TargetLowering.cpp revision b6aacae9413adde66d9686cd9e561eb836b3ee34
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include <cctype>
32using namespace llvm;
33
34namespace llvm {
35TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36  bool isLocal = GV->hasLocalLinkage();
37  bool isDeclaration = GV->isDeclaration();
38  // FIXME: what should we do for protected and internal visibility?
39  // For variables, is internal different from hidden?
40  bool isHidden = GV->hasHiddenVisibility();
41
42  if (reloc == Reloc::PIC_) {
43    if (isLocal || isHidden)
44      return TLSModel::LocalDynamic;
45    else
46      return TLSModel::GeneralDynamic;
47  } else {
48    if (!isDeclaration || isHidden)
49      return TLSModel::LocalExec;
50    else
51      return TLSModel::InitialExec;
52  }
53}
54}
55
56/// InitLibcallNames - Set default libcall names.
57///
58static void InitLibcallNames(const char **Names) {
59  Names[RTLIB::SHL_I16] = "__ashlhi3";
60  Names[RTLIB::SHL_I32] = "__ashlsi3";
61  Names[RTLIB::SHL_I64] = "__ashldi3";
62  Names[RTLIB::SHL_I128] = "__ashlti3";
63  Names[RTLIB::SRL_I16] = "__lshrhi3";
64  Names[RTLIB::SRL_I32] = "__lshrsi3";
65  Names[RTLIB::SRL_I64] = "__lshrdi3";
66  Names[RTLIB::SRL_I128] = "__lshrti3";
67  Names[RTLIB::SRA_I16] = "__ashrhi3";
68  Names[RTLIB::SRA_I32] = "__ashrsi3";
69  Names[RTLIB::SRA_I64] = "__ashrdi3";
70  Names[RTLIB::SRA_I128] = "__ashrti3";
71  Names[RTLIB::MUL_I8] = "__mulqi3";
72  Names[RTLIB::MUL_I16] = "__mulhi3";
73  Names[RTLIB::MUL_I32] = "__mulsi3";
74  Names[RTLIB::MUL_I64] = "__muldi3";
75  Names[RTLIB::MUL_I128] = "__multi3";
76  Names[RTLIB::SDIV_I8] = "__divqi3";
77  Names[RTLIB::SDIV_I16] = "__divhi3";
78  Names[RTLIB::SDIV_I32] = "__divsi3";
79  Names[RTLIB::SDIV_I64] = "__divdi3";
80  Names[RTLIB::SDIV_I128] = "__divti3";
81  Names[RTLIB::UDIV_I8] = "__udivqi3";
82  Names[RTLIB::UDIV_I16] = "__udivhi3";
83  Names[RTLIB::UDIV_I32] = "__udivsi3";
84  Names[RTLIB::UDIV_I64] = "__udivdi3";
85  Names[RTLIB::UDIV_I128] = "__udivti3";
86  Names[RTLIB::SREM_I8] = "__modqi3";
87  Names[RTLIB::SREM_I16] = "__modhi3";
88  Names[RTLIB::SREM_I32] = "__modsi3";
89  Names[RTLIB::SREM_I64] = "__moddi3";
90  Names[RTLIB::SREM_I128] = "__modti3";
91  Names[RTLIB::UREM_I8] = "__umodqi3";
92  Names[RTLIB::UREM_I16] = "__umodhi3";
93  Names[RTLIB::UREM_I32] = "__umodsi3";
94  Names[RTLIB::UREM_I64] = "__umoddi3";
95  Names[RTLIB::UREM_I128] = "__umodti3";
96
97  // These are generally not available.
98  Names[RTLIB::SDIVREM_I8] = 0;
99  Names[RTLIB::SDIVREM_I16] = 0;
100  Names[RTLIB::SDIVREM_I32] = 0;
101  Names[RTLIB::SDIVREM_I64] = 0;
102  Names[RTLIB::SDIVREM_I128] = 0;
103  Names[RTLIB::UDIVREM_I8] = 0;
104  Names[RTLIB::UDIVREM_I16] = 0;
105  Names[RTLIB::UDIVREM_I32] = 0;
106  Names[RTLIB::UDIVREM_I64] = 0;
107  Names[RTLIB::UDIVREM_I128] = 0;
108
109  Names[RTLIB::NEG_I32] = "__negsi2";
110  Names[RTLIB::NEG_I64] = "__negdi2";
111  Names[RTLIB::ADD_F32] = "__addsf3";
112  Names[RTLIB::ADD_F64] = "__adddf3";
113  Names[RTLIB::ADD_F80] = "__addxf3";
114  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
115  Names[RTLIB::SUB_F32] = "__subsf3";
116  Names[RTLIB::SUB_F64] = "__subdf3";
117  Names[RTLIB::SUB_F80] = "__subxf3";
118  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
119  Names[RTLIB::MUL_F32] = "__mulsf3";
120  Names[RTLIB::MUL_F64] = "__muldf3";
121  Names[RTLIB::MUL_F80] = "__mulxf3";
122  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
123  Names[RTLIB::DIV_F32] = "__divsf3";
124  Names[RTLIB::DIV_F64] = "__divdf3";
125  Names[RTLIB::DIV_F80] = "__divxf3";
126  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
127  Names[RTLIB::REM_F32] = "fmodf";
128  Names[RTLIB::REM_F64] = "fmod";
129  Names[RTLIB::REM_F80] = "fmodl";
130  Names[RTLIB::REM_PPCF128] = "fmodl";
131  Names[RTLIB::POWI_F32] = "__powisf2";
132  Names[RTLIB::POWI_F64] = "__powidf2";
133  Names[RTLIB::POWI_F80] = "__powixf2";
134  Names[RTLIB::POWI_PPCF128] = "__powitf2";
135  Names[RTLIB::SQRT_F32] = "sqrtf";
136  Names[RTLIB::SQRT_F64] = "sqrt";
137  Names[RTLIB::SQRT_F80] = "sqrtl";
138  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139  Names[RTLIB::LOG_F32] = "logf";
140  Names[RTLIB::LOG_F64] = "log";
141  Names[RTLIB::LOG_F80] = "logl";
142  Names[RTLIB::LOG_PPCF128] = "logl";
143  Names[RTLIB::LOG2_F32] = "log2f";
144  Names[RTLIB::LOG2_F64] = "log2";
145  Names[RTLIB::LOG2_F80] = "log2l";
146  Names[RTLIB::LOG2_PPCF128] = "log2l";
147  Names[RTLIB::LOG10_F32] = "log10f";
148  Names[RTLIB::LOG10_F64] = "log10";
149  Names[RTLIB::LOG10_F80] = "log10l";
150  Names[RTLIB::LOG10_PPCF128] = "log10l";
151  Names[RTLIB::EXP_F32] = "expf";
152  Names[RTLIB::EXP_F64] = "exp";
153  Names[RTLIB::EXP_F80] = "expl";
154  Names[RTLIB::EXP_PPCF128] = "expl";
155  Names[RTLIB::EXP2_F32] = "exp2f";
156  Names[RTLIB::EXP2_F64] = "exp2";
157  Names[RTLIB::EXP2_F80] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_PPCF128] = "sinl";
163  Names[RTLIB::COS_F32] = "cosf";
164  Names[RTLIB::COS_F64] = "cos";
165  Names[RTLIB::COS_F80] = "cosl";
166  Names[RTLIB::COS_PPCF128] = "cosl";
167  Names[RTLIB::POW_F32] = "powf";
168  Names[RTLIB::POW_F64] = "pow";
169  Names[RTLIB::POW_F80] = "powl";
170  Names[RTLIB::POW_PPCF128] = "powl";
171  Names[RTLIB::CEIL_F32] = "ceilf";
172  Names[RTLIB::CEIL_F64] = "ceil";
173  Names[RTLIB::CEIL_F80] = "ceill";
174  Names[RTLIB::CEIL_PPCF128] = "ceill";
175  Names[RTLIB::TRUNC_F32] = "truncf";
176  Names[RTLIB::TRUNC_F64] = "trunc";
177  Names[RTLIB::TRUNC_F80] = "truncl";
178  Names[RTLIB::TRUNC_PPCF128] = "truncl";
179  Names[RTLIB::RINT_F32] = "rintf";
180  Names[RTLIB::RINT_F64] = "rint";
181  Names[RTLIB::RINT_F80] = "rintl";
182  Names[RTLIB::RINT_PPCF128] = "rintl";
183  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
184  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
185  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
186  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
187  Names[RTLIB::FLOOR_F32] = "floorf";
188  Names[RTLIB::FLOOR_F64] = "floor";
189  Names[RTLIB::FLOOR_F80] = "floorl";
190  Names[RTLIB::FLOOR_PPCF128] = "floorl";
191  Names[RTLIB::COPYSIGN_F32] = "copysignf";
192  Names[RTLIB::COPYSIGN_F64] = "copysign";
193  Names[RTLIB::COPYSIGN_F80] = "copysignl";
194  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
195  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
196  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
197  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
198  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
199  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
200  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
201  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
202  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
203  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
204  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
205  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
206  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
207  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
208  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
209  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
210  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
211  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
212  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
213  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
214  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
215  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
216  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
217  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
218  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
219  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
220  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
221  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
222  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
223  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
224  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
225  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
226  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
227  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
228  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
229  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
230  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
231  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
232  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
233  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
234  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
235  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
236  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
237  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
238  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
239  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
240  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
241  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
242  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
243  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
244  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
245  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
246  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
247  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
248  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
249  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
250  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
251  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
252  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
253  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
254  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
255  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
256  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
257  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
258  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
259  Names[RTLIB::OEQ_F32] = "__eqsf2";
260  Names[RTLIB::OEQ_F64] = "__eqdf2";
261  Names[RTLIB::UNE_F32] = "__nesf2";
262  Names[RTLIB::UNE_F64] = "__nedf2";
263  Names[RTLIB::OGE_F32] = "__gesf2";
264  Names[RTLIB::OGE_F64] = "__gedf2";
265  Names[RTLIB::OLT_F32] = "__ltsf2";
266  Names[RTLIB::OLT_F64] = "__ltdf2";
267  Names[RTLIB::OLE_F32] = "__lesf2";
268  Names[RTLIB::OLE_F64] = "__ledf2";
269  Names[RTLIB::OGT_F32] = "__gtsf2";
270  Names[RTLIB::OGT_F64] = "__gtdf2";
271  Names[RTLIB::UO_F32] = "__unordsf2";
272  Names[RTLIB::UO_F64] = "__unorddf2";
273  Names[RTLIB::O_F32] = "__unordsf2";
274  Names[RTLIB::O_F64] = "__unorddf2";
275  Names[RTLIB::MEMCPY] = "memcpy";
276  Names[RTLIB::MEMMOVE] = "memmove";
277  Names[RTLIB::MEMSET] = "memset";
278  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
279  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
280  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
281  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
282  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
283  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
284  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
285  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
286  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
287  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
288  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
289  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
290  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
291  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
292  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
293  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
294  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
295  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
296  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
297  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
298  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
299  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
300  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
301  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
302  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
303  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
304  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
305  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
306  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
307  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
308  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
309  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
310  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
311}
312
313/// InitLibcallCallingConvs - Set default libcall CallingConvs.
314///
315static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
316  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
317    CCs[i] = CallingConv::C;
318  }
319}
320
321/// getFPEXT - Return the FPEXT_*_* value for the given types, or
322/// UNKNOWN_LIBCALL if there is none.
323RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
324  if (OpVT == MVT::f32) {
325    if (RetVT == MVT::f64)
326      return FPEXT_F32_F64;
327  }
328
329  return UNKNOWN_LIBCALL;
330}
331
332/// getFPROUND - Return the FPROUND_*_* value for the given types, or
333/// UNKNOWN_LIBCALL if there is none.
334RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
335  if (RetVT == MVT::f32) {
336    if (OpVT == MVT::f64)
337      return FPROUND_F64_F32;
338    if (OpVT == MVT::f80)
339      return FPROUND_F80_F32;
340    if (OpVT == MVT::ppcf128)
341      return FPROUND_PPCF128_F32;
342  } else if (RetVT == MVT::f64) {
343    if (OpVT == MVT::f80)
344      return FPROUND_F80_F64;
345    if (OpVT == MVT::ppcf128)
346      return FPROUND_PPCF128_F64;
347  }
348
349  return UNKNOWN_LIBCALL;
350}
351
352/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
353/// UNKNOWN_LIBCALL if there is none.
354RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
355  if (OpVT == MVT::f32) {
356    if (RetVT == MVT::i8)
357      return FPTOSINT_F32_I8;
358    if (RetVT == MVT::i16)
359      return FPTOSINT_F32_I16;
360    if (RetVT == MVT::i32)
361      return FPTOSINT_F32_I32;
362    if (RetVT == MVT::i64)
363      return FPTOSINT_F32_I64;
364    if (RetVT == MVT::i128)
365      return FPTOSINT_F32_I128;
366  } else if (OpVT == MVT::f64) {
367    if (RetVT == MVT::i8)
368      return FPTOSINT_F64_I8;
369    if (RetVT == MVT::i16)
370      return FPTOSINT_F64_I16;
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F64_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F64_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F64_I128;
377  } else if (OpVT == MVT::f80) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_F80_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_F80_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_F80_I128;
384  } else if (OpVT == MVT::ppcf128) {
385    if (RetVT == MVT::i32)
386      return FPTOSINT_PPCF128_I32;
387    if (RetVT == MVT::i64)
388      return FPTOSINT_PPCF128_I64;
389    if (RetVT == MVT::i128)
390      return FPTOSINT_PPCF128_I128;
391  }
392  return UNKNOWN_LIBCALL;
393}
394
395/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
396/// UNKNOWN_LIBCALL if there is none.
397RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
398  if (OpVT == MVT::f32) {
399    if (RetVT == MVT::i8)
400      return FPTOUINT_F32_I8;
401    if (RetVT == MVT::i16)
402      return FPTOUINT_F32_I16;
403    if (RetVT == MVT::i32)
404      return FPTOUINT_F32_I32;
405    if (RetVT == MVT::i64)
406      return FPTOUINT_F32_I64;
407    if (RetVT == MVT::i128)
408      return FPTOUINT_F32_I128;
409  } else if (OpVT == MVT::f64) {
410    if (RetVT == MVT::i8)
411      return FPTOUINT_F64_I8;
412    if (RetVT == MVT::i16)
413      return FPTOUINT_F64_I16;
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F64_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F64_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F64_I128;
420  } else if (OpVT == MVT::f80) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_F80_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_F80_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_F80_I128;
427  } else if (OpVT == MVT::ppcf128) {
428    if (RetVT == MVT::i32)
429      return FPTOUINT_PPCF128_I32;
430    if (RetVT == MVT::i64)
431      return FPTOUINT_PPCF128_I64;
432    if (RetVT == MVT::i128)
433      return FPTOUINT_PPCF128_I128;
434  }
435  return UNKNOWN_LIBCALL;
436}
437
438/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
439/// UNKNOWN_LIBCALL if there is none.
440RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
441  if (OpVT == MVT::i32) {
442    if (RetVT == MVT::f32)
443      return SINTTOFP_I32_F32;
444    else if (RetVT == MVT::f64)
445      return SINTTOFP_I32_F64;
446    else if (RetVT == MVT::f80)
447      return SINTTOFP_I32_F80;
448    else if (RetVT == MVT::ppcf128)
449      return SINTTOFP_I32_PPCF128;
450  } else if (OpVT == MVT::i64) {
451    if (RetVT == MVT::f32)
452      return SINTTOFP_I64_F32;
453    else if (RetVT == MVT::f64)
454      return SINTTOFP_I64_F64;
455    else if (RetVT == MVT::f80)
456      return SINTTOFP_I64_F80;
457    else if (RetVT == MVT::ppcf128)
458      return SINTTOFP_I64_PPCF128;
459  } else if (OpVT == MVT::i128) {
460    if (RetVT == MVT::f32)
461      return SINTTOFP_I128_F32;
462    else if (RetVT == MVT::f64)
463      return SINTTOFP_I128_F64;
464    else if (RetVT == MVT::f80)
465      return SINTTOFP_I128_F80;
466    else if (RetVT == MVT::ppcf128)
467      return SINTTOFP_I128_PPCF128;
468  }
469  return UNKNOWN_LIBCALL;
470}
471
472/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
473/// UNKNOWN_LIBCALL if there is none.
474RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
475  if (OpVT == MVT::i32) {
476    if (RetVT == MVT::f32)
477      return UINTTOFP_I32_F32;
478    else if (RetVT == MVT::f64)
479      return UINTTOFP_I32_F64;
480    else if (RetVT == MVT::f80)
481      return UINTTOFP_I32_F80;
482    else if (RetVT == MVT::ppcf128)
483      return UINTTOFP_I32_PPCF128;
484  } else if (OpVT == MVT::i64) {
485    if (RetVT == MVT::f32)
486      return UINTTOFP_I64_F32;
487    else if (RetVT == MVT::f64)
488      return UINTTOFP_I64_F64;
489    else if (RetVT == MVT::f80)
490      return UINTTOFP_I64_F80;
491    else if (RetVT == MVT::ppcf128)
492      return UINTTOFP_I64_PPCF128;
493  } else if (OpVT == MVT::i128) {
494    if (RetVT == MVT::f32)
495      return UINTTOFP_I128_F32;
496    else if (RetVT == MVT::f64)
497      return UINTTOFP_I128_F64;
498    else if (RetVT == MVT::f80)
499      return UINTTOFP_I128_F80;
500    else if (RetVT == MVT::ppcf128)
501      return UINTTOFP_I128_PPCF128;
502  }
503  return UNKNOWN_LIBCALL;
504}
505
506/// InitCmpLibcallCCs - Set default comparison libcall CC.
507///
508static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
509  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
510  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
511  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
512  CCs[RTLIB::UNE_F32] = ISD::SETNE;
513  CCs[RTLIB::UNE_F64] = ISD::SETNE;
514  CCs[RTLIB::OGE_F32] = ISD::SETGE;
515  CCs[RTLIB::OGE_F64] = ISD::SETGE;
516  CCs[RTLIB::OLT_F32] = ISD::SETLT;
517  CCs[RTLIB::OLT_F64] = ISD::SETLT;
518  CCs[RTLIB::OLE_F32] = ISD::SETLE;
519  CCs[RTLIB::OLE_F64] = ISD::SETLE;
520  CCs[RTLIB::OGT_F32] = ISD::SETGT;
521  CCs[RTLIB::OGT_F64] = ISD::SETGT;
522  CCs[RTLIB::UO_F32] = ISD::SETNE;
523  CCs[RTLIB::UO_F64] = ISD::SETNE;
524  CCs[RTLIB::O_F32] = ISD::SETEQ;
525  CCs[RTLIB::O_F64] = ISD::SETEQ;
526}
527
528/// NOTE: The constructor takes ownership of TLOF.
529TargetLowering::TargetLowering(const TargetMachine &tm,
530                               const TargetLoweringObjectFile *tlof)
531  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
532  // All operations default to being supported.
533  memset(OpActions, 0, sizeof(OpActions));
534  memset(LoadExtActions, 0, sizeof(LoadExtActions));
535  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
536  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
537  memset(CondCodeActions, 0, sizeof(CondCodeActions));
538
539  // Set default actions for various operations.
540  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
541    // Default all indexed load / store to expand.
542    for (unsigned IM = (unsigned)ISD::PRE_INC;
543         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
544      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
545      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
546    }
547
548    // These operations default to expand.
549    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
551  }
552
553  // Most targets ignore the @llvm.prefetch intrinsic.
554  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
555
556  // ConstantFP nodes default to expand.  Targets can either change this to
557  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
558  // to optimize expansions for certain constants.
559  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
560  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
561  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
562
563  // These library functions default to expand.
564  setOperationAction(ISD::FLOG , MVT::f64, Expand);
565  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
566  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
567  setOperationAction(ISD::FEXP , MVT::f64, Expand);
568  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
569  setOperationAction(ISD::FLOG , MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
572  setOperationAction(ISD::FEXP , MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
574
575  // Default ISD::TRAP to expand (which turns it into abort).
576  setOperationAction(ISD::TRAP, MVT::Other, Expand);
577
578  IsLittleEndian = TD->isLittleEndian();
579  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
580  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
581  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
582  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
583  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
584    = maxStoresPerMemmoveOptSize = 4;
585  benefitFromCodePlacementOpt = false;
586  UseUnderscoreSetJmp = false;
587  UseUnderscoreLongJmp = false;
588  SelectIsExpensive = false;
589  IntDivIsCheap = false;
590  Pow2DivIsCheap = false;
591  JumpIsExpensive = false;
592  StackPointerRegisterToSaveRestore = 0;
593  ExceptionPointerRegister = 0;
594  ExceptionSelectorRegister = 0;
595  BooleanContents = UndefinedBooleanContent;
596  SchedPreferenceInfo = Sched::Latency;
597  JumpBufSize = 0;
598  JumpBufAlignment = 0;
599  MinFunctionAlignment = 0;
600  PrefFunctionAlignment = 0;
601  PrefLoopAlignment = 0;
602  MinStackArgumentAlignment = 1;
603  ShouldFoldAtomicFences = false;
604
605  InitLibcallNames(LibcallRoutineNames);
606  InitCmpLibcallCCs(CmpLibcallCCs);
607  InitLibcallCallingConvs(LibcallCallingConvs);
608}
609
610TargetLowering::~TargetLowering() {
611  delete &TLOF;
612}
613
614MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
615  return MVT::getIntegerVT(8*TD->getPointerSize());
616}
617
618/// canOpTrap - Returns true if the operation can trap for the value type.
619/// VT must be a legal type.
620bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
621  assert(isTypeLegal(VT));
622  switch (Op) {
623  default:
624    return false;
625  case ISD::FDIV:
626  case ISD::FREM:
627  case ISD::SDIV:
628  case ISD::UDIV:
629  case ISD::SREM:
630  case ISD::UREM:
631    return true;
632  }
633}
634
635
636static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
637                                          unsigned &NumIntermediates,
638                                          EVT &RegisterVT,
639                                          TargetLowering *TLI) {
640  // Figure out the right, legal destination reg to copy into.
641  unsigned NumElts = VT.getVectorNumElements();
642  MVT EltTy = VT.getVectorElementType();
643
644  unsigned NumVectorRegs = 1;
645
646  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
647  // could break down into LHS/RHS like LegalizeDAG does.
648  if (!isPowerOf2_32(NumElts)) {
649    NumVectorRegs = NumElts;
650    NumElts = 1;
651  }
652
653  // Divide the input until we get to a supported size.  This will always
654  // end with a scalar if the target doesn't support vectors.
655  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
656    NumElts >>= 1;
657    NumVectorRegs <<= 1;
658  }
659
660  NumIntermediates = NumVectorRegs;
661
662  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
663  if (!TLI->isTypeLegal(NewVT))
664    NewVT = EltTy;
665  IntermediateVT = NewVT;
666
667  EVT DestVT = TLI->getRegisterType(NewVT);
668  RegisterVT = DestVT;
669  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
670    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
671
672  // Otherwise, promotion or legal types use the same number of registers as
673  // the vector decimated to the appropriate level.
674  return NumVectorRegs;
675}
676
677/// isLegalRC - Return true if the value types that can be represented by the
678/// specified register class are all legal.
679bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
680  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
681       I != E; ++I) {
682    if (isTypeLegal(*I))
683      return true;
684  }
685  return false;
686}
687
688/// hasLegalSuperRegRegClasses - Return true if the specified register class
689/// has one or more super-reg register classes that are legal.
690bool
691TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
692  if (*RC->superregclasses_begin() == 0)
693    return false;
694  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
695         E = RC->superregclasses_end(); I != E; ++I) {
696    const TargetRegisterClass *RRC = *I;
697    if (isLegalRC(RRC))
698      return true;
699  }
700  return false;
701}
702
703/// findRepresentativeClass - Return the largest legal super-reg register class
704/// of the register class for the specified type and its associated "cost".
705std::pair<const TargetRegisterClass*, uint8_t>
706TargetLowering::findRepresentativeClass(EVT VT) const {
707  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
708  if (!RC)
709    return std::make_pair(RC, 0);
710  const TargetRegisterClass *BestRC = RC;
711  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
712         E = RC->superregclasses_end(); I != E; ++I) {
713    const TargetRegisterClass *RRC = *I;
714    if (RRC->isASubClass() || !isLegalRC(RRC))
715      continue;
716    if (!hasLegalSuperRegRegClasses(RRC))
717      return std::make_pair(RRC, 1);
718    BestRC = RRC;
719  }
720  return std::make_pair(BestRC, 1);
721}
722
723
724/// computeRegisterProperties - Once all of the register classes are added,
725/// this allows us to compute derived properties we expose.
726void TargetLowering::computeRegisterProperties() {
727  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
728         "Too many value types for ValueTypeActions to hold!");
729
730  // Everything defaults to needing one register.
731  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
732    NumRegistersForVT[i] = 1;
733    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
734  }
735  // ...except isVoid, which doesn't need any registers.
736  NumRegistersForVT[MVT::isVoid] = 0;
737
738  // Find the largest integer register class.
739  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
740  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
741    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
742
743  // Every integer value type larger than this largest register takes twice as
744  // many registers to represent as the previous ValueType.
745  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
746    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
747    if (!ExpandedVT.isInteger())
748      break;
749    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
750    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
751    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
752    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
753  }
754
755  // Inspect all of the ValueType's smaller than the largest integer
756  // register to see which ones need promotion.
757  unsigned LegalIntReg = LargestIntReg;
758  for (unsigned IntReg = LargestIntReg - 1;
759       IntReg >= (unsigned)MVT::i1; --IntReg) {
760    EVT IVT = (MVT::SimpleValueType)IntReg;
761    if (isTypeLegal(IVT)) {
762      LegalIntReg = IntReg;
763    } else {
764      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
765        (MVT::SimpleValueType)LegalIntReg;
766      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
767    }
768  }
769
770  // ppcf128 type is really two f64's.
771  if (!isTypeLegal(MVT::ppcf128)) {
772    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
773    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
774    TransformToType[MVT::ppcf128] = MVT::f64;
775    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
776  }
777
778  // Decide how to handle f64. If the target does not have native f64 support,
779  // expand it to i64 and we will be generating soft float library calls.
