI.isCalledByLegalizer())
1101          DCI.AddToWorklist(ZextOp.Val);
1102        // Otherwise, make this a use of a zext.
1103        return DAG.getSetCC(VT, ZextOp,
1104                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1105                                            ExtDstTy),
1106                            Cond);
1107      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1108                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1109
1110        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1111        if (N0.getOpcode() == ISD::SETCC) {
1112          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1113          if (TrueWhenTrue)
1114            return N0;
1115
1116          // Invert the condition.
1117          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1118          CC = ISD::getSetCCInverse(CC,
1119                               MVT::isInteger(N0.getOperand(0).getValueType()));
1120          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1121        }
1122
1123        if ((N0.getOpcode() == ISD::XOR ||
1124             (N0.getOpcode() == ISD::AND &&
1125              N0.getOperand(0).getOpcode() == ISD::XOR &&
1126              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1127            isa<ConstantSDNode>(N0.getOperand(1)) &&
1128            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1129          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1130          // can only do this if the top bits are known zero.
1131          if (DAG.MaskedValueIsZero(N0,
1132                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1133            // Okay, get the un-inverted input value.
1134            SDOperand Val;
1135            if (N0.getOpcode() == ISD::XOR)
1136              Val = N0.getOperand(0);
1137            else {
1138              assert(N0.getOpcode() == ISD::AND &&
1139                     N0.getOperand(0).getOpcode() == ISD::XOR);
1140              // ((X^1)&1)^1 -> X & 1
1141              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1142                                N0.getOperand(0).getOperand(0),
1143                                N0.getOperand(1));
1144            }
1145            return DAG.getSetCC(VT, Val, N1,
1146                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1147          }
1148        }
1149      }
1150
1151      uint64_t MinVal, MaxVal;
1152      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1153      if (ISD::isSignedIntSetCC(Cond)) {
1154        MinVal = 1ULL << (OperandBitSize-1);
1155        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1156          MaxVal = ~0ULL >> (65-OperandBitSize);
1157        else
1158          MaxVal = 0;
1159      } else {
1160        MinVal = 0;
1161        MaxVal = ~0ULL >> (64-OperandBitSize);
1162      }
1163
1164      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1165      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1166        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1167        --C1;                                          // X >= C0 --> X > (C0-1)
1168        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1169                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1170      }
1171
1172      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1173        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1174        ++C1;                                          // X <= C0 --> X < (C0+1)
1175        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1176                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1177      }
1178
1179      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1180        return DAG.getConstant(0, VT);      // X < MIN --> false
1181      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1182        return DAG.getConstant(1, VT);      // X >= MIN --> true
1183      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1184        return DAG.getConstant(0, VT);      // X > MAX --> false
1185      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1186        return DAG.getConstant(1, VT);      // X <= MAX --> true
1187
1188      // Canonicalize setgt X, Min --> setne X, Min
1189      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1190        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1191      // Canonicalize setlt X, Max --> setne X, Max
1192      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1193        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1194
1195      // If we have setult X, 1, turn it into seteq X, 0
1196      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1197        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1198                        ISD::SETEQ);
1199      // If we have setugt X, Max-1, turn it into seteq X, Max
1200      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1201        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1202                        ISD::SETEQ);
1203
1204      // If we have "setcc X, C0", check to see if we can shrink the immediate
1205      // by changing cc.
1206
1207      // SETUGT X, SINTMAX  -> SETLT X, 0
1208      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1209          C1 == (~0ULL >> (65-OperandBitSize)))
1210        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1211                            ISD::SETLT);
1212
1213      // FIXME: Implement the rest of these.
1214
1215      // Fold bit comparisons when we can.
1216      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1217          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1218        if (ConstantSDNode *AndRHS =
1219                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1220          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1221            // Perform the xform if the AND RHS is a single bit.
1222            if (isPowerOf2_64(AndRHS->getValue())) {
1223              return DAG.getNode(ISD::SRL, VT, N0,
1224                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1225                                             getShiftAmountTy()));
1226            }
1227          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1228            // (X & 8) == 8  -->  (X & 8) >> 3
1229            // Perform the xform if C1 is a single bit.
