TargetLowering.cpp revision b2ff885aaed8f9b033b16ca78d645650efc32433
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::SIN_F32] = "sinf";
87  Names[RTLIB::SIN_F64] = "sin";
88  Names[RTLIB::SIN_F80] = "sinl";
89  Names[RTLIB::SIN_PPCF128] = "sinl";
90  Names[RTLIB::COS_F32] = "cosf";
91  Names[RTLIB::COS_F64] = "cos";
92  Names[RTLIB::COS_F80] = "cosl";
93  Names[RTLIB::COS_PPCF128] = "cosl";
94  Names[RTLIB::POW_F32] = "powf";
95  Names[RTLIB::POW_F64] = "pow";
96  Names[RTLIB::POW_F80] = "powl";
97  Names[RTLIB::POW_PPCF128] = "powl";
98  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
99  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
100  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
101  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
102  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
103  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
104  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
105  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
106  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
107  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
108  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
109  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
110  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
111  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
112  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
113  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
114  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
115  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
116  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
117  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
118  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
119  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
120  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
121  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
122  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
123  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
124  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
125  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
126  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
127  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
128  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
129  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
130  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
131  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
132  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
133  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
134  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
135  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
136  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
137  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
138  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
139  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
140  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
141  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
142  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
143  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
144  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
145  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
146  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
147  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
148  Names[RTLIB::OEQ_F32] = "__eqsf2";
149  Names[RTLIB::OEQ_F64] = "__eqdf2";
150  Names[RTLIB::UNE_F32] = "__nesf2";
151  Names[RTLIB::UNE_F64] = "__nedf2";
152  Names[RTLIB::OGE_F32] = "__gesf2";
153  Names[RTLIB::OGE_F64] = "__gedf2";
154  Names[RTLIB::OLT_F32] = "__ltsf2";
155  Names[RTLIB::OLT_F64] = "__ltdf2";
156  Names[RTLIB::OLE_F32] = "__lesf2";
157  Names[RTLIB::OLE_F64] = "__ledf2";
158  Names[RTLIB::OGT_F32] = "__gtsf2";
159  Names[RTLIB::OGT_F64] = "__gtdf2";
160  Names[RTLIB::UO_F32] = "__unordsf2";
161  Names[RTLIB::UO_F64] = "__unorddf2";
162  Names[RTLIB::O_F32] = "__unordsf2";
163  Names[RTLIB::O_F64] = "__unorddf2";
164}
165
166/// getFPEXT - Return the FPEXT_*_* value for the given types, or
167/// UNKNOWN_LIBCALL if there is none.
168RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
169  if (OpVT == MVT::f32) {
170    if (RetVT == MVT::f64)
171      return FPEXT_F32_F64;
172  }
173  return UNKNOWN_LIBCALL;
174}
175
176/// getFPROUND - Return the FPROUND_*_* value for the given types, or
177/// UNKNOWN_LIBCALL if there is none.
178RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
179  if (OpVT == MVT::f64) {
180    if (RetVT == MVT::f32)
181      return FPROUND_F64_F32;
182  }
183  return UNKNOWN_LIBCALL;
184}
185
186/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
187/// UNKNOWN_LIBCALL if there is none.
188RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
189  if (OpVT == MVT::f32) {
190    if (RetVT == MVT::i32)
191      return FPTOSINT_F32_I32;
192    if (RetVT == MVT::i64)
193      return FPTOSINT_F32_I64;
194    if (RetVT == MVT::i128)
195      return FPTOSINT_F32_I128;
196  } else if (OpVT == MVT::f64) {
197    if (RetVT == MVT::i32)
198      return FPTOSINT_F64_I32;
199    if (RetVT == MVT::i64)
200      return FPTOSINT_F64_I64;
201    if (RetVT == MVT::i128)
202      return FPTOSINT_F64_I128;
203  } else if (OpVT == MVT::f80) {
204    if (RetVT == MVT::i32)
205      return FPTOSINT_F80_I32;
206    if (RetVT == MVT::i64)
207      return FPTOSINT_F80_I64;
208    if (RetVT == MVT::i128)
209      return FPTOSINT_F80_I128;
210  } else if (OpVT == MVT::ppcf128) {
211    if (RetVT == MVT::i32)
212      return FPTOSINT_PPCF128_I32;
213    if (RetVT == MVT::i64)
214      return FPTOSINT_PPCF128_I64;
215    if (RetVT == MVT::i128)
216      return FPTOSINT_PPCF128_I128;
217  }
218  return UNKNOWN_LIBCALL;
219}
220
221/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
222/// UNKNOWN_LIBCALL if there is none.
223RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
224  if (OpVT == MVT::f32) {
225    if (RetVT == MVT::i32)
226      return FPTOUINT_F32_I32;
227    if (RetVT == MVT::i64)
228      return FPTOUINT_F32_I64;
229    if (RetVT == MVT::i128)
230      return FPTOUINT_F32_I128;
231  } else if (OpVT == MVT::f64) {
232    if (RetVT == MVT::i32)
233      return FPTOUINT_F64_I32;
234    if (RetVT == MVT::i64)
235      return FPTOUINT_F64_I64;
236    if (RetVT == MVT::i128)
237      return FPTOUINT_F64_I128;
238  } else if (OpVT == MVT::f80) {
239    if (RetVT == MVT::i32)
240      return FPTOUINT_F80_I32;
241    if (RetVT == MVT::i64)
242      return FPTOUINT_F80_I64;
243    if (RetVT == MVT::i128)
244      return FPTOUINT_F80_I128;
245  } else if (OpVT == MVT::ppcf128) {
246    if (RetVT == MVT::i32)
247      return FPTOUINT_PPCF128_I32;
248    if (RetVT == MVT::i64)
249      return FPTOUINT_PPCF128_I64;
250    if (RetVT == MVT::i128)
251      return FPTOUINT_PPCF128_I128;
252  }
253  return UNKNOWN_LIBCALL;
254}
255
256/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
257/// UNKNOWN_LIBCALL if there is none.
258RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
259  if (OpVT == MVT::i32) {
260    if (RetVT == MVT::f32)
261      return SINTTOFP_I32_F32;
262    else if (RetVT == MVT::f64)
263      return SINTTOFP_I32_F64;
264    else if (RetVT == MVT::f80)
265      return SINTTOFP_I32_F80;
266    else if (RetVT == MVT::ppcf128)
267      return SINTTOFP_I32_PPCF128;
268  } else if (OpVT == MVT::i64) {
269    if (RetVT == MVT::f32)
270      return SINTTOFP_I64_F32;
271    else if (RetVT == MVT::f64)
272      return SINTTOFP_I64_F64;
273    else if (RetVT == MVT::f80)
274      return SINTTOFP_I64_F80;
275    else if (RetVT == MVT::ppcf128)
276      return SINTTOFP_I64_PPCF128;
277  } else if (OpVT == MVT::i128) {
278    if (RetVT == MVT::f32)
279      return SINTTOFP_I128_F32;
280    else if (RetVT == MVT::f64)
281      return SINTTOFP_I128_F64;
282    else if (RetVT == MVT::f80)
283      return SINTTOFP_I128_F80;
284    else if (RetVT == MVT::ppcf128)
285      return SINTTOFP_I128_PPCF128;
286  }
287  return UNKNOWN_LIBCALL;
288}
289
290/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
291/// UNKNOWN_LIBCALL if there is none.
292RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
293  if (OpVT == MVT::i32) {
294    if (RetVT == MVT::f32)
295      return UINTTOFP_I32_F32;
296    else if (RetVT == MVT::f64)
297      return UINTTOFP_I32_F64;
298    else if (RetVT == MVT::f80)
299      return UINTTOFP_I32_F80;
300    else if (RetVT == MVT::ppcf128)
301      return UINTTOFP_I32_PPCF128;
302  } else if (OpVT == MVT::i64) {
303    if (RetVT == MVT::f32)
304      return UINTTOFP_I64_F32;
305    else if (RetVT == MVT::f64)
306      return UINTTOFP_I64_F64;
307    else if (RetVT == MVT::f80)
308      return UINTTOFP_I64_F80;
309    else if (RetVT == MVT::ppcf128)
310      return UINTTOFP_I64_PPCF128;
311  } else if (OpVT == MVT::i128) {
312    if (RetVT == MVT::f32)
313      return UINTTOFP_I128_F32;
314    else if (RetVT == MVT::f64)
315      return UINTTOFP_I128_F64;
316    else if (RetVT == MVT::f80)
317      return UINTTOFP_I128_F80;
318    else if (RetVT == MVT::ppcf128)
319      return UINTTOFP_I128_PPCF128;
320  }
321  return UNKNOWN_LIBCALL;
322}
323
324/// InitCmpLibcallCCs - Set default comparison libcall CC.
