TargetLowering.cpp revision b02a1c07cb1e1b9cdae3bf1ddb0578c779b9c8ff
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::LOG_F32] = "logf";
87  Names[RTLIB::LOG_F64] = "log";
88  Names[RTLIB::LOG_F80] = "logl";
89  Names[RTLIB::LOG_PPCF128] = "logl";
90  Names[RTLIB::LOG2_F32] = "log2f";
91  Names[RTLIB::LOG2_F64] = "log2";
92  Names[RTLIB::LOG2_F80] = "log2l";
93  Names[RTLIB::LOG2_PPCF128] = "log2l";
94  Names[RTLIB::LOG10_F32] = "log10f";
95  Names[RTLIB::LOG10_F64] = "log10";
96  Names[RTLIB::LOG10_F80] = "log10l";
97  Names[RTLIB::LOG10_PPCF128] = "log10l";
98  Names[RTLIB::EXP_F32] = "expf";
99  Names[RTLIB::EXP_F64] = "exp";
100  Names[RTLIB::EXP_F80] = "expl";
101  Names[RTLIB::EXP_PPCF128] = "expl";
102  Names[RTLIB::EXP2_F32] = "exp2f";
103  Names[RTLIB::EXP2_F64] = "exp2";
104  Names[RTLIB::EXP2_F80] = "exp2l";
105  Names[RTLIB::EXP2_PPCF128] = "exp2l";
106  Names[RTLIB::SIN_F32] = "sinf";
107  Names[RTLIB::SIN_F64] = "sin";
108  Names[RTLIB::SIN_F80] = "sinl";
109  Names[RTLIB::SIN_PPCF128] = "sinl";
110  Names[RTLIB::COS_F32] = "cosf";
111  Names[RTLIB::COS_F64] = "cos";
112  Names[RTLIB::COS_F80] = "cosl";
113  Names[RTLIB::COS_PPCF128] = "cosl";
114  Names[RTLIB::POW_F32] = "powf";
115  Names[RTLIB::POW_F64] = "pow";
116  Names[RTLIB::POW_F80] = "powl";
117  Names[RTLIB::POW_PPCF128] = "powl";
118  Names[RTLIB::CEIL_F32] = "ceilf";
119  Names[RTLIB::CEIL_F64] = "ceil";
120  Names[RTLIB::CEIL_F80] = "ceill";
121  Names[RTLIB::CEIL_PPCF128] = "ceill";
122  Names[RTLIB::TRUNC_F32] = "truncf";
123  Names[RTLIB::TRUNC_F64] = "trunc";
124  Names[RTLIB::TRUNC_F80] = "truncl";
125  Names[RTLIB::TRUNC_PPCF128] = "truncl";
126  Names[RTLIB::RINT_F32] = "rintf";
127  Names[RTLIB::RINT_F64] = "rint";
128  Names[RTLIB::RINT_F80] = "rintl";
129  Names[RTLIB::RINT_PPCF128] = "rintl";
130  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
131  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
132  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
133  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
134  Names[RTLIB::FLOOR_F32] = "floorf";
135  Names[RTLIB::FLOOR_F64] = "floor";
136  Names[RTLIB::FLOOR_F80] = "floorl";
137  Names[RTLIB::FLOOR_PPCF128] = "floorl";
138  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
139  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
140  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
141  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
142  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
143  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
144  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
145  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
146  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
147  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
148  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
149  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
150  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
151  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
152  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
153  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
154  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
155  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
156  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
157  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
158  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
159  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
160  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
161  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
162  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
163  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
164  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
165  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
166  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
167  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
168  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
169  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
170  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
171  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
172  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
173  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
174  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
175  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
176  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
177  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
178  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
179  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
180  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
181  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
182  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
183  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
184  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
185  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
186  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
187  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
188  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
189  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
190  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
191  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
192  Names[RTLIB::OEQ_F32] = "__eqsf2";
193  Names[RTLIB::OEQ_F64] = "__eqdf2";
194  Names[RTLIB::UNE_F32] = "__nesf2";
195  Names[RTLIB::UNE_F64] = "__nedf2";
196  Names[RTLIB::OGE_F32] = "__gesf2";
197  Names[RTLIB::OGE_F64] = "__gedf2";
198  Names[RTLIB::OLT_F32] = "__ltsf2";
199  Names[RTLIB::OLT_F64] = "__ltdf2";
200  Names[RTLIB::OLE_F32] = "__lesf2";
201  Names[RTLIB::OLE_F64] = "__ledf2";
202  Names[RTLIB::OGT_F32] = "__gtsf2";
203  Names[RTLIB::OGT_F64] = "__gtdf2";
204  Names[RTLIB::UO_F32] = "__unordsf2";
205  Names[RTLIB::UO_F64] = "__unorddf2";
206  Names[RTLIB::O_F32] = "__unordsf2";
207  Names[RTLIB::O_F64] = "__unorddf2";
208}
209
210/// getFPEXT - Return the FPEXT_*_* value for the given types, or
211/// UNKNOWN_LIBCALL if there is none.
212RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
213  if (OpVT == MVT::f32) {
214    if (RetVT == MVT::f64)
215      return FPEXT_F32_F64;
216  }
217  return UNKNOWN_LIBCALL;
218}
219
220/// getFPROUND - Return the FPROUND_*_* value for the given types, or
221/// UNKNOWN_LIBCALL if there is none.
222RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
223  if (RetVT == MVT::f32) {
224    if (OpVT == MVT::f64)
225      return FPROUND_F64_F32;
226    if (OpVT == MVT::f80)
227      return FPROUND_F80_F32;
228    if (OpVT == MVT::ppcf128)
229      return FPROUND_PPCF128_F32;
230  } else if (RetVT == MVT::f64) {
231    if (OpVT == MVT::f80)
232      return FPROUND_F80_F64;
233    if (OpVT == MVT::ppcf128)
234      return FPROUND_PPCF128_F64;
235  }
236  return UNKNOWN_LIBCALL;
237}
238
239/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
240/// UNKNOWN_LIBCALL if there is none.
241RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
242  if (OpVT == MVT::f32) {
243    if (RetVT == MVT::i32)
244      return FPTOSINT_F32_I32;
245    if (RetVT == MVT::i64)
246      return FPTOSINT_F32_I64;
247    if (RetVT == MVT::i128)
248      return FPTOSINT_F32_I128;
249  } else if (OpVT == MVT::f64) {
250    if (RetVT == MVT::i32)
251      return FPTOSINT_F64_I32;
252    if (RetVT == MVT::i64)
253      return FPTOSINT_F64_I64;
254    if (RetVT == MVT::i128)
255      return FPTOSINT_F64_I128;
256  } else if (OpVT == MVT::f80) {
257    if (RetVT == MVT::i32)
258      return FPTOSINT_F80_I32;
259    if (RetVT == MVT::i64)
260      return FPTOSINT_F80_I64;
261    if (RetVT == MVT::i128)
262      return FPTOSINT_F80_I128;
263  } else if (OpVT == MVT::ppcf128) {
264    if (RetVT == MVT::i32)
265      return FPTOSINT_PPCF128_I32;
266    if (RetVT == MVT::i64)
267      return FPTOSINT_PPCF128_I64;
268    if (RetVT == MVT::i128)
269      return FPTOSINT_PPCF128_I128;
270  }
271  return UNKNOWN_LIBCALL;
272}
273
274/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
275/// UNKNOWN_LIBCALL if there is none.
276RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
277  if (OpVT == MVT::f32) {
278    if (RetVT == MVT::i32)
279      return FPTOUINT_F32_I32;
280    if (RetVT == MVT::i64)
281      return FPTOUINT_F32_I64;
282    if (RetVT == MVT::i128)
283      return FPTOUINT_F32_I128;
284  } else if (OpVT == MVT::f64) {
285    if (RetVT == MVT::i32)
286      return FPTOUINT_F64_I32;
287    if (RetVT == MVT::i64)
288      return FPTOUINT_F64_I64;
289    if (RetVT == MVT::i128)
290      return FPTOUINT_F64_I128;
291  } else if (OpVT == MVT::f80) {
292    if (RetVT == MVT::i32)
293      return FPTOUINT_F80_I32;
294    if (RetVT == MVT::i64)
295      return FPTOUINT_F80_I64;
296    if (RetVT == MVT::i128)
297      return FPTOUINT_F80_I128;
298  } else if (OpVT == MVT::ppcf128) {
299    if (RetVT == MVT::i32)
300      return FPTOUINT_PPCF128_I32;
301    if (RetVT == MVT::i64)
302      return FPTOUINT_PPCF128_I64;
303    if (RetVT == MVT::i128)
304      return FPTOUINT_PPCF128_I128;
305  }
306  return UNKNOWN_LIBCALL;
307}
308
309/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
310/// UNKNOWN_LIBCALL if there is none.
311RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
312  if (OpVT == MVT::i32) {
313    if (RetVT == MVT::f32)
314      return SINTTOFP_I32_F32;
315    else if (RetVT == MVT::f64)
316      return SINTTOFP_I32_F64;
317    else if (RetVT == MVT::f80)
318      return SINTTOFP_I32_F80;
319    else if (RetVT == MVT::ppcf128)
320      return SINTTOFP_I32_PPCF128;
321  } else if (OpVT == MVT::i64) {
322    if (RetVT == MVT::f32)
323      return SINTTOFP_I64_F32;
324    else if (RetVT == MVT::f64)
325      return SINTTOFP_I64_F64;
326    else if (RetVT == MVT::f80)
327      return SINTTOFP_I64_F80;
328    else if (RetVT == MVT::ppcf128)
329      return SINTTOFP_I64_PPCF128;
330  } else if (OpVT == MVT::i128) {
331    if (RetVT == MVT::f32)
332      return SINTTOFP_I128_F32;
333    else if (RetVT == MVT::f64)
334      return SINTTOFP_I128_F64;
335    else if (RetVT == MVT::f80)
336      return SINTTOFP_I128_F80;
337    else if (RetVT == MVT::ppcf128)
338      return SINTTOFP_I128_PPCF128;
339  }
340  return UNKNOWN_LIBCALL;
341}
342
343/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
344/// UNKNOWN_LIBCALL if there is none.
345RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
346  if (OpVT == MVT::i32) {
347    if (RetVT == MVT::f32)
348      return UINTTOFP_I32_F32;
349    else if (RetVT == MVT::f64)
350      return UINTTOFP_I32_F64;
351    else if (RetVT == MVT::f80)
352      return UINTTOFP_I32_F80;
353    else if (RetVT == MVT::ppcf128)
354      return UINTTOFP_I32_PPCF128;
355  } else if (OpVT == MVT::i64) {
356    if (RetVT == MVT::f32)
357      return UINTTOFP_I64_F32;
358    else if (RetVT == MVT::f64)
359      return UINTTOFP_I64_F64;
360    else if (RetVT == MVT::f80)
361      return UINTTOFP_I64_F80;
362    else if (RetVT == MVT::ppcf128)
363      return UINTTOFP_I64_PPCF128;
364  } else if (OpVT == MVT::i128) {
365    if (RetVT == MVT::f32)
366      return UINTTOFP_I128_F32;
367    else if (RetVT == MVT::f64)
368      return UINTTOFP_I128_F64;
369    else if (RetVT == MVT::f80)
370      return UINTTOFP_I128_F80;
371    else if (RetVT == MVT::ppcf128)
372      return UINTTOFP_I128_PPCF128;
373  }
374  return UNKNOWN_LIBCALL;
375}
376
377/// InitCmpLibcallCCs - Set default comparison libcall CC.
378///
379static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
380  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
381  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
382  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
383  CCs[RTLIB::UNE_F32] = ISD::SETNE;
384  CCs[RTLIB::UNE_F64] = ISD::SETNE;
385  CCs[RTLIB::OGE_F32] = ISD::SETGE;
386  CCs[RTLIB::OGE_F64] = ISD::SETGE;
387  CCs[RTLIB::OLT_F32] = ISD::SETLT;
388  CCs[RTLIB::OLT_F64] = ISD::SETLT;
389  CCs[RTLIB::OLE_F32] = ISD::SETLE;
390  CCs[RTLIB::OLE_F64] = ISD::SETLE;
391  CCs[RTLIB::OGT_F32] = ISD::SETGT;
392  CCs[RTLIB::OGT_F64] = ISD::SETGT;
393  CCs[RTLIB::UO_F32] = ISD::SETNE;
394  CCs[RTLIB::UO_F64] = ISD::SETNE;
395  CCs[RTLIB::O_F32] = ISD::SETEQ;
396  CCs[RTLIB::O_F64] = ISD::SETEQ;
397}
398
399TargetLowering::TargetLowering(TargetMachine &tm)
400  : TM(tm), TD(TM.getTargetData()) {
401  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
402         "Fixed size array in TargetLowering is not large enough!");
403  // All operations default to being supported.
404  memset(OpActions, 0, sizeof(OpActions));
405  memset(LoadXActions, 0, sizeof(LoadXActions));
406  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
407  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
408  memset(ConvertActions, 0, sizeof(ConvertActions));
409
410  // Set default actions for various operations.
411  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
412    // Default all indexed load / store to expand.
413    for (unsigned IM = (unsigned)ISD::PRE_INC;
414         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
415      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
416      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
417    }
418
419    // These operations default to expand.
420    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
421  }
422
423  // Most targets ignore the @llvm.prefetch intrinsic.
424  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
425
426  // ConstantFP nodes default to expand.  Targets can either change this to
427  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
428  // to optimize expansions for certain constants.
429  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
430  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
431  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
432
433  // These library functions default to expand.
434  setOperationAction(ISD::FLOG , MVT::f64, Expand);
435  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
436  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
437  setOperationAction(ISD::FEXP , MVT::f64, Expand);
438  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG , MVT::f32, Expand);
440  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
441  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
442  setOperationAction(ISD::FEXP , MVT::f32, Expand);
443  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
444
445  // Default ISD::TRAP to expand (which turns it into abort).
446  setOperationAction(ISD::TRAP, MVT::Other, Expand);
447
448  IsLittleEndian = TD->isLittleEndian();
449  UsesGlobalOffsetTable = false;
450  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
451  ShiftAmtHandling = Undefined;
452  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
453  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
454  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
455  allowUnalignedMemoryAccesses = false;
456  UseUnderscoreSetJmp = false;
457  UseUnderscoreLongJmp = false;
458  SelectIsExpensive = false;
459  IntDivIsCheap = false;
460  Pow2DivIsCheap = false;
461  StackPointerRegisterToSaveRestore = 0;
462  ExceptionPointerRegister = 0;
463  ExceptionSelectorRegister = 0;
464  SetCCResultContents = UndefinedSetCCResult;
465  SchedPreferenceInfo = SchedulingForLatency;
466  JumpBufSize = 0;
467  JumpBufAlignment = 0;
468  IfCvtBlockSizeLimit = 2;
469  IfCvtDupBlockSizeLimit = 0;
470  PrefLoopAlignment = 0;
471
472  InitLibcallNames(LibcallRoutineNames);
473  InitCmpLibcallCCs(CmpLibcallCCs);
474
475  // Tell Legalize whether the assembler supports DEBUG_LOC.
476  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
477    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
478}
479
480TargetLowering::~TargetLowering() {}
481
482/// computeRegisterProperties - Once all of the register classes are added,
483/// this allows us to compute derived properties we expose.
484void TargetLowering::computeRegisterProperties() {
485  assert(MVT::LAST_VALUETYPE <= 32 &&
486         "Too many value types for ValueTypeActions to hold!");
487
488  // Everything defaults to needing one register.
489  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
490    NumRegistersForVT[i] = 1;
491    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
492  }
493  // ...except isVoid, which doesn't need any registers.
494  NumRegistersForVT[MVT::isVoid] = 0;
495
496  // Find the largest integer register class.
497  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
498  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
499    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
500
501  // Every integer value type larger than this largest register takes twice as
502  // many registers to represent as the previous ValueType.
503  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
504    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
505    if (!EVT.isInteger())
506      break;
507    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
508    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
509    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
510    ValueTypeActions.setTypeAction(EVT, Expand);
511  }
512
513  // Inspect all of the ValueType's smaller than the largest integer
514  // register to see which ones need promotion.
515  unsigned LegalIntReg = LargestIntReg;
516  for (unsigned IntReg = LargestIntReg - 1;
517       IntReg >= (unsigned)MVT::i1; --IntReg) {
518    MVT IVT = (MVT::SimpleValueType)IntReg;
519    if (isTypeLegal(IVT)) {
520      LegalIntReg = IntReg;
521    } else {
522      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
523        (MVT::SimpleValueType)LegalIntReg;
524      ValueTypeActions.setTypeAction(IVT, Promote);
525    }
526  }
527
528  // ppcf128 type is really two f64's.
529  if (!isTypeLegal(MVT::ppcf128)) {
530    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
531    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
532    TransformToType[MVT::ppcf128] = MVT::f64;
533    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
534  }
535
536  // Decide how to handle f64. If the target does not have native f64 support,
537  // expand it to i64 and we will be generating soft float library calls.
538  if (!isTypeLegal(MVT::f64)) {
539    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
540    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
541    TransformToType[MVT::f64] = MVT::i64;
542    ValueTypeActions.setTypeAction(MVT::f64, Expand);
543  }
544
545  // Decide how to handle f32. If the target does not have native support for
546  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
547  if (!isTypeLegal(MVT::f32)) {
548    if (isTypeLegal(MVT::f64)) {
549      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
550      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
551      TransformToType[MVT::f32] = MVT::f64;
552      ValueTypeActions.setTypeAction(MVT::f32, Promote);
553    } else {
554      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
555      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
556      TransformToType[MVT::f32] = MVT::i32;
557      ValueTypeActions.setTypeAction(MVT::f32, Expand);
558    }
559  }
560
561  // Loop over all of the vector value types to see which need transformations.
562  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
563       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
564    MVT VT = (MVT::SimpleValueType)i;
565    if (!isTypeLegal(VT)) {
566      MVT IntermediateVT, RegisterVT;
567      unsigned NumIntermediates;
568      NumRegistersForVT[i] =
569        getVectorTypeBreakdown(VT,
570                               IntermediateVT, NumIntermediates,
571                               RegisterVT);
572      RegisterTypeForVT[i] = RegisterVT;
573      TransformToType[i] = MVT::Other; // this isn't actually used
574      ValueTypeActions.setTypeAction(VT, Expand);
575    }
576  }
577}
578
579const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
580  return NULL;
581}
582
583
584MVT TargetLowering::getSetCCResultType(const SDValue &) const {
585  return getValueType(TD->getIntPtrType());
586}
587
588
589/// getVectorTypeBreakdown - Vector types are broken down into some number of
590/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
591/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
592/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
593///
594/// This method returns the number of registers needed, and the VT for each
595/// register.  It also returns the VT and quantity of the intermediate values
596/// before they are promoted/expanded.