1230            if (isPowerOf2_64(C1)) {
1231              return DAG.getNode(ISD::SRL, VT, N0,
1232                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1233            }
1234          }
1235        }
1236    }
1237  } else if (isa<ConstantSDNode>(N0.Val)) {
1238      // Ensure that the constant occurs on the RHS.
1239    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1240  }
1241
1242  if (isa<ConstantFPSDNode>(N0.Val)) {
1243    // Constant fold or commute setcc.
1244    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1245    if (O.Val) return O;
1246  }
1247
1248  if (N0 == N1) {
1249    // We can always fold X == X for integer setcc's.
1250    if (MVT::isInteger(N0.getValueType()))
1251      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1252    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1253    if (UOF == 2)   // FP operators that are undefined on NaNs.
1254      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1255    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1256      return DAG.getConstant(UOF, VT);
1257    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1258    // if it is not already.
1259    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1260    if (NewCond != Cond)
1261      return DAG.getSetCC(VT, N0, N1, NewCond);
1262  }
1263
1264  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1265      MVT::isInteger(N0.getValueType())) {
1266    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1267        N0.getOpcode() == ISD::XOR) {
1268      // Simplify (X+Y) == (X+Z) -->  Y == Z
1269      if (N0.getOpcode() == N1.getOpcode()) {
1270        if (N0.getOperand(0) == N1.getOperand(0))
1271          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1272        if (N0.getOperand(1) == N1.getOperand(1))
1273          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1274        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1275          // If X op Y == Y op X, try other combinations.
1276          if (N0.getOperand(0) == N1.getOperand(1))
1277            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1278          if (N0.getOperand(1) == N1.getOperand(0))
1279            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1280        }
1281      }
1282
1283      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1284        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1285          // Turn (X+C1) == C2 --> X == C2-C1
1286          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1287            return DAG.getSetCC(VT, N0.getOperand(0),
1288                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1289                                N0.getValueType()), Cond);
1290          }
1291
1292          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1293          if (N0.getOpcode() == ISD::XOR)
1294            // If we know that all of the inverted bits are zero, don't bother
1295            // performing the inversion.
1296            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1297              return DAG.getSetCC(VT, N0.getOperand(0),
1298                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1299                                              N0.getValueType()), Cond);
1300        }
1301
1302        // Turn (C1-X) == C2 --> X == C1-C2
1303        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1304          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1305            return DAG.getSetCC(VT, N0.getOperand(1),
1306                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1307                                             N0.getValueType()), Cond);
1308          }
1309        }
1310      }
1311
1312      // Simplify (X+Z) == X -->  Z == 0
1313      if (N0.getOperand(0) == N1)
1314        return DAG.getSetCC(VT, N0.getOperand(1),
1315                        DAG.getConstant(0, N0.getValueType()), Cond);
1316      if (N0.getOperand(1) == N1) {
1317        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1318          return DAG.getSetCC(VT, N0.getOperand(0),
1319                          DAG.getConstant(0, N0.getValueType()), Cond);
1320        else if (N0.Val->hasOneUse()) {
1321          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1322          // (Z-X) == X  --> Z == X<<1
1323          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1324                                     N1,
1325                                     DAG.getConstant(1, getShiftAmountTy()));
1326          if (!DCI.isCalledByLegalizer())
1327            DCI.AddToWorklist(SH.Val);
1328          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1329        }
1330      }
1331    }
1332
1333    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1334        N1.getOpcode() == ISD::XOR) {
1335      // Simplify  X == (X+Z) -->  Z == 0
1336      if (N1.getOperand(0) == N0) {
1337        return DAG.getSetCC(VT, N1.getOperand(1),
1338                        DAG.getConstant(0, N1.getValueType()), Cond);
1339      } else if (N1.getOperand(1) == N0) {
1340        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1341          return DAG.getSetCC(VT, N1.getOperand(0),
1342                          DAG.getConstant(0, N1.getValueType()), Cond);
1343        } else if (N1.Val->hasOneUse()) {
1344          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1345          // X == (Z-X)  --> X<<1 == Z
1346          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1347                                     DAG.getConstant(1, getShiftAmountTy()));
1348          if (!DCI.isCalledByLegalizer())
1349            DCI.AddToWorklist(SH.Val);
1350          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1351        }
1352      }
1353    }
1354  }
1355
1356  // Fold away ALL boolean setcc's.