780  if (!isTypeLegal(MVT::f64)) {
781    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
782    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
783    TransformToType[MVT::f64] = MVT::i64;
784    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
785  }
786
787  // Decide how to handle f32. If the target does not have native support for
788  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
789  if (!isTypeLegal(MVT::f32)) {
790    if (isTypeLegal(MVT::f64)) {
791      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
792      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
793      TransformToType[MVT::f32] = MVT::f64;
794      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
795    } else {
796      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
797      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
798      TransformToType[MVT::f32] = MVT::i32;
799      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
800    }
801  }
802
803  // Loop over all of the vector value types to see which need transformations.
804  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
805       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
806    MVT VT = (MVT::SimpleValueType)i;
807    if (isTypeLegal(VT)) continue;
808
809    // Determine if there is a legal wider type.  If so, we should promote to
810    // that wider vector type.
811    EVT EltVT = VT.getVectorElementType();
812    unsigned NElts = VT.getVectorNumElements();
813    if (NElts != 1) {
814      bool IsLegalWiderType = false;
815      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
816        EVT SVT = (MVT::SimpleValueType)nVT;
817        if (SVT.getVectorElementType() == EltVT &&
818            SVT.getVectorNumElements() > NElts &&
819            isTypeLegal(SVT)) {
820          TransformToType[i] = SVT;
821          RegisterTypeForVT[i] = SVT;
822          NumRegistersForVT[i] = 1;
823          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
824          IsLegalWiderType = true;
825          break;
826        }
827      }
828      if (IsLegalWiderType) continue;
829    }
830
831    MVT IntermediateVT;
832    EVT RegisterVT;
833    unsigned NumIntermediates;
834    NumRegistersForVT[i] =
835      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
836                                RegisterVT, this);
837    RegisterTypeForVT[i] = RegisterVT;
838
839    EVT NVT = VT.getPow2VectorType();
840    if (NVT == VT) {
841      // Type is already a power of 2.  The default action is to split.
842      TransformToType[i] = MVT::Other;
843      unsigned NumElts = VT.getVectorNumElements();
844      ValueTypeActions.setTypeAction(VT,
845            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
846    } else {
847      TransformToType[i] = NVT;
848      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
849    }
850  }
851
852  // Determine the 'representative' register class for each value type.
853  // An representative register class is the largest (meaning one which is
854  // not a sub-register class / subreg register class) legal register class for
855  // a group of value types. For example, on i386, i8, i16, and i32
856  // representative would be GR32; while on x86_64 it's GR64.
857  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
858    const TargetRegisterClass* RRC;
859    uint8_t Cost;
860    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
861    RepRegClassForVT[i] = RRC;
862    RepRegClassCostForVT[i] = Cost;
863  }
864}
865
866const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
867  return NULL;
868}
869
870
871MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
872  return PointerTy.SimpleTy;
873}
874
875MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
876  return MVT::i32; // return the default value
877}
878
879/// getVectorTypeBreakdown - Vector types are broken down into some number of
880/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
881/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
882/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
883///
884/// This method returns the number of registers needed, and the VT for each
885/// register.  It also returns the VT and quantity of the intermediate values
886/// before they are promoted/expanded.
887///
888unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
889                                                EVT &IntermediateVT,
890                                                unsigned &NumIntermediates,
891                                                EVT &RegisterVT) const {
892  unsigned NumElts = VT.getVectorNumElements();
893
894  // If there is a wider vector type with the same element type as this one,
895  // we should widen to that legal vector type.  This handles things like
896  // <2 x float> -> <4 x float>.
897  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
898    RegisterVT = getTypeToTransformTo(Context, VT);
899    if (isTypeLegal(RegisterVT)) {
900      IntermediateVT = RegisterVT;
901      NumIntermediates = 1;
902      return 1;
903    }
904  }
905
906  // Figure out the right, legal destination reg to copy into.
907  EVT EltTy = VT.getVectorElementType();
908
909  unsigned NumVectorRegs = 1;
910
911  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
912  // could break down into LHS/RHS like LegalizeDAG does.
913  if (!isPowerOf2_32(NumElts)) {
914    NumVectorRegs = NumElts;
915    NumElts = 1;
916  }
917
918  // Divide the input until we get to a supported size.  This will always
919  // end with a scalar if the target doesn't support vectors.
920  while (NumElts > 1 && !isTypeLegal(
921                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
922    NumElts >>= 1;
923    NumVectorRegs <<= 1;
924  }
925
926  NumIntermediates = NumVectorRegs;
927
928  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
929  if (!isTypeLegal(NewVT))
930    NewVT = EltTy;
931  IntermediateVT = NewVT;
932
933  EVT DestVT = getRegisterType(Context, NewVT);
934  RegisterVT = DestVT;
935  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
936    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
937
938  // Otherwise, promotion or legal types use the same number of registers as
939  // the vector decimated to the appropriate level.
940  return NumVectorRegs;
941}
942
943/// Get the EVTs and ArgFlags collections that represent the legalized return
944/// type of the given function.  This does not require a DAG or a return value,
945/// and is suitable for use before any DAGs for the function are constructed.
946/// TODO: Move this out of TargetLowering.cpp.
947void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
948                         SmallVectorImpl<ISD::OutputArg> &Outs,
949                         const TargetLowering &TLI,
950                         SmallVectorImpl<uint64_t> *Offsets) {
951  SmallVector<EVT, 4> ValueVTs;
952  ComputeValueVTs(TLI, ReturnType, ValueVTs);
953  unsigned NumValues = ValueVTs.size();
954  if (NumValues == 0) return;
955  unsigned Offset = 0;
956
957  for (unsigned j = 0, f = NumValues; j != f; ++j) {
958    EVT VT = ValueVTs[j];
959    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
960
961    if (attr & Attribute::SExt)
962      ExtendKind = ISD::SIGN_EXTEND;
963    else if (attr & Attribute::ZExt)
964      ExtendKind = ISD::ZERO_EXTEND;
965
966    // FIXME: C calling convention requires the return type to be promoted to
967    // at least 32-bit. But this is not necessary for non-C calling
968    // conventions. The frontend should mark functions whose return values
969    // require promoting with signext or zeroext attributes.
970    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
971      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
972      if (VT.bitsLT(MinVT))
973        VT = MinVT;
974    }
975
976    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
977    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
978    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
979                        PartVT.getTypeForEVT(ReturnType->getContext()));
980
981    // 'inreg' on function refers to return value
982    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
983    if (attr & Attribute::InReg)
984      Flags.setInReg();
985
986    // Propagate extension type if any
987    if (attr & Attribute::SExt)
988      Flags.setSExt();
989    else if (attr & Attribute::ZExt)
990      Flags.setZExt();
991
992    for (unsigned i = 0; i < NumParts; ++i) {
993      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
994      if (Offsets) {
995        Offsets->push_back(Offset);
996        Offset += PartSize;
997      }
998    }
999  }
1000}
1001
1002/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1003/// function arguments in the caller parameter area.  This is the actual
1004/// alignment, not its logarithm.
1005unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1006  return TD->getCallFrameTypeAlignment(Ty);
1007}
1008
1009/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1010/// current function.  The returned value is a member of the
1011/// MachineJumpTableInfo::JTEntryKind enum.
1012unsigned TargetLowering::getJumpTableEncoding() const {
1013  // In non-pic modes, just use the address of a block.
1014  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1015    return MachineJumpTableInfo::EK_BlockAddress;
1016
1017  // In PIC mode, if the target supports a GPRel32 directive, use it.
1018  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1019    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1020
1021  // Otherwise, use a label difference.
1022  return MachineJumpTableInfo::EK_LabelDifference32;
1023}
1024
1025SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1026                                                 SelectionDAG &DAG) const {
1027  // If our PIC model is GP relative, use the global offset table as the base.
1028  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1029    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1030  return Table;
1031}
1032
1033/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1034/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1035/// MCExpr.
1036const MCExpr *
1037TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1038                                             unsigned JTI,MCContext &Ctx) const{
1039  // The normal PIC reloc base is the label at the start of the jump table.
1040  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1041}
1042
1043bool
1044TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1045  // Assume that everything is safe in static mode.
1046  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1047    return true;
1048
1049  // In dynamic-no-pic mode, assume that known defined values are safe.
1050  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1051      GA &&
1052      !GA->getGlobal()->isDeclaration() &&
1053      !GA->getGlobal()->isWeakForLinker())
1054    return true;
1055
1056  // Otherwise assume nothing is safe.
1057  return false;
1058}
1059
1060//===----------------------------------------------------------------------===//
1061//  Optimization Methods
1062//===----------------------------------------------------------------------===//
1063
1064/// ShrinkDemandedConstant - Check to see if the specified operand of the
1065/// specified instruction is a constant integer.  If so, check to see if there
1066/// are any bits set in the constant that are not demanded.  If so, shrink the
1067/// constant and return true.
1068bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1069                                                        const APInt &Demanded) {
1070  DebugLoc dl = Op.getDebugLoc();
1071
1072  // FIXME: ISD::SELECT, ISD::SELECT_CC
1073  switch (Op.getOpcode()) {
1074  default: break;
1075  case ISD::XOR:
1076  case ISD::AND:
1077  case ISD::OR: {
1078    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1079    if (!C) return false;
1080
1081    if (Op.getOpcode() == ISD::XOR &&
1082        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1083      return false;
1084
1085    // if we can expand it to have all bits set, do it
1086    if (C->getAPIntValue().intersects(~Demanded)) {
1087      EVT VT = Op.getValueType();
1088      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1089                                DAG.getConstant(Demanded &
1090                                                C->getAPIntValue(),
1091                                                VT));
1092      return CombineTo(Op, New);
1093    }
1094
1095    break;
1096  }
1097  }
1098
1099  return false;
1100}
1101
1102/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1103/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1104/// cast, but it could be generalized for targets with other types of
1105/// implicit widening casts.
1106bool
1107TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1108                                                    unsigned BitWidth,
1109                                                    const APInt &Demanded,
1110                                                    DebugLoc dl) {
1111  assert(Op.getNumOperands() == 2 &&
1112         "ShrinkDemandedOp only supports binary operators!");
1113  assert(Op.getNode()->getNumValues() == 1 &&
1114         "ShrinkDemandedOp only supports nodes with one result!");
1115
1116  // Don't do this if the node has another user, which may require the
1117  // full value.
1118  if (!Op.getNode()->hasOneUse())
1119    return false;
1120
1121  // Search for the smallest integer type with free casts to and from
1122  // Op's type. For expedience, just check power-of-2 integer types.
1123  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1124  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1125  if (!isPowerOf2_32(SmallVTBits))
1126    SmallVTBits = NextPowerOf2(SmallVTBits);
1127  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1128    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1129    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1130        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1131      // We found a type with free casts.
1132      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1133                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1134                                          Op.getNode()->getOperand(0)),
1135                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1136                                          Op.getNode()->getOperand(1)));
1137      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1138      return CombineTo(Op, Z);
1139    }
1140  }
1141  return false;
1142}
1143
1144/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1145/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1146/// use this information to simplify Op, create a new simplified DAG node and
1147/// return true, returning the original and new nodes in Old and New. Otherwise,
1148/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1149/// the expression (used to simplify the caller).  The KnownZero/One bits may
1150/// only be accurate for those bits in the DemandedMask.
1151bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1152                                          const APInt &DemandedMask,
1153                                          APInt &KnownZero,
1154                                          APInt &KnownOne,
1155                                          TargetLoweringOpt &TLO,
1156                                          unsigned Depth) const {
1157  unsigned BitWidth = DemandedMask.getBitWidth();
1158  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1159         "Mask size mismatches value type size!");
1160  APInt NewMask = DemandedMask;
1161  DebugLoc dl = Op.getDebugLoc();
1162
1163  // Don't know anything.
1164  KnownZero = KnownOne = APInt(BitWidth, 0);
1165
1166  // Other users may use these bits.
1167  if (!Op.getNode()->hasOneUse()) {
1168    if (Depth != 0) {
1169      // If not at the root, Just compute the KnownZero/KnownOne bits to
1170      // simplify things downstream.
1171      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1172      return false;
1173    }
1174    // If this is the root being simplified, allow it to have multiple uses,
1175    // just set the NewMask to all bits.
1176    NewMask = APInt::getAllOnesValue(BitWidth);
1177  } else if (DemandedMask == 0) {
1178    // Not demanding any bits from Op.
1179    if (Op.getOpcode() != ISD::UNDEF)
1180      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1181    return false;
1182  } else if (Depth == 6) {        // Limit search depth.
1183    return false;
1184  }
1185
1186  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1187  switch (Op.getOpcode()) {
1188  case ISD::Constant:
1189    // We know all of the bits for a constant!
1190    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1191    KnownZero = ~KnownOne & NewMask;
1192    return false;   // Don't fall through, will infinitely loop.
1193  case ISD::AND:
1194    // If the RHS is a constant, check to see if the LHS would be zero without
1195    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1196    // simplify the LHS, here we're using information from the LHS to simplify
1197    // the RHS.
1198    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1199      APInt LHSZero, LHSOne;
1200      // Do not increment Depth here; that can cause an infinite loop.