325///
326static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
327  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
328  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
329  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
330  CCs[RTLIB::UNE_F32] = ISD::SETNE;
331  CCs[RTLIB::UNE_F64] = ISD::SETNE;
332  CCs[RTLIB::OGE_F32] = ISD::SETGE;
333  CCs[RTLIB::OGE_F64] = ISD::SETGE;
334  CCs[RTLIB::OLT_F32] = ISD::SETLT;
335  CCs[RTLIB::OLT_F64] = ISD::SETLT;
336  CCs[RTLIB::OLE_F32] = ISD::SETLE;
337  CCs[RTLIB::OLE_F64] = ISD::SETLE;
338  CCs[RTLIB::OGT_F32] = ISD::SETGT;
339  CCs[RTLIB::OGT_F64] = ISD::SETGT;
340  CCs[RTLIB::UO_F32] = ISD::SETNE;
341  CCs[RTLIB::UO_F64] = ISD::SETNE;
342  CCs[RTLIB::O_F32] = ISD::SETEQ;
343  CCs[RTLIB::O_F64] = ISD::SETEQ;
344}
345
346TargetLowering::TargetLowering(TargetMachine &tm)
347  : TM(tm), TD(TM.getTargetData()) {
348  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
349         "Fixed size array in TargetLowering is not large enough!");
350  // All operations default to being supported.
351  memset(OpActions, 0, sizeof(OpActions));
352  memset(LoadXActions, 0, sizeof(LoadXActions));
353  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
354  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
355  memset(ConvertActions, 0, sizeof(ConvertActions));
356
357  // Set default actions for various operations.
358  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
359    // Default all indexed load / store to expand.
360    for (unsigned IM = (unsigned)ISD::PRE_INC;
361         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
362      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
363      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
364    }
365
366    // These operations default to expand.
367    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
368  }
369
370  // Most targets ignore the @llvm.prefetch intrinsic.
371  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
372
373  // ConstantFP nodes default to expand.  Targets can either change this to
374  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
375  // to optimize expansions for certain constants.
376  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
377  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
378  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
379
380  // Default ISD::TRAP to expand (which turns it into abort).
381  setOperationAction(ISD::TRAP, MVT::Other, Expand);
382
383  IsLittleEndian = TD->isLittleEndian();
384  UsesGlobalOffsetTable = false;
385  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
386  ShiftAmtHandling = Undefined;
387  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
388  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
389  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
390  allowUnalignedMemoryAccesses = false;
391  UseUnderscoreSetJmp = false;
392  UseUnderscoreLongJmp = false;
393  SelectIsExpensive = false;
394  IntDivIsCheap = false;
395  Pow2DivIsCheap = false;
396  StackPointerRegisterToSaveRestore = 0;
397  ExceptionPointerRegister = 0;
398  ExceptionSelectorRegister = 0;
399  SetCCResultContents = UndefinedSetCCResult;
400  SchedPreferenceInfo = SchedulingForLatency;
401  JumpBufSize = 0;
402  JumpBufAlignment = 0;
403  IfCvtBlockSizeLimit = 2;
404  IfCvtDupBlockSizeLimit = 0;
405  PrefLoopAlignment = 0;
406
407  InitLibcallNames(LibcallRoutineNames);
408  InitCmpLibcallCCs(CmpLibcallCCs);
409
410  // Tell Legalize whether the assembler supports DEBUG_LOC.
411  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
412    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
413}
414
415TargetLowering::~TargetLowering() {}
416
417/// computeRegisterProperties - Once all of the register classes are added,
418/// this allows us to compute derived properties we expose.
419void TargetLowering::computeRegisterProperties() {
420  assert(MVT::LAST_VALUETYPE <= 32 &&
421         "Too many value types for ValueTypeActions to hold!");
422
423  // Everything defaults to needing one register.
424  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
425    NumRegistersForVT[i] = 1;
426    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
427  }
428  // ...except isVoid, which doesn't need any registers.
429  NumRegistersForVT[MVT::isVoid] = 0;
430
431  // Find the largest integer register class.
432  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
433  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
434    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
435
436  // Every integer value type larger than this largest register takes twice as
437  // many registers to represent as the previous ValueType.
438  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
439    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
440    if (!EVT.isInteger())
441      break;
442    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
443    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
444    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
445    ValueTypeActions.setTypeAction(EVT, Expand);
446  }
447
448  // Inspect all of the ValueType's smaller than the largest integer
449  // register to see which ones need promotion.
450  unsigned LegalIntReg = LargestIntReg;
451  for (unsigned IntReg = LargestIntReg - 1;
452       IntReg >= (unsigned)MVT::i1; --IntReg) {
453    MVT IVT = (MVT::SimpleValueType)IntReg;
454    if (isTypeLegal(IVT)) {
455      LegalIntReg = IntReg;
456    } else {
457      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
458        (MVT::SimpleValueType)LegalIntReg;
459      ValueTypeActions.setTypeAction(IVT, Promote);
460    }
461  }
462
463  // ppcf128 type is really two f64's.
464  if (!isTypeLegal(MVT::ppcf128)) {
465    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
466    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
467    TransformToType[MVT::ppcf128] = MVT::f64;
468    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
469  }
470
471  // Decide how to handle f64. If the target does not have native f64 support,
472  // expand it to i64 and we will be generating soft float library calls.
473  if (!isTypeLegal(MVT::f64)) {
474    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
475    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
476    TransformToType[MVT::f64] = MVT::i64;
477    ValueTypeActions.setTypeAction(MVT::f64, Expand);
478  }
479
480  // Decide how to handle f32. If the target does not have native support for
481  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
482  if (!isTypeLegal(MVT::f32)) {
483    if (isTypeLegal(MVT::f64)) {
484      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
485      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
486      TransformToType[MVT::f32] = MVT::f64;
487      ValueTypeActions.setTypeAction(MVT::f32, Promote);
488    } else {
489      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
490      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
491      TransformToType[MVT::f32] = MVT::i32;
492      ValueTypeActions.setTypeAction(MVT::f32, Expand);
493    }
494  }
495
496  // Loop over all of the vector value types to see which need transformations.
497  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
498       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
499    MVT VT = (MVT::SimpleValueType)i;
500    if (!isTypeLegal(VT)) {
501      MVT IntermediateVT, RegisterVT;
502      unsigned NumIntermediates;
503      NumRegistersForVT[i] =
504        getVectorTypeBreakdown(VT,
505                               IntermediateVT, NumIntermediates,
506                               RegisterVT);
507      RegisterTypeForVT[i] = RegisterVT;
508      TransformToType[i] = MVT::Other; // this isn't actually used
509      ValueTypeActions.setTypeAction(VT, Expand);
510    }
511  }
512}
513
514const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
515  return NULL;
516}
517
518
519MVT TargetLowering::getSetCCResultType(const SDOperand &) const {
520  return getValueType(TD->getIntPtrType());
521}
522
523
524/// getVectorTypeBreakdown - Vector types are broken down into some number of
525/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
526/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
527/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
528///
529/// This method returns the number of registers needed, and the VT for each
530/// register.  It also returns the VT and quantity of the intermediate values
531/// before they are promoted/expanded.
532///
533unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
534                                                MVT &IntermediateVT,
535                                                unsigned &NumIntermediates,
536                                      MVT &RegisterVT) const {
537  // Figure out the right, legal destination reg to copy into.
538  unsigned NumElts = VT.getVectorNumElements();
539  MVT EltTy = VT.getVectorElementType();
540
541  unsigned NumVectorRegs = 1;
542
543  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
544  // could break down into LHS/RHS like LegalizeDAG does.
545  if (!isPowerOf2_32(NumElts)) {
546    NumVectorRegs = NumElts;
547    NumElts = 1;
548  }
549
550  // Divide the input until we get to a supported size.  This will always
551  // end with a scalar if the target doesn't support vectors.
552  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
553    NumElts >>= 1;
554    NumVectorRegs <<= 1;
555  }
556
557  NumIntermediates = NumVectorRegs;
558
559  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
560  if (!isTypeLegal(NewVT))
561    NewVT = EltTy;
562  IntermediateVT = NewVT;
563
564  MVT DestVT = getTypeToTransformTo(NewVT);
565  RegisterVT = DestVT;
566  if (DestVT.bitsLT(NewVT)) {
567    // Value is expanded, e.g. i64 -> i16.
568    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
569  } else {
570    // Otherwise, promotion or legal types use the same number of registers as
571    // the vector decimated to the appropriate level.
572    return NumVectorRegs;
573  }
574
575  return 1;
576}
577
578/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
579/// function arguments in the caller parameter area.  This is the actual
580/// alignment, not its logarithm.
581unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
582  return TD->getCallFrameTypeAlignment(Ty);
583}
584
585SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
586                                                   SelectionDAG &DAG) const {
587  if (usesGlobalOffsetTable())
588    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
589  return Table;
590}
591
592//===----------------------------------------------------------------------===//
593//  Optimization Methods
594//===----------------------------------------------------------------------===//
595
596/// ShrinkDemandedConstant - Check to see if the specified operand of the
597/// specified instruction is a constant integer.  If so, check to see if there
598/// are any bits set in the constant that are not demanded.  If so, shrink the
599/// constant and return true.
600bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
601                                                        const APInt &Demanded) {
602  // FIXME: ISD::SELECT, ISD::SELECT_CC
603  switch(Op.getOpcode()) {
604  default: break;
605  case ISD::AND:
606  case ISD::OR:
607  case ISD::XOR:
608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
609      if (C->getAPIntValue().intersects(~Demanded)) {
610        MVT VT = Op.getValueType();
611        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
612                                    DAG.getConstant(Demanded &
613                                                      C->getAPIntValue(),
614                                                    VT));
615        return CombineTo(Op, New);
616      }
617    break;
618  }
619  return false;
620}
621
622/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
623/// DemandedMask bits of the result of Op are ever used downstream.  If we can
624/// use this information to simplify Op, create a new simplified DAG node and
625/// return true, returning the original and new nodes in Old and New. Otherwise,
626/// analyze the expression and return a mask of KnownOne and KnownZero bits for
627/// the expression (used to simplify the caller).  The KnownZero/One bits may
628/// only be accurate for those bits in the DemandedMask.
629bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
630                                          const APInt &DemandedMask,
631                                          APInt &KnownZero,
632                                          APInt &KnownOne,
633                                          TargetLoweringOpt &TLO,
634                                          unsigned Depth) const {
635  unsigned BitWidth = DemandedMask.getBitWidth();
636  assert(Op.getValueSizeInBits() == BitWidth &&
637         "Mask size mismatches value type size!");
638  APInt NewMask = DemandedMask;
639
640  // Don't know anything.
641  KnownZero = KnownOne = APInt(BitWidth, 0);
642
643  // Other users may use these bits.
644  if (!Op.Val->hasOneUse()) {
645    if (Depth != 0) {
646      // If not at the root, Just compute the KnownZero/KnownOne bits to
647      // simplify things downstream.
648      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
649      return false;
650    }
651    // If this is the root being simplified, allow it to have multiple uses,
652    // just set the NewMask to all bits.
653    NewMask = APInt::getAllOnesValue(BitWidth);
654  } else if (DemandedMask == 0) {
655    // Not demanding any bits from Op.
656    if (Op.getOpcode() != ISD::UNDEF)
657      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
658    return false;
659  } else if (Depth == 6) {        // Limit search depth.
660    return false;
661  }
662
663  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
664  switch (Op.getOpcode()) {
665  case ISD::Constant:
666    // We know all of the bits for a constant!
667    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
668    KnownZero = ~KnownOne & NewMask;
669    return false;   // Don't fall through, will infinitely loop.
670  case ISD::AND:
671    // If the RHS is a constant, check to see if the LHS would be zero without
672    // using the bits from the RHS.  Below, we use knowledge about the RHS to
673    // simplify the LHS, here we're using information from the LHS to simplify
674    // the RHS.
675    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
676      APInt LHSZero, LHSOne;
677      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
678                                LHSZero, LHSOne, Depth+1);
679      // If the LHS already has zeros where RHSC does, this and is dead.
680      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
681        return TLO.CombineTo(Op, Op.getOperand(0));
682      // If any of the set bits in the RHS are known zero on the LHS, shrink
683      // the constant.
684      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
685        return true;
686    }
687
688    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
689                             KnownOne, TLO, Depth+1))
690      return true;
691    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
692    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
693                             KnownZero2, KnownOne2, TLO, Depth+1))
694      return true;
695    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
696
697    // If all of the demanded bits are known one on one side, return the other.
698    // These bits cannot contribute to the result of the 'and'.
699    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
700      return TLO.CombineTo(Op, Op.getOperand(0));
701    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
702      return TLO.CombineTo(Op, Op.getOperand(1));
703    // If all of the demanded bits in the inputs are known zeros, return zero.
704    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
705      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
706    // If the RHS is a constant, see if we can simplify it.
707    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
708      return true;
709
710    // Output known-1 bits are only known if set in both the LHS & RHS.
711    KnownOne &= KnownOne2;
712    // Output known-0 are known to be clear if zero in either the LHS | RHS.
713    KnownZero |= KnownZero2;
714    break;
715  case ISD::OR:
716    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
717                             KnownOne, TLO, Depth+1))
718      return true;
719    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
721                             KnownZero2, KnownOne2, TLO, Depth+1))
722      return true;
723    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
724
725    // If all of the demanded bits are known zero on one side, return the other.
726    // These bits cannot contribute to the result of the 'or'.
727    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
728      return TLO.CombineTo(Op, Op.getOperand(0));
729    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
730      return TLO.CombineTo(Op, Op.getOperand(1));
731    // If all of the potentially set bits on one side are known to be set on
732    // the other side, just use the 'other' side.
733    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
734      return TLO.CombineTo(Op, Op.getOperand(0));
735    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
736      return TLO.CombineTo(Op, Op.getOperand(1));
737    // If the RHS is a constant, see if we can simplify it.
738    if (TLO.ShrinkDemandedConstant(Op, NewMask))
739      return true;
740
741    // Output known-0 bits are only known if clear in both the LHS & RHS.
742    KnownZero &= KnownZero2;
743    // Output known-1 are known to be set if set in either the LHS | RHS.
744    KnownOne |= KnownOne2;
745    break;
746  case ISD::XOR:
747    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
748                             KnownOne, TLO, Depth+1))
749      return true;
750    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
751    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
752                             KnownOne2, TLO, Depth+1))
753      return true;
754    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
755
756    // If all of the demanded bits are known zero on one side, return the other.
757    // These bits cannot contribute to the result of the 'xor'.
758    if ((KnownZero & NewMask) == NewMask)
759      return TLO.CombineTo(Op, Op.getOperand(0));
760    if ((KnownZero2 & NewMask) == NewMask)
761      return TLO.CombineTo(Op, Op.getOperand(1));
762
763    // If all of the unknown bits are known to be zero on one side or the other
764    // (but not both) turn this into an *inclusive* or.
765    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
766    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
767      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
768                                               Op.getOperand(0),
769                                               Op.getOperand(1)));
770
771    // Output known-0 bits are known if clear or set in both the LHS & RHS.
772    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
773    // Output known-1 are known to be set if set in only one of the LHS, RHS.
774    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
775
776    // If all of the demanded bits on one side are known, and all of the set
777    // bits on that side are also known to be set on the other side, turn this
778    // into an AND, as we know the bits will be cleared.
779    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
780    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
781      if ((KnownOne & KnownOne2) == KnownOne) {
782        MVT VT = Op.getValueType();
783        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
784        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
785                                                 ANDC));
786      }
787    }
788
789    // If the RHS is a constant, see if we can simplify it.
790    // for XOR, we prefer to force bits to 1 if they will make a -1.
791    // if we can't force bits, try to shrink constant
792    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
793      APInt Expanded = C->getAPIntValue() | (~NewMask);
794      // if we can expand it to have all bits set, do it
795      if (Expanded.isAllOnesValue()) {
796        if (Expanded != C->getAPIntValue()) {
797          MVT VT = Op.getValueType();
798          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
799                                          TLO.DAG.getConstant(Expanded, VT));
800          return TLO.CombineTo(Op, New);
801        }
802        // if it already has all the bits set, nothing to change
803        // but don't shrink either!
804      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
805        return true;
806      }
807    }
808
809    KnownZero = KnownZeroOut;
810    KnownOne  = KnownOneOut;
811    break;
812  case ISD::SELECT:
813    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
814                             KnownOne, TLO, Depth+1))
815      return true;
816    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
817                             KnownOne2, TLO, Depth+1))
818      return true;
819    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
820    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
821
822    // If the operands are constants, see if we can simplify them.
823    if (TLO.ShrinkDemandedConstant(Op, NewMask))
824      return true;
825
826    // Only known if known in both the LHS and RHS.
827    KnownOne &= KnownOne2;
828    KnownZero &= KnownZero2;
829    break;
830  case ISD::SELECT_CC:
831    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
832                             KnownOne, TLO, Depth+1))
833      return true;
834    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
835                             KnownOne2, TLO, Depth+1))
836      return true;
837    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
838    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
839
840    // If the operands are constants, see if we can simplify them.
841    if (TLO.ShrinkDemandedConstant(Op, NewMask))
842      return true;
843
844    // Only known if known in both the LHS and RHS.
845    KnownOne &= KnownOne2;
846    KnownZero &= KnownZero2;
847    break;
848  case ISD::SHL:
849    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
850      unsigned ShAmt = SA->getValue();
851      SDOperand InOp = Op.getOperand(0);
852
853      // If the shift count is an invalid immediate, don't do anything.
854      if (ShAmt >= BitWidth)
855        break;
856
857      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
858      // single shift.  We can do this if the bottom bits (which are shifted
859      // out) are never demanded.
860      if (InOp.getOpcode() == ISD::SRL &&
861          isa<ConstantSDNode>(InOp.getOperand(1))) {
862        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
863          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
864          unsigned Opc = ISD::SHL;
865          int Diff = ShAmt-C1;
866          if (Diff < 0) {
867            Diff = -Diff;
868            Opc = ISD::SRL;
869          }
870
871          SDOperand NewSA =
872            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
873          MVT VT = Op.getValueType();
874          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
875                                                   InOp.getOperand(0), NewSA));
876        }
877      }
878
879      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
880                               KnownZero, KnownOne, TLO, Depth+1))
881        return true;
882      KnownZero <<= SA->getValue();
883      KnownOne  <<= SA->getValue();
884      // low bits known zero.