1357  SDOperand Temp;
1358  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1359    switch (Cond) {
1360    default: assert(0 && "Unknown integer setcc!");
1361    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1362      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1363      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1364      if (!DCI.isCalledByLegalizer())
1365        DCI.AddToWorklist(Temp.Val);
1366      break;
1367    case ISD::SETNE:  // X != Y   -->  (X^Y)
1368      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1369      break;
1370    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1371    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1372      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1373      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1374      if (!DCI.isCalledByLegalizer())
1375        DCI.AddToWorklist(Temp.Val);
1376      break;
1377    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1378    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1379      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1380      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1381      if (!DCI.isCalledByLegalizer())
1382        DCI.AddToWorklist(Temp.Val);
1383      break;
1384    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1385    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1386      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1387      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1388      if (!DCI.isCalledByLegalizer())
1389        DCI.AddToWorklist(Temp.Val);
1390      break;
1391    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1392    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1393      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1394      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1395      break;
1396    }
1397    if (VT != MVT::i1) {
1398      if (!DCI.isCalledByLegalizer())
1399        DCI.AddToWorklist(N0.Val);
1400      // FIXME: If running after legalize, we probably can't do this.
1401      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1402    }
1403    return N0;
1404  }
1405
1406  // Could not fold it.
1407  return SDOperand();
1408}
1409
1410SDOperand TargetLowering::
1411PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1412  // Default implementation: no optimization.
1413  return SDOperand();
1414}
1415
1416//===----------------------------------------------------------------------===//
1417//  Inline Assembler Implementation Methods
1418//===----------------------------------------------------------------------===//
1419
1420TargetLowering::ConstraintType
1421TargetLowering::getConstraintType(const std::string &Constraint) const {
1422  // FIXME: lots more standard ones to handle.
1423  if (Constraint.size() == 1) {
1424    switch (Constraint[0]) {
1425    default: break;
1426    case 'r': return C_RegisterClass;
1427    case 'm':    // memory
1428    case 'o':    // offsetable
1429    case 'V':    // not offsetable
1430      return C_Memory;
1431    case 'i':    // Simple Integer or Relocatable Constant
1432    case 'n':    // Simple Integer
1433    case 's':    // Relocatable Constant
1434    case 'X':    // Allow ANY value.
1435    case 'I':    // Target registers.
1436    case 'J':
1437    case 'K':
1438    case 'L':
1439    case 'M':
1440    case 'N':
1441    case 'O':
1442    case 'P':
1443      return C_Other;
1444    }
1445  }
1446
1447  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1448      Constraint[Constraint.size()-1] == '}')
1449    return C_Register;
1450  return C_Unknown;
1451}
1452
1453/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1454/// vector.  If it is invalid, don't add anything to Ops.
1455void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1456                                                  char ConstraintLetter,
1457                                                  std::vector<SDOperand> &Ops,
1458                                                  SelectionDAG &DAG) {
1459  switch (ConstraintLetter) {
1460  default: break;
1461  case 'X':     // Allows any operand; labels (basic block) use this.
1462    if (Op.getOpcode() == ISD::BasicBlock) {
1463      Ops.push_back(Op);
1464      return;
1465    }
1466    // fall through
1467  case 'i':    // Simple Integer or Relocatable Constant
1468  case 'n':    // Simple Integer
1469  case 's': {  // Relocatable Constant
1470    // These operands are interested in values of the form (GV+C), where C may
1471    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1472    // is possible and fine if either GV or C are missing.
