TargetLowering.cpp revision c25e7581b9b8088910da31702d4ca21c4734c6d7
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30namespace llvm {
31TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
32  bool isLocal = GV->hasLocalLinkage();
33  bool isDeclaration = GV->isDeclaration();
34  // FIXME: what should we do for protected and internal visibility?
35  // For variables, is internal different from hidden?
36  bool isHidden = GV->hasHiddenVisibility();
37
38  if (reloc == Reloc::PIC_) {
39    if (isLocal || isHidden)
40      return TLSModel::LocalDynamic;
41    else
42      return TLSModel::GeneralDynamic;
43  } else {
44    if (!isDeclaration || isHidden)
45      return TLSModel::LocalExec;
46    else
47      return TLSModel::InitialExec;
48  }
49}
50}
51
52/// InitLibcallNames - Set default libcall names.
53///
54static void InitLibcallNames(const char **Names) {
55  Names[RTLIB::SHL_I16] = "__ashlhi3";
56  Names[RTLIB::SHL_I32] = "__ashlsi3";
57  Names[RTLIB::SHL_I64] = "__ashldi3";
58  Names[RTLIB::SHL_I128] = "__ashlti3";
59  Names[RTLIB::SRL_I16] = "__lshrhi3";
60  Names[RTLIB::SRL_I32] = "__lshrsi3";
61  Names[RTLIB::SRL_I64] = "__lshrdi3";
62  Names[RTLIB::SRL_I128] = "__lshrti3";
63  Names[RTLIB::SRA_I16] = "__ashrhi3";
64  Names[RTLIB::SRA_I32] = "__ashrsi3";
65  Names[RTLIB::SRA_I64] = "__ashrdi3";
66  Names[RTLIB::SRA_I128] = "__ashrti3";
67  Names[RTLIB::MUL_I16] = "__mulhi3";
68  Names[RTLIB::MUL_I32] = "__mulsi3";
69  Names[RTLIB::MUL_I64] = "__muldi3";
70  Names[RTLIB::MUL_I128] = "__multi3";
71  Names[RTLIB::SDIV_I16] = "__divhi3";
72  Names[RTLIB::SDIV_I32] = "__divsi3";
73  Names[RTLIB::SDIV_I64] = "__divdi3";
74  Names[RTLIB::SDIV_I128] = "__divti3";
75  Names[RTLIB::UDIV_I16] = "__udivhi3";
76  Names[RTLIB::UDIV_I32] = "__udivsi3";
77  Names[RTLIB::UDIV_I64] = "__udivdi3";
78  Names[RTLIB::UDIV_I128] = "__udivti3";
79  Names[RTLIB::SREM_I16] = "__modhi3";
80  Names[RTLIB::SREM_I32] = "__modsi3";
81  Names[RTLIB::SREM_I64] = "__moddi3";
82  Names[RTLIB::SREM_I128] = "__modti3";
83  Names[RTLIB::UREM_I16] = "__umodhi3";
84  Names[RTLIB::UREM_I32] = "__umodsi3";
85  Names[RTLIB::UREM_I64] = "__umoddi3";
86  Names[RTLIB::UREM_I128] = "__umodti3";
87  Names[RTLIB::NEG_I32] = "__negsi2";
88  Names[RTLIB::NEG_I64] = "__negdi2";
89  Names[RTLIB::ADD_F32] = "__addsf3";
90  Names[RTLIB::ADD_F64] = "__adddf3";
91  Names[RTLIB::ADD_F80] = "__addxf3";
92  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
93  Names[RTLIB::SUB_F32] = "__subsf3";
94  Names[RTLIB::SUB_F64] = "__subdf3";
95  Names[RTLIB::SUB_F80] = "__subxf3";
96  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
97  Names[RTLIB::MUL_F32] = "__mulsf3";
98  Names[RTLIB::MUL_F64] = "__muldf3";
99  Names[RTLIB::MUL_F80] = "__mulxf3";
100  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
101  Names[RTLIB::DIV_F32] = "__divsf3";
102  Names[RTLIB::DIV_F64] = "__divdf3";
103  Names[RTLIB::DIV_F80] = "__divxf3";
104  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
105  Names[RTLIB::REM_F32] = "fmodf";
106  Names[RTLIB::REM_F64] = "fmod";
107  Names[RTLIB::REM_F80] = "fmodl";
108  Names[RTLIB::REM_PPCF128] = "fmodl";
109  Names[RTLIB::POWI_F32] = "__powisf2";
110  Names[RTLIB::POWI_F64] = "__powidf2";
111  Names[RTLIB::POWI_F80] = "__powixf2";
112  Names[RTLIB::POWI_PPCF128] = "__powitf2";
113  Names[RTLIB::SQRT_F32] = "sqrtf";
114  Names[RTLIB::SQRT_F64] = "sqrt";
115  Names[RTLIB::SQRT_F80] = "sqrtl";
116  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
117  Names[RTLIB::LOG_F32] = "logf";
118  Names[RTLIB::LOG_F64] = "log";
119  Names[RTLIB::LOG_F80] = "logl";
120  Names[RTLIB::LOG_PPCF128] = "logl";
121  Names[RTLIB::LOG2_F32] = "log2f";
122  Names[RTLIB::LOG2_F64] = "log2";
123  Names[RTLIB::LOG2_F80] = "log2l";
124  Names[RTLIB::LOG2_PPCF128] = "log2l";
125  Names[RTLIB::LOG10_F32] = "log10f";
126  Names[RTLIB::LOG10_F64] = "log10";
127  Names[RTLIB::LOG10_F80] = "log10l";
128  Names[RTLIB::LOG10_PPCF128] = "log10l";
129  Names[RTLIB::EXP_F32] = "expf";
130  Names[RTLIB::EXP_F64] = "exp";
131  Names[RTLIB::EXP_F80] = "expl";
132  Names[RTLIB::EXP_PPCF128] = "expl";
133  Names[RTLIB::EXP2_F32] = "exp2f";
134  Names[RTLIB::EXP2_F64] = "exp2";
135  Names[RTLIB::EXP2_F80] = "exp2l";
136  Names[RTLIB::EXP2_PPCF128] = "exp2l";
137  Names[RTLIB::SIN_F32] = "sinf";
138  Names[RTLIB::SIN_F64] = "sin";
139  Names[RTLIB::SIN_F80] = "sinl";
140  Names[RTLIB::SIN_PPCF128] = "sinl";
141  Names[RTLIB::COS_F32] = "cosf";
142  Names[RTLIB::COS_F64] = "cos";
143  Names[RTLIB::COS_F80] = "cosl";
144  Names[RTLIB::COS_PPCF128] = "cosl";
145  Names[RTLIB::POW_F32] = "powf";
146  Names[RTLIB::POW_F64] = "pow";
147  Names[RTLIB::POW_F80] = "powl";
148  Names[RTLIB::POW_PPCF128] = "powl";
149  Names[RTLIB::CEIL_F32] = "ceilf";
150  Names[RTLIB::CEIL_F64] = "ceil";
151  Names[RTLIB::CEIL_F80] = "ceill";
152  Names[RTLIB::CEIL_PPCF128] = "ceill";
153  Names[RTLIB::TRUNC_F32] = "truncf";
154  Names[RTLIB::TRUNC_F64] = "trunc";
155  Names[RTLIB::TRUNC_F80] = "truncl";
156  Names[RTLIB::TRUNC_PPCF128] = "truncl";
157  Names[RTLIB::RINT_F32] = "rintf";
158  Names[RTLIB::RINT_F64] = "rint";
159  Names[RTLIB::RINT_F80] = "rintl";
160  Names[RTLIB::RINT_PPCF128] = "rintl";
161  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
162  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
163  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
164  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
165  Names[RTLIB::FLOOR_F32] = "floorf";
166  Names[RTLIB::FLOOR_F64] = "floor";
167  Names[RTLIB::FLOOR_F80] = "floorl";
168  Names[RTLIB::FLOOR_PPCF128] = "floorl";
169  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
170  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
171  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
172  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
173  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
174  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
175  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
176  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
177  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
178  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
179  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
180  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
181  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
182  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
183  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
184  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
185  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
186  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
187  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
188  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
189  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
190  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
191  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
192  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
193  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
194  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
195  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
196  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
197  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
198  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
199  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
200  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
201  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
202  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
203  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
204  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
205  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
206  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
207  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
208  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
209  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
210  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
211  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
212  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
213  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
214  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
215  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
216  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
217  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
218  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
219  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
220  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
221  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
222  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
223  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
224  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
225  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
226  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
227  Names[RTLIB::OEQ_F32] = "__eqsf2";
228  Names[RTLIB::OEQ_F64] = "__eqdf2";
229  Names[RTLIB::UNE_F32] = "__nesf2";
230  Names[RTLIB::UNE_F64] = "__nedf2";
231  Names[RTLIB::OGE_F32] = "__gesf2";
232  Names[RTLIB::OGE_F64] = "__gedf2";
233  Names[RTLIB::OLT_F32] = "__ltsf2";
234  Names[RTLIB::OLT_F64] = "__ltdf2";
235  Names[RTLIB::OLE_F32] = "__lesf2";
236  Names[RTLIB::OLE_F64] = "__ledf2";
237  Names[RTLIB::OGT_F32] = "__gtsf2";
238  Names[RTLIB::OGT_F64] = "__gtdf2";
239  Names[RTLIB::UO_F32] = "__unordsf2";
240  Names[RTLIB::UO_F64] = "__unorddf2";
241  Names[RTLIB::O_F32] = "__unordsf2";
242  Names[RTLIB::O_F64] = "__unorddf2";
243  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
244}
245
246/// getFPEXT - Return the FPEXT_*_* value for the given types, or
247/// UNKNOWN_LIBCALL if there is none.
248RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
249  if (OpVT == MVT::f32) {
250    if (RetVT == MVT::f64)
251      return FPEXT_F32_F64;
252  }
253  return UNKNOWN_LIBCALL;
254}
255
256/// getFPROUND - Return the FPROUND_*_* value for the given types, or
257/// UNKNOWN_LIBCALL if there is none.
258RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
259  if (RetVT == MVT::f32) {
260    if (OpVT == MVT::f64)
261      return FPROUND_F64_F32;
262    if (OpVT == MVT::f80)
263      return FPROUND_F80_F32;
264    if (OpVT == MVT::ppcf128)
265      return FPROUND_PPCF128_F32;
266  } else if (RetVT == MVT::f64) {
267    if (OpVT == MVT::f80)
268      return FPROUND_F80_F64;
269    if (OpVT == MVT::ppcf128)
270      return FPROUND_PPCF128_F64;
271  }
272  return UNKNOWN_LIBCALL;
273}
274
275/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276/// UNKNOWN_LIBCALL if there is none.
277RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
278  if (OpVT == MVT::f32) {
279    if (RetVT == MVT::i8)
280      return FPTOSINT_F32_I8;
281    if (RetVT == MVT::i16)
282      return FPTOSINT_F32_I16;
283    if (RetVT == MVT::i32)
284      return FPTOSINT_F32_I32;
285    if (RetVT == MVT::i64)
286      return FPTOSINT_F32_I64;
287    if (RetVT == MVT::i128)
288      return FPTOSINT_F32_I128;
289  } else if (OpVT == MVT::f64) {
290    if (RetVT == MVT::i32)
291      return FPTOSINT_F64_I32;
292    if (RetVT == MVT::i64)
293      return FPTOSINT_F64_I64;
294    if (RetVT == MVT::i128)
295      return FPTOSINT_F64_I128;
296  } else if (OpVT == MVT::f80) {
297    if (RetVT == MVT::i32)
298      return FPTOSINT_F80_I32;
299    if (RetVT == MVT::i64)
300      return FPTOSINT_F80_I64;
301    if (RetVT == MVT::i128)
302      return FPTOSINT_F80_I128;
303  } else if (OpVT == MVT::ppcf128) {
304    if (RetVT == MVT::i32)
305      return FPTOSINT_PPCF128_I32;
306    if (RetVT == MVT::i64)
307      return FPTOSINT_PPCF128_I64;
308    if (RetVT == MVT::i128)
309      return FPTOSINT_PPCF128_I128;
310  }
311  return UNKNOWN_LIBCALL;
312}
313
314/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
315/// UNKNOWN_LIBCALL if there is none.
316RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
317  if (OpVT == MVT::f32) {
318    if (RetVT == MVT::i8)
319      return FPTOUINT_F32_I8;
320    if (RetVT == MVT::i16)
321      return FPTOUINT_F32_I16;
322    if (RetVT == MVT::i32)
323      return FPTOUINT_F32_I32;
324    if (RetVT == MVT::i64)
325      return FPTOUINT_F32_I64;
326    if (RetVT == MVT::i128)
327      return FPTOUINT_F32_I128;
328  } else if (OpVT == MVT::f64) {
329    if (RetVT == MVT::i32)
330      return FPTOUINT_F64_I32;
331    if (RetVT == MVT::i64)
332      return FPTOUINT_F64_I64;
333    if (RetVT == MVT::i128)
334      return FPTOUINT_F64_I128;
335  } else if (OpVT == MVT::f80) {
336    if (RetVT == MVT::i32)
337      return FPTOUINT_F80_I32;
338    if (RetVT == MVT::i64)
339      return FPTOUINT_F80_I64;
340    if (RetVT == MVT::i128)
341      return FPTOUINT_F80_I128;
342  } else if (OpVT == MVT::ppcf128) {
343    if (RetVT == MVT::i32)
344      return FPTOUINT_PPCF128_I32;
345    if (RetVT == MVT::i64)
346      return FPTOUINT_PPCF128_I64;
347    if (RetVT == MVT::i128)
348      return FPTOUINT_PPCF128_I128;
349  }
350  return UNKNOWN_LIBCALL;
351}
352
353/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
354/// UNKNOWN_LIBCALL if there is none.
355RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
356  if (OpVT == MVT::i32) {
357    if (RetVT == MVT::f32)
358      return SINTTOFP_I32_F32;
359    else if (RetVT == MVT::f64)
360      return SINTTOFP_I32_F64;
361    else if (RetVT == MVT::f80)
362      return SINTTOFP_I32_F80;
363    else if (RetVT == MVT::ppcf128)
364      return SINTTOFP_I32_PPCF128;
365  } else if (OpVT == MVT::i64) {
366    if (RetVT == MVT::f32)
367      return SINTTOFP_I64_F32;
368    else if (RetVT == MVT::f64)
369      return SINTTOFP_I64_F64;
370    else if (RetVT == MVT::f80)
371      return SINTTOFP_I64_F80;
372    else if (RetVT == MVT::ppcf128)
373      return SINTTOFP_I64_PPCF128;
374  } else if (OpVT == MVT::i128) {
375    if (RetVT == MVT::f32)
376      return SINTTOFP_I128_F32;
377    else if (RetVT == MVT::f64)
378      return SINTTOFP_I128_F64;
379    else if (RetVT == MVT::f80)
380      return SINTTOFP_I128_F80;
381    else if (RetVT == MVT::ppcf128)
382      return SINTTOFP_I128_PPCF128;
383  }
384  return UNKNOWN_LIBCALL;
385}
386
387/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
388/// UNKNOWN_LIBCALL if there is none.
389RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
390  if (OpVT == MVT::i32) {
391    if (RetVT == MVT::f32)
392      return UINTTOFP_I32_F32;
393    else if (RetVT == MVT::f64)
394      return UINTTOFP_I32_F64;
395    else if (RetVT == MVT::f80)
396      return UINTTOFP_I32_F80;
397    else if (RetVT == MVT::ppcf128)
398      return UINTTOFP_I32_PPCF128;
399  } else if (OpVT == MVT::i64) {
400    if (RetVT == MVT::f32)
401      return UINTTOFP_I64_F32;
402    else if (RetVT == MVT::f64)
403      return UINTTOFP_I64_F64;
404    else if (RetVT == MVT::f80)
405      return UINTTOFP_I64_F80;
406    else if (RetVT == MVT::ppcf128)
407      return UINTTOFP_I64_PPCF128;
408  } else if (OpVT == MVT::i128) {
409    if (RetVT == MVT::f32)
410      return UINTTOFP_I128_F32;
411    else if (RetVT == MVT::f64)
412      return UINTTOFP_I128_F64;
413    else if (RetVT == MVT::f80)
414      return UINTTOFP_I128_F80;
415    else if (RetVT == MVT::ppcf128)
416      return UINTTOFP_I128_PPCF128;
417  }
418  return UNKNOWN_LIBCALL;
419}
420
421/// InitCmpLibcallCCs - Set default comparison libcall CC.
422///
423static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
424  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
425  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
426  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
427  CCs[RTLIB::UNE_F32] = ISD::SETNE;
428  CCs[RTLIB::UNE_F64] = ISD::SETNE;
429  CCs[RTLIB::OGE_F32] = ISD::SETGE;
430  CCs[RTLIB::OGE_F64] = ISD::SETGE;
431  CCs[RTLIB::OLT_F32] = ISD::SETLT;
432  CCs[RTLIB::OLT_F64] = ISD::SETLT;
433  CCs[RTLIB::OLE_F32] = ISD::SETLE;
434  CCs[RTLIB::OLE_F64] = ISD::SETLE;
435  CCs[RTLIB::OGT_F32] = ISD::SETGT;
436  CCs[RTLIB::OGT_F64] = ISD::SETGT;
437  CCs[RTLIB::UO_F32] = ISD::SETNE;
438  CCs[RTLIB::UO_F64] = ISD::SETNE;
439  CCs[RTLIB::O_F32] = ISD::SETEQ;
440  CCs[RTLIB::O_F64] = ISD::SETEQ;
441}
442
443TargetLowering::TargetLowering(TargetMachine &tm)
444  : TM(tm), TD(TM.getTargetData()) {
445  // All operations default to being supported.
446  memset(OpActions, 0, sizeof(OpActions));
447  memset(LoadExtActions, 0, sizeof(LoadExtActions));
448  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
449  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
450  memset(ConvertActions, 0, sizeof(ConvertActions));
451  memset(CondCodeActions, 0, sizeof(CondCodeActions));
452
453  // Set default actions for various operations.
454  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
455    // Default all indexed load / store to expand.
456    for (unsigned IM = (unsigned)ISD::PRE_INC;
457         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
458      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
459      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
460    }
461
462    // These operations default to expand.
463    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
464    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
465  }
466
467  // Most targets ignore the @llvm.prefetch intrinsic.
468  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
469
470  // ConstantFP nodes default to expand.  Targets can either change this to
471  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
472  // to optimize expansions for certain constants.
473  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
474  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
475  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
476
477  // These library functions default to expand.
478  setOperationAction(ISD::FLOG , MVT::f64, Expand);
479  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
480  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
481  setOperationAction(ISD::FEXP , MVT::f64, Expand);
482  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
483  setOperationAction(ISD::FLOG , MVT::f32, Expand);
484  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
485  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
486  setOperationAction(ISD::FEXP , MVT::f32, Expand);
487  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
488
489  // Default ISD::TRAP to expand (which turns it into abort).
490  setOperationAction(ISD::TRAP, MVT::Other, Expand);
491
492  IsLittleEndian = TD->isLittleEndian();
493  UsesGlobalOffsetTable = false;
494  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
495  ShiftAmtHandling = Undefined;
496  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
497  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
498  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
499  allowUnalignedMemoryAccesses = false;
500  benefitFromCodePlacementOpt = false;
501  UseUnderscoreSetJmp = false;
502  UseUnderscoreLongJmp = false;
503  SelectIsExpensive = false;
504  IntDivIsCheap = false;
505  Pow2DivIsCheap = false;
506  StackPointerRegisterToSaveRestore = 0;
507  ExceptionPointerRegister = 0;
508  ExceptionSelectorRegister = 0;
509  BooleanContents = UndefinedBooleanContent;
510  SchedPreferenceInfo = SchedulingForLatency;
511  JumpBufSize = 0;
512  JumpBufAlignment = 0;
513  IfCvtBlockSizeLimit = 2;
514  IfCvtDupBlockSizeLimit = 0;
515  PrefLoopAlignment = 0;
516
517  InitLibcallNames(LibcallRoutineNames);
518  InitCmpLibcallCCs(CmpLibcallCCs);
519
520  // Tell Legalize whether the assembler supports DEBUG_LOC.
521  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
522  if (!TASM || !TASM->hasDotLocAndDotFile())
523    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
524}
525
526TargetLowering::~TargetLowering() {}
527
528/// computeRegisterProperties - Once all of the register classes are added,
529/// this allows us to compute derived properties we expose.
530void TargetLowering::computeRegisterProperties() {
531  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
532         "Too many value types for ValueTypeActions to hold!");
533
534  // Everything defaults to needing one register.
535  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
536    NumRegistersForVT[i] = 1;
537    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
538  }
539  // ...except isVoid, which doesn't need any registers.
540  NumRegistersForVT[MVT::isVoid] = 0;
541
542  // Find the largest integer register class.
543  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
544  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
545    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
546
547  // Every integer value type larger than this largest register takes twice as
548  // many registers to represent as the previous ValueType.
549  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
550    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
551    if (!EVT.isInteger())
552      break;
553    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
554    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
555    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
556    ValueTypeActions.setTypeAction(EVT, Expand);
557  }
558
559  // Inspect all of the ValueType's smaller than the largest integer
560  // register to see which ones need promotion.