1201      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1202                                LHSZero, LHSOne, Depth);
1203      // If the LHS already has zeros where RHSC does, this and is dead.
1204      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1205        return TLO.CombineTo(Op, Op.getOperand(0));
1206      // If any of the set bits in the RHS are known zero on the LHS, shrink
1207      // the constant.
1208      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1209        return true;
1210    }
1211
1212    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1213                             KnownOne, TLO, Depth+1))
1214      return true;
1215    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1217                             KnownZero2, KnownOne2, TLO, Depth+1))
1218      return true;
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // If all of the demanded bits are known one on one side, return the other.
1222    // These bits cannot contribute to the result of the 'and'.
1223    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1224      return TLO.CombineTo(Op, Op.getOperand(0));
1225    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1226      return TLO.CombineTo(Op, Op.getOperand(1));
1227    // If all of the demanded bits in the inputs are known zeros, return zero.
1228    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1229      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1230    // If the RHS is a constant, see if we can simplify it.
1231    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1232      return true;
1233    // If the operation can be done in a smaller type, do so.
1234    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1235      return true;
1236
1237    // Output known-1 bits are only known if set in both the LHS & RHS.
1238    KnownOne &= KnownOne2;
1239    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1240    KnownZero |= KnownZero2;
1241    break;
1242  case ISD::OR:
1243    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1244                             KnownOne, TLO, Depth+1))
1245      return true;
1246    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1247    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1248                             KnownZero2, KnownOne2, TLO, Depth+1))
1249      return true;
1250    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1251
1252    // If all of the demanded bits are known zero on one side, return the other.
1253    // These bits cannot contribute to the result of the 'or'.
1254    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1255      return TLO.CombineTo(Op, Op.getOperand(0));
1256    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1257      return TLO.CombineTo(Op, Op.getOperand(1));
1258    // If all of the potentially set bits on one side are known to be set on
1259    // the other side, just use the 'other' side.
1260    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1261      return TLO.CombineTo(Op, Op.getOperand(0));
1262    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1263      return TLO.CombineTo(Op, Op.getOperand(1));
1264    // If the RHS is a constant, see if we can simplify it.
1265    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1266      return true;
1267    // If the operation can be done in a smaller type, do so.
1268    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1269      return true;
1270
1271    // Output known-0 bits are only known if clear in both the LHS & RHS.
1272    KnownZero &= KnownZero2;
1273    // Output known-1 are known to be set if set in either the LHS | RHS.
1274    KnownOne |= KnownOne2;
1275    break;
1276  case ISD::XOR:
1277    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1278                             KnownOne, TLO, Depth+1))
1279      return true;
1280    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1281    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1282                             KnownOne2, TLO, Depth+1))
1283      return true;
1284    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1285
1286    // If all of the demanded bits are known zero on one side, return the other.
1287    // These bits cannot contribute to the result of the 'xor'.
1288    if ((KnownZero & NewMask) == NewMask)
1289      return TLO.CombineTo(Op, Op.getOperand(0));
1290    if ((KnownZero2 & NewMask) == NewMask)
1291      return TLO.CombineTo(Op, Op.getOperand(1));
1292    // If the operation can be done in a smaller type, do so.
1293    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1294      return true;
1295
1296    // If all of the unknown bits are known to be zero on one side or the other
1297    // (but not both) turn this into an *inclusive* or.
1298    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1299    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1300      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1301                                               Op.getOperand(0),
1302                                               Op.getOperand(1)));
1303
1304    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1305    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1306    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1307    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1308
1309    // If all of the demanded bits on one side are known, and all of the set
1310    // bits on that side are also known to be set on the other side, turn this
1311    // into an AND, as we know the bits will be cleared.
1312    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1313    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1314      if ((KnownOne & KnownOne2) == KnownOne) {
1315        EVT VT = Op.getValueType();
1316        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1317        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1318                                                 Op.getOperand(0), ANDC));
1319      }
1320    }
1321
1322    // If the RHS is a constant, see if we can simplify it.
1323    // for XOR, we prefer to force bits to 1 if they will make a -1.
1324    // if we can't force bits, try to shrink constant
1325    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1326      APInt Expanded = C->getAPIntValue() | (~NewMask);
1327      // if we can expand it to have all bits set, do it
1328      if (Expanded.isAllOnesValue()) {
1329        if (Expanded != C->getAPIntValue()) {
1330          EVT VT = Op.getValueType();
1331          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1332                                          TLO.DAG.getConstant(Expanded, VT));
1333          return TLO.CombineTo(Op, New);
1334        }
1335        // if it already has all the bits set, nothing to change
1336        // but don't shrink either!
1337      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1338        return true;
1339      }
1340    }
1341
1342    KnownZero = KnownZeroOut;
1343    KnownOne  = KnownOneOut;
1344    break;
1345  case ISD::SELECT:
1346    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1347                             KnownOne, TLO, Depth+1))
1348      return true;
1349    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1350                             KnownOne2, TLO, Depth+1))
1351      return true;
1352    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1353    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1354
1355    // If the operands are constants, see if we can simplify them.
1356    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1357      return true;
1358
1359    // Only known if known in both the LHS and RHS.
1360    KnownOne &= KnownOne2;
1361    KnownZero &= KnownZero2;
1362    break;
1363  case ISD::SELECT_CC:
1364    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1365                             KnownOne, TLO, Depth+1))
1366      return true;
1367    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1368                             KnownOne2, TLO, Depth+1))
1369      return true;
1370    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1371    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1372
1373    // If the operands are constants, see if we can simplify them.
1374    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1375      return true;
1376
1377    // Only known if known in both the LHS and RHS.
1378    KnownOne &= KnownOne2;
1379    KnownZero &= KnownZero2;
1380    break;
1381  case ISD::SHL:
1382    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1383      unsigned ShAmt = SA->getZExtValue();
1384      SDValue InOp = Op.getOperand(0);
1385
1386      // If the shift count is an invalid immediate, don't do anything.
1387      if (ShAmt >= BitWidth)
1388        break;
1389
1390      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1391      // single shift.  We can do this if the bottom bits (which are shifted
1392      // out) are never demanded.
1393      if (InOp.getOpcode() == ISD::SRL &&
1394          isa<ConstantSDNode>(InOp.getOperand(1))) {
1395        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1396          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1397          unsigned Opc = ISD::SHL;
1398          int Diff = ShAmt-C1;
1399          if (Diff < 0) {
1400            Diff = -Diff;
1401            Opc = ISD::SRL;
1402          }
1403
1404          SDValue NewSA =
1405            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1406          EVT VT = Op.getValueType();
1407          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1408                                                   InOp.getOperand(0), NewSA));
1409        }
1410      }
1411
1412      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1413                               KnownZero, KnownOne, TLO, Depth+1))
1414        return true;
1415
1416      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1417      // are not demanded. This will likely allow the anyext to be folded away.
1418      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1419        SDValue InnerOp = InOp.getNode()->getOperand(0);
1420        EVT InnerVT = InnerOp.getValueType();
1421        if ((APInt::getHighBitsSet(BitWidth,
1422                                   BitWidth - InnerVT.getSizeInBits()) &
1423               DemandedMask) == 0 &&
1424            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1425          EVT ShTy = getShiftAmountTy(InnerVT);
1426          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1427            ShTy = InnerVT;
1428          SDValue NarrowShl =
1429            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1430                            TLO.DAG.getConstant(ShAmt, ShTy));
1431          return
1432            TLO.CombineTo(Op,
1433                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1434                                          NarrowShl));
1435        }
1436      }
1437
1438      KnownZero <<= SA->getZExtValue();
1439      KnownOne  <<= SA->getZExtValue();
1440      // low bits known zero.
1441      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1442    }
1443    break;
1444  case ISD::SRL:
1445    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1446      EVT VT = Op.getValueType();
1447      unsigned ShAmt = SA->getZExtValue();
1448      unsigned VTSize = VT.getSizeInBits();
1449      SDValue InOp = Op.getOperand(0);
1450
1451      // If the shift count is an invalid immediate, don't do anything.
1452      if (ShAmt >= BitWidth)
1453        break;
1454
1455      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1456      // single shift.  We can do this if the top bits (which are shifted out)
1457      // are never demanded.
1458      if (InOp.getOpcode() == ISD::SHL &&
1459          isa<ConstantSDNode>(InOp.getOperand(1))) {
1460        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1461          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1462          unsigned Opc = ISD::SRL;
1463          int Diff = ShAmt-C1;
1464          if (Diff < 0) {
1465            Diff = -Diff;
1466            Opc = ISD::SHL;
1467          }
1468
1469          SDValue NewSA =
1470            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1471          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1472                                                   InOp.getOperand(0), NewSA));
1473        }
1474      }
1475
1476      // Compute the new bits that are at the top now.
1477      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1478                               KnownZero, KnownOne, TLO, Depth+1))
1479        return true;
1480      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1481      KnownZero = KnownZero.lshr(ShAmt);
1482      KnownOne  = KnownOne.lshr(ShAmt);
1483
1484      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1485      KnownZero |= HighBits;  // High bits known zero.
1486    }
1487    break;
1488  case ISD::SRA:
1489    // If this is an arithmetic shift right and only the low-bit is set, we can
1490    // always convert this into a logical shr, even if the shift amount is
1491    // variable.  The low bit of the shift cannot be an input sign bit unless
1492    // the shift amount is >= the size of the datatype, which is undefined.
1493    if (DemandedMask == 1)
1494      return TLO.CombineTo(Op,
1495                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1496                                           Op.getOperand(0), Op.getOperand(1)));
1497
1498    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1499      EVT VT = Op.getValueType();
1500      unsigned ShAmt = SA->getZExtValue();
1501
1502      // If the shift count is an invalid immediate, don't do anything.
1503      if (ShAmt >= BitWidth)
1504        break;
1505
1506      APInt InDemandedMask = (NewMask << ShAmt);
1507
1508      // If any of the demanded bits are produced by the sign extension, we also
1509      // demand the input sign bit.
1510      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1511      if (HighBits.intersects(NewMask))
1512        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1513
1514      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1515                               KnownZero, KnownOne, TLO, Depth+1))
1516        return true;
1517      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1518      KnownZero = KnownZero.lshr(ShAmt);
1519      KnownOne  = KnownOne.lshr(ShAmt);
1520
1521      // Handle the sign bit, adjusted to where it is now in the mask.
1522      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1523
1524      // If the input sign bit is known to be zero, or if none of the top bits
1525      // are demanded, turn this into an unsigned shift right.
1526      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1527        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1528                                                 Op.getOperand(0),
1529                                                 Op.getOperand(1)));
1530      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1531        KnownOne |= HighBits;
1532      }
1533    }
1534    break;
1535  case ISD::SIGN_EXTEND_INREG: {
1536    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1537
1538    // Sign extension.  Compute the demanded bits in the result that are not
1539    // present in the input.
1540    APInt NewBits =
1541      APInt::getHighBitsSet(BitWidth,
1542                            BitWidth - EVT.getScalarType().getSizeInBits());
1543
1544    // If none of the extended bits are demanded, eliminate the sextinreg.
1545    if ((NewBits & NewMask) == 0)
1546      return TLO.CombineTo(Op, Op.getOperand(0));
1547
1548    APInt InSignBit =
1549      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1550    APInt InputDemandedBits =
1551      APInt::getLowBitsSet(BitWidth,
1552                           EVT.getScalarType().getSizeInBits()) &
1553      NewMask;
1554
1555    // Since the sign extended bits are demanded, we know that the sign
1556    // bit is demanded.
1557    InputDemandedBits |= InSignBit;
1558
1559    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1560                             KnownZero, KnownOne, TLO, Depth+1))
1561      return true;
1562    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1563
1564    // If the sign bit of the input is known set or clear, then we know the
1565    // top bits of the result.
1566
1567    // If the input sign bit is known zero, convert this into a zero extension.
1568    if (KnownZero.intersects(InSignBit))
1569      return TLO.CombineTo(Op,
1570                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1571
1572    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1573      KnownOne |= NewBits;
1574      KnownZero &= ~NewBits;
1575    } else {                       // Input sign bit unknown
1576      KnownZero &= ~NewBits;
1577      KnownOne &= ~NewBits;
1578    }
1579    break;
1580  }
1581  case ISD::ZERO_EXTEND: {
1582    unsigned OperandBitWidth =
1583      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1584    APInt InMask = NewMask.trunc(OperandBitWidth);
1585
1586    // If none of the top bits are demanded, convert this into an any_extend.
1587    APInt NewBits =
1588      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1589    if (!NewBits.intersects(NewMask))
1590      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1591                                               Op.getValueType(),
1592                                               Op.getOperand(0)));
1593
1594    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1595                             KnownZero, KnownOne, TLO, Depth+1))
1596      return true;
1597    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1598    KnownZero = KnownZero.zext(BitWidth);
1599    KnownOne = KnownOne.zext(BitWidth);
1600    KnownZero |= NewBits;
1601    break;
1602  }
1603  case ISD::SIGN_EXTEND: {
1604    EVT InVT = Op.getOperand(0).getValueType();
1605    unsigned InBits = InVT.getScalarType().getSizeInBits();
1606    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1607    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1608    APInt NewBits   = ~InMask & NewMask;
1609
1610    // If none of the top bits are demanded, convert this into an any_extend.