597///
598unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
599                                                MVT &IntermediateVT,
600                                                unsigned &NumIntermediates,
601                                      MVT &RegisterVT) const {
602  // Figure out the right, legal destination reg to copy into.
603  unsigned NumElts = VT.getVectorNumElements();
604  MVT EltTy = VT.getVectorElementType();
605
606  unsigned NumVectorRegs = 1;
607
608  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
609  // could break down into LHS/RHS like LegalizeDAG does.
610  if (!isPowerOf2_32(NumElts)) {
611    NumVectorRegs = NumElts;
612    NumElts = 1;
613  }
614
615  // Divide the input until we get to a supported size.  This will always
616  // end with a scalar if the target doesn't support vectors.
617  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
618    NumElts >>= 1;
619    NumVectorRegs <<= 1;
620  }
621
622  NumIntermediates = NumVectorRegs;
623
624  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
625  if (!isTypeLegal(NewVT))
626    NewVT = EltTy;
627  IntermediateVT = NewVT;
628
629  MVT DestVT = getTypeToTransformTo(NewVT);
630  RegisterVT = DestVT;
631  if (DestVT.bitsLT(NewVT)) {
632    // Value is expanded, e.g. i64 -> i16.
633    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
634  } else {
635    // Otherwise, promotion or legal types use the same number of registers as
636    // the vector decimated to the appropriate level.
637    return NumVectorRegs;
638  }
639
640  return 1;
641}
642
643/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
644/// function arguments in the caller parameter area.  This is the actual
645/// alignment, not its logarithm.
646unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
647  return TD->getCallFrameTypeAlignment(Ty);
648}
649
650SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
651                                                 SelectionDAG &DAG) const {
652  if (usesGlobalOffsetTable())
653    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
654  return Table;
655}
656
657//===----------------------------------------------------------------------===//
658//  Optimization Methods
659//===----------------------------------------------------------------------===//
660
661/// ShrinkDemandedConstant - Check to see if the specified operand of the
662/// specified instruction is a constant integer.  If so, check to see if there
663/// are any bits set in the constant that are not demanded.  If so, shrink the
664/// constant and return true.
665bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
666                                                        const APInt &Demanded) {
667  // FIXME: ISD::SELECT, ISD::SELECT_CC
668  switch(Op.getOpcode()) {
669  default: break;
670  case ISD::AND:
671  case ISD::OR:
672  case ISD::XOR:
673    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
674      if (C->getAPIntValue().intersects(~Demanded)) {
675        MVT VT = Op.getValueType();
676        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
677                                    DAG.getConstant(Demanded &
678                                                      C->getAPIntValue(),
679                                                    VT));
680        return CombineTo(Op, New);
681      }
682    break;
683  }
684  return false;
685}
686
687/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
688/// DemandedMask bits of the result of Op are ever used downstream.  If we can
689/// use this information to simplify Op, create a new simplified DAG node and
690/// return true, returning the original and new nodes in Old and New. Otherwise,
691/// analyze the expression and return a mask of KnownOne and KnownZero bits for
692/// the expression (used to simplify the caller).  The KnownZero/One bits may
693/// only be accurate for those bits in the DemandedMask.
694bool TargetLowering::SimplifyDemandedBits(SDValue Op,
695                                          const APInt &DemandedMask,
696                                          APInt &KnownZero,
697                                          APInt &KnownOne,
698                                          TargetLoweringOpt &TLO,
699                                          unsigned Depth) const {
700  unsigned BitWidth = DemandedMask.getBitWidth();
701  assert(Op.getValueSizeInBits() == BitWidth &&
702         "Mask size mismatches value type size!");
703  APInt NewMask = DemandedMask;
704
705  // Don't know anything.
706  KnownZero = KnownOne = APInt(BitWidth, 0);
707
708  // Other users may use these bits.
709  if (!Op.getNode()->hasOneUse()) {
710    if (Depth != 0) {
711      // If not at the root, Just compute the KnownZero/KnownOne bits to
712      // simplify things downstream.
713      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
714      return false;
715    }
716    // If this is the root being simplified, allow it to have multiple uses,
717    // just set the NewMask to all bits.
718    NewMask = APInt::getAllOnesValue(BitWidth);
719  } else if (DemandedMask == 0) {
720    // Not demanding any bits from Op.
721    if (Op.getOpcode() != ISD::UNDEF)
722      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
723    return false;
724  } else if (Depth == 6) {        // Limit search depth.
725    return false;
726  }
727
728  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
729  switch (Op.getOpcode()) {
730  case ISD::Constant:
731    // We know all of the bits for a constant!
732    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
733    KnownZero = ~KnownOne & NewMask;
734    return false;   // Don't fall through, will infinitely loop.
735  case ISD::AND:
736    // If the RHS is a constant, check to see if the LHS would be zero without
737    // using the bits from the RHS.  Below, we use knowledge about the RHS to
738    // simplify the LHS, here we're using information from the LHS to simplify
739    // the RHS.
740    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
741      APInt LHSZero, LHSOne;
742      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
743                                LHSZero, LHSOne, Depth+1);
744      // If the LHS already has zeros where RHSC does, this and is dead.
745      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
746        return TLO.CombineTo(Op, Op.getOperand(0));
747      // If any of the set bits in the RHS are known zero on the LHS, shrink
748      // the constant.
749      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
750        return true;
751    }
752
753    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
754                             KnownOne, TLO, Depth+1))
755      return true;
756    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
757    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
758                             KnownZero2, KnownOne2, TLO, Depth+1))
759      return true;
760    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
761
762    // If all of the demanded bits are known one on one side, return the other.
763    // These bits cannot contribute to the result of the 'and'.
764    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
765      return TLO.CombineTo(Op, Op.getOperand(0));
766    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
767      return TLO.CombineTo(Op, Op.getOperand(1));
768    // If all of the demanded bits in the inputs are known zeros, return zero.
769    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
770      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
771    // If the RHS is a constant, see if we can simplify it.
772    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
773      return true;
774
775    // Output known-1 bits are only known if set in both the LHS & RHS.
776    KnownOne &= KnownOne2;
777    // Output known-0 are known to be clear if zero in either the LHS | RHS.
778    KnownZero |= KnownZero2;
779    break;
780  case ISD::OR:
781    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
782                             KnownOne, TLO, Depth+1))
783      return true;
784    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
785    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
786                             KnownZero2, KnownOne2, TLO, Depth+1))
787      return true;
788    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
789
790    // If all of the demanded bits are known zero on one side, return the other.
791    // These bits cannot contribute to the result of the 'or'.
792    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
793      return TLO.CombineTo(Op, Op.getOperand(0));
794    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
795      return TLO.CombineTo(Op, Op.getOperand(1));
796    // If all of the potentially set bits on one side are known to be set on
797    // the other side, just use the 'other' side.
798    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
799      return TLO.CombineTo(Op, Op.getOperand(0));
800    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
801      return TLO.CombineTo(Op, Op.getOperand(1));
802    // If the RHS is a constant, see if we can simplify it.
803    if (TLO.ShrinkDemandedConstant(Op, NewMask))
804      return true;
805
806    // Output known-0 bits are only known if clear in both the LHS & RHS.
807    KnownZero &= KnownZero2;
808    // Output known-1 are known to be set if set in either the LHS | RHS.
809    KnownOne |= KnownOne2;
810    break;
811  case ISD::XOR:
812    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
813                             KnownOne, TLO, Depth+1))
814      return true;
815    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
816    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
817                             KnownOne2, TLO, Depth+1))
818      return true;
819    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
820
821    // If all of the demanded bits are known zero on one side, return the other.
822    // These bits cannot contribute to the result of the 'xor'.
823    if ((KnownZero & NewMask) == NewMask)
824      return TLO.CombineTo(Op, Op.getOperand(0));
825    if ((KnownZero2 & NewMask) == NewMask)
826      return TLO.CombineTo(Op, Op.getOperand(1));
827
828    // If all of the unknown bits are known to be zero on one side or the other
829    // (but not both) turn this into an *inclusive* or.
830    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
831    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
832      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
833                                               Op.getOperand(0),
834                                               Op.getOperand(1)));
835
836    // Output known-0 bits are known if clear or set in both the LHS & RHS.
837    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
838    // Output known-1 are known to be set if set in only one of the LHS, RHS.
839    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
840
841    // If all of the demanded bits on one side are known, and all of the set
842    // bits on that side are also known to be set on the other side, turn this
843    // into an AND, as we know the bits will be cleared.
844    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
845    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
846      if ((KnownOne & KnownOne2) == KnownOne) {
847        MVT VT = Op.getValueType();
848        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
849        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
850                                                 ANDC));
851      }
852    }
853
854    // If the RHS is a constant, see if we can simplify it.
855    // for XOR, we prefer to force bits to 1 if they will make a -1.
856    // if we can't force bits, try to shrink constant
857    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
858      APInt Expanded = C->getAPIntValue() | (~NewMask);
859      // if we can expand it to have all bits set, do it
860      if (Expanded.isAllOnesValue()) {
861        if (Expanded != C->getAPIntValue()) {
862          MVT VT = Op.getValueType();
863          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
864                                          TLO.DAG.getConstant(Expanded, VT));
865          return TLO.CombineTo(Op, New);
866        }
867        // if it already has all the bits set, nothing to change
868        // but don't shrink either!