561  unsigned LegalIntReg = LargestIntReg;
562  for (unsigned IntReg = LargestIntReg - 1;
563       IntReg >= (unsigned)MVT::i1; --IntReg) {
564    MVT IVT = (MVT::SimpleValueType)IntReg;
565    if (isTypeLegal(IVT)) {
566      LegalIntReg = IntReg;
567    } else {
568      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
569        (MVT::SimpleValueType)LegalIntReg;
570      ValueTypeActions.setTypeAction(IVT, Promote);
571    }
572  }
573
574  // ppcf128 type is really two f64's.
575  if (!isTypeLegal(MVT::ppcf128)) {
576    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
577    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
578    TransformToType[MVT::ppcf128] = MVT::f64;
579    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
580  }
581
582  // Decide how to handle f64. If the target does not have native f64 support,
583  // expand it to i64 and we will be generating soft float library calls.
584  if (!isTypeLegal(MVT::f64)) {
585    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
586    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
587    TransformToType[MVT::f64] = MVT::i64;
588    ValueTypeActions.setTypeAction(MVT::f64, Expand);
589  }
590
591  // Decide how to handle f32. If the target does not have native support for
592  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
593  if (!isTypeLegal(MVT::f32)) {
594    if (isTypeLegal(MVT::f64)) {
595      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
596      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
597      TransformToType[MVT::f32] = MVT::f64;
598      ValueTypeActions.setTypeAction(MVT::f32, Promote);
599    } else {
600      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
601      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
602      TransformToType[MVT::f32] = MVT::i32;
603      ValueTypeActions.setTypeAction(MVT::f32, Expand);
604    }
605  }
606
607  // Loop over all of the vector value types to see which need transformations.
608  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
609       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
610    MVT VT = (MVT::SimpleValueType)i;
611    if (!isTypeLegal(VT)) {
612      MVT IntermediateVT, RegisterVT;
613      unsigned NumIntermediates;
614      NumRegistersForVT[i] =
615        getVectorTypeBreakdown(VT,
616                               IntermediateVT, NumIntermediates,
617                               RegisterVT);
618      RegisterTypeForVT[i] = RegisterVT;
619
620      // Determine if there is a legal wider type.
621      bool IsLegalWiderType = false;
622      MVT EltVT = VT.getVectorElementType();
623      unsigned NElts = VT.getVectorNumElements();
624      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
625        MVT SVT = (MVT::SimpleValueType)nVT;
626        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
627            SVT.getVectorNumElements() > NElts) {
628          TransformToType[i] = SVT;
629          ValueTypeActions.setTypeAction(VT, Promote);
630          IsLegalWiderType = true;
631          break;
632        }
633      }
634      if (!IsLegalWiderType) {
635        MVT NVT = VT.getPow2VectorType();
636        if (NVT == VT) {
637          // Type is already a power of 2.  The default action is to split.
638          TransformToType[i] = MVT::Other;
639          ValueTypeActions.setTypeAction(VT, Expand);
640        } else {
641          TransformToType[i] = NVT;
642          ValueTypeActions.setTypeAction(VT, Promote);
643        }
644      }
645    }
646  }
647}
648
649const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
650  return NULL;
651}
652
653
654MVT TargetLowering::getSetCCResultType(MVT VT) const {
655  return getValueType(TD->getIntPtrType());
656}
657
658
659/// getVectorTypeBreakdown - Vector types are broken down into some number of
660/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
661/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
662/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
663///
664/// This method returns the number of registers needed, and the VT for each
665/// register.  It also returns the VT and quantity of the intermediate values
666/// before they are promoted/expanded.
667///
668unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
669                                                MVT &IntermediateVT,
670                                                unsigned &NumIntermediates,
671                                      MVT &RegisterVT) const {
672  // Figure out the right, legal destination reg to copy into.
673  unsigned NumElts = VT.getVectorNumElements();
674  MVT EltTy = VT.getVectorElementType();
675
676  unsigned NumVectorRegs = 1;
677
678  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
679  // could break down into LHS/RHS like LegalizeDAG does.
680  if (!isPowerOf2_32(NumElts)) {
681    NumVectorRegs = NumElts;
682    NumElts = 1;
683  }
684
685  // Divide the input until we get to a supported size.  This will always
686  // end with a scalar if the target doesn't support vectors.
687  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
688    NumElts >>= 1;
689    NumVectorRegs <<= 1;
690  }
691
692  NumIntermediates = NumVectorRegs;
693
694  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
695  if (!isTypeLegal(NewVT))
696    NewVT = EltTy;
697  IntermediateVT = NewVT;
698
699  MVT DestVT = getRegisterType(NewVT);
700  RegisterVT = DestVT;
701  if (DestVT.bitsLT(NewVT)) {
702    // Value is expanded, e.g. i64 -> i16.
703    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
704  } else {
705    // Otherwise, promotion or legal types use the same number of registers as
706    // the vector decimated to the appropriate level.
707    return NumVectorRegs;
708  }
709
710  return 1;
711}
712
713/// getWidenVectorType: given a vector type, returns the type to widen to
714/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
715/// If there is no vector type that we want to widen to, returns MVT::Other
716/// When and where to widen is target dependent based on the cost of
717/// scalarizing vs using the wider vector type.
718MVT TargetLowering::getWidenVectorType(MVT VT) const {
719  assert(VT.isVector());
720  if (isTypeLegal(VT))
721    return VT;
722
723  // Default is not to widen until moved to LegalizeTypes
724  return MVT::Other;
725}
726
727/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
728/// function arguments in the caller parameter area.  This is the actual
729/// alignment, not its logarithm.
730unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
731  return TD->getCallFrameTypeAlignment(Ty);
732}
733
734SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
735                                                 SelectionDAG &DAG) const {
736  if (usesGlobalOffsetTable())
737    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
738  return Table;
739}
740
741bool
742TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
743  // Assume that everything is safe in static mode.
744  if (getTargetMachine().getRelocationModel() == Reloc::Static)
745    return true;
746
747  // In dynamic-no-pic mode, assume that known defined values are safe.
748  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
749      GA &&
750      !GA->getGlobal()->isDeclaration() &&
751      !GA->getGlobal()->isWeakForLinker())
752    return true;
753
754  // Otherwise assume nothing is safe.
755  return false;
756}
757
758//===----------------------------------------------------------------------===//
759//  Optimization Methods
760//===----------------------------------------------------------------------===//
761
762/// ShrinkDemandedConstant - Check to see if the specified operand of the
763/// specified instruction is a constant integer.  If so, check to see if there
764/// are any bits set in the constant that are not demanded.  If so, shrink the
765/// constant and return true.
766bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
767                                                        const APInt &Demanded) {
768  DebugLoc dl = Op.getDebugLoc();
769
770  // FIXME: ISD::SELECT, ISD::SELECT_CC
771  switch (Op.getOpcode()) {
772  default: break;
773  case ISD::XOR:
774  case ISD::AND:
775  case ISD::OR: {
776    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
777    if (!C) return false;
778
779    if (Op.getOpcode() == ISD::XOR &&
780        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
781      return false;
782
783    // if we can expand it to have all bits set, do it
784    if (C->getAPIntValue().intersects(~Demanded)) {
785      MVT VT = Op.getValueType();
786      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
787                                DAG.getConstant(Demanded &
788                                                C->getAPIntValue(),
789                                                VT));
790      return CombineTo(Op, New);
791    }
792
793    break;
794  }
795  }
796
797  return false;
798}
799
800/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
801/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
802/// cast, but it could be generalized for targets with other types of
803/// implicit widening casts.
804bool
805TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
806                                                    unsigned BitWidth,
807                                                    const APInt &Demanded,
808                                                    DebugLoc dl) {
809  assert(Op.getNumOperands() == 2 &&
810         "ShrinkDemandedOp only supports binary operators!");
811  assert(Op.getNode()->getNumValues() == 1 &&
812         "ShrinkDemandedOp only supports nodes with one result!");
813
814  // Don't do this if the node has another user, which may require the
815  // full value.
816  if (!Op.getNode()->hasOneUse())
817    return false;
818
819  // Search for the smallest integer type with free casts to and from
820  // Op's type. For expedience, just check power-of-2 integer types.
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
823  if (!isPowerOf2_32(SmallVTBits))
824    SmallVTBits = NextPowerOf2(SmallVTBits);
825  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
826    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
827    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
828        TLI.isZExtFree(SmallVT, Op.getValueType())) {
829      // We found a type with free casts.
830      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
831                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
832                                          Op.getNode()->getOperand(0)),
833                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
834                                          Op.getNode()->getOperand(1)));
835      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
836      return CombineTo(Op, Z);
837    }
838  }
839  return false;
840}
841
842/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
843/// DemandedMask bits of the result of Op are ever used downstream.  If we can
844/// use this information to simplify Op, create a new simplified DAG node and
845/// return true, returning the original and new nodes in Old and New. Otherwise,
846/// analyze the expression and return a mask of KnownOne and KnownZero bits for
847/// the expression (used to simplify the caller).  The KnownZero/One bits may
848/// only be accurate for those bits in the DemandedMask.
849bool TargetLowering::SimplifyDemandedBits(SDValue Op,
850                                          const APInt &DemandedMask,
851                                          APInt &KnownZero,
852                                          APInt &KnownOne,
853                                          TargetLoweringOpt &TLO,
854                                          unsigned Depth) const {
855  unsigned BitWidth = DemandedMask.getBitWidth();
856  assert(Op.getValueSizeInBits() == BitWidth &&
857         "Mask size mismatches value type size!");
858  APInt NewMask = DemandedMask;
859  DebugLoc dl = Op.getDebugLoc();
860
861  // Don't know anything.
862  KnownZero = KnownOne = APInt(BitWidth, 0);
863
864  // Other users may use these bits.
865  if (!Op.getNode()->hasOneUse()) {
866    if (Depth != 0) {
867      // If not at the root, Just compute the KnownZero/KnownOne bits to
868      // simplify things downstream.
869      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
870      return false;
871    }
872    // If this is the root being simplified, allow it to have multiple uses,
873    // just set the NewMask to all bits.
874    NewMask = APInt::getAllOnesValue(BitWidth);
875  } else if (DemandedMask == 0) {
876    // Not demanding any bits from Op.
877    if (Op.getOpcode() != ISD::UNDEF)
878      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
879    return false;
880  } else if (Depth == 6) {        // Limit search depth.
881    return false;
882  }
883
884  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
885  switch (Op.getOpcode()) {
886  case ISD::Constant:
887    // We know all of the bits for a constant!
888    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
889    KnownZero = ~KnownOne & NewMask;
890    return false;   // Don't fall through, will infinitely loop.
