TargetLowering.cpp revision ad4196b44ae714a6b95e238d9d96303df74b0429
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SRL_I32] = "__lshrsi3";
35  Names[RTLIB::SRL_I64] = "__lshrdi3";
36  Names[RTLIB::SRA_I32] = "__ashrsi3";
37  Names[RTLIB::SRA_I64] = "__ashrdi3";
38  Names[RTLIB::MUL_I32] = "__mulsi3";
39  Names[RTLIB::MUL_I64] = "__muldi3";
40  Names[RTLIB::SDIV_I32] = "__divsi3";
41  Names[RTLIB::SDIV_I64] = "__divdi3";
42  Names[RTLIB::UDIV_I32] = "__udivsi3";
43  Names[RTLIB::UDIV_I64] = "__udivdi3";
44  Names[RTLIB::SREM_I32] = "__modsi3";
45  Names[RTLIB::SREM_I64] = "__moddi3";
46  Names[RTLIB::UREM_I32] = "__umodsi3";
47  Names[RTLIB::UREM_I64] = "__umoddi3";
48  Names[RTLIB::NEG_I32] = "__negsi2";
49  Names[RTLIB::NEG_I64] = "__negdi2";
50  Names[RTLIB::ADD_F32] = "__addsf3";
51  Names[RTLIB::ADD_F64] = "__adddf3";
52  Names[RTLIB::ADD_F80] = "__addxf3";
53  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
54  Names[RTLIB::SUB_F32] = "__subsf3";
55  Names[RTLIB::SUB_F64] = "__subdf3";
56  Names[RTLIB::SUB_F80] = "__subxf3";
57  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
58  Names[RTLIB::MUL_F32] = "__mulsf3";
59  Names[RTLIB::MUL_F64] = "__muldf3";
60  Names[RTLIB::MUL_F80] = "__mulxf3";
61  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
62  Names[RTLIB::DIV_F32] = "__divsf3";
63  Names[RTLIB::DIV_F64] = "__divdf3";
64  Names[RTLIB::DIV_F80] = "__divxf3";
65  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
66  Names[RTLIB::REM_F32] = "fmodf";
67  Names[RTLIB::REM_F64] = "fmod";
68  Names[RTLIB::REM_F80] = "fmodl";
69  Names[RTLIB::REM_PPCF128] = "fmodl";
70  Names[RTLIB::POWI_F32] = "__powisf2";
71  Names[RTLIB::POWI_F64] = "__powidf2";
72  Names[RTLIB::POWI_F80] = "__powixf2";
73  Names[RTLIB::POWI_PPCF128] = "__powitf2";
74  Names[RTLIB::SQRT_F32] = "sqrtf";
75  Names[RTLIB::SQRT_F64] = "sqrt";
76  Names[RTLIB::SQRT_F80] = "sqrtl";
77  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
78  Names[RTLIB::SIN_F32] = "sinf";
79  Names[RTLIB::SIN_F64] = "sin";
80  Names[RTLIB::SIN_F80] = "sinl";
81  Names[RTLIB::SIN_PPCF128] = "sinl";
82  Names[RTLIB::COS_F32] = "cosf";
83  Names[RTLIB::COS_F64] = "cos";
84  Names[RTLIB::COS_F80] = "cosl";
85  Names[RTLIB::COS_PPCF128] = "cosl";
86  Names[RTLIB::POW_F32] = "powf";
87  Names[RTLIB::POW_F64] = "pow";
88  Names[RTLIB::POW_F80] = "powl";
89  Names[RTLIB::POW_PPCF128] = "powl";
90  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
91  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
92  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
93  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
94  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
95  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
96  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
97  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
98  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
99  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
100  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
101  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
102  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
103  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
104  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
105  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
106  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
107  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
108  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
109  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
110  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
111  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
112  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
113  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
114  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
115  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
116  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
117  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
118  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
119  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
120  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
121  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
122  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
123  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
124  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
125  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
126  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
127  Names[RTLIB::OEQ_F32] = "__eqsf2";
128  Names[RTLIB::OEQ_F64] = "__eqdf2";
129  Names[RTLIB::UNE_F32] = "__nesf2";
130  Names[RTLIB::UNE_F64] = "__nedf2";
131  Names[RTLIB::OGE_F32] = "__gesf2";
132  Names[RTLIB::OGE_F64] = "__gedf2";
133  Names[RTLIB::OLT_F32] = "__ltsf2";
134  Names[RTLIB::OLT_F64] = "__ltdf2";
135  Names[RTLIB::OLE_F32] = "__lesf2";
136  Names[RTLIB::OLE_F64] = "__ledf2";
137  Names[RTLIB::OGT_F32] = "__gtsf2";
138  Names[RTLIB::OGT_F64] = "__gtdf2";
139  Names[RTLIB::UO_F32] = "__unordsf2";
140  Names[RTLIB::UO_F64] = "__unorddf2";
141  Names[RTLIB::O_F32] = "__unordsf2";
142  Names[RTLIB::O_F64] = "__unorddf2";
143}
144
145/// InitCmpLibcallCCs - Set default comparison libcall CC.
146///
147static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
148  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
149  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
150  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
151  CCs[RTLIB::UNE_F32] = ISD::SETNE;
152  CCs[RTLIB::UNE_F64] = ISD::SETNE;
153  CCs[RTLIB::OGE_F32] = ISD::SETGE;
154  CCs[RTLIB::OGE_F64] = ISD::SETGE;
155  CCs[RTLIB::OLT_F32] = ISD::SETLT;
156  CCs[RTLIB::OLT_F64] = ISD::SETLT;
157  CCs[RTLIB::OLE_F32] = ISD::SETLE;
158  CCs[RTLIB::OLE_F64] = ISD::SETLE;
159  CCs[RTLIB::OGT_F32] = ISD::SETGT;
160  CCs[RTLIB::OGT_F64] = ISD::SETGT;
161  CCs[RTLIB::UO_F32] = ISD::SETNE;
162  CCs[RTLIB::UO_F64] = ISD::SETNE;
163  CCs[RTLIB::O_F32] = ISD::SETEQ;
164  CCs[RTLIB::O_F64] = ISD::SETEQ;
165}
166
167TargetLowering::TargetLowering(TargetMachine &tm)
168  : TM(tm), TD(TM.getTargetData()) {
169  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
170         "Fixed size array in TargetLowering is not large enough!");
171  // All operations default to being supported.
172  memset(OpActions, 0, sizeof(OpActions));
173  memset(LoadXActions, 0, sizeof(LoadXActions));
174  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
175  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
176  memset(ConvertActions, 0, sizeof(ConvertActions));
177
178  // Set default actions for various operations.
179  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
180    // Default all indexed load / store to expand.
181    for (unsigned IM = (unsigned)ISD::PRE_INC;
182         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
183      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
184      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
185    }
186
187    // These operations default to expand.
188    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
189  }
190
191  // Most targets ignore the @llvm.prefetch intrinsic.
192  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
193
194  // ConstantFP nodes default to expand.  Targets can either change this to
195  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
196  // to optimize expansions for certain constants.
197  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
198  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
199  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
200
201  // Default ISD::TRAP to expand (which turns it into abort).
202  setOperationAction(ISD::TRAP, MVT::Other, Expand);
203
204  IsLittleEndian = TD->isLittleEndian();
205  UsesGlobalOffsetTable = false;
206  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
207  ShiftAmtHandling = Undefined;
208  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
209  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
210  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
211  allowUnalignedMemoryAccesses = false;
212  UseUnderscoreSetJmp = false;
213  UseUnderscoreLongJmp = false;
214  SelectIsExpensive = false;
215  IntDivIsCheap = false;
216  Pow2DivIsCheap = false;
217  StackPointerRegisterToSaveRestore = 0;
218  ExceptionPointerRegister = 0;
219  ExceptionSelectorRegister = 0;
220  SetCCResultContents = UndefinedSetCCResult;
221  SchedPreferenceInfo = SchedulingForLatency;
222  JumpBufSize = 0;
223  JumpBufAlignment = 0;
224  IfCvtBlockSizeLimit = 2;
225  IfCvtDupBlockSizeLimit = 0;
226  PrefLoopAlignment = 0;
227
228  InitLibcallNames(LibcallRoutineNames);
229  InitCmpLibcallCCs(CmpLibcallCCs);
230
231  // Tell Legalize whether the assembler supports DEBUG_LOC.
232  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
233    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234}
235
236TargetLowering::~TargetLowering() {}
237
238/// computeRegisterProperties - Once all of the register classes are added,
239/// this allows us to compute derived properties we expose.