869      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
870        return true;
871      }
872    }
873
874    KnownZero = KnownZeroOut;
875    KnownOne  = KnownOneOut;
876    break;
877  case ISD::SELECT:
878    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
879                             KnownOne, TLO, Depth+1))
880      return true;
881    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
882                             KnownOne2, TLO, Depth+1))
883      return true;
884    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
885    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
886
887    // If the operands are constants, see if we can simplify them.
888    if (TLO.ShrinkDemandedConstant(Op, NewMask))
889      return true;
890
891    // Only known if known in both the LHS and RHS.
892    KnownOne &= KnownOne2;
893    KnownZero &= KnownZero2;
894    break;
895  case ISD::SELECT_CC:
896    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
897                             KnownOne, TLO, Depth+1))
898      return true;
899    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
900                             KnownOne2, TLO, Depth+1))
901      return true;
902    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
903    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
904
905    // If the operands are constants, see if we can simplify them.
906    if (TLO.ShrinkDemandedConstant(Op, NewMask))
907      return true;
908
909    // Only known if known in both the LHS and RHS.
910    KnownOne &= KnownOne2;
911    KnownZero &= KnownZero2;
912    break;
913  case ISD::SHL:
914    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
915      unsigned ShAmt = SA->getZExtValue();
916      SDValue InOp = Op.getOperand(0);
917
918      // If the shift count is an invalid immediate, don't do anything.
919      if (ShAmt >= BitWidth)
920        break;
921
922      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
923      // single shift.  We can do this if the bottom bits (which are shifted
924      // out) are never demanded.
925      if (InOp.getOpcode() == ISD::SRL &&
926          isa<ConstantSDNode>(InOp.getOperand(1))) {
927        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
928          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
929          unsigned Opc = ISD::SHL;
930          int Diff = ShAmt-C1;
931          if (Diff < 0) {
932            Diff = -Diff;
933            Opc = ISD::SRL;
934          }
935
936          SDValue NewSA =
937            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
938          MVT VT = Op.getValueType();
939          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
940                                                   InOp.getOperand(0), NewSA));
941        }
942      }
943
944      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
945                               KnownZero, KnownOne, TLO, Depth+1))
946        return true;
947      KnownZero <<= SA->getZExtValue();
948      KnownOne  <<= SA->getZExtValue();
949      // low bits known zero.
950      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
951    }
952    break;
953  case ISD::SRL:
954    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
955      MVT VT = Op.getValueType();
956      unsigned ShAmt = SA->getZExtValue();
957      unsigned VTSize = VT.getSizeInBits();
958      SDValue InOp = Op.getOperand(0);
959
960      // If the shift count is an invalid immediate, don't do anything.
961      if (ShAmt >= BitWidth)
962        break;
963
964      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
965      // single shift.  We can do this if the top bits (which are shifted out)
966      // are never demanded.
967      if (InOp.getOpcode() == ISD::SHL &&
968          isa<ConstantSDNode>(InOp.getOperand(1))) {
969        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
970          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
971          unsigned Opc = ISD::SRL;
972          int Diff = ShAmt-C1;
973          if (Diff < 0) {
974            Diff = -Diff;
975            Opc = ISD::SHL;
976          }
977
978          SDValue NewSA =
979            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
980          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
981                                                   InOp.getOperand(0), NewSA));
982        }
983      }
984
985      // Compute the new bits that are at the top now.
986      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
987                               KnownZero, KnownOne, TLO, Depth+1))
988        return true;
989      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
990      KnownZero = KnownZero.lshr(ShAmt);
991      KnownOne  = KnownOne.lshr(ShAmt);
992
993      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
994      KnownZero |= HighBits;  // High bits known zero.
995    }
996    break;
997  case ISD::SRA:
998    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
999      MVT VT = Op.getValueType();
1000      unsigned ShAmt = SA->getZExtValue();
1001
1002      // If the shift count is an invalid immediate, don't do anything.
1003      if (ShAmt >= BitWidth)
1004        break;
1005
1006      APInt InDemandedMask = (NewMask << ShAmt);
1007
1008      // If any of the demanded bits are produced by the sign extension, we also
1009      // demand the input sign bit.
1010      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1011      if (HighBits.intersects(NewMask))
1012        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1013
1014      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1015                               KnownZero, KnownOne, TLO, Depth+1))
1016        return true;
1017      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1018      KnownZero = KnownZero.lshr(ShAmt);
1019      KnownOne  = KnownOne.lshr(ShAmt);
1020
1021      // Handle the sign bit, adjusted to where it is now in the mask.
1022      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1023
1024      // If the input sign bit is known to be zero, or if none of the top bits
1025      // are demanded, turn this into an unsigned shift right.
1026      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1027        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1028                                                 Op.getOperand(1)));
1029      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1030        KnownOne |= HighBits;
1031      }
1032    }
1033    break;
1034  case ISD::SIGN_EXTEND_INREG: {
1035    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1036
1037    // Sign extension.  Compute the demanded bits in the result that are not
1038    // present in the input.
1039    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1040                                          BitWidth - EVT.getSizeInBits()) &
1041                    NewMask;
1042
1043    // If none of the extended bits are demanded, eliminate the sextinreg.
1044    if (NewBits == 0)
1045      return TLO.CombineTo(Op, Op.getOperand(0));
1046
1047    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1048    InSignBit.zext(BitWidth);
1049    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1050                                                   EVT.getSizeInBits()) &
1051                              NewMask;
1052
1053    // Since the sign extended bits are demanded, we know that the sign
1054    // bit is demanded.
1055    InputDemandedBits |= InSignBit;
1056
1057    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1058                             KnownZero, KnownOne, TLO, Depth+1))
1059      return true;
1060    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1061
1062    // If the sign bit of the input is known set or clear, then we know the
1063    // top bits of the result.
1064
1065    // If the input sign bit is known zero, convert this into a zero extension.
1066    if (KnownZero.intersects(InSignBit))
1067      return TLO.CombineTo(Op,
1068                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1069
1070    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1071      KnownOne |= NewBits;
1072      KnownZero &= ~NewBits;
1073    } else {                       // Input sign bit unknown
1074      KnownZero &= ~NewBits;
1075      KnownOne &= ~NewBits;
1076    }
1077    break;
1078  }
1079  case ISD::ZERO_EXTEND: {
1080    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1081    APInt InMask = NewMask;
1082    InMask.trunc(OperandBitWidth);
1083
1084    // If none of the top bits are demanded, convert this into an any_extend.
1085    APInt NewBits =
1086      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1087    if (!NewBits.intersects(NewMask))
1088      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1089                                               Op.getValueType(),
1090                                               Op.getOperand(0)));
1091
1092    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1093                             KnownZero, KnownOne, TLO, Depth+1))
1094      return true;
1095    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1096    KnownZero.zext(BitWidth);
1097    KnownOne.zext(BitWidth);
1098    KnownZero |= NewBits;
1099    break;
1100  }
1101  case ISD::SIGN_EXTEND: {
1102    MVT InVT = Op.getOperand(0).getValueType();
1103    unsigned InBits = InVT.getSizeInBits();
1104    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1105    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1106    APInt NewBits   = ~InMask & NewMask;
1107
1108    // If none of the top bits are demanded, convert this into an any_extend.
1109    if (NewBits == 0)
1110      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1111                                           Op.getOperand(0)));
1112
1113    // Since some of the sign extended bits are demanded, we know that the sign
1114    // bit is demanded.
1115    APInt InDemandedBits = InMask & NewMask;
1116    InDemandedBits |= InSignBit;
1117    InDemandedBits.trunc(InBits);
1118
1119    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1120                             KnownOne, TLO, Depth+1))
1121      return true;
1122    KnownZero.zext(BitWidth);
1123    KnownOne.zext(BitWidth);
1124
1125    // If the sign bit is known zero, convert this to a zero extend.
1126    if (KnownZero.intersects(InSignBit))
1127      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1128                                               Op.getValueType(),
1129                                               Op.getOperand(0)));
1130
1131    // If the sign bit is known one, the top bits match.
1132    if (KnownOne.intersects(InSignBit)) {
1133      KnownOne  |= NewBits;
1134      KnownZero &= ~NewBits;
1135    } else {   // Otherwise, top bits aren't known.
1136      KnownOne  &= ~NewBits;
1137      KnownZero &= ~NewBits;
1138    }
1139    break;
1140  }
1141  case ISD::ANY_EXTEND: {
1142    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1143    APInt InMask = NewMask;
1144    InMask.trunc(OperandBitWidth);
1145    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1146                             KnownZero, KnownOne, TLO, Depth+1))
1147      return true;
1148    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1149    KnownZero.zext(BitWidth);
1150    KnownOne.zext(BitWidth);
1151    break;
1152  }
1153  case ISD::TRUNCATE: {
1154    // Simplify the input, using demanded bit information, and compute the known
1155    // zero/one bits live out.
1156    APInt TruncMask = NewMask;
1157    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1158    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1159                             KnownZero, KnownOne, TLO, Depth+1))
1160      return true;
1161    KnownZero.trunc(BitWidth);
1162    KnownOne.trunc(BitWidth);
1163
1164    // If the input is only used by this truncate, see if we can shrink it based
1165    // on the known demanded bits.