885      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
886    }
887    break;
888  case ISD::SRL:
889    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
890      MVT VT = Op.getValueType();
891      unsigned ShAmt = SA->getValue();
892      unsigned VTSize = VT.getSizeInBits();
893      SDOperand InOp = Op.getOperand(0);
894
895      // If the shift count is an invalid immediate, don't do anything.
896      if (ShAmt >= BitWidth)
897        break;
898
899      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
900      // single shift.  We can do this if the top bits (which are shifted out)
901      // are never demanded.
902      if (InOp.getOpcode() == ISD::SHL &&
903          isa<ConstantSDNode>(InOp.getOperand(1))) {
904        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
905          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
906          unsigned Opc = ISD::SRL;
907          int Diff = ShAmt-C1;
908          if (Diff < 0) {
909            Diff = -Diff;
910            Opc = ISD::SHL;
911          }
912
913          SDOperand NewSA =
914            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
915          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
916                                                   InOp.getOperand(0), NewSA));
917        }
918      }
919
920      // Compute the new bits that are at the top now.
921      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
922                               KnownZero, KnownOne, TLO, Depth+1))
923        return true;
924      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
925      KnownZero = KnownZero.lshr(ShAmt);
926      KnownOne  = KnownOne.lshr(ShAmt);
927
928      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
929      KnownZero |= HighBits;  // High bits known zero.
930    }
931    break;
932  case ISD::SRA:
933    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
934      MVT VT = Op.getValueType();
935      unsigned ShAmt = SA->getValue();
936
937      // If the shift count is an invalid immediate, don't do anything.
938      if (ShAmt >= BitWidth)
939        break;
940
941      APInt InDemandedMask = (NewMask << ShAmt);
942
943      // If any of the demanded bits are produced by the sign extension, we also
944      // demand the input sign bit.
945      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
946      if (HighBits.intersects(NewMask))
947        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
948
949      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
950                               KnownZero, KnownOne, TLO, Depth+1))
951        return true;
952      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
953      KnownZero = KnownZero.lshr(ShAmt);
954      KnownOne  = KnownOne.lshr(ShAmt);
955
956      // Handle the sign bit, adjusted to where it is now in the mask.
957      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
958
959      // If the input sign bit is known to be zero, or if none of the top bits
960      // are demanded, turn this into an unsigned shift right.
961      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
962        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
963                                                 Op.getOperand(1)));
964      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
965        KnownOne |= HighBits;
966      }
967    }
968    break;
969  case ISD::SIGN_EXTEND_INREG: {
970    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
971
972    // Sign extension.  Compute the demanded bits in the result that are not
973    // present in the input.
974    APInt NewBits = APInt::getHighBitsSet(BitWidth,
975                                          BitWidth - EVT.getSizeInBits()) &
976                    NewMask;
977
978    // If none of the extended bits are demanded, eliminate the sextinreg.
979    if (NewBits == 0)
980      return TLO.CombineTo(Op, Op.getOperand(0));
981
982    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
983    InSignBit.zext(BitWidth);
984    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
985                                                   EVT.getSizeInBits()) &
986                              NewMask;
987
988    // Since the sign extended bits are demanded, we know that the sign
989    // bit is demanded.
990    InputDemandedBits |= InSignBit;
991
992    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
993                             KnownZero, KnownOne, TLO, Depth+1))
994      return true;
995    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
996
997    // If the sign bit of the input is known set or clear, then we know the
998    // top bits of the result.
999
1000    // If the input sign bit is known zero, convert this into a zero extension.
1001    if (KnownZero.intersects(InSignBit))
1002      return TLO.CombineTo(Op,
1003                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1004
1005    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1006      KnownOne |= NewBits;
1007      KnownZero &= ~NewBits;
1008    } else {                       // Input sign bit unknown
1009      KnownZero &= ~NewBits;
1010      KnownOne &= ~NewBits;
1011    }
1012    break;
1013  }
1014  case ISD::ZERO_EXTEND: {
1015    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1016    APInt InMask = NewMask;
1017    InMask.trunc(OperandBitWidth);
1018
1019    // If none of the top bits are demanded, convert this into an any_extend.
1020    APInt NewBits =
1021      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1022    if (!NewBits.intersects(NewMask))
1023      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1024                                               Op.getValueType(),
1025                                               Op.getOperand(0)));
1026
1027    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1028                             KnownZero, KnownOne, TLO, Depth+1))
1029      return true;
1030    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1031    KnownZero.zext(BitWidth);
1032    KnownOne.zext(BitWidth);
1033    KnownZero |= NewBits;
1034    break;
1035  }
1036  case ISD::SIGN_EXTEND: {
1037    MVT InVT = Op.getOperand(0).getValueType();
1038    unsigned InBits = InVT.getSizeInBits();
1039    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1040    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1041    APInt NewBits   = ~InMask & NewMask;
1042
1043    // If none of the top bits are demanded, convert this into an any_extend.
1044    if (NewBits == 0)
1045      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1046                                           Op.getOperand(0)));
1047
1048    // Since some of the sign extended bits are demanded, we know that the sign
1049    // bit is demanded.
1050    APInt InDemandedBits = InMask & NewMask;
1051    InDemandedBits |= InSignBit;
1052    InDemandedBits.trunc(InBits);
1053
1054    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1055                             KnownOne, TLO, Depth+1))
1056      return true;
1057    KnownZero.zext(BitWidth);
1058    KnownOne.zext(BitWidth);
1059
1060    // If the sign bit is known zero, convert this to a zero extend.
1061    if (KnownZero.intersects(InSignBit))
1062      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1063                                               Op.getValueType(),
1064                                               Op.getOperand(0)));
1065
1066    // If the sign bit is known one, the top bits match.
1067    if (KnownOne.intersects(InSignBit)) {
1068      KnownOne  |= NewBits;
1069      KnownZero &= ~NewBits;
1070    } else {   // Otherwise, top bits aren't known.
1071      KnownOne  &= ~NewBits;
1072      KnownZero &= ~NewBits;
1073    }
1074    break;
1075  }
1076  case ISD::ANY_EXTEND: {
1077    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1078    APInt InMask = NewMask;
1079    InMask.trunc(OperandBitWidth);
1080    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1081                             KnownZero, KnownOne, TLO, Depth+1))
1082      return true;
1083    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1084    KnownZero.zext(BitWidth);
1085    KnownOne.zext(BitWidth);
1086    break;
1087  }
1088  case ISD::TRUNCATE: {
1089    // Simplify the input, using demanded bit information, and compute the known
1090    // zero/one bits live out.
1091    APInt TruncMask = NewMask;
1092    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1093    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1094                             KnownZero, KnownOne, TLO, Depth+1))
1095      return true;
1096    KnownZero.trunc(BitWidth);
1097    KnownOne.trunc(BitWidth);
1098
1099    // If the input is only used by this truncate, see if we can shrink it based
1100    // on the known demanded bits.
1101    if (Op.getOperand(0).Val->hasOneUse()) {
1102      SDOperand In = Op.getOperand(0);
1103      unsigned InBitWidth = In.getValueSizeInBits();
1104      switch (In.getOpcode()) {
1105      default: break;
1106      case ISD::SRL:
1107        // Shrink SRL by a constant if none of the high bits shifted in are
1108        // demanded.
1109        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1110          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1111                                                 InBitWidth - BitWidth);
1112          HighBits = HighBits.lshr(ShAmt->getValue());
1113          HighBits.trunc(BitWidth);
1114
1115          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
1116            // None of the shifted in bits are needed.  Add a truncate of the
1117            // shift input, then shift it.
1118            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1119                                                 Op.getValueType(),
1120                                                 In.getOperand(0));
1121            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1122                                                   NewTrunc, In.getOperand(1)));
1123          }
1124        }
1125        break;
1126      }
1127    }
1128
1129    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1130    break;
1131  }
1132  case ISD::AssertZext: {
1133    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1134    APInt InMask = APInt::getLowBitsSet(BitWidth,
1135                                        VT.getSizeInBits());
1136    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1137                             KnownZero, KnownOne, TLO, Depth+1))
1138      return true;
1139    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140    KnownZero |= ~InMask & NewMask;
1141    break;
1142  }
1143  case ISD::BIT_CONVERT:
1144#if 0
1145    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1146    // is demanded, turn this into a FGETSIGN.
1147    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1148        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1149        !MVT::isVector(Op.getOperand(0).getValueType())) {
1150      // Only do this xform if FGETSIGN is valid or if before legalize.
1151      if (!TLO.AfterLegalize ||
1152          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1153        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1154        // place.  We expect the SHL to be eliminated by other optimizations.