1473    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1474    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1475
1476    // If we have "(add GV, C)", pull out GV/C
1477    if (Op.getOpcode() == ISD::ADD) {
1478      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1479      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1480      if (C == 0 || GA == 0) {
1481        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1482        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1483      }
1484      if (C == 0 || GA == 0)
1485        C = 0, GA = 0;
1486    }
1487
1488    // If we find a valid operand, map to the TargetXXX version so that the
1489    // value itself doesn't get selected.
1490    if (GA) {   // Either &GV   or   &GV+C
1491      if (ConstraintLetter != 'n') {
1492        int64_t Offs = GA->getOffset();
1493        if (C) Offs += C->getValue();
1494        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1495                                                 Op.getValueType(), Offs));
1496        return;
1497      }
1498    }
1499    if (C) {   // just C, no GV.
1500      // Simple constants are not allowed for 's'.
1501      if (ConstraintLetter != 's') {
1502        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1503        return;
1504      }
1505    }
1506    break;
1507  }
1508  }
1509}
1510
1511std::vector<unsigned> TargetLowering::
1512getRegClassForInlineAsmConstraint(const std::string &Constraint,
1513                                  MVT::ValueType VT) const {
1514  return std::vector<unsigned>();
1515}
1516
1517
1518std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1519getRegForInlineAsmConstraint(const std::string &Constraint,
1520                             MVT::ValueType VT) const {
1521  if (Constraint[0] != '{')
1522    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1523  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1524
1525  // Remove the braces from around the name.
1526  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1527
1528  // Figure out which register class contains this reg.
1529  const MRegisterInfo *RI = TM.getRegisterInfo();
1530  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1531       E = RI->regclass_end(); RCI != E; ++RCI) {
1532    const TargetRegisterClass *RC = *RCI;
1533
1534    // If none of the the value types for this register class are valid, we
1535    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1536    bool isLegal = false;
1537    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1538         I != E; ++I) {
1539      if (isTypeLegal(*I)) {
1540        isLegal = true;
1541        break;
1542      }
1543    }
1544
1545    if (!isLegal) continue;
1546
1547    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1548         I != E; ++I) {
1549      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1550        return std::make_pair(*I, RC);
1551    }
1552  }
1553
1554  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1555}
1556
1557//===----------------------------------------------------------------------===//
1558//  Loop Strength Reduction hooks
1559//===----------------------------------------------------------------------===//
1560
1561/// isLegalAddressingMode - Return true if the addressing mode represented
1562/// by AM is legal for this target, for a load/store of the specified type.
1563bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1564                                           const Type *Ty) const {
1565  // The default implementation of this implements a conservative RISCy, r+r and
1566  // r+i addr mode.
1567
1568  // Allows a sign-extended 16-bit immediate field.
1569  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1570    return false;
1571
1572  // No global is ever allowed as a base.
1573  if (AM.BaseGV)
1574    return false;
1575
1576  // Only support r+r,
1577  switch (AM.Scale) {
1578  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1579    break;
1580  case 1:
1581    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1582      return false;
1583    // Otherwise we have r+r or r+i.
1584    break;
1585  case 2:
1586    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1587      return false;
1588    // Allow 2*r as r+r.
1589    break;
1590  }
1591
1592  return true;
1593}
1594
1595// Magic for divide replacement
1596
1597struct ms {
1598  int64_t m;  // magic number
1599  int64_t s;  // shift amount
1600};
1601
1602struct mu {
1603  uint64_t m; // magic number
1604  int64_t a;  // add indicator
1605  int64_t s;  // shift amount
1606};
1607
1608/// magic - calculate the magic numbers required to codegen an integer sdiv as
1609/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1610/// or -1.