1166    if (Op.getOperand(0).getNode()->hasOneUse()) {
1167      SDValue In = Op.getOperand(0);
1168      unsigned InBitWidth = In.getValueSizeInBits();
1169      switch (In.getOpcode()) {
1170      default: break;
1171      case ISD::SRL:
1172        // Shrink SRL by a constant if none of the high bits shifted in are
1173        // demanded.
1174        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1175          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1176                                                 InBitWidth - BitWidth);
1177          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1178          HighBits.trunc(BitWidth);
1179
1180          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1181            // None of the shifted in bits are needed.  Add a truncate of the
1182            // shift input, then shift it.
1183            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1184                                                 Op.getValueType(),
1185                                                 In.getOperand(0));
1186            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1187                                                   NewTrunc, In.getOperand(1)));
1188          }
1189        }
1190        break;
1191      }
1192    }
1193
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    break;
1196  }
1197  case ISD::AssertZext: {
1198    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1199    APInt InMask = APInt::getLowBitsSet(BitWidth,
1200                                        VT.getSizeInBits());
1201    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1202                             KnownZero, KnownOne, TLO, Depth+1))
1203      return true;
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205    KnownZero |= ~InMask & NewMask;
1206    break;
1207  }
1208  case ISD::BIT_CONVERT:
1209#if 0
1210    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1211    // is demanded, turn this into a FGETSIGN.
1212    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1213        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1214        !MVT::isVector(Op.getOperand(0).getValueType())) {
1215      // Only do this xform if FGETSIGN is valid or if before legalize.
1216      if (!TLO.AfterLegalize ||
1217          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1218        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1219        // place.  We expect the SHL to be eliminated by other optimizations.
1220        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1221                                         Op.getOperand(0));
1222        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1223        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1224        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1225                                                 Sign, ShAmt));
1226      }
1227    }
1228#endif
1229    break;
1230  default:
1231    // Just use ComputeMaskedBits to compute output bits.
1232    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1233    break;
1234  }
1235
1236  // If we know the value of all of the demanded bits, return this as a
1237  // constant.
1238  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1239    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1240
1241  return false;
1242}
1243
1244/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1245/// in Mask are known to be either zero or one and return them in the
1246/// KnownZero/KnownOne bitsets.
1247void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1248                                                    const APInt &Mask,
1249                                                    APInt &KnownZero,
1250                                                    APInt &KnownOne,
1251                                                    const SelectionDAG &DAG,
1252                                                    unsigned Depth) const {
1253  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1254          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1255          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1256          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1257         "Should use MaskedValueIsZero if you don't know whether Op"
1258         " is a target node!");
1259  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1260}
1261
1262/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1263/// targets that want to expose additional information about sign bits to the
1264/// DAG Combiner.
1265unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1266                                                         unsigned Depth) const {
1267  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1268          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1269          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1270          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1271         "Should use ComputeNumSignBits if you don't know whether Op"
1272         " is a target node!");
1273  return 1;
1274}
1275
1276
1277/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1278/// and cc. If it is unable to simplify it, return a null SDValue.
1279SDValue
1280TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1281                              ISD::CondCode Cond, bool foldBooleans,
1282                              DAGCombinerInfo &DCI) const {
1283  SelectionDAG &DAG = DCI.DAG;
1284
1285  // These setcc operations always fold.
1286  switch (Cond) {
1287  default: break;
1288  case ISD::SETFALSE:
1289  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1290  case ISD::SETTRUE:
1291  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1292  }
1293
1294  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1295    const APInt &C1 = N1C->getAPIntValue();
1296    if (isa<ConstantSDNode>(N0.getNode())) {
1297      return DAG.FoldSetCC(VT, N0, N1, Cond);
1298    } else {
1299      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1300      // equality comparison, then we're just comparing whether X itself is
1301      // zero.
1302      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1303          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1304          N0.getOperand(1).getOpcode() == ISD::Constant) {
1305        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1306        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1307            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1308          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1309            // (srl (ctlz x), 5) == 0  -> X != 0
1310            // (srl (ctlz x), 5) != 1  -> X != 0
1311            Cond = ISD::SETNE;
1312          } else {
1313            // (srl (ctlz x), 5) != 0  -> X == 0
1314            // (srl (ctlz x), 5) == 1  -> X == 0
1315            Cond = ISD::SETEQ;
1316          }
1317          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1318          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1319                              Zero, Cond);
1320        }
1321      }
1322
1323      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1324      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1325        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1326
1327        // If the comparison constant has bits in the upper part, the
1328        // zero-extended value could never match.
1329        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1330                                                C1.getBitWidth() - InSize))) {
1331          switch (Cond) {
1332          case ISD::SETUGT:
1333          case ISD::SETUGE:
1334          case ISD::SETEQ: return DAG.getConstant(0, VT);
1335          case ISD::SETULT:
1336          case ISD::SETULE:
1337          case ISD::SETNE: return DAG.getConstant(1, VT);
1338          case ISD::SETGT:
1339          case ISD::SETGE:
1340            // True if the sign bit of C1 is set.
1341            return DAG.getConstant(C1.isNegative(), VT);
1342          case ISD::SETLT:
1343          case ISD::SETLE:
1344            // True if the sign bit of C1 isn't set.
1345            return DAG.getConstant(C1.isNonNegative(), VT);
1346          default:
1347            break;
1348          }
1349        }
1350
1351        // Otherwise, we can perform the comparison with the low bits.
1352        switch (Cond) {
1353        case ISD::SETEQ:
1354        case ISD::SETNE:
1355        case ISD::SETUGT:
1356        case ISD::SETUGE:
1357        case ISD::SETULT:
1358        case ISD::SETULE:
1359          return DAG.getSetCC(VT, N0.getOperand(0),
1360                          DAG.getConstant(APInt(C1).trunc(InSize),
1361                                          N0.getOperand(0).getValueType()),
1362                          Cond);
1363        default:
1364          break;   // todo, be more careful with signed comparisons
1365        }
1366      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1367                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1368        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1369        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1370        MVT ExtDstTy = N0.getValueType();
1371        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1372
1373        // If the extended part has any inconsistent bits, it cannot ever
1374        // compare equal.  In other words, they have to be all ones or all
1375        // zeros.
1376        APInt ExtBits =
1377          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1378        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1379          return DAG.getConstant(Cond == ISD::SETNE, VT);
1380
1381        SDValue ZextOp;
1382        MVT Op0Ty = N0.getOperand(0).getValueType();
1383        if (Op0Ty == ExtSrcTy) {
1384          ZextOp = N0.getOperand(0);
1385        } else {
1386          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1387          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1388                               DAG.getConstant(Imm, Op0Ty));
1389        }
1390        if (!DCI.isCalledByLegalizer())
1391          DCI.AddToWorklist(ZextOp.getNode());
1392        // Otherwise, make this a use of a zext.
1393        return DAG.getSetCC(VT, ZextOp,
1394                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1395                                                               ExtDstTyBits,
1396                                                               ExtSrcTyBits),
1397                                            ExtDstTy),
1398                            Cond);
1399      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1400                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1401
1402        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1403        if (N0.getOpcode() == ISD::SETCC) {
1404          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1405          if (TrueWhenTrue)
1406            return N0;
1407
1408          // Invert the condition.
1409          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1410          CC = ISD::getSetCCInverse(CC,
1411                                   N0.getOperand(0).getValueType().isInteger());
1412          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1413        }
1414
1415        if ((N0.getOpcode() == ISD::XOR ||
1416             (N0.getOpcode() == ISD::AND &&
1417              N0.getOperand(0).getOpcode() == ISD::XOR &&
1418              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1419            isa<ConstantSDNode>(N0.getOperand(1)) &&
1420            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1421          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1422          // can only do this if the top bits are known zero.
1423          unsigned BitWidth = N0.getValueSizeInBits();
1424          if (DAG.MaskedValueIsZero(N0,
1425                                    APInt::getHighBitsSet(BitWidth,
1426                                                          BitWidth-1))) {
1427            // Okay, get the un-inverted input value.
1428            SDValue Val;
1429            if (N0.getOpcode() == ISD::XOR)
1430              Val = N0.getOperand(0);
1431            else {
1432              assert(N0.getOpcode() == ISD::AND &&
1433                     N0.getOperand(0).getOpcode() == ISD::XOR);
1434              // ((X^1)&1)^1 -> X & 1
1435              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1436                                N0.getOperand(0).getOperand(0),
1437                                N0.getOperand(1));
1438            }
1439            return DAG.getSetCC(VT, Val, N1,
1440                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1441          }
1442        }
1443      }
1444
1445      APInt MinVal, MaxVal;
1446      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1447      if (ISD::isSignedIntSetCC(Cond)) {
1448        MinVal = APInt::getSignedMinValue(OperandBitSize);
1449        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1450      } else {
1451        MinVal = APInt::getMinValue(OperandBitSize);
1452        MaxVal = APInt::getMaxValue(OperandBitSize);
1453      }
1454
1455      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1456      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1457        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1458        // X >= C0 --> X > (C0-1)
1459        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1460                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1461      }
1462
1463      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1464        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1465        // X <= C0 --> X < (C0+1)
1466        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1467                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1468      }
1469
1470      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1471        return DAG.getConstant(0, VT);      // X < MIN --> false
1472      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1473        return DAG.getConstant(1, VT);      // X >= MIN --> true
1474      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1475        return DAG.getConstant(0, VT);      // X > MAX --> false
1476      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1477        return DAG.getConstant(1, VT);      // X <= MAX --> true
1478
1479      // Canonicalize setgt X, Min --> setne X, Min
1480      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1481        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1482      // Canonicalize setlt X, Max --> setne X, Max
1483      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1484        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1485
1486      // If we have setult X, 1, turn it into seteq X, 0
1487      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1488        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1489                        ISD::SETEQ);
1490      // If we have setugt X, Max-1, turn it into seteq X, Max
1491      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1492        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1493                        ISD::SETEQ);
1494
1495      // If we have "setcc X, C0", check to see if we can shrink the immediate
1496      // by changing cc.
