TargetLowering.cpp revision b9333ccdd5658c826f2c7bdd6a542343eed56871
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::LOG_F32] = "logf";
87  Names[RTLIB::LOG_F64] = "log";
88  Names[RTLIB::LOG_F80] = "logl";
89  Names[RTLIB::LOG_PPCF128] = "logl";
90  Names[RTLIB::LOG2_F32] = "log2f";
91  Names[RTLIB::LOG2_F64] = "log2";
92  Names[RTLIB::LOG2_F80] = "log2l";
93  Names[RTLIB::LOG2_PPCF128] = "log2l";
94  Names[RTLIB::LOG10_F32] = "log10f";
95  Names[RTLIB::LOG10_F64] = "log10";
96  Names[RTLIB::LOG10_F80] = "log10l";
97  Names[RTLIB::LOG10_PPCF128] = "log10l";
98  Names[RTLIB::EXP_F32] = "expf";
99  Names[RTLIB::EXP_F64] = "exp";
100  Names[RTLIB::EXP_F80] = "expl";
101  Names[RTLIB::EXP_PPCF128] = "expl";
102  Names[RTLIB::EXP2_F32] = "exp2f";
103  Names[RTLIB::EXP2_F64] = "exp2";
104  Names[RTLIB::EXP2_F80] = "exp2l";
105  Names[RTLIB::EXP2_PPCF128] = "exp2l";
106  Names[RTLIB::SIN_F32] = "sinf";
107  Names[RTLIB::SIN_F64] = "sin";
108  Names[RTLIB::SIN_F80] = "sinl";
109  Names[RTLIB::SIN_PPCF128] = "sinl";
110  Names[RTLIB::COS_F32] = "cosf";
111  Names[RTLIB::COS_F64] = "cos";
112  Names[RTLIB::COS_F80] = "cosl";
113  Names[RTLIB::COS_PPCF128] = "cosl";
114  Names[RTLIB::POW_F32] = "powf";
115  Names[RTLIB::POW_F64] = "pow";
116  Names[RTLIB::POW_F80] = "powl";
117  Names[RTLIB::POW_PPCF128] = "powl";
118  Names[RTLIB::CEIL_F32] = "ceilf";
119  Names[RTLIB::CEIL_F64] = "ceil";
120  Names[RTLIB::CEIL_F80] = "ceill";
121  Names[RTLIB::CEIL_PPCF128] = "ceill";
122  Names[RTLIB::TRUNC_F32] = "truncf";
123  Names[RTLIB::TRUNC_F64] = "trunc";
124  Names[RTLIB::TRUNC_F80] = "truncl";
125  Names[RTLIB::TRUNC_PPCF128] = "truncl";
126  Names[RTLIB::RINT_F32] = "rintf";
127  Names[RTLIB::RINT_F64] = "rint";
128  Names[RTLIB::RINT_F80] = "rintl";
129  Names[RTLIB::RINT_PPCF128] = "rintl";
130  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
131  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
132  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
133  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
134  Names[RTLIB::FLOOR_F32] = "floorf";
135  Names[RTLIB::FLOOR_F64] = "floor";
136  Names[RTLIB::FLOOR_F80] = "floorl";
137  Names[RTLIB::FLOOR_PPCF128] = "floorl";
138  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
139  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
140  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
141  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
142  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
143  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
144  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
145  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
146  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
147  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
148  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
149  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
150  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
151  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
152  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
153  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
154  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
155  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
156  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
157  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
158  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
159  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
160  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
161  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
162  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
163  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
164  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
165  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
166  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
167  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
168  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
169  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
170  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
171  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
172  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
173  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
174  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
175  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
176  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
177  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
178  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
179  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
180  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
181  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
182  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
183  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
184  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
185  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
186  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
187  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
188  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
189  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
190  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
191  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
192  Names[RTLIB::OEQ_F32] = "__eqsf2";
193  Names[RTLIB::OEQ_F64] = "__eqdf2";
194  Names[RTLIB::UNE_F32] = "__nesf2";
195  Names[RTLIB::UNE_F64] = "__nedf2";
196  Names[RTLIB::OGE_F32] = "__gesf2";
197  Names[RTLIB::OGE_F64] = "__gedf2";
198  Names[RTLIB::OLT_F32] = "__ltsf2";
199  Names[RTLIB::OLT_F64] = "__ltdf2";
200  Names[RTLIB::OLE_F32] = "__lesf2";
201  Names[RTLIB::OLE_F64] = "__ledf2";
202  Names[RTLIB::OGT_F32] = "__gtsf2";
203  Names[RTLIB::OGT_F64] = "__gtdf2";
204  Names[RTLIB::UO_F32] = "__unordsf2";
205  Names[RTLIB::UO_F64] = "__unorddf2";
206  Names[RTLIB::O_F32] = "__unordsf2";
207  Names[RTLIB::O_F64] = "__unorddf2";
208}
209
210/// getFPEXT - Return the FPEXT_*_* value for the given types, or
211/// UNKNOWN_LIBCALL if there is none.
212RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
213  if (OpVT == MVT::f32) {
214    if (RetVT == MVT::f64)
215      return FPEXT_F32_F64;
216  }
217  return UNKNOWN_LIBCALL;
218}
219
220/// getFPROUND - Return the FPROUND_*_* value for the given types, or
221/// UNKNOWN_LIBCALL if there is none.
222RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
223  if (RetVT == MVT::f32) {
224    if (OpVT == MVT::f64)
225      return FPROUND_F64_F32;
226    if (OpVT == MVT::f80)
227      return FPROUND_F80_F32;
228    if (OpVT == MVT::ppcf128)
229      return FPROUND_PPCF128_F32;
230  } else if (RetVT == MVT::f64) {
231    if (OpVT == MVT::f80)
232      return FPROUND_F80_F64;
233    if (OpVT == MVT::ppcf128)
234      return FPROUND_PPCF128_F64;
235  }
236  return UNKNOWN_LIBCALL;
237}
238
239/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
240/// UNKNOWN_LIBCALL if there is none.
241RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
242  if (OpVT == MVT::f32) {
243    if (RetVT == MVT::i32)
244      return FPTOSINT_F32_I32;
245    if (RetVT == MVT::i64)
246      return FPTOSINT_F32_I64;
247    if (RetVT == MVT::i128)
248      return FPTOSINT_F32_I128;
249  } else if (OpVT == MVT::f64) {
250    if (RetVT == MVT::i32)
251      return FPTOSINT_F64_I32;
252    if (RetVT == MVT::i64)
253      return FPTOSINT_F64_I64;
254    if (RetVT == MVT::i128)
255      return FPTOSINT_F64_I128;
256  } else if (OpVT == MVT::f80) {
257    if (RetVT == MVT::i32)
258      return FPTOSINT_F80_I32;
259    if (RetVT == MVT::i64)
260      return FPTOSINT_F80_I64;
261    if (RetVT == MVT::i128)
262      return FPTOSINT_F80_I128;
263  } else if (OpVT == MVT::ppcf128) {
264    if (RetVT == MVT::i32)
265      return FPTOSINT_PPCF128_I32;
266    if (RetVT == MVT::i64)
267      return FPTOSINT_PPCF128_I64;
268    if (RetVT == MVT::i128)
269      return FPTOSINT_PPCF128_I128;
270  }
271  return UNKNOWN_LIBCALL;
272}
273
274/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
275/// UNKNOWN_LIBCALL if there is none.
276RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
277  if (OpVT == MVT::f32) {
278    if (RetVT == MVT::i32)
279      return FPTOUINT_F32_I32;
280    if (RetVT == MVT::i64)
281      return FPTOUINT_F32_I64;
282    if (RetVT == MVT::i128)
283      return FPTOUINT_F32_I128;
284  } else if (OpVT == MVT::f64) {
285    if (RetVT == MVT::i32)
286      return FPTOUINT_F64_I32;
287    if (RetVT == MVT::i64)
288      return FPTOUINT_F64_I64;
289    if (RetVT == MVT::i128)
290      return FPTOUINT_F64_I128;
291  } else if (OpVT == MVT::f80) {
292    if (RetVT == MVT::i32)
293      return FPTOUINT_F80_I32;
294    if (RetVT == MVT::i64)
295      return FPTOUINT_F80_I64;
296    if (RetVT == MVT::i128)
297      return FPTOUINT_F80_I128;
298  } else if (OpVT == MVT::ppcf128) {
299    if (RetVT == MVT::i32)
300      return FPTOUINT_PPCF128_I32;
301    if (RetVT == MVT::i64)
302      return FPTOUINT_PPCF128_I64;
303    if (RetVT == MVT::i128)
304      return FPTOUINT_PPCF128_I128;
305  }
306  return UNKNOWN_LIBCALL;
307}
308
309/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
310/// UNKNOWN_LIBCALL if there is none.
311RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
312  if (OpVT == MVT::i32) {
313    if (RetVT == MVT::f32)
314      return SINTTOFP_I32_F32;
315    else if (RetVT == MVT::f64)
316      return SINTTOFP_I32_F64;
317    else if (RetVT == MVT::f80)
318      return SINTTOFP_I32_F80;
319    else if (RetVT == MVT::ppcf128)
320      return SINTTOFP_I32_PPCF128;
321  } else if (OpVT == MVT::i64) {
322    if (RetVT == MVT::f32)
323      return SINTTOFP_I64_F32;
324    else if (RetVT == MVT::f64)
325      return SINTTOFP_I64_F64;
326    else if (RetVT == MVT::f80)
327      return SINTTOFP_I64_F80;
328    else if (RetVT == MVT::ppcf128)
329      return SINTTOFP_I64_PPCF128;
330  } else if (OpVT == MVT::i128) {
331    if (RetVT == MVT::f32)
332      return SINTTOFP_I128_F32;
333    else if (RetVT == MVT::f64)
334      return SINTTOFP_I128_F64;
335    else if (RetVT == MVT::f80)
336      return SINTTOFP_I128_F80;
337    else if (RetVT == MVT::ppcf128)
338      return SINTTOFP_I128_PPCF128;
339  }
340  return UNKNOWN_LIBCALL;
341}
342
343/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
344/// UNKNOWN_LIBCALL if there is none.
345RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
346  if (OpVT == MVT::i32) {
347    if (RetVT == MVT::f32)
348      return UINTTOFP_I32_F32;
349    else if (RetVT == MVT::f64)
350      return UINTTOFP_I32_F64;
351    else if (RetVT == MVT::f80)
352      return UINTTOFP_I32_F80;
353    else if (RetVT == MVT::ppcf128)
354      return UINTTOFP_I32_PPCF128;
355  } else if (OpVT == MVT::i64) {
356    if (RetVT == MVT::f32)
357      return UINTTOFP_I64_F32;
358    else if (RetVT == MVT::f64)
359      return UINTTOFP_I64_F64;
360    else if (RetVT == MVT::f80)
361      return UINTTOFP_I64_F80;
362    else if (RetVT == MVT::ppcf128)
363      return UINTTOFP_I64_PPCF128;
364  } else if (OpVT == MVT::i128) {
365    if (RetVT == MVT::f32)
366      return UINTTOFP_I128_F32;
367    else if (RetVT == MVT::f64)
368      return UINTTOFP_I128_F64;
369    else if (RetVT == MVT::f80)
370      return UINTTOFP_I128_F80;
371    else if (RetVT == MVT::ppcf128)
372      return UINTTOFP_I128_PPCF128;
373  }
374  return UNKNOWN_LIBCALL;
375}
376
377/// InitCmpLibcallCCs - Set default comparison libcall CC.
378///
379static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
380  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
381  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
382  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
383  CCs[RTLIB::UNE_F32] = ISD::SETNE;
384  CCs[RTLIB::UNE_F64] = ISD::SETNE;
385  CCs[RTLIB::OGE_F32] = ISD::SETGE;
386  CCs[RTLIB::OGE_F64] = ISD::SETGE;
387  CCs[RTLIB::OLT_F32] = ISD::SETLT;
388  CCs[RTLIB::OLT_F64] = ISD::SETLT;
389  CCs[RTLIB::OLE_F32] = ISD::SETLE;
390  CCs[RTLIB::OLE_F64] = ISD::SETLE;
391  CCs[RTLIB::OGT_F32] = ISD::SETGT;
392  CCs[RTLIB::OGT_F64] = ISD::SETGT;
393  CCs[RTLIB::UO_F32] = ISD::SETNE;
394  CCs[RTLIB::UO_F64] = ISD::SETNE;
395  CCs[RTLIB::O_F32] = ISD::SETEQ;
396  CCs[RTLIB::O_F64] = ISD::SETEQ;
397}
398
399TargetLowering::TargetLowering(TargetMachine &tm)
400  : TM(tm), TD(TM.getTargetData()) {
401  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
402         "Fixed size array in TargetLowering is not large enough!");
403  // All operations default to being supported.
404  memset(OpActions, 0, sizeof(OpActions));
405  memset(LoadXActions, 0, sizeof(LoadXActions));
406  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
407  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
408  memset(ConvertActions, 0, sizeof(ConvertActions));
409
410  // Set default actions for various operations.
411  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
412    // Default all indexed load / store to expand.
413    for (unsigned IM = (unsigned)ISD::PRE_INC;
414         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
415      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
416      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
417    }
418
419    // These operations default to expand.
420    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
421  }
422
423  // Most targets ignore the @llvm.prefetch intrinsic.
424  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
425
426  // ConstantFP nodes default to expand.  Targets can either change this to
427  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
428  // to optimize expansions for certain constants.
429  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
430  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
431  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
432
433  // These library functions default to expand.
434  setOperationAction(ISD::FLOG , MVT::f64, Expand);
435  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
436  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
437  setOperationAction(ISD::FEXP , MVT::f64, Expand);
438  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG , MVT::f32, Expand);
440  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
441  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
442  setOperationAction(ISD::FEXP , MVT::f32, Expand);
443  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
444
445  // Default ISD::TRAP to expand (which turns it into abort).
446  setOperationAction(ISD::TRAP, MVT::Other, Expand);
447
448  IsLittleEndian = TD->isLittleEndian();
449  UsesGlobalOffsetTable = false;
450  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
451  ShiftAmtHandling = Undefined;
452  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
453  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
454  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
455  allowUnalignedMemoryAccesses = false;
456  UseUnderscoreSetJmp = false;
457  UseUnderscoreLongJmp = false;
458  SelectIsExpensive = false;
459  IntDivIsCheap = false;
460  Pow2DivIsCheap = false;
461  StackPointerRegisterToSaveRestore = 0;
462  ExceptionPointerRegister = 0;
463  ExceptionSelectorRegister = 0;
464  SetCCResultContents = UndefinedSetCCResult;
465  SchedPreferenceInfo = SchedulingForLatency;
466  JumpBufSize = 0;
467  JumpBufAlignment = 0;
468  IfCvtBlockSizeLimit = 2;
469  IfCvtDupBlockSizeLimit = 0;
470  PrefLoopAlignment = 0;
471
472  InitLibcallNames(LibcallRoutineNames);
473  InitCmpLibcallCCs(CmpLibcallCCs);
474
475  // Tell Legalize whether the assembler supports DEBUG_LOC.
476  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
477  if (!TASM || !TASM->hasDotLocAndDotFile())
478    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
479}
480
481TargetLowering::~TargetLowering() {}
482
483/// computeRegisterProperties - Once all of the register classes are added,
484/// this allows us to compute derived properties we expose.
485void TargetLowering::computeRegisterProperties() {
486  assert(MVT::LAST_VALUETYPE <= 32 &&
487         "Too many value types for ValueTypeActions to hold!");
488
489  // Everything defaults to needing one register.
490  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
491    NumRegistersForVT[i] = 1;
492    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
493  }
494  // ...except isVoid, which doesn't need any registers.
495  NumRegistersForVT[MVT::isVoid] = 0;
496
497  // Find the largest integer register class.
498  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
499  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
500    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
501
502  // Every integer value type larger than this largest register takes twice as
503  // many registers to represent as the previous ValueType.
504  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
505    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
506    if (!EVT.isInteger())
507      break;
508    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
509    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
510    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
511    ValueTypeActions.setTypeAction(EVT, Expand);
512  }
513
514  // Inspect all of the ValueType's smaller than the largest integer
515  // register to see which ones need promotion.
516  unsigned LegalIntReg = LargestIntReg;
517  for (unsigned IntReg = LargestIntReg - 1;
518       IntReg >= (unsigned)MVT::i1; --IntReg) {
519    MVT IVT = (MVT::SimpleValueType)IntReg;
520    if (isTypeLegal(IVT)) {
521      LegalIntReg = IntReg;
522    } else {
523      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
524        (MVT::SimpleValueType)LegalIntReg;
525      ValueTypeActions.setTypeAction(IVT, Promote);
526    }
527  }
528
529  // ppcf128 type is really two f64's.
530  if (!isTypeLegal(MVT::ppcf128)) {
531    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
532    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
533    TransformToType[MVT::ppcf128] = MVT::f64;
534    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
535  }
536
537  // Decide how to handle f64. If the target does not have native f64 support,
538  // expand it to i64 and we will be generating soft float library calls.
539  if (!isTypeLegal(MVT::f64)) {
540    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
541    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
542    TransformToType[MVT::f64] = MVT::i64;
543    ValueTypeActions.setTypeAction(MVT::f64, Expand);
544  }
545
546  // Decide how to handle f32. If the target does not have native support for
547  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
548  if (!isTypeLegal(MVT::f32)) {
549    if (isTypeLegal(MVT::f64)) {
550      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
551      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
552      TransformToType[MVT::f32] = MVT::f64;
553      ValueTypeActions.setTypeAction(MVT::f32, Promote);
554    } else {
555      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
556      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
557      TransformToType[MVT::f32] = MVT::i32;
558      ValueTypeActions.setTypeAction(MVT::f32, Expand);
559    }
560  }
561
562  // Loop over all of the vector value types to see which need transformations.
563  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
564       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
565    MVT VT = (MVT::SimpleValueType)i;
566    if (!isTypeLegal(VT)) {
567      MVT IntermediateVT, RegisterVT;
568      unsigned NumIntermediates;
569      NumRegistersForVT[i] =
570        getVectorTypeBreakdown(VT,
571                               IntermediateVT, NumIntermediates,
572                               RegisterVT);
573      RegisterTypeForVT[i] = RegisterVT;
574      TransformToType[i] = MVT::Other; // this isn't actually used
575      ValueTypeActions.setTypeAction(VT, Expand);
576    }
577  }
578}
579
580const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
581  return NULL;
582}
583
584
585MVT TargetLowering::getSetCCResultType(const SDValue &) const {
586  return getValueType(TD->getIntPtrType());
587}
588
589
590/// getVectorTypeBreakdown - Vector types are broken down into some number of
591/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
592/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
593/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
594///
595/// This method returns the number of registers needed, and the VT for each
596/// register.  It also returns the VT and quantity of the intermediate values
597/// before they are promoted/expanded.