1155        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1156                                         Op.getOperand(0));
1157        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1158        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1159        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1160                                                 Sign, ShAmt));
1161      }
1162    }
1163#endif
1164    break;
1165  default:
1166    // Just use ComputeMaskedBits to compute output bits.
1167    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1168    break;
1169  }
1170
1171  // If we know the value of all of the demanded bits, return this as a
1172  // constant.
1173  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1174    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1175
1176  return false;
1177}
1178
1179/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1180/// in Mask are known to be either zero or one and return them in the
1181/// KnownZero/KnownOne bitsets.
1182void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1183                                                    const APInt &Mask,
1184                                                    APInt &KnownZero,
1185                                                    APInt &KnownOne,
1186                                                    const SelectionDAG &DAG,
1187                                                    unsigned Depth) const {
1188  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1189          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1190          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1191          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1192         "Should use MaskedValueIsZero if you don't know whether Op"
1193         " is a target node!");
1194  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1195}
1196
1197/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1198/// targets that want to expose additional information about sign bits to the
1199/// DAG Combiner.
1200unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1201                                                         unsigned Depth) const {
1202  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1203          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1204          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1205          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1206         "Should use ComputeNumSignBits if you don't know whether Op"
1207         " is a target node!");
1208  return 1;
1209}
1210
1211
1212/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1213/// and cc. If it is unable to simplify it, return a null SDOperand.
1214SDOperand
1215TargetLowering::SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1,
1216                              ISD::CondCode Cond, bool foldBooleans,
1217                              DAGCombinerInfo &DCI) const {
1218  SelectionDAG &DAG = DCI.DAG;
1219
1220  // These setcc operations always fold.
1221  switch (Cond) {
1222  default: break;
1223  case ISD::SETFALSE:
1224  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1225  case ISD::SETTRUE:
1226  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1227  }
1228
1229  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1230    const APInt &C1 = N1C->getAPIntValue();
1231    if (isa<ConstantSDNode>(N0.Val)) {
1232      return DAG.FoldSetCC(VT, N0, N1, Cond);
1233    } else {
1234      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1235      // equality comparison, then we're just comparing whether X itself is
1236      // zero.
1237      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1238          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1239          N0.getOperand(1).getOpcode() == ISD::Constant) {
1240        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1241        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1242            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1243          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1244            // (srl (ctlz x), 5) == 0  -> X != 0
1245            // (srl (ctlz x), 5) != 1  -> X != 0
1246            Cond = ISD::SETNE;
1247          } else {
1248            // (srl (ctlz x), 5) != 0  -> X == 0
1249            // (srl (ctlz x), 5) == 1  -> X == 0
1250            Cond = ISD::SETEQ;
1251          }
1252          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1253          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1254                              Zero, Cond);
1255        }
1256      }
1257
1258      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1259      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1260        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1261
1262        // If the comparison constant has bits in the upper part, the
1263        // zero-extended value could never match.
1264        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1265                                                C1.getBitWidth() - InSize))) {
1266          switch (Cond) {
1267          case ISD::SETUGT:
1268          case ISD::SETUGE:
1269          case ISD::SETEQ: return DAG.getConstant(0, VT);
1270          case ISD::SETULT:
1271          case ISD::SETULE:
1272          case ISD::SETNE: return DAG.getConstant(1, VT);
1273          case ISD::SETGT:
1274          case ISD::SETGE:
1275            // True if the sign bit of C1 is set.
1276            return DAG.getConstant(C1.isNegative(), VT);
1277          case ISD::SETLT:
1278          case ISD::SETLE:
1279            // True if the sign bit of C1 isn't set.
1280            return DAG.getConstant(C1.isNonNegative(), VT);
1281          default:
1282            break;
1283          }
1284        }
1285
1286        // Otherwise, we can perform the comparison with the low bits.
1287        switch (Cond) {
1288        case ISD::SETEQ:
1289        case ISD::SETNE:
1290        case ISD::SETUGT:
1291        case ISD::SETUGE:
1292        case ISD::SETULT:
1293        case ISD::SETULE:
1294          return DAG.getSetCC(VT, N0.getOperand(0),
1295                          DAG.getConstant(APInt(C1).trunc(InSize),
1296                                          N0.getOperand(0).getValueType()),
1297                          Cond);
1298        default:
1299          break;   // todo, be more careful with signed comparisons
1300        }
1301      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1302                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1303        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1304        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1305        MVT ExtDstTy = N0.getValueType();
1306        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1307
1308        // If the extended part has any inconsistent bits, it cannot ever
1309        // compare equal.  In other words, they have to be all ones or all
1310        // zeros.
1311        APInt ExtBits =
1312          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1313        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1314          return DAG.getConstant(Cond == ISD::SETNE, VT);
1315
1316        SDOperand ZextOp;
1317        MVT Op0Ty = N0.getOperand(0).getValueType();
1318        if (Op0Ty == ExtSrcTy) {
1319          ZextOp = N0.getOperand(0);
1320        } else {
1321          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1322          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1323                               DAG.getConstant(Imm, Op0Ty));
1324        }
1325        if (!DCI.isCalledByLegalizer())
1326          DCI.AddToWorklist(ZextOp.Val);
1327        // Otherwise, make this a use of a zext.
1328        return DAG.getSetCC(VT, ZextOp,
1329                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1330                                                               ExtDstTyBits,
1331                                                               ExtSrcTyBits),
1332                                            ExtDstTy),
1333                            Cond);
1334      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1335                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1336
1337        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1338        if (N0.getOpcode() == ISD::SETCC) {
1339          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1340          if (TrueWhenTrue)
1341            return N0;
1342
1343          // Invert the condition.
1344          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1345          CC = ISD::getSetCCInverse(CC,
1346                                   N0.getOperand(0).getValueType().isInteger());
1347          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1348        }
1349
1350        if ((N0.getOpcode() == ISD::XOR ||
1351             (N0.getOpcode() == ISD::AND &&
1352              N0.getOperand(0).getOpcode() == ISD::XOR &&
1353              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1354            isa<ConstantSDNode>(N0.getOperand(1)) &&
1355            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1356          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1357          // can only do this if the top bits are known zero.
1358          unsigned BitWidth = N0.getValueSizeInBits();
1359          if (DAG.MaskedValueIsZero(N0,
1360                                    APInt::getHighBitsSet(BitWidth,
1361                                                          BitWidth-1))) {
1362            // Okay, get the un-inverted input value.
1363            SDOperand Val;
1364            if (N0.getOpcode() == ISD::XOR)
1365              Val = N0.getOperand(0);
1366            else {
1367              assert(N0.getOpcode() == ISD::AND &&
1368                     N0.getOperand(0).getOpcode() == ISD::XOR);
1369              // ((X^1)&1)^1 -> X & 1
1370              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1371                                N0.getOperand(0).getOperand(0),
1372                                N0.getOperand(1));
1373            }
1374            return DAG.getSetCC(VT, Val, N1,
1375                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1376          }
1377        }
1378      }
1379
1380      APInt MinVal, MaxVal;
1381      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1382      if (ISD::isSignedIntSetCC(Cond)) {
1383        MinVal = APInt::getSignedMinValue(OperandBitSize);
1384        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1385      } else {
1386        MinVal = APInt::getMinValue(OperandBitSize);
1387        MaxVal = APInt::getMaxValue(OperandBitSize);
1388      }
1389
1390      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1391      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1392        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1393        // X >= C0 --> X > (C0-1)
1394        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1395                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1396      }
1397
1398      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1399        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1400        // X <= C0 --> X < (C0+1)
1401        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1402                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1403      }
1404
1405      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1406        return DAG.getConstant(0, VT);      // X < MIN --> false
1407      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1408        return DAG.getConstant(1, VT);      // X >= MIN --> true
1409      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1410        return DAG.getConstant(0, VT);      // X > MAX --> false
1411      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1412        return DAG.getConstant(1, VT);      // X <= MAX --> true
1413
1414      // Canonicalize setgt X, Min --> setne X, Min
1415      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1416        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1417      // Canonicalize setlt X, Max --> setne X, Max
1418      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1419        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1420
1421      // If we have setult X, 1, turn it into seteq X, 0
1422      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1423        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1424                        ISD::SETEQ);
1425      // If we have setugt X, Max-1, turn it into seteq X, Max
1426      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1427        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1428                        ISD::SETEQ);
1429
1430      // If we have "setcc X, C0", check to see if we can shrink the immediate
1431      // by changing cc.
1432
1433      // SETUGT X, SINTMAX  -> SETLT X, 0
1434      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1435          C1 == (~0ULL >> (65-OperandBitSize)))
1436        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1437                            ISD::SETLT);
1438
1439      // FIXME: Implement the rest of these.
1440
1441      // Fold bit comparisons when we can.
1442      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1443          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1444        if (ConstantSDNode *AndRHS =
1445                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1446          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1447            // Perform the xform if the AND RHS is a single bit.
1448            if (isPowerOf2_64(AndRHS->getValue())) {
1449              return DAG.getNode(ISD::SRL, VT, N0,
1450                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1451                                             getShiftAmountTy()));
1452            }
1453          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1454            // (X & 8) == 8  -->  (X & 8) >> 3
1455            // Perform the xform if C1 is a single bit.