1611    if (NewBits == 0)
1612      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1613                                              Op.getValueType(),
1614                                              Op.getOperand(0)));
1615
1616    // Since some of the sign extended bits are demanded, we know that the sign
1617    // bit is demanded.
1618    APInt InDemandedBits = InMask & NewMask;
1619    InDemandedBits |= InSignBit;
1620    InDemandedBits = InDemandedBits.trunc(InBits);
1621
1622    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1623                             KnownOne, TLO, Depth+1))
1624      return true;
1625    KnownZero = KnownZero.zext(BitWidth);
1626    KnownOne = KnownOne.zext(BitWidth);
1627
1628    // If the sign bit is known zero, convert this to a zero extend.
1629    if (KnownZero.intersects(InSignBit))
1630      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1631                                               Op.getValueType(),
1632                                               Op.getOperand(0)));
1633
1634    // If the sign bit is known one, the top bits match.
1635    if (KnownOne.intersects(InSignBit)) {
1636      KnownOne  |= NewBits;
1637      KnownZero &= ~NewBits;
1638    } else {   // Otherwise, top bits aren't known.
1639      KnownOne  &= ~NewBits;
1640      KnownZero &= ~NewBits;
1641    }
1642    break;
1643  }
1644  case ISD::ANY_EXTEND: {
1645    unsigned OperandBitWidth =
1646      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1647    APInt InMask = NewMask.trunc(OperandBitWidth);
1648    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1649                             KnownZero, KnownOne, TLO, Depth+1))
1650      return true;
1651    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1652    KnownZero = KnownZero.zext(BitWidth);
1653    KnownOne = KnownOne.zext(BitWidth);
1654    break;
1655  }
1656  case ISD::TRUNCATE: {
1657    // Simplify the input, using demanded bit information, and compute the known
1658    // zero/one bits live out.
1659    unsigned OperandBitWidth =
1660      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1661    APInt TruncMask = NewMask.zext(OperandBitWidth);
1662    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1663                             KnownZero, KnownOne, TLO, Depth+1))
1664      return true;
1665    KnownZero = KnownZero.trunc(BitWidth);
1666    KnownOne = KnownOne.trunc(BitWidth);
1667
1668    // If the input is only used by this truncate, see if we can shrink it based
1669    // on the known demanded bits.
1670    if (Op.getOperand(0).getNode()->hasOneUse()) {
1671      SDValue In = Op.getOperand(0);
1672      switch (In.getOpcode()) {
1673      default: break;
1674      case ISD::SRL:
1675        // Shrink SRL by a constant if none of the high bits shifted in are
1676        // demanded.
1677        if (TLO.LegalTypes() &&
1678            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1679          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1680          // undesirable.
1681          break;
1682        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1683        if (!ShAmt)
1684          break;
1685        SDValue Shift = In.getOperand(1);
1686        if (TLO.LegalTypes()) {
1687          uint64_t ShVal = ShAmt->getZExtValue();
1688          Shift =
1689            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1690        }
1691
1692        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1693                                               OperandBitWidth - BitWidth);
1694        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1695
1696        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1697          // None of the shifted in bits are needed.  Add a truncate of the
1698          // shift input, then shift it.
1699          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1700                                             Op.getValueType(),
1701                                             In.getOperand(0));
1702          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1703                                                   Op.getValueType(),
1704                                                   NewTrunc,
1705                                                   Shift));
1706        }
1707        break;
1708      }
1709    }
1710
1711    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712    break;
1713  }
1714  case ISD::AssertZext: {
1715    // Demand all the bits of the input that are demanded in the output.
1716    // The low bits are obvious; the high bits are demanded because we're
1717    // asserting that they're zero here.
1718    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1719                             KnownZero, KnownOne, TLO, Depth+1))
1720      return true;
1721    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1722
1723    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1724    APInt InMask = APInt::getLowBitsSet(BitWidth,
1725                                        VT.getSizeInBits());
1726    KnownZero |= ~InMask & NewMask;
1727    break;
1728  }
1729  case ISD::BITCAST:
1730#if 0
1731    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1732    // is demanded, turn this into a FGETSIGN.
1733    if (NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1734        Op.getOperand(0).getValueType().isFloatingPoint() &&
1735        !Op.getOperand(0).getValueType().isVector()) {
1736      // Only do this xform if FGETSIGN is valid or if before legalize.
1737      if (TLO.isBeforeLegalize() ||
1738          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1739        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1740        // place.  We expect the SHL to be eliminated by other optimizations.
1741        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Op.getValueType(),
1742                                         Op.getOperand(0));
1743        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1744        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1745        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1746                                                 Op.getValueType(),
1747                                                 Sign, ShAmt));
1748      }
1749    }
1750#endif
1751    break;
1752  case ISD::ADD:
1753  case ISD::MUL:
1754  case ISD::SUB: {
1755    // Add, Sub, and Mul don't demand any bits in positions beyond that
1756    // of the highest bit demanded of them.
1757    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1758                                        BitWidth - NewMask.countLeadingZeros());
1759    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1760                             KnownOne2, TLO, Depth+1))
1761      return true;
1762    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1763                             KnownOne2, TLO, Depth+1))
1764      return true;
1765    // See if the operation should be performed at a smaller bit width.
1766    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1767      return true;
1768  }
1769  // FALL THROUGH
1770  default:
1771    // Just use ComputeMaskedBits to compute output bits.
1772    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1773    break;
1774  }
1775
1776  // If we know the value of all of the demanded bits, return this as a
1777  // constant.
1778  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1779    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1780
1781  return false;
1782}
1783
1784/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1785/// in Mask are known to be either zero or one and return them in the
1786/// KnownZero/KnownOne bitsets.
1787void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1788                                                    const APInt &Mask,
1789                                                    APInt &KnownZero,
1790                                                    APInt &KnownOne,
1791                                                    const SelectionDAG &DAG,
1792                                                    unsigned Depth) const {
1793  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1794          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1795          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1796          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1797         "Should use MaskedValueIsZero if you don't know whether Op"
1798         " is a target node!");
1799  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1800}
1801
1802/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1803/// targets that want to expose additional information about sign bits to the
1804/// DAG Combiner.
1805unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1806                                                         unsigned Depth) const {
1807  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1808          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1809          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1810          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1811         "Should use ComputeNumSignBits if you don't know whether Op"
1812         " is a target node!");
1813  return 1;
1814}
1815
1816/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1817/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1818/// determine which bit is set.
1819///
1820static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1821  // A left-shift of a constant one will have exactly one bit set, because
1822  // shifting the bit off the end is undefined.
1823  if (Val.getOpcode() == ISD::SHL)
1824    if (ConstantSDNode *C =
1825         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1826      if (C->getAPIntValue() == 1)
1827        return true;
1828
1829  // Similarly, a right-shift of a constant sign-bit will have exactly
1830  // one bit set.
1831  if (Val.getOpcode() == ISD::SRL)
1832    if (ConstantSDNode *C =
1833         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1834      if (C->getAPIntValue().isSignBit())
1835        return true;
1836
1837  // More could be done here, though the above checks are enough
1838  // to handle some common cases.
1839
1840  // Fall back to ComputeMaskedBits to catch other known cases.
1841  EVT OpVT = Val.getValueType();
1842  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1843  APInt Mask = APInt::getAllOnesValue(BitWidth);
1844  APInt KnownZero, KnownOne;
1845  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1846  return (KnownZero.countPopulation() == BitWidth - 1) &&
1847         (KnownOne.countPopulation() == 1);
1848}
1849
1850/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1851/// and cc. If it is unable to simplify it, return a null SDValue.
1852SDValue
1853TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1854                              ISD::CondCode Cond, bool foldBooleans,
1855                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1856  SelectionDAG &DAG = DCI.DAG;
1857
1858  // These setcc operations always fold.
1859  switch (Cond) {
1860  default: break;
1861  case ISD::SETFALSE:
1862  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1863  case ISD::SETTRUE:
1864  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1865  }
1866
1867  // Ensure that the constant occurs on the RHS, and fold constant
1868  // comparisons.
1869  if (isa<ConstantSDNode>(N0.getNode()))
1870    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1871
1872  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1873    const APInt &C1 = N1C->getAPIntValue();
1874
1875    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1876    // equality comparison, then we're just comparing whether X itself is
1877    // zero.
1878    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1879        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1880        N0.getOperand(1).getOpcode() == ISD::Constant) {
1881      const APInt &ShAmt
1882        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1883      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1884          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1885        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1886          // (srl (ctlz x), 5) == 0  -> X != 0
1887          // (srl (ctlz x), 5) != 1  -> X != 0
1888          Cond = ISD::SETNE;
1889        } else {
1890          // (srl (ctlz x), 5) != 0  -> X == 0
1891          // (srl (ctlz x), 5) == 1  -> X == 0
1892          Cond = ISD::SETEQ;
1893        }
1894        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1895        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1896                            Zero, Cond);
1897      }
1898    }
1899
1900    SDValue CTPOP = N0;
1901    // Look through truncs that don't change the value of a ctpop.
1902    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1903      CTPOP = N0.getOperand(0);
1904
1905    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1906        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1907                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1908      EVT CTVT = CTPOP.getValueType();
1909      SDValue CTOp = CTPOP.getOperand(0);
1910
1911      // (ctpop x) u< 2 -> (x & x-1) == 0
1912      // (ctpop x) u> 1 -> (x & x-1) != 0
1913      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1914        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1915                                  DAG.getConstant(1, CTVT));
1916        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1917        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1918        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1919      }
1920
1921      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1922    }
1923
1924    // (zext x) == C --> x == (trunc C)
1925    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1926        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1927      unsigned MinBits = N0.getValueSizeInBits();
1928      SDValue PreZExt;
1929      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1930        // ZExt
1931        MinBits = N0->getOperand(0).getValueSizeInBits();
1932        PreZExt = N0->getOperand(0);
1933      } else if (N0->getOpcode() == ISD::AND) {
1934        // DAGCombine turns costly ZExts into ANDs
1935        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1936          if ((C->getAPIntValue()+1).isPowerOf2()) {
1937            MinBits = C->getAPIntValue().countTrailingOnes();
1938            PreZExt = N0->getOperand(0);
1939          }
1940      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1941        // ZEXTLOAD
1942        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1943          MinBits = LN0->getMemoryVT().getSizeInBits();
1944          PreZExt = N0;
1945        }
1946      }
1947
1948      // Make sure we're not loosing bits from the constant.
1949      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1950        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1951        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1952          // Will get folded away.
1953          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1954          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1955          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1956        }
1957      }
1958    }
1959
1960    // If the LHS is '(and load, const)', the RHS is 0,
1961    // the test is for equality or unsigned, and all 1 bits of the const are
1962    // in the same partial word, see if we can shorten the load.
1963    if (DCI.isBeforeLegalize() &&
1964        N0.getOpcode() == ISD::AND && C1 == 0 &&
1965        N0.getNode()->hasOneUse() &&
1966        isa<LoadSDNode>(N0.getOperand(0)) &&
1967        N0.getOperand(0).getNode()->hasOneUse() &&
1968        isa<ConstantSDNode>(N0.getOperand(1))) {
1969      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1970      APInt bestMask;
1971      unsigned bestWidth = 0, bestOffset = 0;
1972      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1973        unsigned origWidth = N0.getValueType().getSizeInBits();
1974        unsigned maskWidth = origWidth;
1975        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1976        // 8 bits, but have to be careful...
1977        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1978          origWidth = Lod->getMemoryVT().getSizeInBits();
1979        const APInt &Mask =
1980          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1981        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1982          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1983          for (unsigned offset=0; offset<origWidth/width; offset++) {
1984            if ((newMask & Mask) == Mask) {
1985              if (!TD->isLittleEndian())
1986                bestOffset = (origWidth/width - offset - 1) * (width/8);
1987              else
1988                bestOffset = (uint64_t)offset * (width/8);
1989              bestMask = Mask.lshr(offset * (width/8) * 8);
1990              bestWidth = width;
1991              break;
1992            }
1993            newMask = newMask << width;
1994          }
1995        }
1996      }
1997      if (bestWidth) {
1998        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1999        if (newVT.isRound()) {
2000          EVT PtrType = Lod->getOperand(1).getValueType();
2001          SDValue Ptr = Lod->getBasePtr();
2002          if (bestOffset != 0)
2003            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2004                              DAG.getConstant(bestOffset, PtrType));
2005          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2006          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2007                                Lod->getPointerInfo().getWithOffset(bestOffset),
2008                                        false, false, NewAlign);
2009          return DAG.getSetCC(dl, VT,
2010                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2011                                      DAG.getConstant(bestMask.trunc(bestWidth),
2012                                                      newVT)),
2013                              DAG.getConstant(0LL, newVT), Cond);
2014        }
2015      }
2016    }
2017
2018    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2019    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2020      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2021
2022      // If the comparison constant has bits in the upper part, the
2023      // zero-extended value could never match.
2024      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2025                                              C1.getBitWidth() - InSize))) {
2026        switch (Cond) {
2027        case ISD::SETUGT:
2028        case ISD::SETUGE:
2029        case ISD::SETEQ: return DAG.getConstant(0, VT);
2030        case ISD::SETULT:
2031        case ISD::SETULE:
2032        case ISD::SETNE: return DAG.getConstant(1, VT);
2033        case ISD::SETGT:
2034        case ISD::SETGE:
2035          // True if the sign bit of C1 is set.