891  case ISD::AND:
892    // If the RHS is a constant, check to see if the LHS would be zero without
893    // using the bits from the RHS.  Below, we use knowledge about the RHS to
894    // simplify the LHS, here we're using information from the LHS to simplify
895    // the RHS.
896    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
897      APInt LHSZero, LHSOne;
898      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
899                                LHSZero, LHSOne, Depth+1);
900      // If the LHS already has zeros where RHSC does, this and is dead.
901      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
902        return TLO.CombineTo(Op, Op.getOperand(0));
903      // If any of the set bits in the RHS are known zero on the LHS, shrink
904      // the constant.
905      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
906        return true;
907    }
908
909    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
910                             KnownOne, TLO, Depth+1))
911      return true;
912    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
913    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
914                             KnownZero2, KnownOne2, TLO, Depth+1))
915      return true;
916    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
917
918    // If all of the demanded bits are known one on one side, return the other.
919    // These bits cannot contribute to the result of the 'and'.
920    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
921      return TLO.CombineTo(Op, Op.getOperand(0));
922    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
923      return TLO.CombineTo(Op, Op.getOperand(1));
924    // If all of the demanded bits in the inputs are known zeros, return zero.
925    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
926      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
927    // If the RHS is a constant, see if we can simplify it.
928    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
929      return true;
930    // If the operation can be done in a smaller type, do so.
931    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
932      return true;
933
934    // Output known-1 bits are only known if set in both the LHS & RHS.
935    KnownOne &= KnownOne2;
936    // Output known-0 are known to be clear if zero in either the LHS | RHS.
937    KnownZero |= KnownZero2;
938    break;
939  case ISD::OR:
940    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
941                             KnownOne, TLO, Depth+1))
942      return true;
943    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
945                             KnownZero2, KnownOne2, TLO, Depth+1))
946      return true;
947    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
948
949    // If all of the demanded bits are known zero on one side, return the other.
950    // These bits cannot contribute to the result of the 'or'.
951    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
952      return TLO.CombineTo(Op, Op.getOperand(0));
953    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
954      return TLO.CombineTo(Op, Op.getOperand(1));
955    // If all of the potentially set bits on one side are known to be set on
956    // the other side, just use the 'other' side.
957    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
958      return TLO.CombineTo(Op, Op.getOperand(0));
959    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
960      return TLO.CombineTo(Op, Op.getOperand(1));
961    // If the RHS is a constant, see if we can simplify it.
962    if (TLO.ShrinkDemandedConstant(Op, NewMask))
963      return true;
964    // If the operation can be done in a smaller type, do so.
965    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
966      return true;
967
968    // Output known-0 bits are only known if clear in both the LHS & RHS.
969    KnownZero &= KnownZero2;
970    // Output known-1 are known to be set if set in either the LHS | RHS.
971    KnownOne |= KnownOne2;
972    break;
973  case ISD::XOR:
974    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
975                             KnownOne, TLO, Depth+1))
976      return true;
977    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
978    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
979                             KnownOne2, TLO, Depth+1))
980      return true;
981    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
982
983    // If all of the demanded bits are known zero on one side, return the other.
984    // These bits cannot contribute to the result of the 'xor'.
985    if ((KnownZero & NewMask) == NewMask)
986      return TLO.CombineTo(Op, Op.getOperand(0));
987    if ((KnownZero2 & NewMask) == NewMask)
988      return TLO.CombineTo(Op, Op.getOperand(1));
989    // If the operation can be done in a smaller type, do so.
990    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
991      return true;
992
993    // If all of the unknown bits are known to be zero on one side or the other
994    // (but not both) turn this into an *inclusive* or.
995    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
996    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
997      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
998                                               Op.getOperand(0),
999                                               Op.getOperand(1)));
1000
1001    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1002    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1003    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1004    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1005
1006    // If all of the demanded bits on one side are known, and all of the set
1007    // bits on that side are also known to be set on the other side, turn this
1008    // into an AND, as we know the bits will be cleared.
1009    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1010    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1011      if ((KnownOne & KnownOne2) == KnownOne) {
1012        MVT VT = Op.getValueType();
1013        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1014        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1015                                                 Op.getOperand(0), ANDC));
1016      }
1017    }
1018
1019    // If the RHS is a constant, see if we can simplify it.
1020    // for XOR, we prefer to force bits to 1 if they will make a -1.
1021    // if we can't force bits, try to shrink constant
1022    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1023      APInt Expanded = C->getAPIntValue() | (~NewMask);
1024      // if we can expand it to have all bits set, do it
1025      if (Expanded.isAllOnesValue()) {
1026        if (Expanded != C->getAPIntValue()) {
1027          MVT VT = Op.getValueType();
1028          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1029                                          TLO.DAG.getConstant(Expanded, VT));
1030          return TLO.CombineTo(Op, New);
1031        }
1032        // if it already has all the bits set, nothing to change
1033        // but don't shrink either!
1034      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1035        return true;
1036      }
1037    }
1038
1039    KnownZero = KnownZeroOut;
1040    KnownOne  = KnownOneOut;
1041    break;
1042  case ISD::SELECT:
1043    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1044                             KnownOne, TLO, Depth+1))
1045      return true;
1046    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1047                             KnownOne2, TLO, Depth+1))
1048      return true;
1049    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1050    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1051
1052    // If the operands are constants, see if we can simplify them.
1053    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1054      return true;
1055
1056    // Only known if known in both the LHS and RHS.
1057    KnownOne &= KnownOne2;
1058    KnownZero &= KnownZero2;
1059    break;
1060  case ISD::SELECT_CC:
1061    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1062                             KnownOne, TLO, Depth+1))
1063      return true;
1064    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1065                             KnownOne2, TLO, Depth+1))
1066      return true;
1067    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1068    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1069
1070    // If the operands are constants, see if we can simplify them.
1071    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1072      return true;
1073
1074    // Only known if known in both the LHS and RHS.
1075    KnownOne &= KnownOne2;
1076    KnownZero &= KnownZero2;
1077    break;
1078  case ISD::SHL:
1079    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1080      unsigned ShAmt = SA->getZExtValue();
1081      SDValue InOp = Op.getOperand(0);
1082
1083      // If the shift count is an invalid immediate, don't do anything.
1084      if (ShAmt >= BitWidth)
1085        break;
1086
1087      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1088      // single shift.  We can do this if the bottom bits (which are shifted
1089      // out) are never demanded.
1090      if (InOp.getOpcode() == ISD::SRL &&
1091          isa<ConstantSDNode>(InOp.getOperand(1))) {
1092        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1093          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1094          unsigned Opc = ISD::SHL;
1095          int Diff = ShAmt-C1;
1096          if (Diff < 0) {
1097            Diff = -Diff;
1098            Opc = ISD::SRL;
1099          }
1100
1101          SDValue NewSA =
1102            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1103          MVT VT = Op.getValueType();
1104          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1105                                                   InOp.getOperand(0), NewSA));
1106        }
1107      }
1108
1109      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1110                               KnownZero, KnownOne, TLO, Depth+1))
1111        return true;
1112      KnownZero <<= SA->getZExtValue();
1113      KnownOne  <<= SA->getZExtValue();
1114      // low bits known zero.
1115      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1116    }
1117    break;
1118  case ISD::SRL:
1119    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1120      MVT VT = Op.getValueType();
1121      unsigned ShAmt = SA->getZExtValue();
1122      unsigned VTSize = VT.getSizeInBits();
1123      SDValue InOp = Op.getOperand(0);
1124
1125      // If the shift count is an invalid immediate, don't do anything.
1126      if (ShAmt >= BitWidth)
1127        break;
1128
1129      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1130      // single shift.  We can do this if the top bits (which are shifted out)
1131      // are never demanded.
1132      if (InOp.getOpcode() == ISD::SHL &&
1133          isa<ConstantSDNode>(InOp.getOperand(1))) {
1134        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1135          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1136          unsigned Opc = ISD::SRL;
1137          int Diff = ShAmt-C1;
1138          if (Diff < 0) {
1139            Diff = -Diff;
1140            Opc = ISD::SHL;
1141          }
1142
1143          SDValue NewSA =
1144            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1145          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1146                                                   InOp.getOperand(0), NewSA));
1147        }
1148      }
1149
1150      // Compute the new bits that are at the top now.
1151      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1152                               KnownZero, KnownOne, TLO, Depth+1))
1153        return true;
1154      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1155      KnownZero = KnownZero.lshr(ShAmt);
1156      KnownOne  = KnownOne.lshr(ShAmt);
1157
1158      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1159      KnownZero |= HighBits;  // High bits known zero.
1160    }
1161    break;
1162  case ISD::SRA:
1163    // If this is an arithmetic shift right and only the low-bit is set, we can
1164    // always convert this into a logical shr, even if the shift amount is
1165    // variable.  The low bit of the shift cannot be an input sign bit unless
1166    // the shift amount is >= the size of the datatype, which is undefined.
1167    if (DemandedMask == 1)
1168      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1169                                               Op.getOperand(0), Op.getOperand(1)));
1170
1171    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1172      MVT VT = Op.getValueType();
1173      unsigned ShAmt = SA->getZExtValue();
1174
1175      // If the shift count is an invalid immediate, don't do anything.
1176      if (ShAmt >= BitWidth)
1177        break;
1178
1179      APInt InDemandedMask = (NewMask << ShAmt);
1180
1181      // If any of the demanded bits are produced by the sign extension, we also
1182      // demand the input sign bit.
1183      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1184      if (HighBits.intersects(NewMask))
1185        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1186
1187      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1188                               KnownZero, KnownOne, TLO, Depth+1))
1189        return true;
1190      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1191      KnownZero = KnownZero.lshr(ShAmt);
1192      KnownOne  = KnownOne.lshr(ShAmt);
1193
1194      // Handle the sign bit, adjusted to where it is now in the mask.
1195      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1196
1197      // If the input sign bit is known to be zero, or if none of the top bits
1198      // are demanded, turn this into an unsigned shift right.
1199      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1200        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1201                                                 Op.getOperand(0),
1202                                                 Op.getOperand(1)));
1203      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1204        KnownOne |= HighBits;
1205      }
1206    }
1207    break;
1208  case ISD::SIGN_EXTEND_INREG: {
1209    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1210
1211    // Sign extension.  Compute the demanded bits in the result that are not
1212    // present in the input.
1213    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1214                                          BitWidth - EVT.getSizeInBits()) &
1215                    NewMask;
1216
1217    // If none of the extended bits are demanded, eliminate the sextinreg.
1218    if (NewBits == 0)
1219      return TLO.CombineTo(Op, Op.getOperand(0));
1220
1221    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1222    InSignBit.zext(BitWidth);
1223    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1224                                                   EVT.getSizeInBits()) &
1225                              NewMask;
1226
1227    // Since the sign extended bits are demanded, we know that the sign
1228    // bit is demanded.