1456            if (C1.isPowerOf2()) {
1457              return DAG.getNode(ISD::SRL, VT, N0,
1458                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1459            }
1460          }
1461        }
1462    }
1463  } else if (isa<ConstantSDNode>(N0.Val)) {
1464      // Ensure that the constant occurs on the RHS.
1465    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1466  }
1467
1468  if (isa<ConstantFPSDNode>(N0.Val)) {
1469    // Constant fold or commute setcc.
1470    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1471    if (O.Val) return O;
1472  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1473    // If the RHS of an FP comparison is a constant, simplify it away in
1474    // some cases.
1475    if (CFP->getValueAPF().isNaN()) {
1476      // If an operand is known to be a nan, we can fold it.
1477      switch (ISD::getUnorderedFlavor(Cond)) {
1478      default: assert(0 && "Unknown flavor!");
1479      case 0:  // Known false.
1480        return DAG.getConstant(0, VT);
1481      case 1:  // Known true.
1482        return DAG.getConstant(1, VT);
1483      case 2:  // Undefined.
1484        return DAG.getNode(ISD::UNDEF, VT);
1485      }
1486    }
1487
1488    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1489    // constant if knowing that the operand is non-nan is enough.  We prefer to
1490    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1491    // materialize 0.0.
1492    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1493      return DAG.getSetCC(VT, N0, N0, Cond);
1494  }
1495
1496  if (N0 == N1) {
1497    // We can always fold X == X for integer setcc's.
1498    if (N0.getValueType().isInteger())
1499      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1500    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1501    if (UOF == 2)   // FP operators that are undefined on NaNs.
1502      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1503    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1504      return DAG.getConstant(UOF, VT);
1505    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1506    // if it is not already.
1507    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1508    if (NewCond != Cond)
1509      return DAG.getSetCC(VT, N0, N1, NewCond);
1510  }
1511
1512  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1513      N0.getValueType().isInteger()) {
1514    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1515        N0.getOpcode() == ISD::XOR) {
1516      // Simplify (X+Y) == (X+Z) -->  Y == Z
1517      if (N0.getOpcode() == N1.getOpcode()) {
1518        if (N0.getOperand(0) == N1.getOperand(0))
1519          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1520        if (N0.getOperand(1) == N1.getOperand(1))
1521          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1522        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1523          // If X op Y == Y op X, try other combinations.
1524          if (N0.getOperand(0) == N1.getOperand(1))
1525            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1526          if (N0.getOperand(1) == N1.getOperand(0))
1527            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1528        }
1529      }
1530
1531      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1532        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1533          // Turn (X+C1) == C2 --> X == C2-C1
1534          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1535            return DAG.getSetCC(VT, N0.getOperand(0),
1536                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1537                                N0.getValueType()), Cond);
1538          }
1539
1540          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1541          if (N0.getOpcode() == ISD::XOR)
1542            // If we know that all of the inverted bits are zero, don't bother
1543            // performing the inversion.
1544            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1545              return
1546                DAG.getSetCC(VT, N0.getOperand(0),
1547                             DAG.getConstant(LHSR->getAPIntValue() ^
1548                                               RHSC->getAPIntValue(),
1549                                             N0.getValueType()),
1550                             Cond);
1551        }
1552
1553        // Turn (C1-X) == C2 --> X == C1-C2
1554        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1555          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1556            return
1557              DAG.getSetCC(VT, N0.getOperand(1),
1558                           DAG.getConstant(SUBC->getAPIntValue() -
1559                                             RHSC->getAPIntValue(),
1560                                           N0.getValueType()),
1561                           Cond);
1562          }
1563        }
1564      }
1565
1566      // Simplify (X+Z) == X -->  Z == 0
1567      if (N0.getOperand(0) == N1)
1568        return DAG.getSetCC(VT, N0.getOperand(1),
1569                        DAG.getConstant(0, N0.getValueType()), Cond);
1570      if (N0.getOperand(1) == N1) {
1571        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1572          return DAG.getSetCC(VT, N0.getOperand(0),
1573                          DAG.getConstant(0, N0.getValueType()), Cond);
1574        else if (N0.Val->hasOneUse()) {
1575          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1576          // (Z-X) == X  --> Z == X<<1
1577          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1578                                     N1,
1579                                     DAG.getConstant(1, getShiftAmountTy()));
1580          if (!DCI.isCalledByLegalizer())
1581            DCI.AddToWorklist(SH.Val);
1582          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1583        }
1584      }
1585    }
1586
1587    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1588        N1.getOpcode() == ISD::XOR) {
1589      // Simplify  X == (X+Z) -->  Z == 0
1590      if (N1.getOperand(0) == N0) {
1591        return DAG.getSetCC(VT, N1.getOperand(1),
1592                        DAG.getConstant(0, N1.getValueType()), Cond);
1593      } else if (N1.getOperand(1) == N0) {
1594        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1595          return DAG.getSetCC(VT, N1.getOperand(0),
1596                          DAG.getConstant(0, N1.getValueType()), Cond);
1597        } else if (N1.Val->hasOneUse()) {
1598          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1599          // X == (Z-X)  --> X<<1 == Z
1600          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1601                                     DAG.getConstant(1, getShiftAmountTy()));
1602          if (!DCI.isCalledByLegalizer())
1603            DCI.AddToWorklist(SH.Val);
1604          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1605        }
1606      }
1607    }
1608  }
1609
1610  // Fold away ALL boolean setcc's.
1611  SDOperand Temp;
1612  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1613    switch (Cond) {
1614    default: assert(0 && "Unknown integer setcc!");
1615    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1616      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1617      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1618      if (!DCI.isCalledByLegalizer())
1619        DCI.AddToWorklist(Temp.Val);
1620      break;
1621    case ISD::SETNE:  // X != Y   -->  (X^Y)
1622      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1623      break;
1624    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1625    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1626      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1627      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1628      if (!DCI.isCalledByLegalizer())
1629        DCI.AddToWorklist(Temp.Val);
1630      break;
1631    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1632    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1633      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1634      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1635      if (!DCI.isCalledByLegalizer())
1636        DCI.AddToWorklist(Temp.Val);
1637      break;
1638    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1639    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1640      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1641      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1642      if (!DCI.isCalledByLegalizer())
1643        DCI.AddToWorklist(Temp.Val);
1644      break;
1645    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1646    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1647      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1648      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1649      break;
1650    }
1651    if (VT != MVT::i1) {
1652      if (!DCI.isCalledByLegalizer())
1653        DCI.AddToWorklist(N0.Val);
1654      // FIXME: If running after legalize, we probably can't do this.
1655      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1656    }
1657    return N0;
1658  }
1659
1660  // Could not fold it.
1661  return SDOperand();
1662}
1663
1664/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1665/// node is a GlobalAddress + offset.
1666bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1667                                    int64_t &Offset) const {
1668  if (isa<GlobalAddressSDNode>(N)) {
1669    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1670    GA = GASD->getGlobal();
1671    Offset += GASD->getOffset();
1672    return true;
1673  }
1674
1675  if (N->getOpcode() == ISD::ADD) {
1676    SDOperand N1 = N->getOperand(0);
1677    SDOperand N2 = N->getOperand(1);
1678    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1679      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1680      if (V) {
1681        Offset += V->getSignExtended();
1682        return true;
1683      }
1684    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1685      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1686      if (V) {
1687        Offset += V->getSignExtended();
1688        return true;
1689      }
1690    }
1691  }
1692  return false;
1693}
1694
1695
1696/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1697/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1698/// location that the 'Base' load is loading from.
1699bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1700                                       unsigned Bytes, int Dist,
1701                                       const MachineFrameInfo *MFI) const {
1702  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1703    return false;
1704  MVT VT = LD->getValueType(0);
1705  if (VT.getSizeInBits() / 8 != Bytes)
1706    return false;
1707
1708  SDOperand Loc = LD->getOperand(1);
1709  SDOperand BaseLoc = Base->getOperand(1);
1710  if (Loc.getOpcode() == ISD::FrameIndex) {
1711    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1712      return false;
1713    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1714    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1715    int FS  = MFI->getObjectSize(FI);
1716    int BFS = MFI->getObjectSize(BFI);
1717    if (FS != BFS || FS != (int)Bytes) return false;
1718    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1719  }
1720
1721  GlobalValue *GV1 = NULL;
1722  GlobalValue *GV2 = NULL;
1723  int64_t Offset1 = 0;
1724  int64_t Offset2 = 0;
1725  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1726  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1727  if (isGA1 && isGA2 && GV1 == GV2)
1728    return Offset1 == (Offset2 + Dist*Bytes);
1729  return false;
1730}
1731
1732
1733SDOperand TargetLowering::
1734PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1735  // Default implementation: no optimization.
1736  return SDOperand();
1737}
1738
1739//===----------------------------------------------------------------------===//
1740//  Inline Assembler Implementation Methods
1741//===----------------------------------------------------------------------===//
1742
1743
1744TargetLowering::ConstraintType
1745TargetLowering::getConstraintType(const std::string &Constraint) const {
1746  // FIXME: lots more standard ones to handle.