2036          return DAG.getConstant(C1.isNegative(), VT);
2037        case ISD::SETLT:
2038        case ISD::SETLE:
2039          // True if the sign bit of C1 isn't set.
2040          return DAG.getConstant(C1.isNonNegative(), VT);
2041        default:
2042          break;
2043        }
2044      }
2045
2046      // Otherwise, we can perform the comparison with the low bits.
2047      switch (Cond) {
2048      case ISD::SETEQ:
2049      case ISD::SETNE:
2050      case ISD::SETUGT:
2051      case ISD::SETUGE:
2052      case ISD::SETULT:
2053      case ISD::SETULE: {
2054        EVT newVT = N0.getOperand(0).getValueType();
2055        if (DCI.isBeforeLegalizeOps() ||
2056            (isOperationLegal(ISD::SETCC, newVT) &&
2057              getCondCodeAction(Cond, newVT)==Legal))
2058          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2059                              DAG.getConstant(C1.trunc(InSize), newVT),
2060                              Cond);
2061        break;
2062      }
2063      default:
2064        break;   // todo, be more careful with signed comparisons
2065      }
2066    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2067               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2068      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2069      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2070      EVT ExtDstTy = N0.getValueType();
2071      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2072
2073      // If the constant doesn't fit into the number of bits for the source of
2074      // the sign extension, it is impossible for both sides to be equal.
2075      if (C1.getMinSignedBits() > ExtSrcTyBits)
2076        return DAG.getConstant(Cond == ISD::SETNE, VT);
2077
2078      SDValue ZextOp;
2079      EVT Op0Ty = N0.getOperand(0).getValueType();
2080      if (Op0Ty == ExtSrcTy) {
2081        ZextOp = N0.getOperand(0);
2082      } else {
2083        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2084        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2085                              DAG.getConstant(Imm, Op0Ty));
2086      }
2087      if (!DCI.isCalledByLegalizer())
2088        DCI.AddToWorklist(ZextOp.getNode());
2089      // Otherwise, make this a use of a zext.
2090      return DAG.getSetCC(dl, VT, ZextOp,
2091                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2092                                                              ExtDstTyBits,
2093                                                              ExtSrcTyBits),
2094                                          ExtDstTy),
2095                          Cond);
2096    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2097                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2098      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2099      if (N0.getOpcode() == ISD::SETCC &&
2100          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2101        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2102        if (TrueWhenTrue)
2103          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2104        // Invert the condition.
2105        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2106        CC = ISD::getSetCCInverse(CC,
2107                                  N0.getOperand(0).getValueType().isInteger());
2108        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2109      }
2110
2111      if ((N0.getOpcode() == ISD::XOR ||
2112           (N0.getOpcode() == ISD::AND &&
2113            N0.getOperand(0).getOpcode() == ISD::XOR &&
2114            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2115          isa<ConstantSDNode>(N0.getOperand(1)) &&
2116          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2117        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2118        // can only do this if the top bits are known zero.
2119        unsigned BitWidth = N0.getValueSizeInBits();
2120        if (DAG.MaskedValueIsZero(N0,
2121                                  APInt::getHighBitsSet(BitWidth,
2122                                                        BitWidth-1))) {
2123          // Okay, get the un-inverted input value.
2124          SDValue Val;
2125          if (N0.getOpcode() == ISD::XOR)
2126            Val = N0.getOperand(0);
2127          else {
2128            assert(N0.getOpcode() == ISD::AND &&
2129                    N0.getOperand(0).getOpcode() == ISD::XOR);
2130            // ((X^1)&1)^1 -> X & 1
2131            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2132                              N0.getOperand(0).getOperand(0),
2133                              N0.getOperand(1));
2134          }
2135
2136          return DAG.getSetCC(dl, VT, Val, N1,
2137                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2138        }
2139      } else if (N1C->getAPIntValue() == 1 &&
2140                 (VT == MVT::i1 ||
2141                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2142        SDValue Op0 = N0;
2143        if (Op0.getOpcode() == ISD::TRUNCATE)
2144          Op0 = Op0.getOperand(0);
2145
2146        if ((Op0.getOpcode() == ISD::XOR) &&
2147            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2148            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2149          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2150          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2151          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2152                              Cond);
2153        } else if (Op0.getOpcode() == ISD::AND &&
2154                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2155                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2156          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2157          if (Op0.getValueType().bitsGT(VT))
2158            Op0 = DAG.getNode(ISD::AND, dl, VT,
2159                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2160                          DAG.getConstant(1, VT));
2161          else if (Op0.getValueType().bitsLT(VT))
2162            Op0 = DAG.getNode(ISD::AND, dl, VT,
2163                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2164                        DAG.getConstant(1, VT));
2165
2166          return DAG.getSetCC(dl, VT, Op0,
2167                              DAG.getConstant(0, Op0.getValueType()),
2168                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2169        }
2170      }
2171    }
2172
2173    APInt MinVal, MaxVal;
2174    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2175    if (ISD::isSignedIntSetCC(Cond)) {
2176      MinVal = APInt::getSignedMinValue(OperandBitSize);
2177      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2178    } else {
2179      MinVal = APInt::getMinValue(OperandBitSize);
2180      MaxVal = APInt::getMaxValue(OperandBitSize);
2181    }
2182
2183    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2184    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2185      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2186      // X >= C0 --> X > (C0-1)
2187      return DAG.getSetCC(dl, VT, N0,
2188                          DAG.getConstant(C1-1, N1.getValueType()),
2189                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2190    }
2191
2192    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2193      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2194      // X <= C0 --> X < (C0+1)
2195      return DAG.getSetCC(dl, VT, N0,
2196                          DAG.getConstant(C1+1, N1.getValueType()),
2197                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2198    }
2199
2200    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2201      return DAG.getConstant(0, VT);      // X < MIN --> false
2202    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2203      return DAG.getConstant(1, VT);      // X >= MIN --> true
2204    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2205      return DAG.getConstant(0, VT);      // X > MAX --> false
2206    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2207      return DAG.getConstant(1, VT);      // X <= MAX --> true
2208
2209    // Canonicalize setgt X, Min --> setne X, Min
2210    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2211      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2212    // Canonicalize setlt X, Max --> setne X, Max
2213    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2214      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2215
2216    // If we have setult X, 1, turn it into seteq X, 0
2217    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2218      return DAG.getSetCC(dl, VT, N0,
2219                          DAG.getConstant(MinVal, N0.getValueType()),
2220                          ISD::SETEQ);
2221    // If we have setugt X, Max-1, turn it into seteq X, Max
2222    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2223      return DAG.getSetCC(dl, VT, N0,
2224                          DAG.getConstant(MaxVal, N0.getValueType()),
2225                          ISD::SETEQ);
2226
2227    // If we have "setcc X, C0", check to see if we can shrink the immediate
2228    // by changing cc.
2229
2230    // SETUGT X, SINTMAX  -> SETLT X, 0
2231    if (Cond == ISD::SETUGT &&
2232        C1 == APInt::getSignedMaxValue(OperandBitSize))
2233      return DAG.getSetCC(dl, VT, N0,
2234                          DAG.getConstant(0, N1.getValueType()),
2235                          ISD::SETLT);
2236
2237    // SETULT X, SINTMIN  -> SETGT X, -1
2238    if (Cond == ISD::SETULT &&
2239        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2240      SDValue ConstMinusOne =
2241          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2242                          N1.getValueType());
2243      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2244    }
2245
2246    // Fold bit comparisons when we can.
2247    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2248        (VT == N0.getValueType() ||
2249         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2250        N0.getOpcode() == ISD::AND)
2251      if (ConstantSDNode *AndRHS =
2252                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2253        EVT ShiftTy = DCI.isBeforeLegalize() ?
2254          getPointerTy() : getShiftAmountTy(N0.getValueType());
2255        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2256          // Perform the xform if the AND RHS is a single bit.
2257          if (AndRHS->getAPIntValue().isPowerOf2()) {
2258            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2259                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2260                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2261          }
2262        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2263          // (X & 8) == 8  -->  (X & 8) >> 3
2264          // Perform the xform if C1 is a single bit.
2265          if (C1.isPowerOf2()) {
2266            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2267                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2268                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2269          }
2270        }
2271      }
2272  }
2273
2274  if (isa<ConstantFPSDNode>(N0.getNode())) {
2275    // Constant fold or commute setcc.
2276    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2277    if (O.getNode()) return O;
2278  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2279    // If the RHS of an FP comparison is a constant, simplify it away in
2280    // some cases.
2281    if (CFP->getValueAPF().isNaN()) {
2282      // If an operand is known to be a nan, we can fold it.
2283      switch (ISD::getUnorderedFlavor(Cond)) {
2284      default: llvm_unreachable("Unknown flavor!");
2285      case 0:  // Known false.
2286        return DAG.getConstant(0, VT);
2287      case 1:  // Known true.
2288        return DAG.getConstant(1, VT);
2289      case 2:  // Undefined.
2290        return DAG.getUNDEF(VT);
2291      }
2292    }
2293
2294    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2295    // constant if knowing that the operand is non-nan is enough.  We prefer to
2296    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2297    // materialize 0.0.
2298    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2299      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2300
2301    // If the condition is not legal, see if we can find an equivalent one
2302    // which is legal.
2303    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2304      // If the comparison was an awkward floating-point == or != and one of
2305      // the comparison operands is infinity or negative infinity, convert the
2306      // condition to a less-awkward <= or >=.
2307      if (CFP->getValueAPF().isInfinity()) {
2308        if (CFP->getValueAPF().isNegative()) {
2309          if (Cond == ISD::SETOEQ &&
2310              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2311            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2312          if (Cond == ISD::SETUEQ &&
2313              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2314            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2315          if (Cond == ISD::SETUNE &&
2316              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2317            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2318          if (Cond == ISD::SETONE &&
2319              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2320            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2321        } else {
2322          if (Cond == ISD::SETOEQ &&
2323              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2324            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2325          if (Cond == ISD::SETUEQ &&
2326              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2327            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2328          if (Cond == ISD::SETUNE &&
2329              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2330            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2331          if (Cond == ISD::SETONE &&
2332              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2333            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2334        }
2335      }
2336    }
2337  }
2338
2339  if (N0 == N1) {
2340    // We can always fold X == X for integer setcc's.
2341    if (N0.getValueType().isInteger())
2342      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2343    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2344    if (UOF == 2)   // FP operators that are undefined on NaNs.
2345      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2346    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2347      return DAG.getConstant(UOF, VT);
2348    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2349    // if it is not already.
2350    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2351    if (NewCond != Cond)
2352      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2353  }
2354
2355  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2356      N0.getValueType().isInteger()) {
2357    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2358        N0.getOpcode() == ISD::XOR) {
2359      // Simplify (X+Y) == (X+Z) -->  Y == Z
2360      if (N0.getOpcode() == N1.getOpcode()) {
2361        if (N0.getOperand(0) == N1.getOperand(0))
2362          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2363        if (N0.getOperand(1) == N1.getOperand(1))
2364          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2365        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2366          // If X op Y == Y op X, try other combinations.
2367          if (N0.getOperand(0) == N1.getOperand(1))
2368            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2369                                Cond);
2370          if (N0.getOperand(1) == N1.getOperand(0))
2371            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2372                                Cond);
2373        }
2374      }
2375
2376      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2377        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2378          // Turn (X+C1) == C2 --> X == C2-C1
2379          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2380            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2381                                DAG.getConstant(RHSC->getAPIntValue()-
2382                                                LHSR->getAPIntValue(),
2383                                N0.getValueType()), Cond);
2384          }
2385
2386          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2387          if (N0.getOpcode() == ISD::XOR)
2388            // If we know that all of the inverted bits are zero, don't bother
2389            // performing the inversion.
2390            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2391              return
2392                DAG.getSetCC(dl, VT, N0.getOperand(0),
2393                             DAG.getConstant(LHSR->getAPIntValue() ^
2394                                               RHSC->getAPIntValue(),
2395                                             N0.getValueType()),
2396                             Cond);
2397        }
2398
2399        // Turn (C1-X) == C2 --> X == C1-C2
2400        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2401          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2402            return
2403              DAG.getSetCC(dl, VT, N0.getOperand(1),
2404                           DAG.getConstant(SUBC->getAPIntValue() -
2405                                             RHSC->getAPIntValue(),
2406                                           N0.getValueType()),
2407                           Cond);
2408          }
2409        }
2410      }
2411
2412      // Simplify (X+Z) == X -->  Z == 0
2413      if (N0.getOperand(0) == N1)
2414        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2415                        DAG.getConstant(0, N0.getValueType()), Cond);
2416      if (N0.getOperand(1) == N1) {
2417        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2418          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2419                          DAG.getConstant(0, N0.getValueType()), Cond);
2420        else if (N0.getNode()->hasOneUse()) {
2421          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2422          // (Z-X) == X  --> Z == X<<1
2423          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2424                                     N1,
2425                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2426          if (!DCI.isCalledByLegalizer())
2427            DCI.AddToWorklist(SH.getNode());
2428          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2429        }
2430      }
2431    }
2432
2433    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2434        N1.getOpcode() == ISD::XOR) {
2435      // Simplify  X == (X+Z) -->  Z == 0
2436      if (N1.getOperand(0) == N0) {
2437        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2438                        DAG.getConstant(0, N1.getValueType()), Cond);
2439      } else if (N1.getOperand(1) == N0) {
2440        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2441          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2442                          DAG.getConstant(0, N1.getValueType()), Cond);
2443        } else if (N1.getNode()->hasOneUse()) {
2444          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2445          // X == (Z-X)  --> X<<1 == Z
2446          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2447                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2448          if (!DCI.isCalledByLegalizer())
2449            DCI.AddToWorklist(SH.getNode());
2450          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2451        }
2452      }
2453    }
2454
2455    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2456    // Note that where y is variable and is known to have at most
2457    // one bit set (for example, if it is z&1) we cannot do this;
2458    // the expressions are not equivalent when y==0.