1229    InputDemandedBits |= InSignBit;
1230
1231    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1232                             KnownZero, KnownOne, TLO, Depth+1))
1233      return true;
1234    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1235
1236    // If the sign bit of the input is known set or clear, then we know the
1237    // top bits of the result.
1238
1239    // If the input sign bit is known zero, convert this into a zero extension.
1240    if (KnownZero.intersects(InSignBit))
1241      return TLO.CombineTo(Op,
1242                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1243
1244    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1245      KnownOne |= NewBits;
1246      KnownZero &= ~NewBits;
1247    } else {                       // Input sign bit unknown
1248      KnownZero &= ~NewBits;
1249      KnownOne &= ~NewBits;
1250    }
1251    break;
1252  }
1253  case ISD::ZERO_EXTEND: {
1254    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1255    APInt InMask = NewMask;
1256    InMask.trunc(OperandBitWidth);
1257
1258    // If none of the top bits are demanded, convert this into an any_extend.
1259    APInt NewBits =
1260      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1261    if (!NewBits.intersects(NewMask))
1262      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1263                                               Op.getValueType(),
1264                                               Op.getOperand(0)));
1265
1266    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1267                             KnownZero, KnownOne, TLO, Depth+1))
1268      return true;
1269    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270    KnownZero.zext(BitWidth);
1271    KnownOne.zext(BitWidth);
1272    KnownZero |= NewBits;
1273    break;
1274  }
1275  case ISD::SIGN_EXTEND: {
1276    MVT InVT = Op.getOperand(0).getValueType();
1277    unsigned InBits = InVT.getSizeInBits();
1278    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1279    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1280    APInt NewBits   = ~InMask & NewMask;
1281
1282    // If none of the top bits are demanded, convert this into an any_extend.
1283    if (NewBits == 0)
1284      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1285                                              Op.getValueType(),
1286                                              Op.getOperand(0)));
1287
1288    // Since some of the sign extended bits are demanded, we know that the sign
1289    // bit is demanded.
1290    APInt InDemandedBits = InMask & NewMask;
1291    InDemandedBits |= InSignBit;
1292    InDemandedBits.trunc(InBits);
1293
1294    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1295                             KnownOne, TLO, Depth+1))
1296      return true;
1297    KnownZero.zext(BitWidth);
1298    KnownOne.zext(BitWidth);
1299
1300    // If the sign bit is known zero, convert this to a zero extend.
1301    if (KnownZero.intersects(InSignBit))
1302      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1303                                               Op.getValueType(),
1304                                               Op.getOperand(0)));
1305
1306    // If the sign bit is known one, the top bits match.
1307    if (KnownOne.intersects(InSignBit)) {
1308      KnownOne  |= NewBits;
1309      KnownZero &= ~NewBits;
1310    } else {   // Otherwise, top bits aren't known.
1311      KnownOne  &= ~NewBits;
1312      KnownZero &= ~NewBits;
1313    }
1314    break;
1315  }
1316  case ISD::ANY_EXTEND: {
1317    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1318    APInt InMask = NewMask;
1319    InMask.trunc(OperandBitWidth);
1320    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1321                             KnownZero, KnownOne, TLO, Depth+1))
1322      return true;
1323    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1324    KnownZero.zext(BitWidth);
1325    KnownOne.zext(BitWidth);
1326    break;
1327  }
1328  case ISD::TRUNCATE: {
1329    // Simplify the input, using demanded bit information, and compute the known
1330    // zero/one bits live out.
1331    APInt TruncMask = NewMask;
1332    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1333    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1334                             KnownZero, KnownOne, TLO, Depth+1))
1335      return true;
1336    KnownZero.trunc(BitWidth);
1337    KnownOne.trunc(BitWidth);
1338
1339    // If the input is only used by this truncate, see if we can shrink it based
1340    // on the known demanded bits.
1341    if (Op.getOperand(0).getNode()->hasOneUse()) {
1342      SDValue In = Op.getOperand(0);
1343      unsigned InBitWidth = In.getValueSizeInBits();
1344      switch (In.getOpcode()) {
1345      default: break;
1346      case ISD::SRL:
1347        // Shrink SRL by a constant if none of the high bits shifted in are
1348        // demanded.
1349        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1350          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1351                                                 InBitWidth - BitWidth);
1352          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1353          HighBits.trunc(BitWidth);
1354
1355          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1356            // None of the shifted in bits are needed.  Add a truncate of the
1357            // shift input, then shift it.
1358            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1359                                                 Op.getValueType(),
1360                                                 In.getOperand(0));
1361            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1362                                                     Op.getValueType(),
1363                                                     NewTrunc,
1364                                                     In.getOperand(1)));
1365          }
1366        }
1367        break;
1368      }
1369    }
1370
1371    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1372    break;
1373  }
1374  case ISD::AssertZext: {
1375    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1376    APInt InMask = APInt::getLowBitsSet(BitWidth,
1377                                        VT.getSizeInBits());
1378    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1379                             KnownZero, KnownOne, TLO, Depth+1))
1380      return true;
1381    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382    KnownZero |= ~InMask & NewMask;
1383    break;
1384  }
1385  case ISD::BIT_CONVERT:
1386#if 0
1387    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1388    // is demanded, turn this into a FGETSIGN.
1389    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1390        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1391        !MVT::isVector(Op.getOperand(0).getValueType())) {
1392      // Only do this xform if FGETSIGN is valid or if before legalize.
1393      if (!TLO.AfterLegalize ||
1394          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1395        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1396        // place.  We expect the SHL to be eliminated by other optimizations.
1397        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1398                                         Op.getOperand(0));
1399        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1400        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1401        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1402                                                 Sign, ShAmt));
1403      }
1404    }
1405#endif
1406    break;
1407  case ISD::ADD:
1408  case ISD::MUL:
1409  case ISD::SUB: {
1410    // Add, Sub, and Mul don't demand any bits in positions beyond that
1411    // of the highest bit demanded of them.
1412    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1413                                        BitWidth - NewMask.countLeadingZeros());
1414    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1415                             KnownOne2, TLO, Depth+1))
1416      return true;
1417    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1418                             KnownOne2, TLO, Depth+1))
1419      return true;
1420    // See if the operation should be performed at a smaller bit width.
1421    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1422      return true;
1423  }
1424  // FALL THROUGH
1425  default:
1426    // Just use ComputeMaskedBits to compute output bits.
1427    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1428    break;
1429  }
1430
1431  // If we know the value of all of the demanded bits, return this as a
1432  // constant.
1433  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1434    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1435
1436  return false;
1437}
1438
1439/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1440/// in Mask are known to be either zero or one and return them in the
1441/// KnownZero/KnownOne bitsets.
1442void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1443                                                    const APInt &Mask,
1444                                                    APInt &KnownZero,
1445                                                    APInt &KnownOne,
1446                                                    const SelectionDAG &DAG,
1447                                                    unsigned Depth) const {
1448  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1449          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1450          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1451          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1452         "Should use MaskedValueIsZero if you don't know whether Op"
1453         " is a target node!");
1454  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1455}
1456
1457/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1458/// targets that want to expose additional information about sign bits to the
1459/// DAG Combiner.
1460unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1461                                                         unsigned Depth) const {
1462  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1463          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1464          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1465          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1466         "Should use ComputeNumSignBits if you don't know whether Op"
1467         " is a target node!");
1468  return 1;
1469}
1470
1471/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1472/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1473/// determine which bit is set.
1474///
1475static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1476  // A left-shift of a constant one will have exactly one bit set, because
1477  // shifting the bit off the end is undefined.
1478  if (Val.getOpcode() == ISD::SHL)
1479    if (ConstantSDNode *C =
1480         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1481      if (C->getAPIntValue() == 1)
1482        return true;
1483
1484  // Similarly, a right-shift of a constant sign-bit will have exactly
1485  // one bit set.
1486  if (Val.getOpcode() == ISD::SRL)
1487    if (ConstantSDNode *C =
1488         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1489      if (C->getAPIntValue().isSignBit())
1490        return true;
1491
1492  // More could be done here, though the above checks are enough
1493  // to handle some common cases.
1494
1495  // Fall back to ComputeMaskedBits to catch other known cases.
1496  MVT OpVT = Val.getValueType();
1497  unsigned BitWidth = OpVT.getSizeInBits();
1498  APInt Mask = APInt::getAllOnesValue(BitWidth);
1499  APInt KnownZero, KnownOne;
1500  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1501  return (KnownZero.countPopulation() == BitWidth - 1) &&
1502         (KnownOne.countPopulation() == 1);
1503}
1504
1505/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1506/// and cc. If it is unable to simplify it, return a null SDValue.
1507SDValue
1508TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1509                              ISD::CondCode Cond, bool foldBooleans,
1510                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1511  SelectionDAG &DAG = DCI.DAG;
1512
1513  // These setcc operations always fold.
1514  switch (Cond) {
1515  default: break;
1516  case ISD::SETFALSE:
1517  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1518  case ISD::SETTRUE:
1519  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1520  }
1521
1522  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1523    const APInt &C1 = N1C->getAPIntValue();
1524    if (isa<ConstantSDNode>(N0.getNode())) {
1525      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1526    } else {
1527      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1528      // equality comparison, then we're just comparing whether X itself is
1529      // zero.
1530      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1531          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1532          N0.getOperand(1).getOpcode() == ISD::Constant) {
1533        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1534        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1535            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1536          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1537            // (srl (ctlz x), 5) == 0  -> X != 0
1538            // (srl (ctlz x), 5) != 1  -> X != 0
1539            Cond = ISD::SETNE;
1540          } else {
1541            // (srl (ctlz x), 5) != 0  -> X == 0
1542            // (srl (ctlz x), 5) == 1  -> X == 0
1543            Cond = ISD::SETEQ;
1544          }
1545          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1546          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1547                              Zero, Cond);
1548        }
1549      }
1550
1551      // If the LHS is '(and load, const)', the RHS is 0,
1552      // the test is for equality or unsigned, and all 1 bits of the const are
1553      // in the same partial word, see if we can shorten the load.
1554      if (DCI.isBeforeLegalize() &&
1555          N0.getOpcode() == ISD::AND && C1 == 0 &&
1556          N0.getNode()->hasOneUse() &&
1557          isa<LoadSDNode>(N0.getOperand(0)) &&
1558          N0.getOperand(0).getNode()->hasOneUse() &&
1559          isa<ConstantSDNode>(N0.getOperand(1))) {
1560        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1561        uint64_t bestMask = 0;
1562        unsigned bestWidth = 0, bestOffset = 0;
1563        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1564            // FIXME: This uses getZExtValue() below so it only works on i64 and
1565            // below.