1611static ms magic32(int32_t d) {
1612  int32_t p;
1613  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1614  const uint32_t two31 = 0x80000000U;
1615  struct ms mag;
1616
1617  ad = abs(d);
1618  t = two31 + ((uint32_t)d >> 31);
1619  anc = t - 1 - t%ad;   // absolute value of nc
1620  p = 31;               // initialize p
1621  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1622  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1623  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1624  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1625  do {
1626    p = p + 1;
1627    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1628    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1629    if (r1 >= anc) {  // must be unsigned comparison
1630      q1 = q1 + 1;
1631      r1 = r1 - anc;
1632    }
1633    q2 = 2*q2;        // update q2 = 2p/abs(d)
1634    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1635    if (r2 >= ad) {   // must be unsigned comparison
1636      q2 = q2 + 1;
1637      r2 = r2 - ad;
1638    }
1639    delta = ad - r2;
1640  } while (q1 < delta || (q1 == delta && r1 == 0));
1641
1642  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1643  if (d < 0) mag.m = -mag.m; // resulting magic number
1644  mag.s = p - 32;            // resulting shift
1645  return mag;
1646}
1647
1648/// magicu - calculate the magic numbers required to codegen an integer udiv as
1649/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1650static mu magicu32(uint32_t d) {
1651  int32_t p;
1652  uint32_t nc, delta, q1, r1, q2, r2;
1653  struct mu magu;
1654  magu.a = 0;               // initialize "add" indicator
1655  nc = - 1 - (-d)%d;
1656  p = 31;                   // initialize p
1657  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1658  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1659  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1660  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1661  do {
1662    p = p + 1;
1663    if (r1 >= nc - r1 ) {
1664      q1 = 2*q1 + 1;  // update q1
1665      r1 = 2*r1 - nc; // update r1
1666    }
1667    else {
1668      q1 = 2*q1; // update q1
1669      r1 = 2*r1; // update r1
1670    }
1671    if (r2 + 1 >= d - r2) {
1672      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1673      q2 = 2*q2 + 1;     // update q2
1674      r2 = 2*r2 + 1 - d; // update r2
1675    }
1676    else {
1677      if (q2 >= 0x80000000) magu.a = 1;
1678      q2 = 2*q2;     // update q2
1679      r2 = 2*r2 + 1; // update r2
1680    }
1681    delta = d - 1 - r2;
1682  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1683  magu.m = q2 + 1; // resulting magic number
1684  magu.s = p - 32;  // resulting shift
1685  return magu;
1686}
1687
1688/// magic - calculate the magic numbers required to codegen an integer sdiv as
1689/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1690/// or -1.
1691static ms magic64(int64_t d) {
1692  int64_t p;
1693  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1694  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1695  struct ms mag;
1696
1697  ad = d >= 0 ? d : -d;
1698  t = two63 + ((uint64_t)d >> 63);
1699  anc = t - 1 - t%ad;   // absolute value of nc
1700  p = 63;               // initialize p
1701  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1702  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1703  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1704  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1705  do {
1706    p = p + 1;
1707    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1708    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1709    if (r1 >= anc) {  // must be unsigned comparison
1710      q1 = q1 + 1;
1711      r1 = r1 - anc;
1712    }
1713    q2 = 2*q2;        // update q2 = 2p/abs(d)
1714    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1715    if (r2 >= ad) {   // must be unsigned comparison
1716      q2 = q2 + 1;
1717      r2 = r2 - ad;
1718    }
1719    delta = ad - r2;
1720  } while (q1 < delta || (q1 == delta && r1 == 0));
1721
1722  mag.m = q2 + 1;
1723  if (d < 0) mag.m = -mag.m; // resulting magic number
1724  mag.s = p - 64;            // resulting shift
1725  return mag;
1726}
1727
1728/// magicu - calculate the magic numbers required to codegen an integer udiv as
1729/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1730static mu magicu64(uint64_t d)
1731{
1732  int64_t p;
1733  uint64_t nc, delta, q1, r1, q2, r2;
1734  struct mu magu;
1735  magu.a = 0;               // initialize "add" indicator
1736  nc = - 1 - (-d)%d;
1737  p = 63;                   // initialize p
1738  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1739  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1740  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1741  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1742  do {
1743    p = p + 1;
1744    if (r1 >= nc - r1 ) {
1745      q1 = 2*q1 + 1;  // update q1
1746      r1 = 2*r1 - nc; // update r1
1747    }
1748    else {
1749      q1 = 2*q1; // update q1
1750      r1 = 2*r1; // update r1
1751    }
1752    if (r2 + 1 >= d - r2) {
1753      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1754      q2 = 2*q2 + 1;     // update q2
1755      r2 = 2*r2 + 1 - d; // update r2
1756    }
1757    else {
1758      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1759      q2 = 2*q2;     // update q2
1760      r2 = 2*r2 + 1; // update r2
1761    }
1762    delta = d - 1 - r2;
1763  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1764  magu.m = q2 + 1; // resulting magic number
1765  magu.s = p - 64;  // resulting shift
1766  return magu;
1767}
1768
1769/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1770/// return a DAG expression to select that will generate the same value by
1771/// multiplying by a magic number.  See:
1772/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1773SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1774                                    std::vector<SDNode*>* Created) const {
1775  MVT::ValueType VT = N->getValueType(0);
1776
1777  // Check to see if we can do this.