1497
1498      // SETUGT X, SINTMAX  -> SETLT X, 0
1499      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1500          C1 == (~0ULL >> (65-OperandBitSize)))
1501        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1502                            ISD::SETLT);
1503
1504      // FIXME: Implement the rest of these.
1505
1506      // Fold bit comparisons when we can.
1507      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1508          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1509        if (ConstantSDNode *AndRHS =
1510                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1511          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1512            // Perform the xform if the AND RHS is a single bit.
1513            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1514              return DAG.getNode(ISD::SRL, VT, N0,
1515                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1516                                             getShiftAmountTy()));
1517            }
1518          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1519            // (X & 8) == 8  -->  (X & 8) >> 3
1520            // Perform the xform if C1 is a single bit.
1521            if (C1.isPowerOf2()) {
1522              return DAG.getNode(ISD::SRL, VT, N0,
1523                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1524            }
1525          }
1526        }
1527    }
1528  } else if (isa<ConstantSDNode>(N0.getNode())) {
1529      // Ensure that the constant occurs on the RHS.
1530    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1531  }
1532
1533  if (isa<ConstantFPSDNode>(N0.getNode())) {
1534    // Constant fold or commute setcc.
1535    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1536    if (O.getNode()) return O;
1537  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1538    // If the RHS of an FP comparison is a constant, simplify it away in
1539    // some cases.
1540    if (CFP->getValueAPF().isNaN()) {
1541      // If an operand is known to be a nan, we can fold it.
1542      switch (ISD::getUnorderedFlavor(Cond)) {
1543      default: assert(0 && "Unknown flavor!");
1544      case 0:  // Known false.
1545        return DAG.getConstant(0, VT);
1546      case 1:  // Known true.
1547        return DAG.getConstant(1, VT);
1548      case 2:  // Undefined.
1549        return DAG.getNode(ISD::UNDEF, VT);
1550      }
1551    }
1552
1553    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1554    // constant if knowing that the operand is non-nan is enough.  We prefer to
1555    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1556    // materialize 0.0.
1557    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1558      return DAG.getSetCC(VT, N0, N0, Cond);
1559  }
1560
1561  if (N0 == N1) {
1562    // We can always fold X == X for integer setcc's.
1563    if (N0.getValueType().isInteger())
1564      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1565    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1566    if (UOF == 2)   // FP operators that are undefined on NaNs.
1567      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1568    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1569      return DAG.getConstant(UOF, VT);
1570    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1571    // if it is not already.
1572    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1573    if (NewCond != Cond)
1574      return DAG.getSetCC(VT, N0, N1, NewCond);
1575  }
1576
1577  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1578      N0.getValueType().isInteger()) {
1579    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1580        N0.getOpcode() == ISD::XOR) {
1581      // Simplify (X+Y) == (X+Z) -->  Y == Z
1582      if (N0.getOpcode() == N1.getOpcode()) {
1583        if (N0.getOperand(0) == N1.getOperand(0))
1584          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1585        if (N0.getOperand(1) == N1.getOperand(1))
1586          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1587        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1588          // If X op Y == Y op X, try other combinations.
1589          if (N0.getOperand(0) == N1.getOperand(1))
1590            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1591          if (N0.getOperand(1) == N1.getOperand(0))
1592            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1593        }
1594      }
1595
1596      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1597        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1598          // Turn (X+C1) == C2 --> X == C2-C1
1599          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1600            return DAG.getSetCC(VT, N0.getOperand(0),
1601                                DAG.getConstant(RHSC->getAPIntValue()-
1602                                                LHSR->getAPIntValue(),
1603                                N0.getValueType()), Cond);
1604          }
1605
1606          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1607          if (N0.getOpcode() == ISD::XOR)
1608            // If we know that all of the inverted bits are zero, don't bother
1609            // performing the inversion.
1610            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1611              return
1612                DAG.getSetCC(VT, N0.getOperand(0),
1613                             DAG.getConstant(LHSR->getAPIntValue() ^
1614                                               RHSC->getAPIntValue(),
1615                                             N0.getValueType()),
1616                             Cond);
1617        }
1618
1619        // Turn (C1-X) == C2 --> X == C1-C2
1620        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1621          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1622            return
1623              DAG.getSetCC(VT, N0.getOperand(1),
1624                           DAG.getConstant(SUBC->getAPIntValue() -
1625                                             RHSC->getAPIntValue(),
1626                                           N0.getValueType()),
1627                           Cond);
1628          }
1629        }
1630      }
1631
1632      // Simplify (X+Z) == X -->  Z == 0
1633      if (N0.getOperand(0) == N1)
1634        return DAG.getSetCC(VT, N0.getOperand(1),
1635                        DAG.getConstant(0, N0.getValueType()), Cond);
1636      if (N0.getOperand(1) == N1) {
1637        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1638          return DAG.getSetCC(VT, N0.getOperand(0),
1639                          DAG.getConstant(0, N0.getValueType()), Cond);
1640        else if (N0.getNode()->hasOneUse()) {
1641          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1642          // (Z-X) == X  --> Z == X<<1
1643          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1644                                     N1,
1645                                     DAG.getConstant(1, getShiftAmountTy()));
1646          if (!DCI.isCalledByLegalizer())
1647            DCI.AddToWorklist(SH.getNode());
1648          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1649        }
1650      }
1651    }
1652
1653    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1654        N1.getOpcode() == ISD::XOR) {
1655      // Simplify  X == (X+Z) -->  Z == 0
1656      if (N1.getOperand(0) == N0) {
1657        return DAG.getSetCC(VT, N1.getOperand(1),
1658                        DAG.getConstant(0, N1.getValueType()), Cond);
1659      } else if (N1.getOperand(1) == N0) {
1660        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1661          return DAG.getSetCC(VT, N1.getOperand(0),
1662                          DAG.getConstant(0, N1.getValueType()), Cond);
1663        } else if (N1.getNode()->hasOneUse()) {
1664          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1665          // X == (Z-X)  --> X<<1 == Z
1666          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1667                                     DAG.getConstant(1, getShiftAmountTy()));
1668          if (!DCI.isCalledByLegalizer())
1669            DCI.AddToWorklist(SH.getNode());
1670          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1671        }
1672      }
1673    }
1674  }
1675
1676  // Fold away ALL boolean setcc's.
1677  SDValue Temp;
1678  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1679    switch (Cond) {
1680    default: assert(0 && "Unknown integer setcc!");
1681    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1682      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1683      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1684      if (!DCI.isCalledByLegalizer())
1685        DCI.AddToWorklist(Temp.getNode());
1686      break;
1687    case ISD::SETNE:  // X != Y   -->  (X^Y)
1688      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1689      break;
1690    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1691    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1692      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1693      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1694      if (!DCI.isCalledByLegalizer())
1695        DCI.AddToWorklist(Temp.getNode());
1696      break;
1697    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1698    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1699      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1700      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1701      if (!DCI.isCalledByLegalizer())
1702        DCI.AddToWorklist(Temp.getNode());
1703      break;
1704    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1705    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1706      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1707      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1708      if (!DCI.isCalledByLegalizer())
1709        DCI.AddToWorklist(Temp.getNode());
1710      break;
1711    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1712    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1713      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1714      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1715      break;
1716    }
1717    if (VT != MVT::i1) {
1718      if (!DCI.isCalledByLegalizer())
1719        DCI.AddToWorklist(N0.getNode());
1720      // FIXME: If running after legalize, we probably can't do this.
1721      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1722    }
1723    return N0;
1724  }
1725
1726  // Could not fold it.
1727  return SDValue();
1728}
1729
1730/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1731/// node is a GlobalAddress + offset.
1732bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1733                                    int64_t &Offset) const {
1734  if (isa<GlobalAddressSDNode>(N)) {
1735    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1736    GA = GASD->getGlobal();
1737    Offset += GASD->getOffset();
1738    return true;
1739  }
1740
1741  if (N->getOpcode() == ISD::ADD) {
1742    SDValue N1 = N->getOperand(0);
1743    SDValue N2 = N->getOperand(1);
1744    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1745      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1746      if (V) {
1747        Offset += V->getSignExtended();
1748        return true;
1749      }
1750    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1751      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1752      if (V) {
1753        Offset += V->getSignExtended();
1754        return true;
1755      }
1756    }
1757  }
1758  return false;
1759}
1760
1761
1762/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1763/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1764/// location that the 'Base' load is loading from.