240void TargetLowering::computeRegisterProperties() {
241  assert(MVT::LAST_VALUETYPE <= 32 &&
242         "Too many value types for ValueTypeActions to hold!");
243
244  // Everything defaults to needing one register.
245  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
246    NumRegistersForVT[i] = 1;
247    RegisterTypeForVT[i] = TransformToType[i] = i;
248  }
249  // ...except isVoid, which doesn't need any registers.
250  NumRegistersForVT[MVT::isVoid] = 0;
251
252  // Find the largest integer register class.
253  unsigned LargestIntReg = MVT::i128;
254  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
255    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
256
257  // Every integer value type larger than this largest register takes twice as
258  // many registers to represent as the previous ValueType.
259  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
260       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
261    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
262    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
263    TransformToType[ExpandedReg] = ExpandedReg - 1;
264    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
265  }
266
267  // Inspect all of the ValueType's smaller than the largest integer
268  // register to see which ones need promotion.
269  MVT::ValueType LegalIntReg = LargestIntReg;
270  for (MVT::ValueType IntReg = LargestIntReg - 1;
271       IntReg >= MVT::i1; --IntReg) {
272    if (isTypeLegal(IntReg)) {
273      LegalIntReg = IntReg;
274    } else {
275      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
276      ValueTypeActions.setTypeAction(IntReg, Promote);
277    }
278  }
279
280  // ppcf128 type is really two f64's.
281  if (!isTypeLegal(MVT::ppcf128)) {
282    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
283    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
284    TransformToType[MVT::ppcf128] = MVT::f64;
285    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
286  }
287
288  // Decide how to handle f64. If the target does not have native f64 support,
289  // expand it to i64 and we will be generating soft float library calls.
290  if (!isTypeLegal(MVT::f64)) {
291    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
292    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
293    TransformToType[MVT::f64] = MVT::i64;
294    ValueTypeActions.setTypeAction(MVT::f64, Expand);
295  }
296
297  // Decide how to handle f32. If the target does not have native support for
298  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
299  if (!isTypeLegal(MVT::f32)) {
300    if (isTypeLegal(MVT::f64)) {
301      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
302      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
303      TransformToType[MVT::f32] = MVT::f64;
304      ValueTypeActions.setTypeAction(MVT::f32, Promote);
305    } else {
306      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
307      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
308      TransformToType[MVT::f32] = MVT::i32;
309      ValueTypeActions.setTypeAction(MVT::f32, Expand);
310    }
311  }
312
313  // Loop over all of the vector value types to see which need transformations.
314  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
315       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
316    if (!isTypeLegal(i)) {
317      MVT::ValueType IntermediateVT, RegisterVT;
318      unsigned NumIntermediates;
319      NumRegistersForVT[i] =
320        getVectorTypeBreakdown(i,
321                               IntermediateVT, NumIntermediates,
322                               RegisterVT);
323      RegisterTypeForVT[i] = RegisterVT;
324      TransformToType[i] = MVT::Other; // this isn't actually used
325      ValueTypeActions.setTypeAction(i, Expand);
326    }
327  }
328}
329
330const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
331  return NULL;
332}
333
334
335MVT::ValueType
336TargetLowering::getSetCCResultType(const SDOperand &) const {
337  return getValueType(TD->getIntPtrType());
338}
339
340
341/// getVectorTypeBreakdown - Vector types are broken down into some number of
342/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
343/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
344/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
345///
346/// This method returns the number of registers needed, and the VT for each
347/// register.  It also returns the VT and quantity of the intermediate values
348/// before they are promoted/expanded.
349///
350unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
351                                                MVT::ValueType &IntermediateVT,
352                                                unsigned &NumIntermediates,
353                                      MVT::ValueType &RegisterVT) const {
354  // Figure out the right, legal destination reg to copy into.
355  unsigned NumElts = MVT::getVectorNumElements(VT);
356  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
357
358  unsigned NumVectorRegs = 1;
359
360  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
361  // could break down into LHS/RHS like LegalizeDAG does.
362  if (!isPowerOf2_32(NumElts)) {
363    NumVectorRegs = NumElts;
364    NumElts = 1;
365  }
366
367  // Divide the input until we get to a supported size.  This will always
368  // end with a scalar if the target doesn't support vectors.
369  while (NumElts > 1 &&
370         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
371    NumElts >>= 1;
372    NumVectorRegs <<= 1;
373  }
374
375  NumIntermediates = NumVectorRegs;
376
377  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
378  if (!isTypeLegal(NewVT))
379    NewVT = EltTy;
380  IntermediateVT = NewVT;
381
382  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
383  RegisterVT = DestVT;
384  if (DestVT < NewVT) {
385    // Value is expanded, e.g. i64 -> i16.
386    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
387  } else {
388    // Otherwise, promotion or legal types use the same number of registers as
389    // the vector decimated to the appropriate level.
390    return NumVectorRegs;
391  }
392
393  return 1;
394}
395
396/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
397/// function arguments in the caller parameter area.  This is the actual
398/// alignment, not its logarithm.
399unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
400  return TD->getCallFrameTypeAlignment(Ty);
401}
402
403SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
404                                                   SelectionDAG &DAG) const {
405  if (usesGlobalOffsetTable())
406    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
407  return Table;
408}
409
410//===----------------------------------------------------------------------===//
411//  Optimization Methods
412//===----------------------------------------------------------------------===//
413
414/// ShrinkDemandedConstant - Check to see if the specified operand of the
415/// specified instruction is a constant integer.  If so, check to see if there
416/// are any bits set in the constant that are not demanded.  If so, shrink the
417/// constant and return true.
418bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
419                                                        const APInt &Demanded) {
420  // FIXME: ISD::SELECT, ISD::SELECT_CC
421  switch(Op.getOpcode()) {
422  default: break;
423  case ISD::AND:
424  case ISD::OR:
425  case ISD::XOR:
426    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
427      if (C->getAPIntValue().intersects(~Demanded)) {
428        MVT::ValueType VT = Op.getValueType();
429        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
430                                    DAG.getConstant(Demanded &
431                                                      C->getAPIntValue(),
432                                                    VT));
433        return CombineTo(Op, New);
434      }
435    break;
436  }
437  return false;
438}
439
440/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
441/// DemandedMask bits of the result of Op are ever used downstream.  If we can
442/// use this information to simplify Op, create a new simplified DAG node and
443/// return true, returning the original and new nodes in Old and New. Otherwise,
444/// analyze the expression and return a mask of KnownOne and KnownZero bits for
445/// the expression (used to simplify the caller).  The KnownZero/One bits may
446/// only be accurate for those bits in the DemandedMask.
447bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
448                                          const APInt &DemandedMask,
449                                          APInt &KnownZero,
450                                          APInt &KnownOne,
451                                          TargetLoweringOpt &TLO,
452                                          unsigned Depth) const {
453  unsigned BitWidth = DemandedMask.getBitWidth();
454  assert(Op.getValueSizeInBits() == BitWidth &&
455         "Mask size mismatches value type size!");
456  APInt NewMask = DemandedMask;
457
458  // Don't know anything.
459  KnownZero = KnownOne = APInt(BitWidth, 0);
460
461  // Other users may use these bits.
462  if (!Op.Val->hasOneUse()) {
463    if (Depth != 0) {
464      // If not at the root, Just compute the KnownZero/KnownOne bits to
465      // simplify things downstream.
466      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
467      return false;
468    }
469    // If this is the root being simplified, allow it to have multiple uses,
470    // just set the NewMask to all bits.
471    NewMask = APInt::getAllOnesValue(BitWidth);
472  } else if (DemandedMask == 0) {
473    // Not demanding any bits from Op.
474    if (Op.getOpcode() != ISD::UNDEF)
475      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
476    return false;
477  } else if (Depth == 6) {        // Limit search depth.
478    return false;
479  }
480
481  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
482  switch (Op.getOpcode()) {
483  case ISD::Constant:
484    // We know all of the bits for a constant!
485    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
486    KnownZero = ~KnownOne & NewMask;
487    return false;   // Don't fall through, will infinitely loop.
488  case ISD::AND:
489    // If the RHS is a constant, check to see if the LHS would be zero without
490    // using the bits from the RHS.  Below, we use knowledge about the RHS to
491    // simplify the LHS, here we're using information from the LHS to simplify
492    // the RHS.
493    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
494      APInt LHSZero, LHSOne;
495      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
496                                LHSZero, LHSOne, Depth+1);
497      // If the LHS already has zeros where RHSC does, this and is dead.