1566            N0.getValueType().getSizeInBits() <= 64) {
1567          unsigned origWidth = N0.getValueType().getSizeInBits();
1568          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1569          // 8 bits, but have to be careful...
1570          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1571            origWidth = Lod->getMemoryVT().getSizeInBits();
1572          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1573          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1574            uint64_t newMask = (1ULL << width) - 1;
1575            for (unsigned offset=0; offset<origWidth/width; offset++) {
1576              if ((newMask & Mask) == Mask) {
1577                if (!TD->isLittleEndian())
1578                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1579                else
1580                  bestOffset = (uint64_t)offset * (width/8);
1581                bestMask = Mask >> (offset * (width/8) * 8);
1582                bestWidth = width;
1583                break;
1584              }
1585              newMask = newMask << width;
1586            }
1587          }
1588        }
1589        if (bestWidth) {
1590          MVT newVT = MVT::getIntegerVT(bestWidth);
1591          if (newVT.isRound()) {
1592            MVT PtrType = Lod->getOperand(1).getValueType();
1593            SDValue Ptr = Lod->getBasePtr();
1594            if (bestOffset != 0)
1595              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1596                                DAG.getConstant(bestOffset, PtrType));
1597            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1598            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1599                                          Lod->getSrcValue(),
1600                                          Lod->getSrcValueOffset() + bestOffset,
1601                                          false, NewAlign);
1602            return DAG.getSetCC(dl, VT,
1603                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1604                                            DAG.getConstant(bestMask, newVT)),
1605                                DAG.getConstant(0LL, newVT), Cond);
1606          }
1607        }
1608      }
1609
1610      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1611      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1612        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1613
1614        // If the comparison constant has bits in the upper part, the
1615        // zero-extended value could never match.
1616        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1617                                                C1.getBitWidth() - InSize))) {
1618          switch (Cond) {
1619          case ISD::SETUGT:
1620          case ISD::SETUGE:
1621          case ISD::SETEQ: return DAG.getConstant(0, VT);
1622          case ISD::SETULT:
1623          case ISD::SETULE:
1624          case ISD::SETNE: return DAG.getConstant(1, VT);
1625          case ISD::SETGT:
1626          case ISD::SETGE:
1627            // True if the sign bit of C1 is set.
1628            return DAG.getConstant(C1.isNegative(), VT);
1629          case ISD::SETLT:
1630          case ISD::SETLE:
1631            // True if the sign bit of C1 isn't set.
1632            return DAG.getConstant(C1.isNonNegative(), VT);
1633          default:
1634            break;
1635          }
1636        }
1637
1638        // Otherwise, we can perform the comparison with the low bits.
1639        switch (Cond) {
1640        case ISD::SETEQ:
1641        case ISD::SETNE:
1642        case ISD::SETUGT:
1643        case ISD::SETUGE:
1644        case ISD::SETULT:
1645        case ISD::SETULE:
1646          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1647                          DAG.getConstant(APInt(C1).trunc(InSize),
1648                                          N0.getOperand(0).getValueType()),
1649                          Cond);
1650        default:
1651          break;   // todo, be more careful with signed comparisons
1652        }
1653      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1654                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1655        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1656        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1657        MVT ExtDstTy = N0.getValueType();
1658        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1659
1660        // If the extended part has any inconsistent bits, it cannot ever
1661        // compare equal.  In other words, they have to be all ones or all
1662        // zeros.
1663        APInt ExtBits =
1664          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1665        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1666          return DAG.getConstant(Cond == ISD::SETNE, VT);
1667
1668        SDValue ZextOp;
1669        MVT Op0Ty = N0.getOperand(0).getValueType();
1670        if (Op0Ty == ExtSrcTy) {
1671          ZextOp = N0.getOperand(0);
1672        } else {
1673          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1674          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1675                               DAG.getConstant(Imm, Op0Ty));
1676        }
1677        if (!DCI.isCalledByLegalizer())
1678          DCI.AddToWorklist(ZextOp.getNode());
1679        // Otherwise, make this a use of a zext.
1680        return DAG.getSetCC(dl, VT, ZextOp,
1681                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1682                                                               ExtDstTyBits,
1683                                                               ExtSrcTyBits),
1684                                            ExtDstTy),
1685                            Cond);
1686      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1687                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1688
1689        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1690        if (N0.getOpcode() == ISD::SETCC) {
1691          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1692          if (TrueWhenTrue)
1693            return N0;
1694
1695          // Invert the condition.
1696          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1697          CC = ISD::getSetCCInverse(CC,
1698                                   N0.getOperand(0).getValueType().isInteger());
1699          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1700        }
1701
1702        if ((N0.getOpcode() == ISD::XOR ||
1703             (N0.getOpcode() == ISD::AND &&
1704              N0.getOperand(0).getOpcode() == ISD::XOR &&
1705              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1706            isa<ConstantSDNode>(N0.getOperand(1)) &&
1707            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1708          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1709          // can only do this if the top bits are known zero.
1710          unsigned BitWidth = N0.getValueSizeInBits();
1711          if (DAG.MaskedValueIsZero(N0,
1712                                    APInt::getHighBitsSet(BitWidth,
1713                                                          BitWidth-1))) {
1714            // Okay, get the un-inverted input value.
1715            SDValue Val;
1716            if (N0.getOpcode() == ISD::XOR)
1717              Val = N0.getOperand(0);
1718            else {
1719              assert(N0.getOpcode() == ISD::AND &&
1720                     N0.getOperand(0).getOpcode() == ISD::XOR);
1721              // ((X^1)&1)^1 -> X & 1
1722              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1723                                N0.getOperand(0).getOperand(0),
1724                                N0.getOperand(1));
1725            }
1726            return DAG.getSetCC(dl, VT, Val, N1,
1727                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1728          }
1729        }
1730      }
1731
1732      APInt MinVal, MaxVal;
1733      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1734      if (ISD::isSignedIntSetCC(Cond)) {
1735        MinVal = APInt::getSignedMinValue(OperandBitSize);
1736        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1737      } else {
1738        MinVal = APInt::getMinValue(OperandBitSize);
1739        MaxVal = APInt::getMaxValue(OperandBitSize);
1740      }
1741
1742      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1743      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1744        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1745        // X >= C0 --> X > (C0-1)
1746        return DAG.getSetCC(dl, VT, N0,
1747                            DAG.getConstant(C1-1, N1.getValueType()),
1748                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1749      }
1750
1751      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1752        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1753        // X <= C0 --> X < (C0+1)
1754        return DAG.getSetCC(dl, VT, N0,
1755                            DAG.getConstant(C1+1, N1.getValueType()),
1756                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1757      }
1758
1759      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1760        return DAG.getConstant(0, VT);      // X < MIN --> false
1761      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1762        return DAG.getConstant(1, VT);      // X >= MIN --> true
1763      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1764        return DAG.getConstant(0, VT);      // X > MAX --> false
1765      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1766        return DAG.getConstant(1, VT);      // X <= MAX --> true
1767
1768      // Canonicalize setgt X, Min --> setne X, Min
1769      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1770        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1771      // Canonicalize setlt X, Max --> setne X, Max
1772      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1773        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1774
1775      // If we have setult X, 1, turn it into seteq X, 0
1776      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1777        return DAG.getSetCC(dl, VT, N0,
1778                            DAG.getConstant(MinVal, N0.getValueType()),
1779                            ISD::SETEQ);
1780      // If we have setugt X, Max-1, turn it into seteq X, Max
1781      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1782        return DAG.getSetCC(dl, VT, N0,
1783                            DAG.getConstant(MaxVal, N0.getValueType()),
1784                            ISD::SETEQ);
1785
1786      // If we have "setcc X, C0", check to see if we can shrink the immediate
1787      // by changing cc.
1788
1789      // SETUGT X, SINTMAX  -> SETLT X, 0
1790      if (Cond == ISD::SETUGT &&
1791          C1 == APInt::getSignedMaxValue(OperandBitSize))
1792        return DAG.getSetCC(dl, VT, N0,
1793                            DAG.getConstant(0, N1.getValueType()),
1794                            ISD::SETLT);
1795
1796      // SETULT X, SINTMIN  -> SETGT X, -1
1797      if (Cond == ISD::SETULT &&
1798          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1799        SDValue ConstMinusOne =
1800            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1801                            N1.getValueType());
1802        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1803      }
1804
1805      // Fold bit comparisons when we can.
1806      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1807          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1808        if (ConstantSDNode *AndRHS =
1809                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1810          MVT ShiftTy = DCI.isBeforeLegalize() ?
1811            getPointerTy() : getShiftAmountTy();
1812          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1813            // Perform the xform if the AND RHS is a single bit.
1814            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1815              return DAG.getNode(ISD::SRL, dl, VT, N0,
1816                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1817                                                 ShiftTy));
1818            }
1819          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1820            // (X & 8) == 8  -->  (X & 8) >> 3
1821            // Perform the xform if C1 is a single bit.
1822            if (C1.isPowerOf2()) {
1823              return DAG.getNode(ISD::SRL, dl, VT, N0,
1824                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1825            }
1826          }
1827        }
1828    }
1829  } else if (isa<ConstantSDNode>(N0.getNode())) {
1830      // Ensure that the constant occurs on the RHS.
1831    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1832  }
1833
1834  if (isa<ConstantFPSDNode>(N0.getNode())) {
1835    // Constant fold or commute setcc.
1836    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1837    if (O.getNode()) return O;
1838  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1839    // If the RHS of an FP comparison is a constant, simplify it away in
1840    // some cases.
1841    if (CFP->getValueAPF().isNaN()) {
1842      // If an operand is known to be a nan, we can fold it.
1843      switch (ISD::getUnorderedFlavor(Cond)) {
1844      default: LLVM_UNREACHABLE("Unknown flavor!");
1845      case 0:  // Known false.
1846        return DAG.getConstant(0, VT);
1847      case 1:  // Known true.
1848        return DAG.getConstant(1, VT);
1849      case 2:  // Undefined.
1850        return DAG.getUNDEF(VT);
1851      }
1852    }
1853
1854    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1855    // constant if knowing that the operand is non-nan is enough.  We prefer to
1856    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1857    // materialize 0.0.
1858    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1859      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1860  }
1861
1862  if (N0 == N1) {
1863    // We can always fold X == X for integer setcc's.
1864    if (N0.getValueType().isInteger())
1865      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1866    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1867    if (UOF == 2)   // FP operators that are undefined on NaNs.
1868      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1869    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1870      return DAG.getConstant(UOF, VT);
1871    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1872    // if it is not already.