1765bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1766                                       unsigned Bytes, int Dist,
1767                                       const MachineFrameInfo *MFI) const {
1768  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1769    return false;
1770  MVT VT = LD->getValueType(0);
1771  if (VT.getSizeInBits() / 8 != Bytes)
1772    return false;
1773
1774  SDValue Loc = LD->getOperand(1);
1775  SDValue BaseLoc = Base->getOperand(1);
1776  if (Loc.getOpcode() == ISD::FrameIndex) {
1777    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1778      return false;
1779    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1780    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1781    int FS  = MFI->getObjectSize(FI);
1782    int BFS = MFI->getObjectSize(BFI);
1783    if (FS != BFS || FS != (int)Bytes) return false;
1784    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1785  }
1786
1787  GlobalValue *GV1 = NULL;
1788  GlobalValue *GV2 = NULL;
1789  int64_t Offset1 = 0;
1790  int64_t Offset2 = 0;
1791  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1792  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1793  if (isGA1 && isGA2 && GV1 == GV2)
1794    return Offset1 == (Offset2 + Dist*Bytes);
1795  return false;
1796}
1797
1798
1799SDValue TargetLowering::
1800PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1801  // Default implementation: no optimization.
1802  return SDValue();
1803}
1804
1805//===----------------------------------------------------------------------===//
1806//  Inline Assembler Implementation Methods
1807//===----------------------------------------------------------------------===//
1808
1809
1810TargetLowering::ConstraintType
1811TargetLowering::getConstraintType(const std::string &Constraint) const {
1812  // FIXME: lots more standard ones to handle.
1813  if (Constraint.size() == 1) {
1814    switch (Constraint[0]) {
1815    default: break;
1816    case 'r': return C_RegisterClass;
1817    case 'm':    // memory
1818    case 'o':    // offsetable
1819    case 'V':    // not offsetable
1820      return C_Memory;
1821    case 'i':    // Simple Integer or Relocatable Constant
1822    case 'n':    // Simple Integer
1823    case 's':    // Relocatable Constant
1824    case 'X':    // Allow ANY value.
1825    case 'I':    // Target registers.
1826    case 'J':
1827    case 'K':
1828    case 'L':
1829    case 'M':
1830    case 'N':
1831    case 'O':
1832    case 'P':
1833      return C_Other;
1834    }
1835  }
1836
1837  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1838      Constraint[Constraint.size()-1] == '}')
1839    return C_Register;
1840  return C_Unknown;
1841}
1842
1843/// LowerXConstraint - try to replace an X constraint, which matches anything,
1844/// with another that has more specific requirements based on the type of the
1845/// corresponding operand.
1846const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1847  if (ConstraintVT.isInteger())
1848    return "r";
1849  if (ConstraintVT.isFloatingPoint())
1850    return "f";      // works for many targets
1851  return 0;
1852}
1853
1854/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1855/// vector.  If it is invalid, don't add anything to Ops.
1856void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1857                                                  char ConstraintLetter,
1858                                                  std::vector<SDValue> &Ops,
1859                                                  SelectionDAG &DAG) const {
1860  switch (ConstraintLetter) {
1861  default: break;
1862  case 'X':     // Allows any operand; labels (basic block) use this.
1863    if (Op.getOpcode() == ISD::BasicBlock) {
1864      Ops.push_back(Op);
1865      return;
1866    }
1867    // fall through
1868  case 'i':    // Simple Integer or Relocatable Constant
1869  case 'n':    // Simple Integer
1870  case 's': {  // Relocatable Constant
1871    // These operands are interested in values of the form (GV+C), where C may
1872    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1873    // is possible and fine if either GV or C are missing.
1874    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1875    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1876
1877    // If we have "(add GV, C)", pull out GV/C
1878    if (Op.getOpcode() == ISD::ADD) {
1879      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1880      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1881      if (C == 0 || GA == 0) {
1882        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1883        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1884      }
1885      if (C == 0 || GA == 0)
1886        C = 0, GA = 0;
1887    }
1888
1889    // If we find a valid operand, map to the TargetXXX version so that the
1890    // value itself doesn't get selected.
1891    if (GA) {   // Either &GV   or   &GV+C
1892      if (ConstraintLetter != 'n') {
1893        int64_t Offs = GA->getOffset();
1894        if (C) Offs += C->getZExtValue();
1895        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1896                                                 Op.getValueType(), Offs));
1897        return;
1898      }
1899    }
1900    if (C) {   // just C, no GV.
1901      // Simple constants are not allowed for 's'.
1902      if (ConstraintLetter != 's') {
1903        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
1904                                            Op.getValueType()));
1905        return;
1906      }
1907    }
1908    break;
1909  }
1910  }
1911}
1912
1913std::vector<unsigned> TargetLowering::
1914getRegClassForInlineAsmConstraint(const std::string &Constraint,
1915                                  MVT VT) const {
1916  return std::vector<unsigned>();
1917}
1918
1919
1920std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1921getRegForInlineAsmConstraint(const std::string &Constraint,
1922                             MVT VT) const {
1923  if (Constraint[0] != '{')
1924    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1925  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1926
1927  // Remove the braces from around the name.
1928  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1929
1930  // Figure out which register class contains this reg.
1931  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1932  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1933       E = RI->regclass_end(); RCI != E; ++RCI) {
1934    const TargetRegisterClass *RC = *RCI;
1935
1936    // If none of the the value types for this register class are valid, we
1937    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1938    bool isLegal = false;
1939    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1940         I != E; ++I) {
1941      if (isTypeLegal(*I)) {
1942        isLegal = true;
1943        break;
1944      }
1945    }
1946
1947    if (!isLegal) continue;
1948
1949    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1950         I != E; ++I) {
1951      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1952        return std::make_pair(*I, RC);
1953    }
1954  }
1955
1956  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1957}
1958
1959//===----------------------------------------------------------------------===//
1960// Constraint Selection.
1961
1962/// getConstraintGenerality - Return an integer indicating how general CT
1963/// is.
1964static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1965  switch (CT) {
1966  default: assert(0 && "Unknown constraint type!");
1967  case TargetLowering::C_Other:
1968  case TargetLowering::C_Unknown:
1969    return 0;
1970  case TargetLowering::C_Register:
1971    return 1;
1972  case TargetLowering::C_RegisterClass:
1973    return 2;
1974  case TargetLowering::C_Memory:
1975    return 3;
1976  }
1977}
1978
1979/// ChooseConstraint - If there are multiple different constraints that we
1980/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1981/// This is somewhat tricky: constraints fall into four classes:
1982///    Other         -> immediates and magic values
1983///    Register      -> one specific register
1984///    RegisterClass -> a group of regs
1985///    Memory        -> memory
1986/// Ideally, we would pick the most specific constraint possible: if we have
1987/// something that fits into a register, we would pick it.  The problem here
1988/// is that if we have something that could either be in a register or in
1989/// memory that use of the register could cause selection of *other*
1990/// operands to fail: they might only succeed if we pick memory.  Because of
1991/// this the heuristic we use is:
1992///
1993///  1) If there is an 'other' constraint, and if the operand is valid for
1994///     that constraint, use it.  This makes us take advantage of 'i'
1995///     constraints when available.
1996///  2) Otherwise, pick the most general constraint present.  This prefers
1997///     'm' over 'r', for example.
1998///
1999static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2000                             const TargetLowering &TLI,
2001                             SDValue Op, SelectionDAG *DAG) {
2002  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2003  unsigned BestIdx = 0;
2004  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2005  int BestGenerality = -1;
2006
2007  // Loop over the options, keeping track of the most general one.
2008  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2009    TargetLowering::ConstraintType CType =
2010      TLI.getConstraintType(OpInfo.Codes[i]);
2011
2012    // If this is an 'other' constraint, see if the operand is valid for it.
2013    // For example, on X86 we might have an 'rI' constraint.  If the operand
2014    // is an integer in the range [0..31] we want to use I (saving a load
2015    // of a register), otherwise we must use 'r'.
2016    if (CType == TargetLowering::C_Other && Op.getNode()) {
2017      assert(OpInfo.Codes[i].size() == 1 &&
2018             "Unhandled multi-letter 'other' constraint");
2019      std::vector<SDValue> ResultOps;
2020      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2021                                       ResultOps, *DAG);
2022      if (!ResultOps.empty()) {
2023        BestType = CType;
2024        BestIdx = i;
2025        break;
2026      }
2027    }
2028
2029    // This constraint letter is more general than the previous one, use it.
2030    int Generality = getConstraintGenerality(CType);
2031    if (Generality > BestGenerality) {
2032      BestType = CType;
2033      BestIdx = i;
2034      BestGenerality = Generality;
2035    }
2036  }
2037
2038  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2039  OpInfo.ConstraintType = BestType;
2040}
2041
2042/// ComputeConstraintToUse - Determines the constraint code and constraint
2043/// type to use for the specific AsmOperandInfo, setting
2044/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2045void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2046                                            SDValue Op,
2047                                            SelectionDAG *DAG) const {
2048  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2049
2050  // Single-letter constraints ('r') are very common.
2051  if (OpInfo.Codes.size() == 1) {
2052    OpInfo.ConstraintCode = OpInfo.Codes[0];
2053    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2054  } else {
2055    ChooseConstraint(OpInfo, *this, Op, DAG);
2056  }
2057
2058  // 'X' matches anything.
2059  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2060    // Labels and constants are handled elsewhere ('X' is the only thing
2061    // that matches labels).
2062    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2063        isa<ConstantInt>(OpInfo.CallOperandVal))
2064      return;
2065
2066    // Otherwise, try to resolve it to something we know about by looking at
2067    // the actual operand type.
2068    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2069      OpInfo.ConstraintCode = Repl;
2070      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2071    }
2072  }
2073}
2074
2075//===----------------------------------------------------------------------===//
2076//  Loop Strength Reduction hooks
2077//===----------------------------------------------------------------------===//
2078
2079/// isLegalAddressingMode - Return true if the addressing mode represented
2080/// by AM is legal for this target, for a load/store of the specified type.