498      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
499        return TLO.CombineTo(Op, Op.getOperand(0));
500      // If any of the set bits in the RHS are known zero on the LHS, shrink
501      // the constant.
502      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
503        return true;
504    }
505
506    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
507                             KnownOne, TLO, Depth+1))
508      return true;
509    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
510    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
511                             KnownZero2, KnownOne2, TLO, Depth+1))
512      return true;
513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
514
515    // If all of the demanded bits are known one on one side, return the other.
516    // These bits cannot contribute to the result of the 'and'.
517    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
518      return TLO.CombineTo(Op, Op.getOperand(0));
519    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
520      return TLO.CombineTo(Op, Op.getOperand(1));
521    // If all of the demanded bits in the inputs are known zeros, return zero.
522    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
523      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
524    // If the RHS is a constant, see if we can simplify it.
525    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
526      return true;
527
528    // Output known-1 bits are only known if set in both the LHS & RHS.
529    KnownOne &= KnownOne2;
530    // Output known-0 are known to be clear if zero in either the LHS | RHS.
531    KnownZero |= KnownZero2;
532    break;
533  case ISD::OR:
534    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
535                             KnownOne, TLO, Depth+1))
536      return true;
537    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
538    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
539                             KnownZero2, KnownOne2, TLO, Depth+1))
540      return true;
541    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
542
543    // If all of the demanded bits are known zero on one side, return the other.
544    // These bits cannot contribute to the result of the 'or'.
545    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
546      return TLO.CombineTo(Op, Op.getOperand(0));
547    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
548      return TLO.CombineTo(Op, Op.getOperand(1));
549    // If all of the potentially set bits on one side are known to be set on
550    // the other side, just use the 'other' side.
551    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
552      return TLO.CombineTo(Op, Op.getOperand(0));
553    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
554      return TLO.CombineTo(Op, Op.getOperand(1));
555    // If the RHS is a constant, see if we can simplify it.
556    if (TLO.ShrinkDemandedConstant(Op, NewMask))
557      return true;
558
559    // Output known-0 bits are only known if clear in both the LHS & RHS.
560    KnownZero &= KnownZero2;
561    // Output known-1 are known to be set if set in either the LHS | RHS.
562    KnownOne |= KnownOne2;
563    break;
564  case ISD::XOR:
565    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
566                             KnownOne, TLO, Depth+1))
567      return true;
568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
569    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
570                             KnownOne2, TLO, Depth+1))
571      return true;
572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
573
574    // If all of the demanded bits are known zero on one side, return the other.
575    // These bits cannot contribute to the result of the 'xor'.
576    if ((KnownZero & NewMask) == NewMask)
577      return TLO.CombineTo(Op, Op.getOperand(0));
578    if ((KnownZero2 & NewMask) == NewMask)
579      return TLO.CombineTo(Op, Op.getOperand(1));
580
581    // If all of the unknown bits are known to be zero on one side or the other
582    // (but not both) turn this into an *inclusive* or.
583    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
584    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
585      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
586                                               Op.getOperand(0),
587                                               Op.getOperand(1)));
588
589    // Output known-0 bits are known if clear or set in both the LHS & RHS.
590    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
591    // Output known-1 are known to be set if set in only one of the LHS, RHS.
592    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
593
594    // If all of the demanded bits on one side are known, and all of the set
595    // bits on that side are also known to be set on the other side, turn this
596    // into an AND, as we know the bits will be cleared.
597    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
598    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
599      if ((KnownOne & KnownOne2) == KnownOne) {
600        MVT::ValueType VT = Op.getValueType();
601        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
602        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
603                                                 ANDC));
604      }
605    }
606
607    // If the RHS is a constant, see if we can simplify it.
608    // for XOR, we prefer to force bits to 1 if they will make a -1.
609    // if we can't force bits, try to shrink constant
610    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
611      APInt Expanded = C->getAPIntValue() | (~NewMask);
612      // if we can expand it to have all bits set, do it
613      if (Expanded.isAllOnesValue()) {
614        if (Expanded != C->getAPIntValue()) {
615          MVT::ValueType VT = Op.getValueType();
616          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
617                                          TLO.DAG.getConstant(Expanded, VT));
618          return TLO.CombineTo(Op, New);
619        }
620        // if it already has all the bits set, nothing to change
621        // but don't shrink either!
622      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
623        return true;
624      }
625    }
626
627    KnownZero = KnownZeroOut;
628    KnownOne  = KnownOneOut;
629    break;
630  case ISD::SELECT:
631    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
632                             KnownOne, TLO, Depth+1))
633      return true;
634    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
635                             KnownOne2, TLO, Depth+1))
636      return true;
637    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
638    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
639
640    // If the operands are constants, see if we can simplify them.
641    if (TLO.ShrinkDemandedConstant(Op, NewMask))
642      return true;
643
644    // Only known if known in both the LHS and RHS.
645    KnownOne &= KnownOne2;
646    KnownZero &= KnownZero2;
647    break;
648  case ISD::SELECT_CC:
649    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
650                             KnownOne, TLO, Depth+1))
651      return true;
652    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
653                             KnownOne2, TLO, Depth+1))
654      return true;
655    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
656    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
657
658    // If the operands are constants, see if we can simplify them.
659    if (TLO.ShrinkDemandedConstant(Op, NewMask))
660      return true;
661
662    // Only known if known in both the LHS and RHS.
663    KnownOne &= KnownOne2;
664    KnownZero &= KnownZero2;
665    break;
666  case ISD::SHL:
667    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
668      unsigned ShAmt = SA->getValue();
669      SDOperand InOp = Op.getOperand(0);
670
671      // If the shift count is an invalid immediate, don't do anything.
672      if (ShAmt >= BitWidth)
673        break;
674
675      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
676      // single shift.  We can do this if the bottom bits (which are shifted
677      // out) are never demanded.
678      if (InOp.getOpcode() == ISD::SRL &&
679          isa<ConstantSDNode>(InOp.getOperand(1))) {
680        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
681          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
682          unsigned Opc = ISD::SHL;
683          int Diff = ShAmt-C1;
684          if (Diff < 0) {
685            Diff = -Diff;
686            Opc = ISD::SRL;
687          }
688
689          SDOperand NewSA =
690            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
691          MVT::ValueType VT = Op.getValueType();
692          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
693                                                   InOp.getOperand(0), NewSA));
694        }
695      }
696
697      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
698                               KnownZero, KnownOne, TLO, Depth+1))
699        return true;
700      KnownZero <<= SA->getValue();
701      KnownOne  <<= SA->getValue();
702      // low bits known zero.
703      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
704    }
705    break;
706  case ISD::SRL:
707    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
708      MVT::ValueType VT = Op.getValueType();
709      unsigned ShAmt = SA->getValue();
710      unsigned VTSize = MVT::getSizeInBits(VT);
711      SDOperand InOp = Op.getOperand(0);
712
713      // If the shift count is an invalid immediate, don't do anything.
714      if (ShAmt >= BitWidth)
715        break;
716
717      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
718      // single shift.  We can do this if the top bits (which are shifted out)
719      // are never demanded.
720      if (InOp.getOpcode() == ISD::SHL &&
721          isa<ConstantSDNode>(InOp.getOperand(1))) {
722        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
723          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
724          unsigned Opc = ISD::SRL;
725          int Diff = ShAmt-C1;
726          if (Diff < 0) {
727            Diff = -Diff;
728            Opc = ISD::SHL;
729          }
730
731          SDOperand NewSA =
732            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
733          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
734                                                   InOp.getOperand(0), NewSA));
735        }
736      }
737
738      // Compute the new bits that are at the top now.
739      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
740                               KnownZero, KnownOne, TLO, Depth+1))
741        return true;
742      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
743      KnownZero = KnownZero.lshr(ShAmt);
744      KnownOne  = KnownOne.lshr(ShAmt);
745
746      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
747      KnownZero |= HighBits;  // High bits known zero.
748    }
749    break;
750  case ISD::SRA:
751    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
752      MVT::ValueType VT = Op.getValueType();
753      unsigned ShAmt = SA->getValue();
754
755      // If the shift count is an invalid immediate, don't do anything.
756      if (ShAmt >= BitWidth)
757        break;
758
759      APInt InDemandedMask = (NewMask << ShAmt);
760
761      // If any of the demanded bits are produced by the sign extension, we also
762      // demand the input sign bit.
763      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
764      if (HighBits.intersects(NewMask))
765        InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT));
766
767      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
768                               KnownZero, KnownOne, TLO, Depth+1))
769        return true;
770      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
771      KnownZero = KnownZero.lshr(ShAmt);
772      KnownOne  = KnownOne.lshr(ShAmt);
773
774      // Handle the sign bit, adjusted to where it is now in the mask.