1747  if (Constraint.size() == 1) {
1748    switch (Constraint[0]) {
1749    default: break;
1750    case 'r': return C_RegisterClass;
1751    case 'm':    // memory
1752    case 'o':    // offsetable
1753    case 'V':    // not offsetable
1754      return C_Memory;
1755    case 'i':    // Simple Integer or Relocatable Constant
1756    case 'n':    // Simple Integer
1757    case 's':    // Relocatable Constant
1758    case 'X':    // Allow ANY value.
1759    case 'I':    // Target registers.
1760    case 'J':
1761    case 'K':
1762    case 'L':
1763    case 'M':
1764    case 'N':
1765    case 'O':
1766    case 'P':
1767      return C_Other;
1768    }
1769  }
1770
1771  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1772      Constraint[Constraint.size()-1] == '}')
1773    return C_Register;
1774  return C_Unknown;
1775}
1776
1777/// LowerXConstraint - try to replace an X constraint, which matches anything,
1778/// with another that has more specific requirements based on the type of the
1779/// corresponding operand.
1780const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1781  if (ConstraintVT.isInteger())
1782    return "r";
1783  if (ConstraintVT.isFloatingPoint())
1784    return "f";      // works for many targets
1785  return 0;
1786}
1787
1788/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1789/// vector.  If it is invalid, don't add anything to Ops.
1790void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1791                                                  char ConstraintLetter,
1792                                                  std::vector<SDOperand> &Ops,
1793                                                  SelectionDAG &DAG) const {
1794  switch (ConstraintLetter) {
1795  default: break;
1796  case 'X':     // Allows any operand; labels (basic block) use this.
1797    if (Op.getOpcode() == ISD::BasicBlock) {
1798      Ops.push_back(Op);
1799      return;
1800    }
1801    // fall through
1802  case 'i':    // Simple Integer or Relocatable Constant
1803  case 'n':    // Simple Integer
1804  case 's': {  // Relocatable Constant
1805    // These operands are interested in values of the form (GV+C), where C may
1806    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1807    // is possible and fine if either GV or C are missing.
1808    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1809    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1810
1811    // If we have "(add GV, C)", pull out GV/C
1812    if (Op.getOpcode() == ISD::ADD) {
1813      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1814      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1815      if (C == 0 || GA == 0) {
1816        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1817        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1818      }
1819      if (C == 0 || GA == 0)
1820        C = 0, GA = 0;
1821    }
1822
1823    // If we find a valid operand, map to the TargetXXX version so that the
1824    // value itself doesn't get selected.
1825    if (GA) {   // Either &GV   or   &GV+C
1826      if (ConstraintLetter != 'n') {
1827        int64_t Offs = GA->getOffset();
1828        if (C) Offs += C->getValue();
1829        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1830                                                 Op.getValueType(), Offs));
1831        return;
1832      }
1833    }
1834    if (C) {   // just C, no GV.
1835      // Simple constants are not allowed for 's'.
1836      if (ConstraintLetter != 's') {
1837        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1838        return;
1839      }
1840    }
1841    break;
1842  }
1843  }
1844}
1845
1846std::vector<unsigned> TargetLowering::
1847getRegClassForInlineAsmConstraint(const std::string &Constraint,
1848                                  MVT VT) const {
1849  return std::vector<unsigned>();
1850}
1851
1852
1853std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1854getRegForInlineAsmConstraint(const std::string &Constraint,
1855                             MVT VT) const {
1856  if (Constraint[0] != '{')
1857    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1858  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1859
1860  // Remove the braces from around the name.
1861  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1862
1863  // Figure out which register class contains this reg.
1864  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1865  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1866       E = RI->regclass_end(); RCI != E; ++RCI) {
1867    const TargetRegisterClass *RC = *RCI;
1868
1869    // If none of the the value types for this register class are valid, we
1870    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1871    bool isLegal = false;
1872    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1873         I != E; ++I) {
1874      if (isTypeLegal(*I)) {
1875        isLegal = true;
1876        break;
1877      }
1878    }
1879
1880    if (!isLegal) continue;
1881
1882    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1883         I != E; ++I) {
1884      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1885        return std::make_pair(*I, RC);
1886    }
1887  }
1888
1889  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1890}
1891
1892//===----------------------------------------------------------------------===//
1893// Constraint Selection.
1894
1895/// getConstraintGenerality - Return an integer indicating how general CT
1896/// is.
1897static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1898  switch (CT) {
1899  default: assert(0 && "Unknown constraint type!");
1900  case TargetLowering::C_Other:
1901  case TargetLowering::C_Unknown:
1902    return 0;
1903  case TargetLowering::C_Register:
1904    return 1;
1905  case TargetLowering::C_RegisterClass:
1906    return 2;
1907  case TargetLowering::C_Memory:
1908    return 3;
1909  }
1910}
1911
1912/// ChooseConstraint - If there are multiple different constraints that we
1913/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1914/// This is somewhat tricky: constraints fall into four classes:
1915///    Other         -> immediates and magic values
1916///    Register      -> one specific register
1917///    RegisterClass -> a group of regs
1918///    Memory        -> memory
1919/// Ideally, we would pick the most specific constraint possible: if we have
1920/// something that fits into a register, we would pick it.  The problem here
1921/// is that if we have something that could either be in a register or in
1922/// memory that use of the register could cause selection of *other*
1923/// operands to fail: they might only succeed if we pick memory.  Because of
1924/// this the heuristic we use is:
1925///
1926///  1) If there is an 'other' constraint, and if the operand is valid for
1927///     that constraint, use it.  This makes us take advantage of 'i'
1928///     constraints when available.
1929///  2) Otherwise, pick the most general constraint present.  This prefers
1930///     'm' over 'r', for example.
1931///
1932static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1933                             const TargetLowering &TLI,
1934                             SDOperand Op, SelectionDAG *DAG) {
1935  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1936  unsigned BestIdx = 0;
1937  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1938  int BestGenerality = -1;
1939
1940  // Loop over the options, keeping track of the most general one.
1941  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1942    TargetLowering::ConstraintType CType =
1943      TLI.getConstraintType(OpInfo.Codes[i]);
1944
1945    // If this is an 'other' constraint, see if the operand is valid for it.
1946    // For example, on X86 we might have an 'rI' constraint.  If the operand
1947    // is an integer in the range [0..31] we want to use I (saving a load
1948    // of a register), otherwise we must use 'r'.
1949    if (CType == TargetLowering::C_Other && Op.Val) {
1950      assert(OpInfo.Codes[i].size() == 1 &&
1951             "Unhandled multi-letter 'other' constraint");
1952      std::vector<SDOperand> ResultOps;
1953      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1954                                       ResultOps, *DAG);
1955      if (!ResultOps.empty()) {
1956        BestType = CType;
1957        BestIdx = i;
1958        break;
1959      }
1960    }
1961
1962    // This constraint letter is more general than the previous one, use it.
1963    int Generality = getConstraintGenerality(CType);
1964    if (Generality > BestGenerality) {
1965      BestType = CType;
1966      BestIdx = i;
1967      BestGenerality = Generality;
1968    }
1969  }
1970
1971  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1972  OpInfo.ConstraintType = BestType;
1973}
1974
1975/// ComputeConstraintToUse - Determines the constraint code and constraint
1976/// type to use for the specific AsmOperandInfo, setting
1977/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1978void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1979                                            SDOperand Op,
1980                                            SelectionDAG *DAG) const {
1981  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1982
1983  // Single-letter constraints ('r') are very common.
1984  if (OpInfo.Codes.size() == 1) {
1985    OpInfo.ConstraintCode = OpInfo.Codes[0];
1986    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1987  } else {
1988    ChooseConstraint(OpInfo, *this, Op, DAG);
1989  }
1990
1991  // 'X' matches anything.
1992  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1993    // Labels and constants are handled elsewhere ('X' is the only thing
1994    // that matches labels).
1995    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1996        isa<ConstantInt>(OpInfo.CallOperandVal))
1997      return;
1998
1999    // Otherwise, try to resolve it to something we know about by looking at
2000    // the actual operand type.
2001    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2002      OpInfo.ConstraintCode = Repl;
2003      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2004    }
2005  }
2006}
2007
2008//===----------------------------------------------------------------------===//
2009//  Loop Strength Reduction hooks
2010//===----------------------------------------------------------------------===//
2011
2012/// isLegalAddressingMode - Return true if the addressing mode represented
2013/// by AM is legal for this target, for a load/store of the specified type.
2014bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2015                                           const Type *Ty) const {
2016  // The default implementation of this implements a conservative RISCy, r+r and
2017  // r+i addr mode.
2018
2019  // Allows a sign-extended 16-bit immediate field.
2020  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2021    return false;
2022
2023  // No global is ever allowed as a base.