2081bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2082                                           const Type *Ty) const {
2083  // The default implementation of this implements a conservative RISCy, r+r and
2084  // r+i addr mode.
2085
2086  // Allows a sign-extended 16-bit immediate field.
2087  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2088    return false;
2089
2090  // No global is ever allowed as a base.
2091  if (AM.BaseGV)
2092    return false;
2093
2094  // Only support r+r,
2095  switch (AM.Scale) {
2096  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2097    break;
2098  case 1:
2099    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2100      return false;
2101    // Otherwise we have r+r or r+i.
2102    break;
2103  case 2:
2104    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2105      return false;
2106    // Allow 2*r as r+r.
2107    break;
2108  }
2109
2110  return true;
2111}
2112
2113// Magic for divide replacement
2114
2115struct ms {
2116  int64_t m;  // magic number
2117  int64_t s;  // shift amount
2118};
2119
2120struct mu {
2121  uint64_t m; // magic number
2122  int64_t a;  // add indicator
2123  int64_t s;  // shift amount
2124};
2125
2126/// magic - calculate the magic numbers required to codegen an integer sdiv as
2127/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2128/// or -1.
2129static ms magic32(int32_t d) {
2130  int32_t p;
2131  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2132  const uint32_t two31 = 0x80000000U;
2133  struct ms mag;
2134
2135  ad = abs(d);
2136  t = two31 + ((uint32_t)d >> 31);
2137  anc = t - 1 - t%ad;   // absolute value of nc
2138  p = 31;               // initialize p
2139  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2140  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2141  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2142  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2143  do {
2144    p = p + 1;
2145    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2146    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2147    if (r1 >= anc) {  // must be unsigned comparison
2148      q1 = q1 + 1;
2149      r1 = r1 - anc;
2150    }
2151    q2 = 2*q2;        // update q2 = 2p/abs(d)
2152    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2153    if (r2 >= ad) {   // must be unsigned comparison
2154      q2 = q2 + 1;
2155      r2 = r2 - ad;
2156    }
2157    delta = ad - r2;
2158  } while (q1 < delta || (q1 == delta && r1 == 0));
2159
2160  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2161  if (d < 0) mag.m = -mag.m; // resulting magic number
2162  mag.s = p - 32;            // resulting shift
2163  return mag;
2164}
2165
2166/// magicu - calculate the magic numbers required to codegen an integer udiv as
2167/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2168static mu magicu32(uint32_t d) {
2169  int32_t p;
2170  uint32_t nc, delta, q1, r1, q2, r2;
2171  struct mu magu;
2172  magu.a = 0;               // initialize "add" indicator
2173  nc = - 1 - (-d)%d;
2174  p = 31;                   // initialize p
2175  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2176  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2177  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2178  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2179  do {
2180    p = p + 1;
2181    if (r1 >= nc - r1 ) {
2182      q1 = 2*q1 + 1;  // update q1
2183      r1 = 2*r1 - nc; // update r1
2184    }
2185    else {
2186      q1 = 2*q1; // update q1
2187      r1 = 2*r1; // update r1
2188    }
2189    if (r2 + 1 >= d - r2) {
2190      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2191      q2 = 2*q2 + 1;     // update q2
2192      r2 = 2*r2 + 1 - d; // update r2
2193    }
2194    else {
2195      if (q2 >= 0x80000000) magu.a = 1;
2196      q2 = 2*q2;     // update q2
2197      r2 = 2*r2 + 1; // update r2
2198    }
2199    delta = d - 1 - r2;
2200  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2201  magu.m = q2 + 1; // resulting magic number
2202  magu.s = p - 32;  // resulting shift
2203  return magu;
2204}
2205
2206/// magic - calculate the magic numbers required to codegen an integer sdiv as
2207/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2208/// or -1.
2209static ms magic64(int64_t d) {
2210  int64_t p;
2211  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2212  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2213  struct ms mag;
2214
2215  ad = d >= 0 ? d : -d;
2216  t = two63 + ((uint64_t)d >> 63);
2217  anc = t - 1 - t%ad;   // absolute value of nc
2218  p = 63;               // initialize p
2219  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2220  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2221  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2222  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2223  do {
2224    p = p + 1;
2225    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2226    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2227    if (r1 >= anc) {  // must be unsigned comparison
2228      q1 = q1 + 1;
2229      r1 = r1 - anc;
2230    }
2231    q2 = 2*q2;        // update q2 = 2p/abs(d)
2232    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2233    if (r2 >= ad) {   // must be unsigned comparison
2234      q2 = q2 + 1;
2235      r2 = r2 - ad;
2236    }
2237    delta = ad - r2;
2238  } while (q1 < delta || (q1 == delta && r1 == 0));
2239
2240  mag.m = q2 + 1;
2241  if (d < 0) mag.m = -mag.m; // resulting magic number
2242  mag.s = p - 64;            // resulting shift
2243  return mag;
2244}
2245
2246/// magicu - calculate the magic numbers required to codegen an integer udiv as
2247/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2248static mu magicu64(uint64_t d)
2249{
2250  int64_t p;
2251  uint64_t nc, delta, q1, r1, q2, r2;
2252  struct mu magu;
2253  magu.a = 0;               // initialize "add" indicator
2254  nc = - 1 - (-d)%d;
2255  p = 63;                   // initialize p
2256  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2257  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2258  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2259  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2260  do {
2261    p = p + 1;
2262    if (r1 >= nc - r1 ) {
2263      q1 = 2*q1 + 1;  // update q1
2264      r1 = 2*r1 - nc; // update r1
2265    }
2266    else {
2267      q1 = 2*q1; // update q1
2268      r1 = 2*r1; // update r1
2269    }
2270    if (r2 + 1 >= d - r2) {
2271      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2272      q2 = 2*q2 + 1;     // update q2
2273      r2 = 2*r2 + 1 - d; // update r2
2274    }
2275    else {
2276      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2277      q2 = 2*q2;     // update q2
2278      r2 = 2*r2 + 1; // update r2
2279    }
2280    delta = d - 1 - r2;
2281  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2282  magu.m = q2 + 1; // resulting magic number
2283  magu.s = p - 64;  // resulting shift
2284  return magu;
2285}
2286
2287/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2288/// return a DAG expression to select that will generate the same value by
2289/// multiplying by a magic number.  See:
2290/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2291SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2292                                  std::vector<SDNode*>* Created) const {
2293  MVT VT = N->getValueType(0);
2294
2295  // Check to see if we can do this.
2296  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2297    return SDValue();       // BuildSDIV only operates on i32 or i64
2298
2299  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2300  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2301
2302  // Multiply the numerator (operand 0) by the magic value
2303  SDValue Q;
2304  if (isOperationLegal(ISD::MULHS, VT))
2305    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2306                    DAG.getConstant(magics.m, VT));
2307  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2308    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2309                              N->getOperand(0),
2310                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2311  else
2312    return SDValue();       // No mulhs or equvialent
2313  // If d > 0 and m < 0, add the numerator
2314  if (d > 0 && magics.m < 0) {
2315    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2316    if (Created)
2317      Created->push_back(Q.getNode());
2318  }
2319  // If d < 0 and m > 0, subtract the numerator.
2320  if (d < 0 && magics.m > 0) {
2321    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2322    if (Created)
2323      Created->push_back(Q.getNode());
2324  }
2325  // Shift right algebraic if shift value is nonzero
2326  if (magics.s > 0) {
2327    Q = DAG.getNode(ISD::SRA, VT, Q,
2328                    DAG.getConstant(magics.s, getShiftAmountTy()));
2329    if (Created)
2330      Created->push_back(Q.getNode());
2331  }
2332  // Extract the sign bit and add it to the quotient
2333  SDValue T =
2334    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2335                                                 getShiftAmountTy()));
2336  if (Created)
2337    Created->push_back(T.getNode());
2338  return DAG.getNode(ISD::ADD, VT, Q, T);
2339}
2340
2341/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2342/// return a DAG expression to select that will generate the same value by
2343/// multiplying by a magic number.  See:
2344/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2345SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2346                                  std::vector<SDNode*>* Created) const {
2347  MVT VT = N->getValueType(0);
2348
2349  // Check to see if we can do this.
2350  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2351    return SDValue();       // BuildUDIV only operates on i32 or i64
2352
2353  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2354  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2355
2356  // Multiply the numerator (operand 0) by the magic value
2357  SDValue Q;
2358  if (isOperationLegal(ISD::MULHU, VT))
2359    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2360                    DAG.getConstant(magics.m, VT));
2361  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2362    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2363                              N->getOperand(0),
2364                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2365  else
2366    return SDValue();       // No mulhu or equvialent
2367  if (Created)
2368    Created->push_back(Q.getNode());
2369
2370  if (magics.a == 0) {
2371    return DAG.getNode(ISD::SRL, VT, Q,
2372                       DAG.getConstant(magics.s, getShiftAmountTy()));
2373  } else {
2374    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2375    if (Created)
2376      Created->push_back(NPQ.getNode());
2377    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2378                      DAG.getConstant(1, getShiftAmountTy()));
2379    if (Created)
2380      Created->push_back(NPQ.getNode());
2381    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2382    if (Created)
2383      Created->push_back(NPQ.getNode());
2384    return DAG.getNode(ISD::SRL, VT, NPQ,
2385                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2386  }
2387}
2388