598///
599unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
600                                                MVT &IntermediateVT,
601                                                unsigned &NumIntermediates,
602                                      MVT &RegisterVT) const {
603  // Figure out the right, legal destination reg to copy into.
604  unsigned NumElts = VT.getVectorNumElements();
605  MVT EltTy = VT.getVectorElementType();
606
607  unsigned NumVectorRegs = 1;
608
609  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
610  // could break down into LHS/RHS like LegalizeDAG does.
611  if (!isPowerOf2_32(NumElts)) {
612    NumVectorRegs = NumElts;
613    NumElts = 1;
614  }
615
616  // Divide the input until we get to a supported size.  This will always
617  // end with a scalar if the target doesn't support vectors.
618  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
619    NumElts >>= 1;
620    NumVectorRegs <<= 1;
621  }
622
623  NumIntermediates = NumVectorRegs;
624
625  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
626  if (!isTypeLegal(NewVT))
627    NewVT = EltTy;
628  IntermediateVT = NewVT;
629
630  MVT DestVT = getTypeToTransformTo(NewVT);
631  RegisterVT = DestVT;
632  if (DestVT.bitsLT(NewVT)) {
633    // Value is expanded, e.g. i64 -> i16.
634    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
635  } else {
636    // Otherwise, promotion or legal types use the same number of registers as
637    // the vector decimated to the appropriate level.
638    return NumVectorRegs;
639  }
640
641  return 1;
642}
643
644/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
645/// function arguments in the caller parameter area.  This is the actual
646/// alignment, not its logarithm.
647unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
648  return TD->getCallFrameTypeAlignment(Ty);
649}
650
651SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
652                                                 SelectionDAG &DAG) const {
653  if (usesGlobalOffsetTable())
654    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
655  return Table;
656}
657
658//===----------------------------------------------------------------------===//
659//  Optimization Methods
660//===----------------------------------------------------------------------===//
661
662/// ShrinkDemandedConstant - Check to see if the specified operand of the
663/// specified instruction is a constant integer.  If so, check to see if there
664/// are any bits set in the constant that are not demanded.  If so, shrink the
665/// constant and return true.
666bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
667                                                        const APInt &Demanded) {
668  // FIXME: ISD::SELECT, ISD::SELECT_CC
669  switch(Op.getOpcode()) {
670  default: break;
671  case ISD::AND:
672  case ISD::OR:
673  case ISD::XOR:
674    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
675      if (C->getAPIntValue().intersects(~Demanded)) {
676        MVT VT = Op.getValueType();
677        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
678                                    DAG.getConstant(Demanded &
679                                                      C->getAPIntValue(),
680                                                    VT));
681        return CombineTo(Op, New);
682      }
683    break;
684  }
685  return false;
686}
687
688/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
689/// DemandedMask bits of the result of Op are ever used downstream.  If we can
690/// use this information to simplify Op, create a new simplified DAG node and
691/// return true, returning the original and new nodes in Old and New. Otherwise,
692/// analyze the expression and return a mask of KnownOne and KnownZero bits for
693/// the expression (used to simplify the caller).  The KnownZero/One bits may
694/// only be accurate for those bits in the DemandedMask.
695bool TargetLowering::SimplifyDemandedBits(SDValue Op,
696                                          const APInt &DemandedMask,
697                                          APInt &KnownZero,
698                                          APInt &KnownOne,
699                                          TargetLoweringOpt &TLO,
700                                          unsigned Depth) const {
701  unsigned BitWidth = DemandedMask.getBitWidth();
702  assert(Op.getValueSizeInBits() == BitWidth &&
703         "Mask size mismatches value type size!");
704  APInt NewMask = DemandedMask;
705
706  // Don't know anything.
707  KnownZero = KnownOne = APInt(BitWidth, 0);
708
709  // Other users may use these bits.
710  if (!Op.getNode()->hasOneUse()) {
711    if (Depth != 0) {
712      // If not at the root, Just compute the KnownZero/KnownOne bits to
713      // simplify things downstream.
714      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
715      return false;
716    }
717    // If this is the root being simplified, allow it to have multiple uses,
718    // just set the NewMask to all bits.
719    NewMask = APInt::getAllOnesValue(BitWidth);
720  } else if (DemandedMask == 0) {
721    // Not demanding any bits from Op.
722    if (Op.getOpcode() != ISD::UNDEF)
723      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
724    return false;
725  } else if (Depth == 6) {        // Limit search depth.
726    return false;
727  }
728
729  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
730  switch (Op.getOpcode()) {
731  case ISD::Constant:
732    // We know all of the bits for a constant!
733    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
734    KnownZero = ~KnownOne & NewMask;
735    return false;   // Don't fall through, will infinitely loop.
736  case ISD::AND:
737    // If the RHS is a constant, check to see if the LHS would be zero without
738    // using the bits from the RHS.  Below, we use knowledge about the RHS to
739    // simplify the LHS, here we're using information from the LHS to simplify
740    // the RHS.
741    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
742      APInt LHSZero, LHSOne;
743      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
744                                LHSZero, LHSOne, Depth+1);
745      // If the LHS already has zeros where RHSC does, this and is dead.
746      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
747        return TLO.CombineTo(Op, Op.getOperand(0));
748      // If any of the set bits in the RHS are known zero on the LHS, shrink
749      // the constant.
750      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
751        return true;
752    }
753
754    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
755                             KnownOne, TLO, Depth+1))
756      return true;
757    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
758    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
759                             KnownZero2, KnownOne2, TLO, Depth+1))
760      return true;
761    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
762
763    // If all of the demanded bits are known one on one side, return the other.
764    // These bits cannot contribute to the result of the 'and'.
765    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
766      return TLO.CombineTo(Op, Op.getOperand(0));
767    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
768      return TLO.CombineTo(Op, Op.getOperand(1));
769    // If all of the demanded bits in the inputs are known zeros, return zero.
770    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
771      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
772    // If the RHS is a constant, see if we can simplify it.
773    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
774      return true;
775
776    // Output known-1 bits are only known if set in both the LHS & RHS.
777    KnownOne &= KnownOne2;
778    // Output known-0 are known to be clear if zero in either the LHS | RHS.
779    KnownZero |= KnownZero2;
780    break;
781  case ISD::OR:
782    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
783                             KnownOne, TLO, Depth+1))
784      return true;
785    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
786    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
787                             KnownZero2, KnownOne2, TLO, Depth+1))
788      return true;
789    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
790
791    // If all of the demanded bits are known zero on one side, return the other.
792    // These bits cannot contribute to the result of the 'or'.
793    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
794      return TLO.CombineTo(Op, Op.getOperand(0));
795    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
796      return TLO.CombineTo(Op, Op.getOperand(1));
797    // If all of the potentially set bits on one side are known to be set on
798    // the other side, just use the 'other' side.
799    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
800      return TLO.CombineTo(Op, Op.getOperand(0));
801    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
802      return TLO.CombineTo(Op, Op.getOperand(1));
803    // If the RHS is a constant, see if we can simplify it.
804    if (TLO.ShrinkDemandedConstant(Op, NewMask))
805      return true;
806
807    // Output known-0 bits are only known if clear in both the LHS & RHS.
808    KnownZero &= KnownZero2;
809    // Output known-1 are known to be set if set in either the LHS | RHS.
810    KnownOne |= KnownOne2;
811    break;
812  case ISD::XOR:
813    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
814                             KnownOne, TLO, Depth+1))
815      return true;
816    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
817    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
818                             KnownOne2, TLO, Depth+1))
819      return true;
820    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
821
822    // If all of the demanded bits are known zero on one side, return the other.
823    // These bits cannot contribute to the result of the 'xor'.
824    if ((KnownZero & NewMask) == NewMask)
825      return TLO.CombineTo(Op, Op.getOperand(0));
826    if ((KnownZero2 & NewMask) == NewMask)
827      return TLO.CombineTo(Op, Op.getOperand(1));
828
829    // If all of the unknown bits are known to be zero on one side or the other
830    // (but not both) turn this into an *inclusive* or.
831    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
832    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
833      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
834                                               Op.getOperand(0),
835                                               Op.getOperand(1)));
836
837    // Output known-0 bits are known if clear or set in both the LHS & RHS.
838    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
839    // Output known-1 are known to be set if set in only one of the LHS, RHS.
840    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
841
842    // If all of the demanded bits on one side are known, and all of the set
843    // bits on that side are also known to be set on the other side, turn this
844    // into an AND, as we know the bits will be cleared.
845    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
846    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
847      if ((KnownOne & KnownOne2) == KnownOne) {
848        MVT VT = Op.getValueType();
849        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
850        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
851                                                 ANDC));
852      }
853    }
854
855    // If the RHS is a constant, see if we can simplify it.
856    // for XOR, we prefer to force bits to 1 if they will make a -1.
857    // if we can't force bits, try to shrink constant
858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
859      APInt Expanded = C->getAPIntValue() | (~NewMask);
860      // if we can expand it to have all bits set, do it
861      if (Expanded.isAllOnesValue()) {
862        if (Expanded != C->getAPIntValue()) {
863          MVT VT = Op.getValueType();
864          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
865                                          TLO.DAG.getConstant(Expanded, VT));
866          return TLO.CombineTo(Op, New);
867        }
868        // if it already has all the bits set, nothing to change
869        // but don't shrink either!