1873    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1874    if (NewCond != Cond)
1875      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1876  }
1877
1878  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1879      N0.getValueType().isInteger()) {
1880    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1881        N0.getOpcode() == ISD::XOR) {
1882      // Simplify (X+Y) == (X+Z) -->  Y == Z
1883      if (N0.getOpcode() == N1.getOpcode()) {
1884        if (N0.getOperand(0) == N1.getOperand(0))
1885          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1886        if (N0.getOperand(1) == N1.getOperand(1))
1887          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1888        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1889          // If X op Y == Y op X, try other combinations.
1890          if (N0.getOperand(0) == N1.getOperand(1))
1891            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1892                                Cond);
1893          if (N0.getOperand(1) == N1.getOperand(0))
1894            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1895                                Cond);
1896        }
1897      }
1898
1899      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1900        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1901          // Turn (X+C1) == C2 --> X == C2-C1
1902          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1903            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1904                                DAG.getConstant(RHSC->getAPIntValue()-
1905                                                LHSR->getAPIntValue(),
1906                                N0.getValueType()), Cond);
1907          }
1908
1909          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1910          if (N0.getOpcode() == ISD::XOR)
1911            // If we know that all of the inverted bits are zero, don't bother
1912            // performing the inversion.
1913            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1914              return
1915                DAG.getSetCC(dl, VT, N0.getOperand(0),
1916                             DAG.getConstant(LHSR->getAPIntValue() ^
1917                                               RHSC->getAPIntValue(),
1918                                             N0.getValueType()),
1919                             Cond);
1920        }
1921
1922        // Turn (C1-X) == C2 --> X == C1-C2
1923        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1924          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1925            return
1926              DAG.getSetCC(dl, VT, N0.getOperand(1),
1927                           DAG.getConstant(SUBC->getAPIntValue() -
1928                                             RHSC->getAPIntValue(),
1929                                           N0.getValueType()),
1930                           Cond);
1931          }
1932        }
1933      }
1934
1935      // Simplify (X+Z) == X -->  Z == 0
1936      if (N0.getOperand(0) == N1)
1937        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1938                        DAG.getConstant(0, N0.getValueType()), Cond);
1939      if (N0.getOperand(1) == N1) {
1940        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1941          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1942                          DAG.getConstant(0, N0.getValueType()), Cond);
1943        else if (N0.getNode()->hasOneUse()) {
1944          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1945          // (Z-X) == X  --> Z == X<<1
1946          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1947                                     N1,
1948                                     DAG.getConstant(1, getShiftAmountTy()));
1949          if (!DCI.isCalledByLegalizer())
1950            DCI.AddToWorklist(SH.getNode());
1951          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1952        }
1953      }
1954    }
1955
1956    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1957        N1.getOpcode() == ISD::XOR) {
1958      // Simplify  X == (X+Z) -->  Z == 0
1959      if (N1.getOperand(0) == N0) {
1960        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1961                        DAG.getConstant(0, N1.getValueType()), Cond);
1962      } else if (N1.getOperand(1) == N0) {
1963        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1964          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1965                          DAG.getConstant(0, N1.getValueType()), Cond);
1966        } else if (N1.getNode()->hasOneUse()) {
1967          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1968          // X == (Z-X)  --> X<<1 == Z
1969          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1970                                     DAG.getConstant(1, getShiftAmountTy()));
1971          if (!DCI.isCalledByLegalizer())
1972            DCI.AddToWorklist(SH.getNode());
1973          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1974        }
1975      }
1976    }
1977
1978    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1979    // Note that where y is variable and is known to have at most
1980    // one bit set (for example, if it is z&1) we cannot do this;
1981    // the expressions are not equivalent when y==0.
1982    if (N0.getOpcode() == ISD::AND)
1983      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1984        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1985          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1986          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1987          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1988        }
1989      }
1990    if (N1.getOpcode() == ISD::AND)
1991      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1992        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1993          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1994          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1995          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1996        }
1997      }
1998  }
1999
2000  // Fold away ALL boolean setcc's.
2001  SDValue Temp;
2002  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2003    switch (Cond) {
2004    default: LLVM_UNREACHABLE("Unknown integer setcc!");
2005    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2006      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2007      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2008      if (!DCI.isCalledByLegalizer())
2009        DCI.AddToWorklist(Temp.getNode());
2010      break;
2011    case ISD::SETNE:  // X != Y   -->  (X^Y)
2012      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2013      break;
2014    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2015    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2016      Temp = DAG.getNOT(dl, N0, MVT::i1);
2017      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2018      if (!DCI.isCalledByLegalizer())
2019        DCI.AddToWorklist(Temp.getNode());
2020      break;
2021    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2022    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2023      Temp = DAG.getNOT(dl, N1, MVT::i1);
2024      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2025      if (!DCI.isCalledByLegalizer())
2026        DCI.AddToWorklist(Temp.getNode());
2027      break;
2028    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2029    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2030      Temp = DAG.getNOT(dl, N0, MVT::i1);
2031      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2032      if (!DCI.isCalledByLegalizer())
2033        DCI.AddToWorklist(Temp.getNode());
2034      break;
2035    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2036    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2037      Temp = DAG.getNOT(dl, N1, MVT::i1);
2038      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2039      break;
2040    }
2041    if (VT != MVT::i1) {
2042      if (!DCI.isCalledByLegalizer())
2043        DCI.AddToWorklist(N0.getNode());
2044      // FIXME: If running after legalize, we probably can't do this.
2045      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2046    }
2047    return N0;
2048  }
2049
2050  // Could not fold it.
2051  return SDValue();
2052}
2053
2054/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2055/// node is a GlobalAddress + offset.
2056bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2057                                    int64_t &Offset) const {
2058  if (isa<GlobalAddressSDNode>(N)) {
2059    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2060    GA = GASD->getGlobal();
2061    Offset += GASD->getOffset();
2062    return true;
2063  }
2064
2065  if (N->getOpcode() == ISD::ADD) {
2066    SDValue N1 = N->getOperand(0);
2067    SDValue N2 = N->getOperand(1);
2068    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2069      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2070      if (V) {
2071        Offset += V->getSExtValue();
2072        return true;
2073      }
2074    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2075      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2076      if (V) {
2077        Offset += V->getSExtValue();
2078        return true;
2079      }
2080    }
2081  }
2082  return false;
2083}
2084
2085
2086/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2087/// location that is 'Dist' units away from the location that the 'Base' load
2088/// is loading from.
2089bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2090                                       unsigned Bytes, int Dist,
2091                                       const MachineFrameInfo *MFI) const {
2092  if (LD->getChain() != Base->getChain())
2093    return false;
2094  MVT VT = LD->getValueType(0);
2095  if (VT.getSizeInBits() / 8 != Bytes)
2096    return false;
2097
2098  SDValue Loc = LD->getOperand(1);
2099  SDValue BaseLoc = Base->getOperand(1);
2100  if (Loc.getOpcode() == ISD::FrameIndex) {
2101    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2102      return false;
2103    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2104    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2105    int FS  = MFI->getObjectSize(FI);
2106    int BFS = MFI->getObjectSize(BFI);
2107    if (FS != BFS || FS != (int)Bytes) return false;
2108    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2109  }
2110  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2111    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2112    if (V && (V->getSExtValue() == Dist*Bytes))
2113      return true;
2114  }
2115
2116  GlobalValue *GV1 = NULL;
2117  GlobalValue *GV2 = NULL;
2118  int64_t Offset1 = 0;
2119  int64_t Offset2 = 0;
2120  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2121  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2122  if (isGA1 && isGA2 && GV1 == GV2)
2123    return Offset1 == (Offset2 + Dist*Bytes);
2124  return false;
2125}
2126
2127
2128SDValue TargetLowering::
2129PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2130  // Default implementation: no optimization.
2131  return SDValue();
2132}
2133
2134//===----------------------------------------------------------------------===//
2135//  Inline Assembler Implementation Methods
2136//===----------------------------------------------------------------------===//
2137
2138
2139TargetLowering::ConstraintType
2140TargetLowering::getConstraintType(const std::string &Constraint) const {
2141  // FIXME: lots more standard ones to handle.
2142  if (Constraint.size() == 1) {
2143    switch (Constraint[0]) {
2144    default: break;
2145    case 'r': return C_RegisterClass;
2146    case 'm':    // memory
2147    case 'o':    // offsetable
2148    case 'V':    // not offsetable
2149      return C_Memory;
2150    case 'i':    // Simple Integer or Relocatable Constant
2151    case 'n':    // Simple Integer
2152    case 's':    // Relocatable Constant
2153    case 'X':    // Allow ANY value.
2154    case 'I':    // Target registers.
2155    case 'J':
2156    case 'K':
2157    case 'L':
2158    case 'M':
2159    case 'N':
2160    case 'O':
2161    case 'P':
2162      return C_Other;
2163    }
2164  }
2165
2166  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2167      Constraint[Constraint.size()-1] == '}')
2168    return C_Register;
2169  return C_Unknown;
2170}
2171
2172/// LowerXConstraint - try to replace an X constraint, which matches anything,
2173/// with another that has more specific requirements based on the type of the
2174/// corresponding operand.
2175const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2176  if (ConstraintVT.isInteger())
2177    return "r";
2178  if (ConstraintVT.isFloatingPoint())
2179    return "f";      // works for many targets
2180  return 0;
2181}
2182
2183/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2184/// vector.  If it is invalid, don't add anything to Ops.
2185void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2186                                                  char ConstraintLetter,
2187                                                  bool hasMemory,
2188                                                  std::vector<SDValue> &Ops,
2189                                                  SelectionDAG &DAG) const {
2190  switch (ConstraintLetter) {
2191  default: break;
2192  case 'X':     // Allows any operand; labels (basic block) use this.
2193    if (Op.getOpcode() == ISD::BasicBlock) {
2194      Ops.push_back(Op);
2195      return;
2196    }
2197    // fall through
2198  case 'i':    // Simple Integer or Relocatable Constant
2199  case 'n':    // Simple Integer
2200  case 's': {  // Relocatable Constant
2201    // These operands are interested in values of the form (GV+C), where C may
2202    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2203    // is possible and fine if either GV or C are missing.
2204    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2205    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2206
2207    // If we have "(add GV, C)", pull out GV/C
2208    if (Op.getOpcode() == ISD::ADD) {
2209      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2210      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2211      if (C == 0 || GA == 0) {
2212        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2213        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2214      }
2215      if (C == 0 || GA == 0)
2216        C = 0, GA = 0;
2217    }
2218
2219    // If we find a valid operand, map to the TargetXXX version so that the
2220    // value itself doesn't get selected.
2221    if (GA) {   // Either &GV   or   &GV+C
2222      if (ConstraintLetter != 'n') {
2223        int64_t Offs = GA->getOffset();
2224        if (C) Offs += C->getZExtValue();
2225        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2226                                                 Op.getValueType(), Offs));
2227        return;
2228      }
2229    }
2230    if (C) {   // just C, no GV.