775      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
776
777      // If the input sign bit is known to be zero, or if none of the top bits
778      // are demanded, turn this into an unsigned shift right.
779      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
780        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
781                                                 Op.getOperand(1)));
782      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
783        KnownOne |= HighBits;
784      }
785    }
786    break;
787  case ISD::SIGN_EXTEND_INREG: {
788    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
789
790    // Sign extension.  Compute the demanded bits in the result that are not
791    // present in the input.
792    APInt NewBits = APInt::getHighBitsSet(BitWidth,
793                                          BitWidth - MVT::getSizeInBits(EVT)) &
794                    NewMask;
795
796    // If none of the extended bits are demanded, eliminate the sextinreg.
797    if (NewBits == 0)
798      return TLO.CombineTo(Op, Op.getOperand(0));
799
800    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
801    InSignBit.zext(BitWidth);
802    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
803                                                   MVT::getSizeInBits(EVT)) &
804                              NewMask;
805
806    // Since the sign extended bits are demanded, we know that the sign
807    // bit is demanded.
808    InputDemandedBits |= InSignBit;
809
810    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
811                             KnownZero, KnownOne, TLO, Depth+1))
812      return true;
813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
814
815    // If the sign bit of the input is known set or clear, then we know the
816    // top bits of the result.
817
818    // If the input sign bit is known zero, convert this into a zero extension.
819    if (KnownZero.intersects(InSignBit))
820      return TLO.CombineTo(Op,
821                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
822
823    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
824      KnownOne |= NewBits;
825      KnownZero &= ~NewBits;
826    } else {                       // Input sign bit unknown
827      KnownZero &= ~NewBits;
828      KnownOne &= ~NewBits;
829    }
830    break;
831  }
832  case ISD::ZERO_EXTEND: {
833    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
834    APInt InMask = NewMask;
835    InMask.trunc(OperandBitWidth);
836
837    // If none of the top bits are demanded, convert this into an any_extend.
838    APInt NewBits =
839      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
840    if (!NewBits.intersects(NewMask))
841      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
842                                               Op.getValueType(),
843                                               Op.getOperand(0)));
844
845    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
846                             KnownZero, KnownOne, TLO, Depth+1))
847      return true;
848    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
849    KnownZero.zext(BitWidth);
850    KnownOne.zext(BitWidth);
851    KnownZero |= NewBits;
852    break;
853  }
854  case ISD::SIGN_EXTEND: {
855    MVT::ValueType InVT = Op.getOperand(0).getValueType();
856    unsigned InBits = MVT::getSizeInBits(InVT);
857    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
858    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
859    APInt NewBits   = ~InMask & NewMask;
860
861    // If none of the top bits are demanded, convert this into an any_extend.
862    if (NewBits == 0)
863      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
864                                           Op.getOperand(0)));
865
866    // Since some of the sign extended bits are demanded, we know that the sign
867    // bit is demanded.
868    APInt InDemandedBits = InMask & NewMask;
869    InDemandedBits |= InSignBit;
870    InDemandedBits.trunc(InBits);
871
872    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
873                             KnownOne, TLO, Depth+1))
874      return true;
875    KnownZero.zext(BitWidth);
876    KnownOne.zext(BitWidth);
877
878    // If the sign bit is known zero, convert this to a zero extend.
879    if (KnownZero.intersects(InSignBit))
880      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
881                                               Op.getValueType(),
882                                               Op.getOperand(0)));
883
884    // If the sign bit is known one, the top bits match.
885    if (KnownOne.intersects(InSignBit)) {
886      KnownOne  |= NewBits;
887      KnownZero &= ~NewBits;
888    } else {   // Otherwise, top bits aren't known.
889      KnownOne  &= ~NewBits;
890      KnownZero &= ~NewBits;
891    }
892    break;
893  }
894  case ISD::ANY_EXTEND: {
895    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
896    APInt InMask = NewMask;
897    InMask.trunc(OperandBitWidth);
898    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
899                             KnownZero, KnownOne, TLO, Depth+1))
900      return true;
901    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
902    KnownZero.zext(BitWidth);
903    KnownOne.zext(BitWidth);
904    break;
905  }
906  case ISD::TRUNCATE: {
907    // Simplify the input, using demanded bit information, and compute the known
908    // zero/one bits live out.
909    APInt TruncMask = NewMask;
910    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
911    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
912                             KnownZero, KnownOne, TLO, Depth+1))
913      return true;
914    KnownZero.trunc(BitWidth);
915    KnownOne.trunc(BitWidth);
916
917    // If the input is only used by this truncate, see if we can shrink it based
918    // on the known demanded bits.
919    if (Op.getOperand(0).Val->hasOneUse()) {
920      SDOperand In = Op.getOperand(0);
921      unsigned InBitWidth = In.getValueSizeInBits();
922      switch (In.getOpcode()) {
923      default: break;
924      case ISD::SRL:
925        // Shrink SRL by a constant if none of the high bits shifted in are
926        // demanded.
927        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
928          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
929                                                 InBitWidth - BitWidth);
930          HighBits = HighBits.lshr(ShAmt->getValue());
931          HighBits.trunc(BitWidth);
932
933          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
934            // None of the shifted in bits are needed.  Add a truncate of the
935            // shift input, then shift it.
936            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
937                                                 Op.getValueType(),
938                                                 In.getOperand(0));
939            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
940                                                   NewTrunc, In.getOperand(1)));
941          }
942        }
943        break;
944      }
945    }
946
947    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
948    break;
949  }
950  case ISD::AssertZext: {
951    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
952    APInt InMask = APInt::getLowBitsSet(BitWidth,
953                                        MVT::getSizeInBits(VT));
954    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
955                             KnownZero, KnownOne, TLO, Depth+1))
956      return true;
957    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
958    KnownZero |= ~InMask & NewMask;
959    break;
960  }
961  case ISD::BIT_CONVERT:
962#if 0
963    // If this is an FP->Int bitcast and if the sign bit is the only thing that
964    // is demanded, turn this into a FGETSIGN.
965    if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) &&
966        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
967        !MVT::isVector(Op.getOperand(0).getValueType())) {
968      // Only do this xform if FGETSIGN is valid or if before legalize.
969      if (!TLO.AfterLegalize ||
970          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
971        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
972        // place.  We expect the SHL to be eliminated by other optimizations.
973        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
974                                         Op.getOperand(0));
975        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
976        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
977        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
978                                                 Sign, ShAmt));
979      }
980    }
981#endif
982    break;
983  default:
984    // Just use ComputeMaskedBits to compute output bits.
985    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
986    break;
987  }
988
989  // If we know the value of all of the demanded bits, return this as a
990  // constant.
991  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
992    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
993
994  return false;
995}
996
997/// computeMaskedBitsForTargetNode - Determine which of the bits specified
998/// in Mask are known to be either zero or one and return them in the
999/// KnownZero/KnownOne bitsets.
1000void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1001                                                    const APInt &Mask,
1002                                                    APInt &KnownZero,
1003                                                    APInt &KnownOne,
1004                                                    const SelectionDAG &DAG,
1005                                                    unsigned Depth) const {
1006  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1007          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1008          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1009          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1010         "Should use MaskedValueIsZero if you don't know whether Op"
1011         " is a target node!");
1012  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1013}
1014
1015/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1016/// targets that want to expose additional information about sign bits to the
1017/// DAG Combiner.
1018unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1019                                                         unsigned Depth) const {
1020  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1021          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1022          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1023          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1024         "Should use ComputeNumSignBits if you don't know whether Op"
1025         " is a target node!");
1026  return 1;
1027}
1028
1029
1030/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1031/// and cc. If it is unable to simplify it, return a null SDOperand.
1032SDOperand
1033TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1034                              ISD::CondCode Cond, bool foldBooleans,
1035                              DAGCombinerInfo &DCI) const {
1036  SelectionDAG &DAG = DCI.DAG;
1037
1038  // These setcc operations always fold.
1039  switch (Cond) {
1040  default: break;
1041  case ISD::SETFALSE:
1042  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1043  case ISD::SETTRUE:
1044  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1045  }
1046
1047  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1048    const APInt &C1 = N1C->getAPIntValue();
1049    if (isa<ConstantSDNode>(N0.Val)) {
1050      return DAG.FoldSetCC(VT, N0, N1, Cond);
1051    } else {
1052      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1053      // equality comparison, then we're just comparing whether X itself is
1054      // zero.