870      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
871        return true;
872      }
873    }
874
875    KnownZero = KnownZeroOut;
876    KnownOne  = KnownOneOut;
877    break;
878  case ISD::SELECT:
879    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
880                             KnownOne, TLO, Depth+1))
881      return true;
882    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
883                             KnownOne2, TLO, Depth+1))
884      return true;
885    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
886    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
887
888    // If the operands are constants, see if we can simplify them.
889    if (TLO.ShrinkDemandedConstant(Op, NewMask))
890      return true;
891
892    // Only known if known in both the LHS and RHS.
893    KnownOne &= KnownOne2;
894    KnownZero &= KnownZero2;
895    break;
896  case ISD::SELECT_CC:
897    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
898                             KnownOne, TLO, Depth+1))
899      return true;
900    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
901                             KnownOne2, TLO, Depth+1))
902      return true;
903    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
904    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
905
906    // If the operands are constants, see if we can simplify them.
907    if (TLO.ShrinkDemandedConstant(Op, NewMask))
908      return true;
909
910    // Only known if known in both the LHS and RHS.
911    KnownOne &= KnownOne2;
912    KnownZero &= KnownZero2;
913    break;
914  case ISD::SHL:
915    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
916      unsigned ShAmt = SA->getZExtValue();
917      SDValue InOp = Op.getOperand(0);
918
919      // If the shift count is an invalid immediate, don't do anything.
920      if (ShAmt >= BitWidth)
921        break;
922
923      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
924      // single shift.  We can do this if the bottom bits (which are shifted
925      // out) are never demanded.
926      if (InOp.getOpcode() == ISD::SRL &&
927          isa<ConstantSDNode>(InOp.getOperand(1))) {
928        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
929          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
930          unsigned Opc = ISD::SHL;
931          int Diff = ShAmt-C1;
932          if (Diff < 0) {
933            Diff = -Diff;
934            Opc = ISD::SRL;
935          }
936
937          SDValue NewSA =
938            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
939          MVT VT = Op.getValueType();
940          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
941                                                   InOp.getOperand(0), NewSA));
942        }
943      }
944
945      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
946                               KnownZero, KnownOne, TLO, Depth+1))
947        return true;
948      KnownZero <<= SA->getZExtValue();
949      KnownOne  <<= SA->getZExtValue();
950      // low bits known zero.
951      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
952    }
953    break;
954  case ISD::SRL:
955    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
956      MVT VT = Op.getValueType();
957      unsigned ShAmt = SA->getZExtValue();
958      unsigned VTSize = VT.getSizeInBits();
959      SDValue InOp = Op.getOperand(0);
960
961      // If the shift count is an invalid immediate, don't do anything.
962      if (ShAmt >= BitWidth)
963        break;
964
965      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
966      // single shift.  We can do this if the top bits (which are shifted out)
967      // are never demanded.
968      if (InOp.getOpcode() == ISD::SHL &&
969          isa<ConstantSDNode>(InOp.getOperand(1))) {
970        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
971          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
972          unsigned Opc = ISD::SRL;
973          int Diff = ShAmt-C1;
974          if (Diff < 0) {
975            Diff = -Diff;
976            Opc = ISD::SHL;
977          }
978
979          SDValue NewSA =
980            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
981          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
982                                                   InOp.getOperand(0), NewSA));
983        }
984      }
985
986      // Compute the new bits that are at the top now.
987      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
988                               KnownZero, KnownOne, TLO, Depth+1))
989        return true;
990      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
991      KnownZero = KnownZero.lshr(ShAmt);
992      KnownOne  = KnownOne.lshr(ShAmt);
993
994      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
995      KnownZero |= HighBits;  // High bits known zero.
996    }
997    break;
998  case ISD::SRA:
999    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1000      MVT VT = Op.getValueType();
1001      unsigned ShAmt = SA->getZExtValue();
1002
1003      // If the shift count is an invalid immediate, don't do anything.
1004      if (ShAmt >= BitWidth)
1005        break;
1006
1007      APInt InDemandedMask = (NewMask << ShAmt);
1008
1009      // If any of the demanded bits are produced by the sign extension, we also
1010      // demand the input sign bit.
1011      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1012      if (HighBits.intersects(NewMask))
1013        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1014
1015      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1016                               KnownZero, KnownOne, TLO, Depth+1))
1017        return true;
1018      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1019      KnownZero = KnownZero.lshr(ShAmt);
1020      KnownOne  = KnownOne.lshr(ShAmt);
1021
1022      // Handle the sign bit, adjusted to where it is now in the mask.
1023      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1024
1025      // If the input sign bit is known to be zero, or if none of the top bits
1026      // are demanded, turn this into an unsigned shift right.
1027      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1028        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1029                                                 Op.getOperand(1)));
1030      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1031        KnownOne |= HighBits;
1032      }
1033    }
1034    break;
1035  case ISD::SIGN_EXTEND_INREG: {
1036    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1037
1038    // Sign extension.  Compute the demanded bits in the result that are not
1039    // present in the input.
1040    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1041                                          BitWidth - EVT.getSizeInBits()) &
1042                    NewMask;
1043
1044    // If none of the extended bits are demanded, eliminate the sextinreg.
1045    if (NewBits == 0)
1046      return TLO.CombineTo(Op, Op.getOperand(0));
1047
1048    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1049    InSignBit.zext(BitWidth);
1050    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1051                                                   EVT.getSizeInBits()) &
1052                              NewMask;
1053
1054    // Since the sign extended bits are demanded, we know that the sign
1055    // bit is demanded.
1056    InputDemandedBits |= InSignBit;
1057
1058    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1059                             KnownZero, KnownOne, TLO, Depth+1))
1060      return true;
1061    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1062
1063    // If the sign bit of the input is known set or clear, then we know the
1064    // top bits of the result.
1065
1066    // If the input sign bit is known zero, convert this into a zero extension.
1067    if (KnownZero.intersects(InSignBit))
1068      return TLO.CombineTo(Op,
1069                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1070
1071    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1072      KnownOne |= NewBits;
1073      KnownZero &= ~NewBits;
1074    } else {                       // Input sign bit unknown
1075      KnownZero &= ~NewBits;
1076      KnownOne &= ~NewBits;
1077    }
1078    break;
1079  }
1080  case ISD::ZERO_EXTEND: {
1081    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1082    APInt InMask = NewMask;
1083    InMask.trunc(OperandBitWidth);
1084
1085    // If none of the top bits are demanded, convert this into an any_extend.
1086    APInt NewBits =
1087      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1088    if (!NewBits.intersects(NewMask))
1089      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1090                                               Op.getValueType(),
1091                                               Op.getOperand(0)));
1092
1093    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1094                             KnownZero, KnownOne, TLO, Depth+1))
1095      return true;
1096    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1097    KnownZero.zext(BitWidth);
1098    KnownOne.zext(BitWidth);
1099    KnownZero |= NewBits;
1100    break;
1101  }
1102  case ISD::SIGN_EXTEND: {
1103    MVT InVT = Op.getOperand(0).getValueType();
1104    unsigned InBits = InVT.getSizeInBits();
1105    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1106    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1107    APInt NewBits   = ~InMask & NewMask;
1108
1109    // If none of the top bits are demanded, convert this into an any_extend.
1110    if (NewBits == 0)
1111      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1112                                           Op.getOperand(0)));
1113
1114    // Since some of the sign extended bits are demanded, we know that the sign
1115    // bit is demanded.
1116    APInt InDemandedBits = InMask & NewMask;
1117    InDemandedBits |= InSignBit;
1118    InDemandedBits.trunc(InBits);
1119
1120    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1121                             KnownOne, TLO, Depth+1))
1122      return true;
1123    KnownZero.zext(BitWidth);
1124    KnownOne.zext(BitWidth);
1125
1126    // If the sign bit is known zero, convert this to a zero extend.
1127    if (KnownZero.intersects(InSignBit))
1128      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1129                                               Op.getValueType(),
1130                                               Op.getOperand(0)));
1131
1132    // If the sign bit is known one, the top bits match.
1133    if (KnownOne.intersects(InSignBit)) {
1134      KnownOne  |= NewBits;
1135      KnownZero &= ~NewBits;
1136    } else {   // Otherwise, top bits aren't known.
1137      KnownOne  &= ~NewBits;
1138      KnownZero &= ~NewBits;
1139    }
1140    break;
1141  }
1142  case ISD::ANY_EXTEND: {
1143    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1144    APInt InMask = NewMask;
1145    InMask.trunc(OperandBitWidth);
1146    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1147                             KnownZero, KnownOne, TLO, Depth+1))
1148      return true;
1149    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1150    KnownZero.zext(BitWidth);
1151    KnownOne.zext(BitWidth);
1152    break;
1153  }
1154  case ISD::TRUNCATE: {
1155    // Simplify the input, using demanded bit information, and compute the known
1156    // zero/one bits live out.
1157    APInt TruncMask = NewMask;
1158    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1159    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1160                             KnownZero, KnownOne, TLO, Depth+1))
1161      return true;
1162    KnownZero.trunc(BitWidth);
1163    KnownOne.trunc(BitWidth);
1164
1165    // If the input is only used by this truncate, see if we can shrink it based
1166    // on the known demanded bits.