1778  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1779    return SDOperand();       // BuildSDIV only operates on i32 or i64
1780
1781  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1782  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1783
1784  // Multiply the numerator (operand 0) by the magic value
1785  SDOperand Q;
1786  if (isOperationLegal(ISD::MULHS, VT))
1787    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1788                    DAG.getConstant(magics.m, VT));
1789  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1790    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1791                              N->getOperand(0),
1792                              DAG.getConstant(magics.m, VT)).Val, 1);
1793  else
1794    return SDOperand();       // No mulhs or equvialent
1795  // If d > 0 and m < 0, add the numerator
1796  if (d > 0 && magics.m < 0) {
1797    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1798    if (Created)
1799      Created->push_back(Q.Val);
1800  }
1801  // If d < 0 and m > 0, subtract the numerator.
1802  if (d < 0 && magics.m > 0) {
1803    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1804    if (Created)
1805      Created->push_back(Q.Val);
1806  }
1807  // Shift right algebraic if shift value is nonzero
1808  if (magics.s > 0) {
1809    Q = DAG.getNode(ISD::SRA, VT, Q,
1810                    DAG.getConstant(magics.s, getShiftAmountTy()));
1811    if (Created)
1812      Created->push_back(Q.Val);
1813  }
1814  // Extract the sign bit and add it to the quotient
1815  SDOperand T =
1816    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1817                                                 getShiftAmountTy()));
1818  if (Created)
1819    Created->push_back(T.Val);
1820  return DAG.getNode(ISD::ADD, VT, Q, T);
1821}
1822
1823/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1824/// return a DAG expression to select that will generate the same value by
1825/// multiplying by a magic number.  See:
1826/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1827SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1828                                    std::vector<SDNode*>* Created) const {
1829  MVT::ValueType VT = N->getValueType(0);
1830
1831  // Check to see if we can do this.
1832  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1833    return SDOperand();       // BuildUDIV only operates on i32 or i64
1834
1835  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1836  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1837
1838  // Multiply the numerator (operand 0) by the magic value
1839  SDOperand Q;
1840  if (isOperationLegal(ISD::MULHU, VT))
1841    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1842                    DAG.getConstant(magics.m, VT));
1843  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1844    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1845                              N->getOperand(0),
1846                              DAG.getConstant(magics.m, VT)).Val, 1);
1847  else
1848    return SDOperand();       // No mulhu or equvialent
1849  if (Created)
1850    Created->push_back(Q.Val);
1851
1852  if (magics.a == 0) {
1853    return DAG.getNode(ISD::SRL, VT, Q,
1854                       DAG.getConstant(magics.s, getShiftAmountTy()));
1855  } else {
1856    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1857    if (Created)
1858      Created->push_back(NPQ.Val);
1859    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1860                      DAG.getConstant(1, getShiftAmountTy()));
1861    if (Created)
1862      Created->push_back(NPQ.Val);
1863    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1864    if (Created)
1865      Created->push_back(NPQ.Val);
1866    return DAG.getNode(ISD::SRL, VT, NPQ,
1867                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1868  }
1869}
1870