1055      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1056          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1057          N0.getOperand(1).getOpcode() == ISD::Constant) {
1058        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1059        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1060            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1061          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1062            // (srl (ctlz x), 5) == 0  -> X != 0
1063            // (srl (ctlz x), 5) != 1  -> X != 0
1064            Cond = ISD::SETNE;
1065          } else {
1066            // (srl (ctlz x), 5) != 0  -> X == 0
1067            // (srl (ctlz x), 5) == 1  -> X == 0
1068            Cond = ISD::SETEQ;
1069          }
1070          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1071          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1072                              Zero, Cond);
1073        }
1074      }
1075
1076      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1077      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1078        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1079
1080        // If the comparison constant has bits in the upper part, the
1081        // zero-extended value could never match.
1082        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1083                                                C1.getBitWidth() - InSize))) {
1084          switch (Cond) {
1085          case ISD::SETUGT:
1086          case ISD::SETUGE:
1087          case ISD::SETEQ: return DAG.getConstant(0, VT);
1088          case ISD::SETULT:
1089          case ISD::SETULE:
1090          case ISD::SETNE: return DAG.getConstant(1, VT);
1091          case ISD::SETGT:
1092          case ISD::SETGE:
1093            // True if the sign bit of C1 is set.
1094            return DAG.getConstant(C1.isNegative(), VT);
1095          case ISD::SETLT:
1096          case ISD::SETLE:
1097            // True if the sign bit of C1 isn't set.
1098            return DAG.getConstant(C1.isNonNegative(), VT);
1099          default:
1100            break;
1101          }
1102        }
1103
1104        // Otherwise, we can perform the comparison with the low bits.
1105        switch (Cond) {
1106        case ISD::SETEQ:
1107        case ISD::SETNE:
1108        case ISD::SETUGT:
1109        case ISD::SETUGE:
1110        case ISD::SETULT:
1111        case ISD::SETULE:
1112          return DAG.getSetCC(VT, N0.getOperand(0),
1113                          DAG.getConstant(APInt(C1).trunc(InSize),
1114                                          N0.getOperand(0).getValueType()),
1115                          Cond);
1116        default:
1117          break;   // todo, be more careful with signed comparisons
1118        }
1119      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1120                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1121        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1122        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1123        MVT::ValueType ExtDstTy = N0.getValueType();
1124        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1125
1126        // If the extended part has any inconsistent bits, it cannot ever
1127        // compare equal.  In other words, they have to be all ones or all
1128        // zeros.
1129        APInt ExtBits =
1130          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1131        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1132          return DAG.getConstant(Cond == ISD::SETNE, VT);
1133
1134        SDOperand ZextOp;
1135        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1136        if (Op0Ty == ExtSrcTy) {
1137          ZextOp = N0.getOperand(0);
1138        } else {
1139          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1140          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1141                               DAG.getConstant(Imm, Op0Ty));
1142        }
1143        if (!DCI.isCalledByLegalizer())
1144          DCI.AddToWorklist(ZextOp.Val);
1145        // Otherwise, make this a use of a zext.
1146        return DAG.getSetCC(VT, ZextOp,
1147                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1148                                                               ExtDstTyBits,
1149                                                               ExtSrcTyBits),
1150                                            ExtDstTy),
1151                            Cond);
1152      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1153                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1154
1155        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1156        if (N0.getOpcode() == ISD::SETCC) {
1157          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1158          if (TrueWhenTrue)
1159            return N0;
1160
1161          // Invert the condition.
1162          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1163          CC = ISD::getSetCCInverse(CC,
1164                               MVT::isInteger(N0.getOperand(0).getValueType()));
1165          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1166        }
1167
1168        if ((N0.getOpcode() == ISD::XOR ||
1169             (N0.getOpcode() == ISD::AND &&
1170              N0.getOperand(0).getOpcode() == ISD::XOR &&
1171              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1172            isa<ConstantSDNode>(N0.getOperand(1)) &&
1173            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1174          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1175          // can only do this if the top bits are known zero.
1176          unsigned BitWidth = N0.getValueSizeInBits();
1177          if (DAG.MaskedValueIsZero(N0,
1178                                    APInt::getHighBitsSet(BitWidth,
1179                                                          BitWidth-1))) {
1180            // Okay, get the un-inverted input value.
1181            SDOperand Val;
1182            if (N0.getOpcode() == ISD::XOR)
1183              Val = N0.getOperand(0);
1184            else {
1185              assert(N0.getOpcode() == ISD::AND &&
1186                     N0.getOperand(0).getOpcode() == ISD::XOR);
1187              // ((X^1)&1)^1 -> X & 1
1188              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1189                                N0.getOperand(0).getOperand(0),
1190                                N0.getOperand(1));
1191            }
1192            return DAG.getSetCC(VT, Val, N1,
1193                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1194          }
1195        }
1196      }
1197
1198      APInt MinVal, MaxVal;
1199      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1200      if (ISD::isSignedIntSetCC(Cond)) {
1201        MinVal = APInt::getSignedMinValue(OperandBitSize);
1202        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1203      } else {
1204        MinVal = APInt::getMinValue(OperandBitSize);
1205        MaxVal = APInt::getMaxValue(OperandBitSize);
1206      }
1207
1208      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1209      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1210        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1211        // X >= C0 --> X > (C0-1)
1212        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1213                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1214      }
1215
1216      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1217        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1218        // X <= C0 --> X < (C0+1)
1219        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1220                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1221      }
1222
1223      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1224        return DAG.getConstant(0, VT);      // X < MIN --> false
1225      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1226        return DAG.getConstant(1, VT);      // X >= MIN --> true
1227      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1228        return DAG.getConstant(0, VT);      // X > MAX --> false
1229      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1230        return DAG.getConstant(1, VT);      // X <= MAX --> true
1231
1232      // Canonicalize setgt X, Min --> setne X, Min
1233      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1234        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1235      // Canonicalize setlt X, Max --> setne X, Max
1236      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1237        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1238
1239      // If we have setult X, 1, turn it into seteq X, 0
1240      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1241        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1242                        ISD::SETEQ);
1243      // If we have setugt X, Max-1, turn it into seteq X, Max
1244      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1245        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1246                        ISD::SETEQ);
1247
1248      // If we have "setcc X, C0", check to see if we can shrink the immediate
1249      // by changing cc.
1250
1251      // SETUGT X, SINTMAX  -> SETLT X, 0
1252      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1253          C1 == (~0ULL >> (65-OperandBitSize)))
1254        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1255                            ISD::SETLT);
1256
1257      // FIXME: Implement the rest of these.
1258
1259      // Fold bit comparisons when we can.
1260      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1261          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1262        if (ConstantSDNode *AndRHS =
1263                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1264          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1265            // Perform the xform if the AND RHS is a single bit.
1266            if (isPowerOf2_64(AndRHS->getValue())) {
1267              return DAG.getNode(ISD::SRL, VT, N0,
1268                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1269                                             getShiftAmountTy()));
1270            }
1271          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1272            // (X & 8) == 8  -->  (X & 8) >> 3
1273            // Perform the xform if C1 is a single bit.
1274            if (C1.isPowerOf2()) {
1275              return DAG.getNode(ISD::SRL, VT, N0,
1276                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1277            }
1278          }
1279        }
1280    }
1281  } else if (isa<ConstantSDNode>(N0.Val)) {
1282      // Ensure that the constant occurs on the RHS.
1283    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1284  }
1285
1286  if (isa<ConstantFPSDNode>(N0.Val)) {
1287    // Constant fold or commute setcc.
1288    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1289    if (O.Val) return O;
1290  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1291    // If the RHS of an FP comparison is a constant, simplify it away in
1292    // some cases.
1293    if (CFP->getValueAPF().isNaN()) {
1294      // If an operand is known to be a nan, we can fold it.
1295      switch (ISD::getUnorderedFlavor(Cond)) {
1296      default: assert(0 && "Unknown flavor!");
1297      case 0:  // Known false.
1298        return DAG.getConstant(0, VT);
1299      case 1:  // Known true.
1300        return DAG.getConstant(1, VT);
1301      case 2:  // Undefined.
1302        return DAG.getNode(ISD::UNDEF, VT);
1303      }
1304    }
1305
1306    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1307    // constant if knowing that the operand is non-nan is enough.  We prefer to
1308    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1309    // materialize 0.0.
1310    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1311      return DAG.getSetCC(VT, N0, N0, Cond);
1312  }
1313
1314  if (N0 == N1) {
1315    // We can always fold X == X for integer setcc's.
1316    if (MVT::isInteger(N0.getValueType()))
1317      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1318    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1319    if (UOF == 2)   // FP operators that are undefined on NaNs.