1167    if (Op.getOperand(0).getNode()->hasOneUse()) {
1168      SDValue In = Op.getOperand(0);
1169      unsigned InBitWidth = In.getValueSizeInBits();
1170      switch (In.getOpcode()) {
1171      default: break;
1172      case ISD::SRL:
1173        // Shrink SRL by a constant if none of the high bits shifted in are
1174        // demanded.
1175        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1176          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1177                                                 InBitWidth - BitWidth);
1178          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1179          HighBits.trunc(BitWidth);
1180
1181          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1182            // None of the shifted in bits are needed.  Add a truncate of the
1183            // shift input, then shift it.
1184            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1185                                                 Op.getValueType(),
1186                                                 In.getOperand(0));
1187            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1188                                                   NewTrunc, In.getOperand(1)));
1189          }
1190        }
1191        break;
1192      }
1193    }
1194
1195    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196    break;
1197  }
1198  case ISD::AssertZext: {
1199    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1200    APInt InMask = APInt::getLowBitsSet(BitWidth,
1201                                        VT.getSizeInBits());
1202    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1203                             KnownZero, KnownOne, TLO, Depth+1))
1204      return true;
1205    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206    KnownZero |= ~InMask & NewMask;
1207    break;
1208  }
1209  case ISD::BIT_CONVERT:
1210#if 0
1211    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1212    // is demanded, turn this into a FGETSIGN.
1213    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1214        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1215        !MVT::isVector(Op.getOperand(0).getValueType())) {
1216      // Only do this xform if FGETSIGN is valid or if before legalize.
1217      if (!TLO.AfterLegalize ||
1218          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1219        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1220        // place.  We expect the SHL to be eliminated by other optimizations.
1221        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1222                                         Op.getOperand(0));
1223        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1224        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1225        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1226                                                 Sign, ShAmt));
1227      }
1228    }
1229#endif
1230    break;
1231  default:
1232    // Just use ComputeMaskedBits to compute output bits.
1233    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1234    break;
1235  }
1236
1237  // If we know the value of all of the demanded bits, return this as a
1238  // constant.
1239  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1240    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1241
1242  return false;
1243}
1244
1245/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1246/// in Mask are known to be either zero or one and return them in the
1247/// KnownZero/KnownOne bitsets.
1248void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1249                                                    const APInt &Mask,
1250                                                    APInt &KnownZero,
1251                                                    APInt &KnownOne,
1252                                                    const SelectionDAG &DAG,
1253                                                    unsigned Depth) const {
1254  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1255          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1256          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1257          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1258         "Should use MaskedValueIsZero if you don't know whether Op"
1259         " is a target node!");
1260  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1261}
1262
1263/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1264/// targets that want to expose additional information about sign bits to the
1265/// DAG Combiner.
1266unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1267                                                         unsigned Depth) const {
1268  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1269          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1270          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1271          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1272         "Should use ComputeNumSignBits if you don't know whether Op"
1273         " is a target node!");
1274  return 1;
1275}
1276
1277
1278/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1279/// and cc. If it is unable to simplify it, return a null SDValue.
1280SDValue
1281TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1282                              ISD::CondCode Cond, bool foldBooleans,
1283                              DAGCombinerInfo &DCI) const {
1284  SelectionDAG &DAG = DCI.DAG;
1285
1286  // These setcc operations always fold.
1287  switch (Cond) {
1288  default: break;
1289  case ISD::SETFALSE:
1290  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1291  case ISD::SETTRUE:
1292  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1293  }
1294
1295  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1296    const APInt &C1 = N1C->getAPIntValue();
1297    if (isa<ConstantSDNode>(N0.getNode())) {
1298      return DAG.FoldSetCC(VT, N0, N1, Cond);
1299    } else {
1300      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1301      // equality comparison, then we're just comparing whether X itself is
1302      // zero.
1303      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1304          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1305          N0.getOperand(1).getOpcode() == ISD::Constant) {
1306        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1307        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1308            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1309          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1310            // (srl (ctlz x), 5) == 0  -> X != 0
1311            // (srl (ctlz x), 5) != 1  -> X != 0
1312            Cond = ISD::SETNE;
1313          } else {
1314            // (srl (ctlz x), 5) != 0  -> X == 0
1315            // (srl (ctlz x), 5) == 1  -> X == 0
1316            Cond = ISD::SETEQ;
1317          }
1318          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1319          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1320                              Zero, Cond);
1321        }
1322      }
1323
1324      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1325      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1326        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1327
1328        // If the comparison constant has bits in the upper part, the
1329        // zero-extended value could never match.
1330        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1331                                                C1.getBitWidth() - InSize))) {
1332          switch (Cond) {
1333          case ISD::SETUGT:
1334          case ISD::SETUGE:
1335          case ISD::SETEQ: return DAG.getConstant(0, VT);
1336          case ISD::SETULT:
1337          case ISD::SETULE:
1338          case ISD::SETNE: return DAG.getConstant(1, VT);
1339          case ISD::SETGT:
1340          case ISD::SETGE:
1341            // True if the sign bit of C1 is set.
1342            return DAG.getConstant(C1.isNegative(), VT);
1343          case ISD::SETLT:
1344          case ISD::SETLE:
1345            // True if the sign bit of C1 isn't set.
1346            return DAG.getConstant(C1.isNonNegative(), VT);
1347          default:
1348            break;
1349          }
1350        }
1351
1352        // Otherwise, we can perform the comparison with the low bits.
1353        switch (Cond) {
1354        case ISD::SETEQ:
1355        case ISD::SETNE:
1356        case ISD::SETUGT:
1357        case ISD::SETUGE:
1358        case ISD::SETULT:
1359        case ISD::SETULE:
1360          return DAG.getSetCC(VT, N0.getOperand(0),
1361                          DAG.getConstant(APInt(C1).trunc(InSize),
1362                                          N0.getOperand(0).getValueType()),
1363                          Cond);
1364        default:
1365          break;   // todo, be more careful with signed comparisons
1366        }
1367      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1368                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1369        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1370        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1371        MVT ExtDstTy = N0.getValueType();
1372        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1373
1374        // If the extended part has any inconsistent bits, it cannot ever
1375        // compare equal.  In other words, they have to be all ones or all
1376        // zeros.
1377        APInt ExtBits =
1378          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1379        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1380          return DAG.getConstant(Cond == ISD::SETNE, VT);
1381
1382        SDValue ZextOp;
1383        MVT Op0Ty = N0.getOperand(0).getValueType();
1384        if (Op0Ty == ExtSrcTy) {
1385          ZextOp = N0.getOperand(0);
1386        } else {
1387          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1388          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1389                               DAG.getConstant(Imm, Op0Ty));
1390        }
1391        if (!DCI.isCalledByLegalizer())
1392          DCI.AddToWorklist(ZextOp.getNode());
1393        // Otherwise, make this a use of a zext.
1394        return DAG.getSetCC(VT, ZextOp,
1395                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1396                                                               ExtDstTyBits,
1397                                                               ExtSrcTyBits),
1398                                            ExtDstTy),
1399                            Cond);
1400      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1401                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1402
1403        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1404        if (N0.getOpcode() == ISD::SETCC) {
1405          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1406          if (TrueWhenTrue)
1407            return N0;
1408
1409          // Invert the condition.
1410          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1411          CC = ISD::getSetCCInverse(CC,
1412                                   N0.getOperand(0).getValueType().isInteger());
1413          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1414        }
1415
1416        if ((N0.getOpcode() == ISD::XOR ||
1417             (N0.getOpcode() == ISD::AND &&
1418              N0.getOperand(0).getOpcode() == ISD::XOR &&
1419              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1420            isa<ConstantSDNode>(N0.getOperand(1)) &&
1421            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1422          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1423          // can only do this if the top bits are known zero.
1424          unsigned BitWidth = N0.getValueSizeInBits();
1425          if (DAG.MaskedValueIsZero(N0,
1426                                    APInt::getHighBitsSet(BitWidth,
1427                                                          BitWidth-1))) {
1428            // Okay, get the un-inverted input value.
1429            SDValue Val;
1430            if (N0.getOpcode() == ISD::XOR)
1431              Val = N0.getOperand(0);
1432            else {
1433              assert(N0.getOpcode() == ISD::AND &&
1434                     N0.getOperand(0).getOpcode() == ISD::XOR);
1435              // ((X^1)&1)^1 -> X & 1
1436              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1437                                N0.getOperand(0).getOperand(0),
1438                                N0.getOperand(1));
1439            }
1440            return DAG.getSetCC(VT, Val, N1,
1441                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1442          }
1443        }
1444      }
1445
1446      APInt MinVal, MaxVal;
1447      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1448      if (ISD::isSignedIntSetCC(Cond)) {
1449        MinVal = APInt::getSignedMinValue(OperandBitSize);
1450        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1451      } else {
1452        MinVal = APInt::getMinValue(OperandBitSize);
1453        MaxVal = APInt::getMaxValue(OperandBitSize);
1454      }
1455
1456      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1457      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1458        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1459        // X >= C0 --> X > (C0-1)
1460        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1461                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1462      }
1463
1464      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1465        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1466        // X <= C0 --> X < (C0+1)
1467        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1468                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1469      }
1470
1471      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1472        return DAG.getConstant(0, VT);      // X < MIN --> false
1473      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1474        return DAG.getConstant(1, VT);      // X >= MIN --> true
1475      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1476        return DAG.getConstant(0, VT);      // X > MAX --> false
1477      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1478        return DAG.getConstant(1, VT);      // X <= MAX --> true
1479
1480      // Canonicalize setgt X, Min --> setne X, Min
1481      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1482        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1483      // Canonicalize setlt X, Max --> setne X, Max
1484      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1485        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1486
1487      // If we have setult X, 1, turn it into seteq X, 0
1488      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1489        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1490                        ISD::SETEQ);
1491      // If we have setugt X, Max-1, turn it into seteq X, Max
1492      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1493        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1494                        ISD::SETEQ);
1495
1496      // If we have "setcc X, C0", check to see if we can shrink the immediate
1497      // by changing cc.