2459    if (N0.getOpcode() == ISD::AND)
2460      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2461        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2462          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2463          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2464          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2465        }
2466      }
2467    if (N1.getOpcode() == ISD::AND)
2468      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2469        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2470          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2471          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2472          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2473        }
2474      }
2475  }
2476
2477  // Fold away ALL boolean setcc's.
2478  SDValue Temp;
2479  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2480    switch (Cond) {
2481    default: llvm_unreachable("Unknown integer setcc!");
2482    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2483      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2484      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2485      if (!DCI.isCalledByLegalizer())
2486        DCI.AddToWorklist(Temp.getNode());
2487      break;
2488    case ISD::SETNE:  // X != Y   -->  (X^Y)
2489      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2490      break;
2491    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2492    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2493      Temp = DAG.getNOT(dl, N0, MVT::i1);
2494      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2495      if (!DCI.isCalledByLegalizer())
2496        DCI.AddToWorklist(Temp.getNode());
2497      break;
2498    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2499    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2500      Temp = DAG.getNOT(dl, N1, MVT::i1);
2501      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2502      if (!DCI.isCalledByLegalizer())
2503        DCI.AddToWorklist(Temp.getNode());
2504      break;
2505    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2506    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2507      Temp = DAG.getNOT(dl, N0, MVT::i1);
2508      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2509      if (!DCI.isCalledByLegalizer())
2510        DCI.AddToWorklist(Temp.getNode());
2511      break;
2512    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2513    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2514      Temp = DAG.getNOT(dl, N1, MVT::i1);
2515      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2516      break;
2517    }
2518    if (VT != MVT::i1) {
2519      if (!DCI.isCalledByLegalizer())
2520        DCI.AddToWorklist(N0.getNode());
2521      // FIXME: If running after legalize, we probably can't do this.
2522      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2523    }
2524    return N0;
2525  }
2526
2527  // Could not fold it.
2528  return SDValue();
2529}
2530
2531/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2532/// node is a GlobalAddress + offset.
2533bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2534                                    int64_t &Offset) const {
2535  if (isa<GlobalAddressSDNode>(N)) {
2536    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2537    GA = GASD->getGlobal();
2538    Offset += GASD->getOffset();
2539    return true;
2540  }
2541
2542  if (N->getOpcode() == ISD::ADD) {
2543    SDValue N1 = N->getOperand(0);
2544    SDValue N2 = N->getOperand(1);
2545    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2546      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2547      if (V) {
2548        Offset += V->getSExtValue();
2549        return true;
2550      }
2551    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2552      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2553      if (V) {
2554        Offset += V->getSExtValue();
2555        return true;
2556      }
2557    }
2558  }
2559
2560  return false;
2561}
2562
2563
2564SDValue TargetLowering::
2565PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2566  // Default implementation: no optimization.
2567  return SDValue();
2568}
2569
2570//===----------------------------------------------------------------------===//
2571//  Inline Assembler Implementation Methods
2572//===----------------------------------------------------------------------===//
2573
2574
2575TargetLowering::ConstraintType
2576TargetLowering::getConstraintType(const std::string &Constraint) const {
2577  // FIXME: lots more standard ones to handle.
2578  if (Constraint.size() == 1) {
2579    switch (Constraint[0]) {
2580    default: break;
2581    case 'r': return C_RegisterClass;
2582    case 'm':    // memory
2583    case 'o':    // offsetable
2584    case 'V':    // not offsetable
2585      return C_Memory;
2586    case 'i':    // Simple Integer or Relocatable Constant
2587    case 'n':    // Simple Integer
2588    case 'E':    // Floating Point Constant
2589    case 'F':    // Floating Point Constant
2590    case 's':    // Relocatable Constant
2591    case 'p':    // Address.
2592    case 'X':    // Allow ANY value.
2593    case 'I':    // Target registers.
2594    case 'J':
2595    case 'K':
2596    case 'L':
2597    case 'M':
2598    case 'N':
2599    case 'O':
2600    case 'P':
2601    case '<':
2602    case '>':
2603      return C_Other;
2604    }
2605  }
2606
2607  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2608      Constraint[Constraint.size()-1] == '}')
2609    return C_Register;
2610  return C_Unknown;
2611}
2612
2613/// LowerXConstraint - try to replace an X constraint, which matches anything,
2614/// with another that has more specific requirements based on the type of the
2615/// corresponding operand.
2616const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2617  if (ConstraintVT.isInteger())
2618    return "r";
2619  if (ConstraintVT.isFloatingPoint())
2620    return "f";      // works for many targets
2621  return 0;
2622}
2623
2624/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2625/// vector.  If it is invalid, don't add anything to Ops.
2626void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2627                                                  char ConstraintLetter,
2628                                                  std::vector<SDValue> &Ops,
2629                                                  SelectionDAG &DAG) const {
2630  switch (ConstraintLetter) {
2631  default: break;
2632  case 'X':     // Allows any operand; labels (basic block) use this.
2633    if (Op.getOpcode() == ISD::BasicBlock) {
2634      Ops.push_back(Op);
2635      return;
2636    }
2637    // fall through
2638  case 'i':    // Simple Integer or Relocatable Constant
2639  case 'n':    // Simple Integer
2640  case 's': {  // Relocatable Constant
2641    // These operands are interested in values of the form (GV+C), where C may
2642    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2643    // is possible and fine if either GV or C are missing.
2644    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2645    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2646
2647    // If we have "(add GV, C)", pull out GV/C
2648    if (Op.getOpcode() == ISD::ADD) {
2649      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2650      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2651      if (C == 0 || GA == 0) {
2652        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2653        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2654      }
2655      if (C == 0 || GA == 0)
2656        C = 0, GA = 0;
2657    }
2658
2659    // If we find a valid operand, map to the TargetXXX version so that the
2660    // value itself doesn't get selected.
2661    if (GA) {   // Either &GV   or   &GV+C
2662      if (ConstraintLetter != 'n') {
2663        int64_t Offs = GA->getOffset();
2664        if (C) Offs += C->getZExtValue();
2665        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2666                                                 C ? C->getDebugLoc() : DebugLoc(),
2667                                                 Op.getValueType(), Offs));
2668        return;
2669      }
2670    }
2671    if (C) {   // just C, no GV.
2672      // Simple constants are not allowed for 's'.
2673      if (ConstraintLetter != 's') {
2674        // gcc prints these as sign extended.  Sign extend value to 64 bits
2675        // now; without this it would get ZExt'd later in
2676        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2677        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2678                                            MVT::i64));
2679        return;
2680      }
2681    }
2682    break;
2683  }
2684  }
2685}
2686
2687std::vector<unsigned> TargetLowering::
2688getRegClassForInlineAsmConstraint(const std::string &Constraint,
2689                                  EVT VT) const {
2690  return std::vector<unsigned>();
2691}
2692
2693
2694std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2695getRegForInlineAsmConstraint(const std::string &Constraint,
2696                             EVT VT) const {
2697  if (Constraint[0] != '{')
2698    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2699  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2700
2701  // Remove the braces from around the name.
2702  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2703
2704  // Figure out which register class contains this reg.
2705  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2706  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2707       E = RI->regclass_end(); RCI != E; ++RCI) {
2708    const TargetRegisterClass *RC = *RCI;
2709
2710    // If none of the value types for this register class are valid, we
2711    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2712    bool isLegal = false;
2713    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2714         I != E; ++I) {
2715      if (isTypeLegal(*I)) {
2716        isLegal = true;
2717        break;
2718      }
2719    }
2720
2721    if (!isLegal) continue;
2722
2723    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2724         I != E; ++I) {
2725      if (RegName.equals_lower(RI->getName(*I)))
2726        return std::make_pair(*I, RC);
2727    }
2728  }
2729
2730  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2731}
2732
2733//===----------------------------------------------------------------------===//
2734// Constraint Selection.
2735
2736/// isMatchingInputConstraint - Return true of this is an input operand that is
2737/// a matching constraint like "4".
2738bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2739  assert(!ConstraintCode.empty() && "No known constraint!");
2740  return isdigit(ConstraintCode[0]);
2741}
2742
2743/// getMatchedOperand - If this is an input matching constraint, this method
2744/// returns the output operand it matches.
2745unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2746  assert(!ConstraintCode.empty() && "No known constraint!");
2747  return atoi(ConstraintCode.c_str());
2748}
2749
2750
2751/// ParseConstraints - Split up the constraint string from the inline
2752/// assembly value into the specific constraints and their prefixes,
2753/// and also tie in the associated operand values.
2754/// If this returns an empty vector, and if the constraint string itself
2755/// isn't empty, there was an error parsing.
2756TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2757    ImmutableCallSite CS) const {
2758  /// ConstraintOperands - Information about all of the constraints.
2759  AsmOperandInfoVector ConstraintOperands;
2760  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2761  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2762
2763  // Do a prepass over the constraints, canonicalizing them, and building up the
2764  // ConstraintOperands list.
2765  InlineAsm::ConstraintInfoVector
2766    ConstraintInfos = IA->ParseConstraints();
2767
2768  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2769  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2770
2771  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2772    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2773    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2774
2775    // Update multiple alternative constraint count.
2776    if (OpInfo.multipleAlternatives.size() > maCount)
2777      maCount = OpInfo.multipleAlternatives.size();
2778
2779    OpInfo.ConstraintVT = MVT::Other;
2780
2781    // Compute the value type for each operand.
2782    switch (OpInfo.Type) {
2783    case InlineAsm::isOutput:
2784      // Indirect outputs just consume an argument.
2785      if (OpInfo.isIndirect) {
2786        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2787        break;
2788      }
2789
2790      // The return value of the call is this value.  As such, there is no
2791      // corresponding argument.
2792      assert(!CS.getType()->isVoidTy() &&
2793             "Bad inline asm!");
2794      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2795        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2796      } else {
2797        assert(ResNo == 0 && "Asm only has one result!");
2798        OpInfo.ConstraintVT = getValueType(CS.getType());
2799      }
2800      ++ResNo;
2801      break;
2802    case InlineAsm::isInput:
2803      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2804      break;
2805    case InlineAsm::isClobber:
2806      // Nothing to do.
2807      break;
2808    }
2809
2810    if (OpInfo.CallOperandVal) {
2811      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2812      if (OpInfo.isIndirect) {
2813        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2814        if (!PtrTy)
2815          report_fatal_error("Indirect operand for inline asm not a pointer!");
2816        OpTy = PtrTy->getElementType();
2817      }
2818
2819      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2820      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2821        if (STy->getNumElements() == 1)
2822          OpTy = STy->getElementType(0);
2823
2824      // If OpTy is not a single value, it may be a struct/union that we
2825      // can tile with integers.
2826      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2827        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2828        switch (BitSize) {
2829        default: break;
2830        case 1:
2831        case 8:
2832        case 16:
2833        case 32:
2834        case 64:
2835        case 128:
2836          OpInfo.ConstraintVT =
2837              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2838          break;
2839        }
2840      } else if (dyn_cast<PointerType>(OpTy)) {
2841        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2842      } else {
2843        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2844      }
2845    }
2846  }
2847
2848  // If we have multiple alternative constraints, select the best alternative.
2849  if (ConstraintInfos.size()) {
2850    if (maCount) {
2851      unsigned bestMAIndex = 0;
2852      int bestWeight = -1;
2853      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2854      int weight = -1;
2855      unsigned maIndex;
2856      // Compute the sums of the weights for each alternative, keeping track
2857      // of the best (highest weight) one so far.
2858      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2859        int weightSum = 0;
2860        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2861            cIndex != eIndex; ++cIndex) {
2862          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2863          if (OpInfo.Type == InlineAsm::isClobber)
2864            continue;
2865
2866          // If this is an output operand with a matching input operand,
2867          // look up the matching input. If their types mismatch, e.g. one
2868          // is an integer, the other is floating point, or their sizes are
2869          // different, flag it as an maCantMatch.
2870          if (OpInfo.hasMatchingInput()) {
2871            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2872            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2873              if ((OpInfo.ConstraintVT.isInteger() !=
2874                   Input.ConstraintVT.isInteger()) ||
2875                  (OpInfo.ConstraintVT.getSizeInBits() !=
2876                   Input.ConstraintVT.getSizeInBits())) {
2877                weightSum = -1;  // Can't match.