1320      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1321    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1322      return DAG.getConstant(UOF, VT);
1323    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1324    // if it is not already.
1325    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1326    if (NewCond != Cond)
1327      return DAG.getSetCC(VT, N0, N1, NewCond);
1328  }
1329
1330  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1331      MVT::isInteger(N0.getValueType())) {
1332    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1333        N0.getOpcode() == ISD::XOR) {
1334      // Simplify (X+Y) == (X+Z) -->  Y == Z
1335      if (N0.getOpcode() == N1.getOpcode()) {
1336        if (N0.getOperand(0) == N1.getOperand(0))
1337          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1338        if (N0.getOperand(1) == N1.getOperand(1))
1339          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1340        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1341          // If X op Y == Y op X, try other combinations.
1342          if (N0.getOperand(0) == N1.getOperand(1))
1343            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1344          if (N0.getOperand(1) == N1.getOperand(0))
1345            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1346        }
1347      }
1348
1349      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1350        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1351          // Turn (X+C1) == C2 --> X == C2-C1
1352          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1353            return DAG.getSetCC(VT, N0.getOperand(0),
1354                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1355                                N0.getValueType()), Cond);
1356          }
1357
1358          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1359          if (N0.getOpcode() == ISD::XOR)
1360            // If we know that all of the inverted bits are zero, don't bother
1361            // performing the inversion.
1362            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1363              return
1364                DAG.getSetCC(VT, N0.getOperand(0),
1365                             DAG.getConstant(LHSR->getAPIntValue() ^
1366                                               RHSC->getAPIntValue(),
1367                                             N0.getValueType()),
1368                             Cond);
1369        }
1370
1371        // Turn (C1-X) == C2 --> X == C1-C2
1372        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1373          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1374            return
1375              DAG.getSetCC(VT, N0.getOperand(1),
1376                           DAG.getConstant(SUBC->getAPIntValue() -
1377                                             RHSC->getAPIntValue(),
1378                                           N0.getValueType()),
1379                           Cond);
1380          }
1381        }
1382      }
1383
1384      // Simplify (X+Z) == X -->  Z == 0
1385      if (N0.getOperand(0) == N1)
1386        return DAG.getSetCC(VT, N0.getOperand(1),
1387                        DAG.getConstant(0, N0.getValueType()), Cond);
1388      if (N0.getOperand(1) == N1) {
1389        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1390          return DAG.getSetCC(VT, N0.getOperand(0),
1391                          DAG.getConstant(0, N0.getValueType()), Cond);
1392        else if (N0.Val->hasOneUse()) {
1393          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1394          // (Z-X) == X  --> Z == X<<1
1395          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1396                                     N1,
1397                                     DAG.getConstant(1, getShiftAmountTy()));
1398          if (!DCI.isCalledByLegalizer())
1399            DCI.AddToWorklist(SH.Val);
1400          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1401        }
1402      }
1403    }
1404
1405    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1406        N1.getOpcode() == ISD::XOR) {
1407      // Simplify  X == (X+Z) -->  Z == 0
1408      if (N1.getOperand(0) == N0) {
1409        return DAG.getSetCC(VT, N1.getOperand(1),
1410                        DAG.getConstant(0, N1.getValueType()), Cond);
1411      } else if (N1.getOperand(1) == N0) {
1412        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1413          return DAG.getSetCC(VT, N1.getOperand(0),
1414                          DAG.getConstant(0, N1.getValueType()), Cond);
1415        } else if (N1.Val->hasOneUse()) {
1416          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1417          // X == (Z-X)  --> X<<1 == Z
1418          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1419                                     DAG.getConstant(1, getShiftAmountTy()));
1420          if (!DCI.isCalledByLegalizer())
1421            DCI.AddToWorklist(SH.Val);
1422          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1423        }
1424      }
1425    }
1426  }
1427
1428  // Fold away ALL boolean setcc's.
1429  SDOperand Temp;
1430  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1431    switch (Cond) {
1432    default: assert(0 && "Unknown integer setcc!");
1433    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1434      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1435      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1436      if (!DCI.isCalledByLegalizer())
1437        DCI.AddToWorklist(Temp.Val);
1438      break;
1439    case ISD::SETNE:  // X != Y   -->  (X^Y)
1440      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1441      break;
1442    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1443    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1444      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1445      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1446      if (!DCI.isCalledByLegalizer())
1447        DCI.AddToWorklist(Temp.Val);
1448      break;
1449    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1450    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1451      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1452      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1453      if (!DCI.isCalledByLegalizer())
1454        DCI.AddToWorklist(Temp.Val);
1455      break;
1456    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1457    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1458      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1459      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1460      if (!DCI.isCalledByLegalizer())
1461        DCI.AddToWorklist(Temp.Val);
1462      break;
1463    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1464    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1465      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1466      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1467      break;
1468    }
1469    if (VT != MVT::i1) {
1470      if (!DCI.isCalledByLegalizer())
1471        DCI.AddToWorklist(N0.Val);
1472      // FIXME: If running after legalize, we probably can't do this.
1473      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1474    }
1475    return N0;
1476  }
1477
1478  // Could not fold it.
1479  return SDOperand();
1480}
1481
1482/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1483/// node is a GlobalAddress + offset.
1484bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1485                                    int64_t &Offset) const {
1486  if (isa<GlobalAddressSDNode>(N)) {
1487    GA = cast<GlobalAddressSDNode>(N)->getGlobal();
1488    return true;
1489  }
1490
1491  if (N->getOpcode() == ISD::ADD) {
1492    SDOperand N1 = N->getOperand(0);
1493    SDOperand N2 = N->getOperand(1);
1494    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1495      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1496      if (V) {
1497        Offset += V->getSignExtended();
1498        return true;
1499      }
1500    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1501      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1502      if (V) {
1503        Offset += V->getSignExtended();
1504        return true;
1505      }
1506    }
1507  }
1508  return false;
1509}
1510
1511
1512/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1513/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1514/// location that the 'Base' load is loading from.
1515bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1516                                       unsigned Bytes, int Dist,
1517                                       MachineFrameInfo *MFI) const {
1518  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1519    return false;
1520  MVT::ValueType VT = LD->getValueType(0);
1521  if (MVT::getSizeInBits(VT) / 8 != Bytes)
1522    return false;
1523
1524  SDOperand Loc = LD->getOperand(1);
1525  SDOperand BaseLoc = Base->getOperand(1);
1526  if (Loc.getOpcode() == ISD::FrameIndex) {
1527    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1528      return false;
1529    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1530    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1531    int FS  = MFI->getObjectSize(FI);
1532    int BFS = MFI->getObjectSize(BFI);
1533    if (FS != BFS || FS != (int)Bytes) return false;
1534    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1535  }
1536
1537  GlobalValue *GV1 = NULL;
1538  GlobalValue *GV2 = NULL;
1539  int64_t Offset1 = 0;
1540  int64_t Offset2 = 0;
1541  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1542  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1543  if (isGA1 && isGA2 && GV1 == GV2)
1544    return Offset1 == (Offset2 + Dist*Bytes);
1545  return false;
1546}
1547
1548
1549SDOperand TargetLowering::
1550PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1551  // Default implementation: no optimization.
1552  return SDOperand();
1553}
1554
1555//===----------------------------------------------------------------------===//
1556//  Inline Assembler Implementation Methods
1557//===----------------------------------------------------------------------===//
1558
1559
1560TargetLowering::ConstraintType
1561TargetLowering::getConstraintType(const std::string &Constraint) const {
1562  // FIXME: lots more standard ones to handle.
1563  if (Constraint.size() == 1) {
1564    switch (Constraint[0]) {
1565    default: break;
1566    case 'r': return C_RegisterClass;
1567    case 'm':    // memory
1568    case 'o':    // offsetable
1569    case 'V':    // not offsetable
1570      return C_Memory;
1571    case 'i':    // Simple Integer or Relocatable Constant
1572    case 'n':    // Simple Integer
1573    case 's':    // Relocatable Constant
1574    case 'X':    // Allow ANY value.
1575    case 'I':    // Target registers.
1576    case 'J':
1577    case 'K':
1578    case 'L':
1579    case 'M':
1580    case 'N':
1581    case 'O':
1582    case 'P':
1583      return C_Other;
1584    }
1585  }
1586
1587  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1588      Constraint[Constraint.size()-1] == '}')
1589    return C_Register;
1590  return C_Unknown;
1591}
1592
1593/// LowerXConstraint - try to replace an X constraint, which matches anything,
1594/// with another that has more specific requirements based on the type of the
1595/// corresponding operand.