1498
1499      // SETUGT X, SINTMAX  -> SETLT X, 0
1500      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1501          C1 == (~0ULL >> (65-OperandBitSize)))
1502        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1503                            ISD::SETLT);
1504
1505      // FIXME: Implement the rest of these.
1506
1507      // Fold bit comparisons when we can.
1508      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1509          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1510        if (ConstantSDNode *AndRHS =
1511                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1512          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1513            // Perform the xform if the AND RHS is a single bit.
1514            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1515              return DAG.getNode(ISD::SRL, VT, N0,
1516                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1517                                             getShiftAmountTy()));
1518            }
1519          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1520            // (X & 8) == 8  -->  (X & 8) >> 3
1521            // Perform the xform if C1 is a single bit.
1522            if (C1.isPowerOf2()) {
1523              return DAG.getNode(ISD::SRL, VT, N0,
1524                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1525            }
1526          }
1527        }
1528    }
1529  } else if (isa<ConstantSDNode>(N0.getNode())) {
1530      // Ensure that the constant occurs on the RHS.
1531    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1532  }
1533
1534  if (isa<ConstantFPSDNode>(N0.getNode())) {
1535    // Constant fold or commute setcc.
1536    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1537    if (O.getNode()) return O;
1538  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1539    // If the RHS of an FP comparison is a constant, simplify it away in
1540    // some cases.
1541    if (CFP->getValueAPF().isNaN()) {
1542      // If an operand is known to be a nan, we can fold it.
1543      switch (ISD::getUnorderedFlavor(Cond)) {
1544      default: assert(0 && "Unknown flavor!");
1545      case 0:  // Known false.
1546        return DAG.getConstant(0, VT);
1547      case 1:  // Known true.
1548        return DAG.getConstant(1, VT);
1549      case 2:  // Undefined.
1550        return DAG.getNode(ISD::UNDEF, VT);
1551      }
1552    }
1553
1554    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1555    // constant if knowing that the operand is non-nan is enough.  We prefer to
1556    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1557    // materialize 0.0.
1558    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1559      return DAG.getSetCC(VT, N0, N0, Cond);
1560  }
1561
1562  if (N0 == N1) {
1563    // We can always fold X == X for integer setcc's.
1564    if (N0.getValueType().isInteger())
1565      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1566    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1567    if (UOF == 2)   // FP operators that are undefined on NaNs.
1568      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1569    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1570      return DAG.getConstant(UOF, VT);
1571    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1572    // if it is not already.
1573    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1574    if (NewCond != Cond)
1575      return DAG.getSetCC(VT, N0, N1, NewCond);
1576  }
1577
1578  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1579      N0.getValueType().isInteger()) {
1580    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1581        N0.getOpcode() == ISD::XOR) {
1582      // Simplify (X+Y) == (X+Z) -->  Y == Z
1583      if (N0.getOpcode() == N1.getOpcode()) {
1584        if (N0.getOperand(0) == N1.getOperand(0))
1585          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1586        if (N0.getOperand(1) == N1.getOperand(1))
1587          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1588        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1589          // If X op Y == Y op X, try other combinations.
1590          if (N0.getOperand(0) == N1.getOperand(1))
1591            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1592          if (N0.getOperand(1) == N1.getOperand(0))
1593            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1594        }
1595      }
1596
1597      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1598        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1599          // Turn (X+C1) == C2 --> X == C2-C1
1600          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1601            return DAG.getSetCC(VT, N0.getOperand(0),
1602                                DAG.getConstant(RHSC->getAPIntValue()-
1603                                                LHSR->getAPIntValue(),
1604                                N0.getValueType()), Cond);
1605          }
1606
1607          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1608          if (N0.getOpcode() == ISD::XOR)
1609            // If we know that all of the inverted bits are zero, don't bother
1610            // performing the inversion.
1611            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1612              return
1613                DAG.getSetCC(VT, N0.getOperand(0),
1614                             DAG.getConstant(LHSR->getAPIntValue() ^
1615                                               RHSC->getAPIntValue(),
1616                                             N0.getValueType()),
1617                             Cond);
1618        }
1619
1620        // Turn (C1-X) == C2 --> X == C1-C2
1621        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1622          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1623            return
1624              DAG.getSetCC(VT, N0.getOperand(1),
1625                           DAG.getConstant(SUBC->getAPIntValue() -
1626                                             RHSC->getAPIntValue(),
1627                                           N0.getValueType()),
1628                           Cond);
1629          }
1630        }
1631      }
1632
1633      // Simplify (X+Z) == X -->  Z == 0
1634      if (N0.getOperand(0) == N1)
1635        return DAG.getSetCC(VT, N0.getOperand(1),
1636                        DAG.getConstant(0, N0.getValueType()), Cond);
1637      if (N0.getOperand(1) == N1) {
1638        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1639          return DAG.getSetCC(VT, N0.getOperand(0),
1640                          DAG.getConstant(0, N0.getValueType()), Cond);
1641        else if (N0.getNode()->hasOneUse()) {
1642          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1643          // (Z-X) == X  --> Z == X<<1
1644          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1645                                     N1,
1646                                     DAG.getConstant(1, getShiftAmountTy()));
1647          if (!DCI.isCalledByLegalizer())
1648            DCI.AddToWorklist(SH.getNode());
1649          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1650        }
1651      }
1652    }
1653
1654    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1655        N1.getOpcode() == ISD::XOR) {
1656      // Simplify  X == (X+Z) -->  Z == 0
1657      if (N1.getOperand(0) == N0) {
1658        return DAG.getSetCC(VT, N1.getOperand(1),
1659                        DAG.getConstant(0, N1.getValueType()), Cond);
1660      } else if (N1.getOperand(1) == N0) {
1661        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1662          return DAG.getSetCC(VT, N1.getOperand(0),
1663                          DAG.getConstant(0, N1.getValueType()), Cond);
1664        } else if (N1.getNode()->hasOneUse()) {
1665          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1666          // X == (Z-X)  --> X<<1 == Z
1667          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1668                                     DAG.getConstant(1, getShiftAmountTy()));
1669          if (!DCI.isCalledByLegalizer())
1670            DCI.AddToWorklist(SH.getNode());
1671          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1672        }
1673      }
1674    }
1675  }
1676
1677  // Fold away ALL boolean setcc's.
1678  SDValue Temp;
1679  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1680    switch (Cond) {
1681    default: assert(0 && "Unknown integer setcc!");
1682    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1683      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1684      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1685      if (!DCI.isCalledByLegalizer())
1686        DCI.AddToWorklist(Temp.getNode());
1687      break;
1688    case ISD::SETNE:  // X != Y   -->  (X^Y)
1689      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1690      break;
1691    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1692    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1693      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1694      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1695      if (!DCI.isCalledByLegalizer())
1696        DCI.AddToWorklist(Temp.getNode());
1697      break;
1698    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1699    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1700      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1701      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1702      if (!DCI.isCalledByLegalizer())
1703        DCI.AddToWorklist(Temp.getNode());
1704      break;
1705    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1706    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1707      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1708      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1709      if (!DCI.isCalledByLegalizer())
1710        DCI.AddToWorklist(Temp.getNode());
1711      break;
1712    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1713    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1714      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1715      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1716      break;
1717    }
1718    if (VT != MVT::i1) {
1719      if (!DCI.isCalledByLegalizer())
1720        DCI.AddToWorklist(N0.getNode());
1721      // FIXME: If running after legalize, we probably can't do this.
1722      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1723    }
1724    return N0;
1725  }
1726
1727  // Could not fold it.
1728  return SDValue();
1729}
1730
1731/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1732/// node is a GlobalAddress + offset.
1733bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1734                                    int64_t &Offset) const {
1735  if (isa<GlobalAddressSDNode>(N)) {
1736    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1737    GA = GASD->getGlobal();
1738    Offset += GASD->getOffset();
1739    return true;
1740  }
1741
1742  if (N->getOpcode() == ISD::ADD) {
1743    SDValue N1 = N->getOperand(0);
1744    SDValue N2 = N->getOperand(1);
1745    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1746      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1747      if (V) {
1748        Offset += V->getSExtValue();
1749        return true;
1750      }
1751    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1752      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1753      if (V) {
1754        Offset += V->getSExtValue();
1755        return true;
1756      }
1757    }
1758  }
1759  return false;
1760}
1761
1762
1763/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1764/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1765/// location that the 'Base' load is loading from.