2024  if (AM.BaseGV)
2025    return false;
2026
2027  // Only support r+r,
2028  switch (AM.Scale) {
2029  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2030    break;
2031  case 1:
2032    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2033      return false;
2034    // Otherwise we have r+r or r+i.
2035    break;
2036  case 2:
2037    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2038      return false;
2039    // Allow 2*r as r+r.
2040    break;
2041  }
2042
2043  return true;
2044}
2045
2046// Magic for divide replacement
2047
2048struct ms {
2049  int64_t m;  // magic number
2050  int64_t s;  // shift amount
2051};
2052
2053struct mu {
2054  uint64_t m; // magic number
2055  int64_t a;  // add indicator
2056  int64_t s;  // shift amount
2057};
2058
2059/// magic - calculate the magic numbers required to codegen an integer sdiv as
2060/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2061/// or -1.
2062static ms magic32(int32_t d) {
2063  int32_t p;
2064  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2065  const uint32_t two31 = 0x80000000U;
2066  struct ms mag;
2067
2068  ad = abs(d);
2069  t = two31 + ((uint32_t)d >> 31);
2070  anc = t - 1 - t%ad;   // absolute value of nc
2071  p = 31;               // initialize p
2072  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2073  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2074  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2075  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2076  do {
2077    p = p + 1;
2078    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2079    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2080    if (r1 >= anc) {  // must be unsigned comparison
2081      q1 = q1 + 1;
2082      r1 = r1 - anc;
2083    }
2084    q2 = 2*q2;        // update q2 = 2p/abs(d)
2085    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2086    if (r2 >= ad) {   // must be unsigned comparison
2087      q2 = q2 + 1;
2088      r2 = r2 - ad;
2089    }
2090    delta = ad - r2;
2091  } while (q1 < delta || (q1 == delta && r1 == 0));
2092
2093  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2094  if (d < 0) mag.m = -mag.m; // resulting magic number
2095  mag.s = p - 32;            // resulting shift
2096  return mag;
2097}
2098
2099/// magicu - calculate the magic numbers required to codegen an integer udiv as
2100/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2101static mu magicu32(uint32_t d) {
2102  int32_t p;
2103  uint32_t nc, delta, q1, r1, q2, r2;
2104  struct mu magu;
2105  magu.a = 0;               // initialize "add" indicator
2106  nc = - 1 - (-d)%d;
2107  p = 31;                   // initialize p
2108  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2109  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2110  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2111  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2112  do {
2113    p = p + 1;
2114    if (r1 >= nc - r1 ) {
2115      q1 = 2*q1 + 1;  // update q1
2116      r1 = 2*r1 - nc; // update r1
2117    }
2118    else {
2119      q1 = 2*q1; // update q1
2120      r1 = 2*r1; // update r1
2121    }
2122    if (r2 + 1 >= d - r2) {
2123      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2124      q2 = 2*q2 + 1;     // update q2
2125      r2 = 2*r2 + 1 - d; // update r2
2126    }
2127    else {
2128      if (q2 >= 0x80000000) magu.a = 1;
2129      q2 = 2*q2;     // update q2
2130      r2 = 2*r2 + 1; // update r2
2131    }
2132    delta = d - 1 - r2;
2133  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2134  magu.m = q2 + 1; // resulting magic number
2135  magu.s = p - 32;  // resulting shift
2136  return magu;
2137}
2138
2139/// magic - calculate the magic numbers required to codegen an integer sdiv as
2140/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2141/// or -1.
2142static ms magic64(int64_t d) {
2143  int64_t p;
2144  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2145  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2146  struct ms mag;
2147
2148  ad = d >= 0 ? d : -d;
2149  t = two63 + ((uint64_t)d >> 63);
2150  anc = t - 1 - t%ad;   // absolute value of nc
2151  p = 63;               // initialize p
2152  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2153  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2154  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2155  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2156  do {
2157    p = p + 1;
2158    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2159    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2160    if (r1 >= anc) {  // must be unsigned comparison
2161      q1 = q1 + 1;
2162      r1 = r1 - anc;
2163    }
2164    q2 = 2*q2;        // update q2 = 2p/abs(d)
2165    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2166    if (r2 >= ad) {   // must be unsigned comparison
2167      q2 = q2 + 1;
2168      r2 = r2 - ad;
2169    }
2170    delta = ad - r2;
2171  } while (q1 < delta || (q1 == delta && r1 == 0));
2172
2173  mag.m = q2 + 1;
2174  if (d < 0) mag.m = -mag.m; // resulting magic number
2175  mag.s = p - 64;            // resulting shift
2176  return mag;
2177}
2178
2179/// magicu - calculate the magic numbers required to codegen an integer udiv as
2180/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2181static mu magicu64(uint64_t d)
2182{
2183  int64_t p;
2184  uint64_t nc, delta, q1, r1, q2, r2;
2185  struct mu magu;
2186  magu.a = 0;               // initialize "add" indicator
2187  nc = - 1 - (-d)%d;
2188  p = 63;                   // initialize p
2189  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2190  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2191  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2192  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2193  do {
2194    p = p + 1;
2195    if (r1 >= nc - r1 ) {
2196      q1 = 2*q1 + 1;  // update q1
2197      r1 = 2*r1 - nc; // update r1
2198    }
2199    else {
2200      q1 = 2*q1; // update q1
2201      r1 = 2*r1; // update r1
2202    }
2203    if (r2 + 1 >= d - r2) {
2204      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2205      q2 = 2*q2 + 1;     // update q2
2206      r2 = 2*r2 + 1 - d; // update r2
2207    }
2208    else {
2209      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2210      q2 = 2*q2;     // update q2
2211      r2 = 2*r2 + 1; // update r2
2212    }
2213    delta = d - 1 - r2;
2214  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2215  magu.m = q2 + 1; // resulting magic number
2216  magu.s = p - 64;  // resulting shift
2217  return magu;
2218}
2219
2220/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2221/// return a DAG expression to select that will generate the same value by
2222/// multiplying by a magic number.  See:
2223/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2224SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2225                                    std::vector<SDNode*>* Created) const {
2226  MVT VT = N->getValueType(0);
2227
2228  // Check to see if we can do this.
2229  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2230    return SDOperand();       // BuildSDIV only operates on i32 or i64
2231
2232  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2233  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2234
2235  // Multiply the numerator (operand 0) by the magic value
2236  SDOperand Q;
2237  if (isOperationLegal(ISD::MULHS, VT))
2238    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2239                    DAG.getConstant(magics.m, VT));
2240  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2241    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2242                              N->getOperand(0),
2243                              DAG.getConstant(magics.m, VT)).Val, 1);
2244  else
2245    return SDOperand();       // No mulhs or equvialent
2246  // If d > 0 and m < 0, add the numerator
2247  if (d > 0 && magics.m < 0) {
2248    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2249    if (Created)
2250      Created->push_back(Q.Val);
2251  }
2252  // If d < 0 and m > 0, subtract the numerator.
2253  if (d < 0 && magics.m > 0) {
2254    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2255    if (Created)
2256      Created->push_back(Q.Val);
2257  }
2258  // Shift right algebraic if shift value is nonzero
2259  if (magics.s > 0) {
2260    Q = DAG.getNode(ISD::SRA, VT, Q,
2261                    DAG.getConstant(magics.s, getShiftAmountTy()));
2262    if (Created)
2263      Created->push_back(Q.Val);
2264  }
2265  // Extract the sign bit and add it to the quotient
2266  SDOperand T =
2267    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2268                                                 getShiftAmountTy()));
2269  if (Created)
2270    Created->push_back(T.Val);
2271  return DAG.getNode(ISD::ADD, VT, Q, T);
2272}
2273
2274/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2275/// return a DAG expression to select that will generate the same value by
2276/// multiplying by a magic number.  See:
2277/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2278SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2279                                    std::vector<SDNode*>* Created) const {
2280  MVT VT = N->getValueType(0);
2281
2282  // Check to see if we can do this.
2283  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2284    return SDOperand();       // BuildUDIV only operates on i32 or i64
2285
2286  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2287  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2288
2289  // Multiply the numerator (operand 0) by the magic value
2290  SDOperand Q;
2291  if (isOperationLegal(ISD::MULHU, VT))
2292    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2293                    DAG.getConstant(magics.m, VT));
2294  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2295    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2296                              N->getOperand(0),
2297                              DAG.getConstant(magics.m, VT)).Val, 1);
2298  else
2299    return SDOperand();       // No mulhu or equvialent
2300  if (Created)
2301    Created->push_back(Q.Val);
2302
2303  if (magics.a == 0) {
2304    return DAG.getNode(ISD::SRL, VT, Q,
2305                       DAG.getConstant(magics.s, getShiftAmountTy()));
2306  } else {
2307    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2308    if (Created)
2309      Created->push_back(NPQ.Val);
2310    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2311                      DAG.getConstant(1, getShiftAmountTy()));
2312    if (Created)
2313      Created->push_back(NPQ.Val);
2314    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2315    if (Created)
2316      Created->push_back(NPQ.Val);
2317    return DAG.getNode(ISD::SRL, VT, NPQ,
2318                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2319  }
2320}
2321