1596const char *TargetLowering::LowerXConstraint(MVT::ValueType ConstraintVT) const{
1597  if (MVT::isInteger(ConstraintVT))
1598    return "r";
1599  if (MVT::isFloatingPoint(ConstraintVT))
1600    return "f";      // works for many targets
1601  return 0;
1602}
1603
1604/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1605/// vector.  If it is invalid, don't add anything to Ops.
1606void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1607                                                  char ConstraintLetter,
1608                                                  std::vector<SDOperand> &Ops,
1609                                                  SelectionDAG &DAG) const {
1610  switch (ConstraintLetter) {
1611  default: break;
1612  case 'X':     // Allows any operand; labels (basic block) use this.
1613    if (Op.getOpcode() == ISD::BasicBlock) {
1614      Ops.push_back(Op);
1615      return;
1616    }
1617    // fall through
1618  case 'i':    // Simple Integer or Relocatable Constant
1619  case 'n':    // Simple Integer
1620  case 's': {  // Relocatable Constant
1621    // These operands are interested in values of the form (GV+C), where C may
1622    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1623    // is possible and fine if either GV or C are missing.
1624    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1625    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1626
1627    // If we have "(add GV, C)", pull out GV/C
1628    if (Op.getOpcode() == ISD::ADD) {
1629      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1630      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1631      if (C == 0 || GA == 0) {
1632        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1633        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1634      }
1635      if (C == 0 || GA == 0)
1636        C = 0, GA = 0;
1637    }
1638
1639    // If we find a valid operand, map to the TargetXXX version so that the
1640    // value itself doesn't get selected.
1641    if (GA) {   // Either &GV   or   &GV+C
1642      if (ConstraintLetter != 'n') {
1643        int64_t Offs = GA->getOffset();
1644        if (C) Offs += C->getValue();
1645        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1646                                                 Op.getValueType(), Offs));
1647        return;
1648      }
1649    }
1650    if (C) {   // just C, no GV.
1651      // Simple constants are not allowed for 's'.
1652      if (ConstraintLetter != 's') {
1653        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1654        return;
1655      }
1656    }
1657    break;
1658  }
1659  }
1660}
1661
1662std::vector<unsigned> TargetLowering::
1663getRegClassForInlineAsmConstraint(const std::string &Constraint,
1664                                  MVT::ValueType VT) const {
1665  return std::vector<unsigned>();
1666}
1667
1668
1669std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1670getRegForInlineAsmConstraint(const std::string &Constraint,
1671                             MVT::ValueType VT) const {
1672  if (Constraint[0] != '{')
1673    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1674  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1675
1676  // Remove the braces from around the name.
1677  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1678
1679  // Figure out which register class contains this reg.
1680  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1681  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1682       E = RI->regclass_end(); RCI != E; ++RCI) {
1683    const TargetRegisterClass *RC = *RCI;
1684
1685    // If none of the the value types for this register class are valid, we
1686    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1687    bool isLegal = false;
1688    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1689         I != E; ++I) {
1690      if (isTypeLegal(*I)) {
1691        isLegal = true;
1692        break;
1693      }
1694    }
1695
1696    if (!isLegal) continue;
1697
1698    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1699         I != E; ++I) {
1700      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1701        return std::make_pair(*I, RC);
1702    }
1703  }
1704
1705  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1706}
1707
1708//===----------------------------------------------------------------------===//
1709// Constraint Selection.
1710
1711/// getConstraintGenerality - Return an integer indicating how general CT
1712/// is.
1713static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1714  switch (CT) {
1715  default: assert(0 && "Unknown constraint type!");
1716  case TargetLowering::C_Other:
1717  case TargetLowering::C_Unknown:
1718    return 0;
1719  case TargetLowering::C_Register:
1720    return 1;
1721  case TargetLowering::C_RegisterClass:
1722    return 2;
1723  case TargetLowering::C_Memory:
1724    return 3;
1725  }
1726}
1727
1728/// ChooseConstraint - If there are multiple different constraints that we
1729/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1730/// This is somewhat tricky: constraints fall into four classes:
1731///    Other         -> immediates and magic values
1732///    Register      -> one specific register
1733///    RegisterClass -> a group of regs
1734///    Memory        -> memory
1735/// Ideally, we would pick the most specific constraint possible: if we have
1736/// something that fits into a register, we would pick it.  The problem here
1737/// is that if we have something that could either be in a register or in
1738/// memory that use of the register could cause selection of *other*
1739/// operands to fail: they might only succeed if we pick memory.  Because of
1740/// this the heuristic we use is:
1741///
1742///  1) If there is an 'other' constraint, and if the operand is valid for
1743///     that constraint, use it.  This makes us take advantage of 'i'
1744///     constraints when available.
1745///  2) Otherwise, pick the most general constraint present.  This prefers
1746///     'm' over 'r', for example.
1747///
1748static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1749                             const TargetLowering &TLI,
1750                             SDOperand Op, SelectionDAG *DAG) {
1751  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1752  unsigned BestIdx = 0;
1753  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1754  int BestGenerality = -1;
1755
1756  // Loop over the options, keeping track of the most general one.
1757  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1758    TargetLowering::ConstraintType CType =
1759      TLI.getConstraintType(OpInfo.Codes[i]);
1760
1761    // If this is an 'other' constraint, see if the operand is valid for it.
1762    // For example, on X86 we might have an 'rI' constraint.  If the operand
1763    // is an integer in the range [0..31] we want to use I (saving a load
1764    // of a register), otherwise we must use 'r'.
1765    if (CType == TargetLowering::C_Other && Op.Val) {
1766      assert(OpInfo.Codes[i].size() == 1 &&
1767             "Unhandled multi-letter 'other' constraint");
1768      std::vector<SDOperand> ResultOps;
1769      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1770                                       ResultOps, *DAG);
1771      if (!ResultOps.empty()) {
1772        BestType = CType;
1773        BestIdx = i;
1774        break;
1775      }
1776    }
1777
1778    // This constraint letter is more general than the previous one, use it.
1779    int Generality = getConstraintGenerality(CType);
1780    if (Generality > BestGenerality) {
1781      BestType = CType;
1782      BestIdx = i;
1783      BestGenerality = Generality;
1784    }
1785  }
1786
1787  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1788  OpInfo.ConstraintType = BestType;
1789}
1790
1791/// ComputeConstraintToUse - Determines the constraint code and constraint
1792/// type to use for the specific AsmOperandInfo, setting
1793/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1794void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1795                                            SDOperand Op,
1796                                            SelectionDAG *DAG) const {
1797  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1798
1799  // Single-letter constraints ('r') are very common.
1800  if (OpInfo.Codes.size() == 1) {
1801    OpInfo.ConstraintCode = OpInfo.Codes[0];
1802    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1803  } else {
1804    ChooseConstraint(OpInfo, *this, Op, DAG);
1805  }
1806
1807  // 'X' matches anything.
1808  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1809    // Labels and constants are handled elsewhere ('X' is the only thing
1810    // that matches labels).
1811    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1812        isa<ConstantInt>(OpInfo.CallOperandVal))
1813      return;
1814
1815    // Otherwise, try to resolve it to something we know about by looking at
1816    // the actual operand type.
1817    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1818      OpInfo.ConstraintCode = Repl;
1819      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1820    }
1821  }
1822}
1823
1824//===----------------------------------------------------------------------===//
1825//  Loop Strength Reduction hooks
1826//===----------------------------------------------------------------------===//
1827
1828/// isLegalAddressingMode - Return true if the addressing mode represented
1829/// by AM is legal for this target, for a load/store of the specified type.
1830bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1831                                           const Type *Ty) const {
1832  // The default implementation of this implements a conservative RISCy, r+r and
1833  // r+i addr mode.
1834
1835  // Allows a sign-extended 16-bit immediate field.
1836  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1837    return false;
1838
1839  // No global is ever allowed as a base.
1840  if (AM.BaseGV)
1841    return false;
1842
1843  // Only support r+r,
1844  switch (AM.Scale) {
1845  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1846    break;
1847  case 1:
1848    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1849      return false;
1850    // Otherwise we have r+r or r+i.
1851    break;
1852  case 2:
1853    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1854      return false;
1855    // Allow 2*r as r+r.
1856    break;
1857  }
1858
1859  return true;
1860}
1861
1862// Magic for divide replacement
1863
1864struct ms {
1865  int64_t m;  // magic number
1866  int64_t s;  // shift amount
1867};
1868
1869struct mu {
1870  uint64_t m; // magic number
1871  int64_t a;  // add indicator
1872  int64_t s;  // shift amount
1873};
1874
1875/// magic - calculate the magic numbers required to codegen an integer sdiv as
1876/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1877/// or -1.