1766bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1767                                       unsigned Bytes, int Dist,
1768                                       const MachineFrameInfo *MFI) const {
1769  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1770    return false;
1771  MVT VT = LD->getValueType(0);
1772  if (VT.getSizeInBits() / 8 != Bytes)
1773    return false;
1774
1775  SDValue Loc = LD->getOperand(1);
1776  SDValue BaseLoc = Base->getOperand(1);
1777  if (Loc.getOpcode() == ISD::FrameIndex) {
1778    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1779      return false;
1780    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1781    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1782    int FS  = MFI->getObjectSize(FI);
1783    int BFS = MFI->getObjectSize(BFI);
1784    if (FS != BFS || FS != (int)Bytes) return false;
1785    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1786  }
1787
1788  GlobalValue *GV1 = NULL;
1789  GlobalValue *GV2 = NULL;
1790  int64_t Offset1 = 0;
1791  int64_t Offset2 = 0;
1792  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1793  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1794  if (isGA1 && isGA2 && GV1 == GV2)
1795    return Offset1 == (Offset2 + Dist*Bytes);
1796  return false;
1797}
1798
1799
1800SDValue TargetLowering::
1801PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1802  // Default implementation: no optimization.
1803  return SDValue();
1804}
1805
1806//===----------------------------------------------------------------------===//
1807//  Inline Assembler Implementation Methods
1808//===----------------------------------------------------------------------===//
1809
1810
1811TargetLowering::ConstraintType
1812TargetLowering::getConstraintType(const std::string &Constraint) const {
1813  // FIXME: lots more standard ones to handle.
1814  if (Constraint.size() == 1) {
1815    switch (Constraint[0]) {
1816    default: break;
1817    case 'r': return C_RegisterClass;
1818    case 'm':    // memory
1819    case 'o':    // offsetable
1820    case 'V':    // not offsetable
1821      return C_Memory;
1822    case 'i':    // Simple Integer or Relocatable Constant
1823    case 'n':    // Simple Integer
1824    case 's':    // Relocatable Constant
1825    case 'X':    // Allow ANY value.
1826    case 'I':    // Target registers.
1827    case 'J':
1828    case 'K':
1829    case 'L':
1830    case 'M':
1831    case 'N':
1832    case 'O':
1833    case 'P':
1834      return C_Other;
1835    }
1836  }
1837
1838  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1839      Constraint[Constraint.size()-1] == '}')
1840    return C_Register;
1841  return C_Unknown;
1842}
1843
1844/// LowerXConstraint - try to replace an X constraint, which matches anything,
1845/// with another that has more specific requirements based on the type of the
1846/// corresponding operand.
1847const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1848  if (ConstraintVT.isInteger())
1849    return "r";
1850  if (ConstraintVT.isFloatingPoint())
1851    return "f";      // works for many targets
1852  return 0;
1853}
1854
1855/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1856/// vector.  If it is invalid, don't add anything to Ops.
1857void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1858                                                  char ConstraintLetter,
1859                                                  bool hasMemory,
1860                                                  std::vector<SDValue> &Ops,
1861                                                  SelectionDAG &DAG) const {
1862  switch (ConstraintLetter) {
1863  default: break;
1864  case 'X':     // Allows any operand; labels (basic block) use this.
1865    if (Op.getOpcode() == ISD::BasicBlock) {
1866      Ops.push_back(Op);
1867      return;
1868    }
1869    // fall through
1870  case 'i':    // Simple Integer or Relocatable Constant
1871  case 'n':    // Simple Integer
1872  case 's': {  // Relocatable Constant
1873    // These operands are interested in values of the form (GV+C), where C may
1874    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1875    // is possible and fine if either GV or C are missing.
1876    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1877    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1878
1879    // If we have "(add GV, C)", pull out GV/C
1880    if (Op.getOpcode() == ISD::ADD) {
1881      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1882      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1883      if (C == 0 || GA == 0) {
1884        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1885        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1886      }
1887      if (C == 0 || GA == 0)
1888        C = 0, GA = 0;
1889    }
1890
1891    // If we find a valid operand, map to the TargetXXX version so that the
1892    // value itself doesn't get selected.
1893    if (GA) {   // Either &GV   or   &GV+C
1894      if (ConstraintLetter != 'n') {
1895        int64_t Offs = GA->getOffset();
1896        if (C) Offs += C->getZExtValue();
1897        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1898                                                 Op.getValueType(), Offs));
1899        return;
1900      }
1901    }
1902    if (C) {   // just C, no GV.
1903      // Simple constants are not allowed for 's'.
1904      if (ConstraintLetter != 's') {
1905        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
1906                                            Op.getValueType()));
1907        return;
1908      }
1909    }
1910    break;
1911  }
1912  }
1913}
1914
1915std::vector<unsigned> TargetLowering::
1916getRegClassForInlineAsmConstraint(const std::string &Constraint,
1917                                  MVT VT) const {
1918  return std::vector<unsigned>();
1919}
1920
1921
1922std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1923getRegForInlineAsmConstraint(const std::string &Constraint,
1924                             MVT VT) const {
1925  if (Constraint[0] != '{')
1926    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1927  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1928
1929  // Remove the braces from around the name.
1930  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1931
1932  // Figure out which register class contains this reg.
1933  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1934  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1935       E = RI->regclass_end(); RCI != E; ++RCI) {
1936    const TargetRegisterClass *RC = *RCI;
1937
1938    // If none of the the value types for this register class are valid, we
1939    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1940    bool isLegal = false;
1941    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1942         I != E; ++I) {
1943      if (isTypeLegal(*I)) {
1944        isLegal = true;
1945        break;
1946      }
1947    }
1948
1949    if (!isLegal) continue;
1950
1951    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1952         I != E; ++I) {
1953      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1954        return std::make_pair(*I, RC);
1955    }
1956  }
1957
1958  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1959}
1960
1961//===----------------------------------------------------------------------===//
1962// Constraint Selection.
1963
1964/// getConstraintGenerality - Return an integer indicating how general CT
1965/// is.
1966static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1967  switch (CT) {
1968  default: assert(0 && "Unknown constraint type!");
1969  case TargetLowering::C_Other:
1970  case TargetLowering::C_Unknown:
1971    return 0;
1972  case TargetLowering::C_Register:
1973    return 1;
1974  case TargetLowering::C_RegisterClass:
1975    return 2;
1976  case TargetLowering::C_Memory:
1977    return 3;
1978  }
1979}
1980
1981/// ChooseConstraint - If there are multiple different constraints that we
1982/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1983/// This is somewhat tricky: constraints fall into four classes:
1984///    Other         -> immediates and magic values
1985///    Register      -> one specific register
1986///    RegisterClass -> a group of regs
1987///    Memory        -> memory
1988/// Ideally, we would pick the most specific constraint possible: if we have
1989/// something that fits into a register, we would pick it.  The problem here
1990/// is that if we have something that could either be in a register or in
1991/// memory that use of the register could cause selection of *other*
1992/// operands to fail: they might only succeed if we pick memory.  Because of
1993/// this the heuristic we use is:
1994///
1995///  1) If there is an 'other' constraint, and if the operand is valid for
1996///     that constraint, use it.  This makes us take advantage of 'i'
1997///     constraints when available.
1998///  2) Otherwise, pick the most general constraint present.  This prefers
1999///     'm' over 'r', for example.
2000///
2001static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2002                             bool hasMemory,  const TargetLowering &TLI,
2003                             SDValue Op, SelectionDAG *DAG) {
2004  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2005  unsigned BestIdx = 0;
2006  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2007  int BestGenerality = -1;
2008
2009  // Loop over the options, keeping track of the most general one.
2010  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2011    TargetLowering::ConstraintType CType =
2012      TLI.getConstraintType(OpInfo.Codes[i]);
2013
2014    // If this is an 'other' constraint, see if the operand is valid for it.
2015    // For example, on X86 we might have an 'rI' constraint.  If the operand
2016    // is an integer in the range [0..31] we want to use I (saving a load
2017    // of a register), otherwise we must use 'r'.
2018    if (CType == TargetLowering::C_Other && Op.getNode()) {
2019      assert(OpInfo.Codes[i].size() == 1 &&
2020             "Unhandled multi-letter 'other' constraint");
2021      std::vector<SDValue> ResultOps;
2022      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2023                                       ResultOps, *DAG);
2024      if (!ResultOps.empty()) {
2025        BestType = CType;
2026        BestIdx = i;
2027        break;
2028      }
2029    }
2030
2031    // This constraint letter is more general than the previous one, use it.
2032    int Generality = getConstraintGenerality(CType);
2033    if (Generality > BestGenerality) {
2034      BestType = CType;
2035      BestIdx = i;
2036      BestGenerality = Generality;
2037    }
2038  }
2039
2040  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2041  OpInfo.ConstraintType = BestType;
2042}
2043
2044/// ComputeConstraintToUse - Determines the constraint code and constraint
2045/// type to use for the specific AsmOperandInfo, setting
2046/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2047void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2048                                            SDValue Op,
2049                                            bool hasMemory,
2050                                            SelectionDAG *DAG) const {
2051  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2052
2053  // Single-letter constraints ('r') are very common.
2054  if (OpInfo.Codes.size() == 1) {
2055    OpInfo.ConstraintCode = OpInfo.Codes[0];
2056    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2057  } else {
2058    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2059  }
2060
2061  // 'X' matches anything.
2062  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2063    // Labels and constants are handled elsewhere ('X' is the only thing
2064    // that matches labels).
2065    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2066        isa<ConstantInt>(OpInfo.CallOperandVal))
2067      return;
2068
2069    // Otherwise, try to resolve it to something we know about by looking at
2070    // the actual operand type.
2071    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2072      OpInfo.ConstraintCode = Repl;
2073      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2074    }
2075  }
2076}
2077
2078//===----------------------------------------------------------------------===//
2079//  Loop Strength Reduction hooks
2080//===----------------------------------------------------------------------===//
2081
2082/// isLegalAddressingMode - Return true if the addressing mode represented
2083/// by AM is legal for this target, for a load/store of the specified type.