2878                break;
2879              }
2880            }
2881          }
2882          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2883          if (weight == -1) {
2884            weightSum = -1;
2885            break;
2886          }
2887          weightSum += weight;
2888        }
2889        // Update best.
2890        if (weightSum > bestWeight) {
2891          bestWeight = weightSum;
2892          bestMAIndex = maIndex;
2893        }
2894      }
2895
2896      // Now select chosen alternative in each constraint.
2897      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2898          cIndex != eIndex; ++cIndex) {
2899        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2900        if (cInfo.Type == InlineAsm::isClobber)
2901          continue;
2902        cInfo.selectAlternative(bestMAIndex);
2903      }
2904    }
2905  }
2906
2907  // Check and hook up tied operands, choose constraint code to use.
2908  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2909      cIndex != eIndex; ++cIndex) {
2910    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2911
2912    // If this is an output operand with a matching input operand, look up the
2913    // matching input. If their types mismatch, e.g. one is an integer, the
2914    // other is floating point, or their sizes are different, flag it as an
2915    // error.
2916    if (OpInfo.hasMatchingInput()) {
2917      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2918
2919      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2920        if ((OpInfo.ConstraintVT.isInteger() !=
2921             Input.ConstraintVT.isInteger()) ||
2922            (OpInfo.ConstraintVT.getSizeInBits() !=
2923             Input.ConstraintVT.getSizeInBits())) {
2924          report_fatal_error("Unsupported asm: input constraint"
2925                             " with a matching output constraint of"
2926                             " incompatible type!");
2927        }
2928      }
2929
2930    }
2931  }
2932
2933  return ConstraintOperands;
2934}
2935
2936
2937/// getConstraintGenerality - Return an integer indicating how general CT
2938/// is.
2939static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2940  switch (CT) {
2941  default: llvm_unreachable("Unknown constraint type!");
2942  case TargetLowering::C_Other:
2943  case TargetLowering::C_Unknown:
2944    return 0;
2945  case TargetLowering::C_Register:
2946    return 1;
2947  case TargetLowering::C_RegisterClass:
2948    return 2;
2949  case TargetLowering::C_Memory:
2950    return 3;
2951  }
2952}
2953
2954/// Examine constraint type and operand type and determine a weight value.
2955/// This object must already have been set up with the operand type
2956/// and the current alternative constraint selected.
2957TargetLowering::ConstraintWeight
2958  TargetLowering::getMultipleConstraintMatchWeight(
2959    AsmOperandInfo &info, int maIndex) const {
2960  InlineAsm::ConstraintCodeVector *rCodes;
2961  if (maIndex >= (int)info.multipleAlternatives.size())
2962    rCodes = &info.Codes;
2963  else
2964    rCodes = &info.multipleAlternatives[maIndex].Codes;
2965  ConstraintWeight BestWeight = CW_Invalid;
2966
2967  // Loop over the options, keeping track of the most general one.
2968  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2969    ConstraintWeight weight =
2970      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2971    if (weight > BestWeight)
2972      BestWeight = weight;
2973  }
2974
2975  return BestWeight;
2976}
2977
2978/// Examine constraint type and operand type and determine a weight value.
2979/// This object must already have been set up with the operand type
2980/// and the current alternative constraint selected.
2981TargetLowering::ConstraintWeight
2982  TargetLowering::getSingleConstraintMatchWeight(
2983    AsmOperandInfo &info, const char *constraint) const {
2984  ConstraintWeight weight = CW_Invalid;
2985  Value *CallOperandVal = info.CallOperandVal;
2986    // If we don't have a value, we can't do a match,
2987    // but allow it at the lowest weight.
2988  if (CallOperandVal == NULL)
2989    return CW_Default;
2990  // Look at the constraint type.
2991  switch (*constraint) {
2992    case 'i': // immediate integer.
2993    case 'n': // immediate integer with a known value.
2994      if (isa<ConstantInt>(CallOperandVal))
2995        weight = CW_Constant;
2996      break;
2997    case 's': // non-explicit intregal immediate.
2998      if (isa<GlobalValue>(CallOperandVal))
2999        weight = CW_Constant;
3000      break;
3001    case 'E': // immediate float if host format.
3002    case 'F': // immediate float.
3003      if (isa<ConstantFP>(CallOperandVal))
3004        weight = CW_Constant;
3005      break;
3006    case '<': // memory operand with autodecrement.
3007    case '>': // memory operand with autoincrement.
3008    case 'm': // memory operand.
3009    case 'o': // offsettable memory operand
3010    case 'V': // non-offsettable memory operand
3011      weight = CW_Memory;
3012      break;
3013    case 'r': // general register.
3014    case 'g': // general register, memory operand or immediate integer.
3015              // note: Clang converts "g" to "imr".
3016      if (CallOperandVal->getType()->isIntegerTy())
3017        weight = CW_Register;
3018      break;
3019    case 'X': // any operand.
3020    default:
3021      weight = CW_Default;
3022      break;
3023  }
3024  return weight;
3025}
3026
3027/// ChooseConstraint - If there are multiple different constraints that we
3028/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3029/// This is somewhat tricky: constraints fall into four classes:
3030///    Other         -> immediates and magic values
3031///    Register      -> one specific register
3032///    RegisterClass -> a group of regs
3033///    Memory        -> memory
3034/// Ideally, we would pick the most specific constraint possible: if we have
3035/// something that fits into a register, we would pick it.  The problem here
3036/// is that if we have something that could either be in a register or in
3037/// memory that use of the register could cause selection of *other*
3038/// operands to fail: they might only succeed if we pick memory.  Because of
3039/// this the heuristic we use is:
3040///
3041///  1) If there is an 'other' constraint, and if the operand is valid for
3042///     that constraint, use it.  This makes us take advantage of 'i'
3043///     constraints when available.
3044///  2) Otherwise, pick the most general constraint present.  This prefers
3045///     'm' over 'r', for example.
3046///
3047static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3048                             const TargetLowering &TLI,
3049                             SDValue Op, SelectionDAG *DAG) {
3050  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3051  unsigned BestIdx = 0;
3052  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3053  int BestGenerality = -1;
3054
3055  // Loop over the options, keeping track of the most general one.
3056  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3057    TargetLowering::ConstraintType CType =
3058      TLI.getConstraintType(OpInfo.Codes[i]);
3059
3060    // If this is an 'other' constraint, see if the operand is valid for it.
3061    // For example, on X86 we might have an 'rI' constraint.  If the operand
3062    // is an integer in the range [0..31] we want to use I (saving a load
3063    // of a register), otherwise we must use 'r'.
3064    if (CType == TargetLowering::C_Other && Op.getNode()) {
3065      assert(OpInfo.Codes[i].size() == 1 &&
3066             "Unhandled multi-letter 'other' constraint");
3067      std::vector<SDValue> ResultOps;
3068      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3069                                       ResultOps, *DAG);
3070      if (!ResultOps.empty()) {
3071        BestType = CType;
3072        BestIdx = i;
3073        break;
3074      }
3075    }
3076
3077    // Things with matching constraints can only be registers, per gcc
3078    // documentation.  This mainly affects "g" constraints.
3079    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3080      continue;
3081
3082    // This constraint letter is more general than the previous one, use it.
3083    int Generality = getConstraintGenerality(CType);
3084    if (Generality > BestGenerality) {
3085      BestType = CType;
3086      BestIdx = i;
3087      BestGenerality = Generality;
3088    }
3089  }
3090
3091  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3092  OpInfo.ConstraintType = BestType;
3093}
3094
3095/// ComputeConstraintToUse - Determines the constraint code and constraint
3096/// type to use for the specific AsmOperandInfo, setting
3097/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3098void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3099                                            SDValue Op,
3100                                            SelectionDAG *DAG) const {
3101  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3102
3103  // Single-letter constraints ('r') are very common.
3104  if (OpInfo.Codes.size() == 1) {
3105    OpInfo.ConstraintCode = OpInfo.Codes[0];
3106    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3107  } else {
3108    ChooseConstraint(OpInfo, *this, Op, DAG);
3109  }
3110
3111  // 'X' matches anything.
3112  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3113    // Labels and constants are handled elsewhere ('X' is the only thing
3114    // that matches labels).  For Functions, the type here is the type of
3115    // the result, which is not what we want to look at; leave them alone.
3116    Value *v = OpInfo.CallOperandVal;
3117    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3118      OpInfo.CallOperandVal = v;
3119      return;
3120    }
3121
3122    // Otherwise, try to resolve it to something we know about by looking at
3123    // the actual operand type.
3124    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3125      OpInfo.ConstraintCode = Repl;
3126      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3127    }
3128  }
3129}
3130
3131//===----------------------------------------------------------------------===//
3132//  Loop Strength Reduction hooks
3133//===----------------------------------------------------------------------===//
3134
3135/// isLegalAddressingMode - Return true if the addressing mode represented
3136/// by AM is legal for this target, for a load/store of the specified type.
3137bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3138                                           const Type *Ty) const {
3139  // The default implementation of this implements a conservative RISCy, r+r and
3140  // r+i addr mode.
3141
3142  // Allows a sign-extended 16-bit immediate field.
3143  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3144    return false;
3145
3146  // No global is ever allowed as a base.
3147  if (AM.BaseGV)
3148    return false;
3149
3150  // Only support r+r,
3151  switch (AM.Scale) {
3152  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3153    break;
3154  case 1:
3155    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3156      return false;
3157    // Otherwise we have r+r or r+i.
3158    break;
3159  case 2:
3160    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3161      return false;
3162    // Allow 2*r as r+r.
3163    break;
3164  }
3165
3166  return true;
3167}
3168
3169/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3170/// return a DAG expression to select that will generate the same value by
3171/// multiplying by a magic number.  See:
3172/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3173SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3174                                  std::vector<SDNode*>* Created) const {
3175  EVT VT = N->getValueType(0);
3176  DebugLoc dl= N->getDebugLoc();
3177
3178  // Check to see if we can do this.
3179  // FIXME: We should be more aggressive here.
3180  if (!isTypeLegal(VT))
3181    return SDValue();
3182
3183  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3184  APInt::ms magics = d.magic();
3185
3186  // Multiply the numerator (operand 0) by the magic value
3187  // FIXME: We should support doing a MUL in a wider type
3188  SDValue Q;
3189  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3190    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3191                    DAG.getConstant(magics.m, VT));
3192  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3193    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3194                              N->getOperand(0),
3195                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3196  else
3197    return SDValue();       // No mulhs or equvialent
3198  // If d > 0 and m < 0, add the numerator
3199  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3200    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3201    if (Created)
3202      Created->push_back(Q.getNode());
3203  }
3204  // If d < 0 and m > 0, subtract the numerator.
3205  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3206    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3207    if (Created)
3208      Created->push_back(Q.getNode());
3209  }
3210  // Shift right algebraic if shift value is nonzero
3211  if (magics.s > 0) {
3212    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3213                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3214    if (Created)
3215      Created->push_back(Q.getNode());
3216  }
3217  // Extract the sign bit and add it to the quotient
3218  SDValue T =
3219    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3220                                           getShiftAmountTy(Q.getValueType())));
3221  if (Created)
3222    Created->push_back(T.getNode());
3223  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3224}
3225
3226/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3227/// return a DAG expression to select that will generate the same value by
3228/// multiplying by a magic number.  See:
3229/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3230SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3231                                  std::vector<SDNode*>* Created) const {
3232  EVT VT = N->getValueType(0);
3233  DebugLoc dl = N->getDebugLoc();
3234
3235  // Check to see if we can do this.
3236  // FIXME: We should be more aggressive here.
3237  if (!isTypeLegal(VT))
3238    return SDValue();
3239
3240  // FIXME: We should use a narrower constant when the upper
3241  // bits are known to be zero.
3242  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3243  APInt::mu magics = N1C.magicu();
3244
3245  SDValue Q = N->getOperand(0);
3246
3247  // If the divisor is even, we can avoid using the expensive fixup by shifting
3248  // the divided value upfront.
3249  if (magics.a != 0 && !N1C[0]) {
3250    unsigned Shift = N1C.countTrailingZeros();
3251    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3252                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3253    if (Created)
3254      Created->push_back(Q.getNode());
3255
3256    // Get magic number for the shifted divisor.
3257    magics = N1C.lshr(Shift).magicu(Shift);
3258    assert(magics.a == 0 && "Should use cheap fixup now");
3259  }
3260
3261  // Multiply the numerator (operand 0) by the magic value
3262  // FIXME: We should support doing a MUL in a wider type
3263  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3264    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3265  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3266    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3267                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3268  else
3269    return SDValue();       // No mulhu or equvialent
3270  if (Created)
3271    Created->push_back(Q.getNode());
3272
3273  if (magics.a == 0) {
3274    assert(magics.s < N1C.getBitWidth() &&
3275           "We shouldn't generate an undefined shift!");
3276    return DAG.getNode(ISD::SRL, dl, VT, Q,
3277                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3278  } else {
3279    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3280    if (Created)
3281      Created->push_back(NPQ.getNode());
3282    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3283                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3284    if (Created)
3285      Created->push_back(NPQ.getNode());
3286    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3287    if (Created)
3288      Created->push_back(NPQ.getNode());
3289    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3290             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3291  }
3292}
3293