1878static ms magic32(int32_t d) {
1879  int32_t p;
1880  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1881  const uint32_t two31 = 0x80000000U;
1882  struct ms mag;
1883
1884  ad = abs(d);
1885  t = two31 + ((uint32_t)d >> 31);
1886  anc = t - 1 - t%ad;   // absolute value of nc
1887  p = 31;               // initialize p
1888  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1889  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1890  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1891  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1892  do {
1893    p = p + 1;
1894    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1895    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1896    if (r1 >= anc) {  // must be unsigned comparison
1897      q1 = q1 + 1;
1898      r1 = r1 - anc;
1899    }
1900    q2 = 2*q2;        // update q2 = 2p/abs(d)
1901    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1902    if (r2 >= ad) {   // must be unsigned comparison
1903      q2 = q2 + 1;
1904      r2 = r2 - ad;
1905    }
1906    delta = ad - r2;
1907  } while (q1 < delta || (q1 == delta && r1 == 0));
1908
1909  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1910  if (d < 0) mag.m = -mag.m; // resulting magic number
1911  mag.s = p - 32;            // resulting shift
1912  return mag;
1913}
1914
1915/// magicu - calculate the magic numbers required to codegen an integer udiv as
1916/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1917static mu magicu32(uint32_t d) {
1918  int32_t p;
1919  uint32_t nc, delta, q1, r1, q2, r2;
1920  struct mu magu;
1921  magu.a = 0;               // initialize "add" indicator
1922  nc = - 1 - (-d)%d;
1923  p = 31;                   // initialize p
1924  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1925  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1926  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1927  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1928  do {
1929    p = p + 1;
1930    if (r1 >= nc - r1 ) {
1931      q1 = 2*q1 + 1;  // update q1
1932      r1 = 2*r1 - nc; // update r1
1933    }
1934    else {
1935      q1 = 2*q1; // update q1
1936      r1 = 2*r1; // update r1
1937    }
1938    if (r2 + 1 >= d - r2) {
1939      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1940      q2 = 2*q2 + 1;     // update q2
1941      r2 = 2*r2 + 1 - d; // update r2
1942    }
1943    else {
1944      if (q2 >= 0x80000000) magu.a = 1;
1945      q2 = 2*q2;     // update q2
1946      r2 = 2*r2 + 1; // update r2
1947    }
1948    delta = d - 1 - r2;
1949  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1950  magu.m = q2 + 1; // resulting magic number
1951  magu.s = p - 32;  // resulting shift
1952  return magu;
1953}
1954
1955/// magic - calculate the magic numbers required to codegen an integer sdiv as
1956/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1957/// or -1.
1958static ms magic64(int64_t d) {
1959  int64_t p;
1960  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1961  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1962  struct ms mag;
1963
1964  ad = d >= 0 ? d : -d;
1965  t = two63 + ((uint64_t)d >> 63);
1966  anc = t - 1 - t%ad;   // absolute value of nc
1967  p = 63;               // initialize p
1968  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1969  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1970  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1971  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1972  do {
1973    p = p + 1;
1974    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1975    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1976    if (r1 >= anc) {  // must be unsigned comparison
1977      q1 = q1 + 1;
1978      r1 = r1 - anc;
1979    }
1980    q2 = 2*q2;        // update q2 = 2p/abs(d)
1981    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1982    if (r2 >= ad) {   // must be unsigned comparison
1983      q2 = q2 + 1;
1984      r2 = r2 - ad;
1985    }
1986    delta = ad - r2;
1987  } while (q1 < delta || (q1 == delta && r1 == 0));
1988
1989  mag.m = q2 + 1;
1990  if (d < 0) mag.m = -mag.m; // resulting magic number
1991  mag.s = p - 64;            // resulting shift
1992  return mag;
1993}
1994
1995/// magicu - calculate the magic numbers required to codegen an integer udiv as
1996/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1997static mu magicu64(uint64_t d)
1998{
1999  int64_t p;
2000  uint64_t nc, delta, q1, r1, q2, r2;
2001  struct mu magu;
2002  magu.a = 0;               // initialize "add" indicator
2003  nc = - 1 - (-d)%d;
2004  p = 63;                   // initialize p
2005  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2006  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2007  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2008  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2009  do {
2010    p = p + 1;
2011    if (r1 >= nc - r1 ) {
2012      q1 = 2*q1 + 1;  // update q1
2013      r1 = 2*r1 - nc; // update r1
2014    }
2015    else {
2016      q1 = 2*q1; // update q1
2017      r1 = 2*r1; // update r1
2018    }
2019    if (r2 + 1 >= d - r2) {
2020      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2021      q2 = 2*q2 + 1;     // update q2
2022      r2 = 2*r2 + 1 - d; // update r2
2023    }
2024    else {
2025      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2026      q2 = 2*q2;     // update q2
2027      r2 = 2*r2 + 1; // update r2
2028    }
2029    delta = d - 1 - r2;
2030  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2031  magu.m = q2 + 1; // resulting magic number
2032  magu.s = p - 64;  // resulting shift
2033  return magu;
2034}
2035
2036/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2037/// return a DAG expression to select that will generate the same value by
2038/// multiplying by a magic number.  See:
2039/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2040SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2041                                    std::vector<SDNode*>* Created) const {
2042  MVT::ValueType VT = N->getValueType(0);
2043
2044  // Check to see if we can do this.
2045  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2046    return SDOperand();       // BuildSDIV only operates on i32 or i64
2047
2048  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2049  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2050
2051  // Multiply the numerator (operand 0) by the magic value
2052  SDOperand Q;
2053  if (isOperationLegal(ISD::MULHS, VT))
2054    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2055                    DAG.getConstant(magics.m, VT));
2056  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2057    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2058                              N->getOperand(0),
2059                              DAG.getConstant(magics.m, VT)).Val, 1);
2060  else
2061    return SDOperand();       // No mulhs or equvialent
2062  // If d > 0 and m < 0, add the numerator
2063  if (d > 0 && magics.m < 0) {
2064    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2065    if (Created)
2066      Created->push_back(Q.Val);
2067  }
2068  // If d < 0 and m > 0, subtract the numerator.
2069  if (d < 0 && magics.m > 0) {
2070    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2071    if (Created)
2072      Created->push_back(Q.Val);
2073  }
2074  // Shift right algebraic if shift value is nonzero
2075  if (magics.s > 0) {
2076    Q = DAG.getNode(ISD::SRA, VT, Q,
2077                    DAG.getConstant(magics.s, getShiftAmountTy()));
2078    if (Created)
2079      Created->push_back(Q.Val);
2080  }
2081  // Extract the sign bit and add it to the quotient
2082  SDOperand T =
2083    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
2084                                                 getShiftAmountTy()));
2085  if (Created)
2086    Created->push_back(T.Val);
2087  return DAG.getNode(ISD::ADD, VT, Q, T);
2088}
2089
2090/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2091/// return a DAG expression to select that will generate the same value by
2092/// multiplying by a magic number.  See:
2093/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2094SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2095                                    std::vector<SDNode*>* Created) const {
2096  MVT::ValueType VT = N->getValueType(0);
2097
2098  // Check to see if we can do this.
2099  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2100    return SDOperand();       // BuildUDIV only operates on i32 or i64
2101
2102  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2103  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2104
2105  // Multiply the numerator (operand 0) by the magic value
2106  SDOperand Q;
2107  if (isOperationLegal(ISD::MULHU, VT))
2108    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2109                    DAG.getConstant(magics.m, VT));
2110  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2111    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2112                              N->getOperand(0),
2113                              DAG.getConstant(magics.m, VT)).Val, 1);
2114  else
2115    return SDOperand();       // No mulhu or equvialent
2116  if (Created)
2117    Created->push_back(Q.Val);
2118
2119  if (magics.a == 0) {
2120    return DAG.getNode(ISD::SRL, VT, Q,
2121                       DAG.getConstant(magics.s, getShiftAmountTy()));
2122  } else {
2123    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2124    if (Created)
2125      Created->push_back(NPQ.Val);
2126    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2127                      DAG.getConstant(1, getShiftAmountTy()));
2128    if (Created)
2129      Created->push_back(NPQ.Val);
2130    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2131    if (Created)
2132      Created->push_back(NPQ.Val);
2133    return DAG.getNode(ISD::SRL, VT, NPQ,
2134                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2135  }
2136}
2137