2084bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2085                                           const Type *Ty) const {
2086  // The default implementation of this implements a conservative RISCy, r+r and
2087  // r+i addr mode.
2088
2089  // Allows a sign-extended 16-bit immediate field.
2090  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2091    return false;
2092
2093  // No global is ever allowed as a base.
2094  if (AM.BaseGV)
2095    return false;
2096
2097  // Only support r+r,
2098  switch (AM.Scale) {
2099  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2100    break;
2101  case 1:
2102    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2103      return false;
2104    // Otherwise we have r+r or r+i.
2105    break;
2106  case 2:
2107    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2108      return false;
2109    // Allow 2*r as r+r.
2110    break;
2111  }
2112
2113  return true;
2114}
2115
2116// Magic for divide replacement
2117
2118struct ms {
2119  int64_t m;  // magic number
2120  int64_t s;  // shift amount
2121};
2122
2123struct mu {
2124  uint64_t m; // magic number
2125  int64_t a;  // add indicator
2126  int64_t s;  // shift amount
2127};
2128
2129/// magic - calculate the magic numbers required to codegen an integer sdiv as
2130/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2131/// or -1.
2132static ms magic32(int32_t d) {
2133  int32_t p;
2134  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2135  const uint32_t two31 = 0x80000000U;
2136  struct ms mag;
2137
2138  ad = abs(d);
2139  t = two31 + ((uint32_t)d >> 31);
2140  anc = t - 1 - t%ad;   // absolute value of nc
2141  p = 31;               // initialize p
2142  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2143  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2144  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2145  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2146  do {
2147    p = p + 1;
2148    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2149    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2150    if (r1 >= anc) {  // must be unsigned comparison
2151      q1 = q1 + 1;
2152      r1 = r1 - anc;
2153    }
2154    q2 = 2*q2;        // update q2 = 2p/abs(d)
2155    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2156    if (r2 >= ad) {   // must be unsigned comparison
2157      q2 = q2 + 1;
2158      r2 = r2 - ad;
2159    }
2160    delta = ad - r2;
2161  } while (q1 < delta || (q1 == delta && r1 == 0));
2162
2163  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2164  if (d < 0) mag.m = -mag.m; // resulting magic number
2165  mag.s = p - 32;            // resulting shift
2166  return mag;
2167}
2168
2169/// magicu - calculate the magic numbers required to codegen an integer udiv as
2170/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2171static mu magicu32(uint32_t d) {
2172  int32_t p;
2173  uint32_t nc, delta, q1, r1, q2, r2;
2174  struct mu magu;
2175  magu.a = 0;               // initialize "add" indicator
2176  nc = - 1 - (-d)%d;
2177  p = 31;                   // initialize p
2178  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2179  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2180  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2181  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2182  do {
2183    p = p + 1;
2184    if (r1 >= nc - r1 ) {
2185      q1 = 2*q1 + 1;  // update q1
2186      r1 = 2*r1 - nc; // update r1
2187    }
2188    else {
2189      q1 = 2*q1; // update q1
2190      r1 = 2*r1; // update r1
2191    }
2192    if (r2 + 1 >= d - r2) {
2193      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2194      q2 = 2*q2 + 1;     // update q2
2195      r2 = 2*r2 + 1 - d; // update r2
2196    }
2197    else {
2198      if (q2 >= 0x80000000) magu.a = 1;
2199      q2 = 2*q2;     // update q2
2200      r2 = 2*r2 + 1; // update r2
2201    }
2202    delta = d - 1 - r2;
2203  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2204  magu.m = q2 + 1; // resulting magic number
2205  magu.s = p - 32;  // resulting shift
2206  return magu;
2207}
2208
2209/// magic - calculate the magic numbers required to codegen an integer sdiv as
2210/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2211/// or -1.
2212static ms magic64(int64_t d) {
2213  int64_t p;
2214  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2215  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2216  struct ms mag;
2217
2218  ad = d >= 0 ? d : -d;
2219  t = two63 + ((uint64_t)d >> 63);
2220  anc = t - 1 - t%ad;   // absolute value of nc
2221  p = 63;               // initialize p
2222  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2223  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2224  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2225  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2226  do {
2227    p = p + 1;
2228    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2229    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2230    if (r1 >= anc) {  // must be unsigned comparison
2231      q1 = q1 + 1;
2232      r1 = r1 - anc;
2233    }
2234    q2 = 2*q2;        // update q2 = 2p/abs(d)
2235    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2236    if (r2 >= ad) {   // must be unsigned comparison
2237      q2 = q2 + 1;
2238      r2 = r2 - ad;
2239    }
2240    delta = ad - r2;
2241  } while (q1 < delta || (q1 == delta && r1 == 0));
2242
2243  mag.m = q2 + 1;
2244  if (d < 0) mag.m = -mag.m; // resulting magic number
2245  mag.s = p - 64;            // resulting shift
2246  return mag;
2247}
2248
2249/// magicu - calculate the magic numbers required to codegen an integer udiv as
2250/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2251static mu magicu64(uint64_t d)
2252{
2253  int64_t p;
2254  uint64_t nc, delta, q1, r1, q2, r2;
2255  struct mu magu;
2256  magu.a = 0;               // initialize "add" indicator
2257  nc = - 1 - (-d)%d;
2258  p = 63;                   // initialize p
2259  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2260  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2261  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2262  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2263  do {
2264    p = p + 1;
2265    if (r1 >= nc - r1 ) {
2266      q1 = 2*q1 + 1;  // update q1
2267      r1 = 2*r1 - nc; // update r1
2268    }
2269    else {
2270      q1 = 2*q1; // update q1
2271      r1 = 2*r1; // update r1
2272    }
2273    if (r2 + 1 >= d - r2) {
2274      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2275      q2 = 2*q2 + 1;     // update q2
2276      r2 = 2*r2 + 1 - d; // update r2
2277    }
2278    else {
2279      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2280      q2 = 2*q2;     // update q2
2281      r2 = 2*r2 + 1; // update r2
2282    }
2283    delta = d - 1 - r2;
2284  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2285  magu.m = q2 + 1; // resulting magic number
2286  magu.s = p - 64;  // resulting shift
2287  return magu;
2288}
2289
2290/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2291/// return a DAG expression to select that will generate the same value by
2292/// multiplying by a magic number.  See:
2293/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2294SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2295                                  std::vector<SDNode*>* Created) const {
2296  MVT VT = N->getValueType(0);
2297
2298  // Check to see if we can do this.
2299  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2300    return SDValue();       // BuildSDIV only operates on i32 or i64
2301
2302  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2303  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2304
2305  // Multiply the numerator (operand 0) by the magic value
2306  SDValue Q;
2307  if (isOperationLegal(ISD::MULHS, VT))
2308    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2309                    DAG.getConstant(magics.m, VT));
2310  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2311    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2312                              N->getOperand(0),
2313                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2314  else
2315    return SDValue();       // No mulhs or equvialent
2316  // If d > 0 and m < 0, add the numerator
2317  if (d > 0 && magics.m < 0) {
2318    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2319    if (Created)
2320      Created->push_back(Q.getNode());
2321  }
2322  // If d < 0 and m > 0, subtract the numerator.
2323  if (d < 0 && magics.m > 0) {
2324    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2325    if (Created)
2326      Created->push_back(Q.getNode());
2327  }
2328  // Shift right algebraic if shift value is nonzero
2329  if (magics.s > 0) {
2330    Q = DAG.getNode(ISD::SRA, VT, Q,
2331                    DAG.getConstant(magics.s, getShiftAmountTy()));
2332    if (Created)
2333      Created->push_back(Q.getNode());
2334  }
2335  // Extract the sign bit and add it to the quotient
2336  SDValue T =
2337    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2338                                                 getShiftAmountTy()));
2339  if (Created)
2340    Created->push_back(T.getNode());
2341  return DAG.getNode(ISD::ADD, VT, Q, T);
2342}
2343
2344/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2345/// return a DAG expression to select that will generate the same value by
2346/// multiplying by a magic number.  See:
2347/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2348SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2349                                  std::vector<SDNode*>* Created) const {
2350  MVT VT = N->getValueType(0);
2351
2352  // Check to see if we can do this.
2353  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2354    return SDValue();       // BuildUDIV only operates on i32 or i64
2355
2356  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2357  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2358
2359  // Multiply the numerator (operand 0) by the magic value
2360  SDValue Q;
2361  if (isOperationLegal(ISD::MULHU, VT))
2362    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2363                    DAG.getConstant(magics.m, VT));
2364  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2365    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2366                              N->getOperand(0),
2367                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2368  else
2369    return SDValue();       // No mulhu or equvialent
2370  if (Created)
2371    Created->push_back(Q.getNode());
2372
2373  if (magics.a == 0) {
2374    return DAG.getNode(ISD::SRL, VT, Q,
2375                       DAG.getConstant(magics.s, getShiftAmountTy()));
2376  } else {
2377    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2378    if (Created)
2379      Created->push_back(NPQ.getNode());
2380    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2381                      DAG.getConstant(1, getShiftAmountTy()));
2382    if (Created)
2383      Created->push_back(NPQ.getNode());
2384    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2385    if (Created)
2386      Created->push_back(NPQ.getNode());
2387    return DAG.getNode(ISD::SRL, VT, NPQ,
2388                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2389  }
2390}
2391