2231      // Simple constants are not allowed for 's'.
2232      if (ConstraintLetter != 's') {
2233        // gcc prints these as sign extended.  Sign extend value to 64 bits
2234        // now; without this it would get ZExt'd later in
2235        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2236        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2237                                            MVT::i64));
2238        return;
2239      }
2240    }
2241    break;
2242  }
2243  }
2244}
2245
2246std::vector<unsigned> TargetLowering::
2247getRegClassForInlineAsmConstraint(const std::string &Constraint,
2248                                  MVT VT) const {
2249  return std::vector<unsigned>();
2250}
2251
2252
2253std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2254getRegForInlineAsmConstraint(const std::string &Constraint,
2255                             MVT VT) const {
2256  if (Constraint[0] != '{')
2257    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2258  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2259
2260  // Remove the braces from around the name.
2261  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2262
2263  // Figure out which register class contains this reg.
2264  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2265  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2266       E = RI->regclass_end(); RCI != E; ++RCI) {
2267    const TargetRegisterClass *RC = *RCI;
2268
2269    // If none of the the value types for this register class are valid, we
2270    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2271    bool isLegal = false;
2272    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2273         I != E; ++I) {
2274      if (isTypeLegal(*I)) {
2275        isLegal = true;
2276        break;
2277      }
2278    }
2279
2280    if (!isLegal) continue;
2281
2282    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2283         I != E; ++I) {
2284      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2285        return std::make_pair(*I, RC);
2286    }
2287  }
2288
2289  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2290}
2291
2292//===----------------------------------------------------------------------===//
2293// Constraint Selection.
2294
2295/// isMatchingInputConstraint - Return true of this is an input operand that is
2296/// a matching constraint like "4".
2297bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2298  assert(!ConstraintCode.empty() && "No known constraint!");
2299  return isdigit(ConstraintCode[0]);
2300}
2301
2302/// getMatchedOperand - If this is an input matching constraint, this method
2303/// returns the output operand it matches.
2304unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2305  assert(!ConstraintCode.empty() && "No known constraint!");
2306  return atoi(ConstraintCode.c_str());
2307}
2308
2309
2310/// getConstraintGenerality - Return an integer indicating how general CT
2311/// is.
2312static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2313  switch (CT) {
2314  default: LLVM_UNREACHABLE("Unknown constraint type!");
2315  case TargetLowering::C_Other:
2316  case TargetLowering::C_Unknown:
2317    return 0;
2318  case TargetLowering::C_Register:
2319    return 1;
2320  case TargetLowering::C_RegisterClass:
2321    return 2;
2322  case TargetLowering::C_Memory:
2323    return 3;
2324  }
2325}
2326
2327/// ChooseConstraint - If there are multiple different constraints that we
2328/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2329/// This is somewhat tricky: constraints fall into four classes:
2330///    Other         -> immediates and magic values
2331///    Register      -> one specific register
2332///    RegisterClass -> a group of regs
2333///    Memory        -> memory
2334/// Ideally, we would pick the most specific constraint possible: if we have
2335/// something that fits into a register, we would pick it.  The problem here
2336/// is that if we have something that could either be in a register or in
2337/// memory that use of the register could cause selection of *other*
2338/// operands to fail: they might only succeed if we pick memory.  Because of
2339/// this the heuristic we use is:
2340///
2341///  1) If there is an 'other' constraint, and if the operand is valid for
2342///     that constraint, use it.  This makes us take advantage of 'i'
2343///     constraints when available.
2344///  2) Otherwise, pick the most general constraint present.  This prefers
2345///     'm' over 'r', for example.
2346///
2347static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2348                             bool hasMemory,  const TargetLowering &TLI,
2349                             SDValue Op, SelectionDAG *DAG) {
2350  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2351  unsigned BestIdx = 0;
2352  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2353  int BestGenerality = -1;
2354
2355  // Loop over the options, keeping track of the most general one.
2356  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2357    TargetLowering::ConstraintType CType =
2358      TLI.getConstraintType(OpInfo.Codes[i]);
2359
2360    // If this is an 'other' constraint, see if the operand is valid for it.
2361    // For example, on X86 we might have an 'rI' constraint.  If the operand
2362    // is an integer in the range [0..31] we want to use I (saving a load
2363    // of a register), otherwise we must use 'r'.
2364    if (CType == TargetLowering::C_Other && Op.getNode()) {
2365      assert(OpInfo.Codes[i].size() == 1 &&
2366             "Unhandled multi-letter 'other' constraint");
2367      std::vector<SDValue> ResultOps;
2368      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2369                                       ResultOps, *DAG);
2370      if (!ResultOps.empty()) {
2371        BestType = CType;
2372        BestIdx = i;
2373        break;
2374      }
2375    }
2376
2377    // This constraint letter is more general than the previous one, use it.
2378    int Generality = getConstraintGenerality(CType);
2379    if (Generality > BestGenerality) {
2380      BestType = CType;
2381      BestIdx = i;
2382      BestGenerality = Generality;
2383    }
2384  }
2385
2386  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2387  OpInfo.ConstraintType = BestType;
2388}
2389
2390/// ComputeConstraintToUse - Determines the constraint code and constraint
2391/// type to use for the specific AsmOperandInfo, setting
2392/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2393void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2394                                            SDValue Op,
2395                                            bool hasMemory,
2396                                            SelectionDAG *DAG) const {
2397  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2398
2399  // Single-letter constraints ('r') are very common.
2400  if (OpInfo.Codes.size() == 1) {
2401    OpInfo.ConstraintCode = OpInfo.Codes[0];
2402    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2403  } else {
2404    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2405  }
2406
2407  // 'X' matches anything.
2408  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2409    // Look through bitcasts over functions.  In the context of an asm
2410    // argument we don't care about bitcasting function types; the parameters
2411    // to the function, if any, will have been handled elsewhere.
2412    Value *v = OpInfo.CallOperandVal;
2413    ConstantExpr *CE = NULL;
2414    while ((CE = dyn_cast<ConstantExpr>(v)) &&
2415           CE->getOpcode()==Instruction::BitCast)
2416      v = CE->getOperand(0);
2417    if (!isa<Function>(v))
2418      v = OpInfo.CallOperandVal;
2419    // Labels and constants are handled elsewhere ('X' is the only thing
2420    // that matches labels).  For Functions, the type here is the type of
2421    // the result, which is not what we want to look at; leave them alone
2422    // (minus any bitcasts).
2423    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2424      OpInfo.CallOperandVal = v;
2425      return;
2426    }
2427
2428    // Otherwise, try to resolve it to something we know about by looking at
2429    // the actual operand type.
2430    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2431      OpInfo.ConstraintCode = Repl;
2432      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2433    }
2434  }
2435}
2436
2437//===----------------------------------------------------------------------===//
2438//  Loop Strength Reduction hooks
2439//===----------------------------------------------------------------------===//
2440
2441/// isLegalAddressingMode - Return true if the addressing mode represented
2442/// by AM is legal for this target, for a load/store of the specified type.
2443bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2444                                           const Type *Ty) const {
2445  // The default implementation of this implements a conservative RISCy, r+r and
2446  // r+i addr mode.
2447
2448  // Allows a sign-extended 16-bit immediate field.
2449  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2450    return false;
2451
2452  // No global is ever allowed as a base.
2453  if (AM.BaseGV)
2454    return false;
2455
2456  // Only support r+r,
2457  switch (AM.Scale) {
2458  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2459    break;
2460  case 1:
2461    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2462      return false;
2463    // Otherwise we have r+r or r+i.
2464    break;
2465  case 2:
2466    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2467      return false;
2468    // Allow 2*r as r+r.
2469    break;
2470  }
2471
2472  return true;
2473}
2474
2475/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2476/// return a DAG expression to select that will generate the same value by
2477/// multiplying by a magic number.  See:
2478/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2479SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2480                                  std::vector<SDNode*>* Created) const {
2481  MVT VT = N->getValueType(0);
2482  DebugLoc dl= N->getDebugLoc();
2483
2484  // Check to see if we can do this.
2485  // FIXME: We should be more aggressive here.
2486  if (!isTypeLegal(VT))
2487    return SDValue();
2488
2489  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2490  APInt::ms magics = d.magic();
2491
2492  // Multiply the numerator (operand 0) by the magic value
2493  // FIXME: We should support doing a MUL in a wider type
2494  SDValue Q;
2495  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2496    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2497                    DAG.getConstant(magics.m, VT));
2498  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2499    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2500                              N->getOperand(0),
2501                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2502  else
2503    return SDValue();       // No mulhs or equvialent
2504  // If d > 0 and m < 0, add the numerator
2505  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2506    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2507    if (Created)
2508      Created->push_back(Q.getNode());
2509  }
2510  // If d < 0 and m > 0, subtract the numerator.
2511  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2512    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2513    if (Created)
2514      Created->push_back(Q.getNode());
2515  }
2516  // Shift right algebraic if shift value is nonzero
2517  if (magics.s > 0) {
2518    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2519                    DAG.getConstant(magics.s, getShiftAmountTy()));
2520    if (Created)
2521      Created->push_back(Q.getNode());
2522  }
2523  // Extract the sign bit and add it to the quotient
2524  SDValue T =
2525    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2526                                                 getShiftAmountTy()));
2527  if (Created)
2528    Created->push_back(T.getNode());
2529  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2530}
2531
2532/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2533/// return a DAG expression to select that will generate the same value by
2534/// multiplying by a magic number.  See:
2535/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2536SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2537                                  std::vector<SDNode*>* Created) const {
2538  MVT VT = N->getValueType(0);
2539  DebugLoc dl = N->getDebugLoc();
2540
2541  // Check to see if we can do this.
2542  // FIXME: We should be more aggressive here.
2543  if (!isTypeLegal(VT))
2544    return SDValue();
2545
2546  // FIXME: We should use a narrower constant when the upper
2547  // bits are known to be zero.
2548  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2549  APInt::mu magics = N1C->getAPIntValue().magicu();
2550
2551  // Multiply the numerator (operand 0) by the magic value
2552  // FIXME: We should support doing a MUL in a wider type
2553  SDValue Q;
2554  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2555    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2556                    DAG.getConstant(magics.m, VT));
2557  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2558    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2559                              N->getOperand(0),
2560                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2561  else
2562    return SDValue();       // No mulhu or equvialent
2563  if (Created)
2564    Created->push_back(Q.getNode());
2565
2566  if (magics.a == 0) {
2567    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2568           "We shouldn't generate an undefined shift!");
2569    return DAG.getNode(ISD::SRL, dl, VT, Q,
2570                       DAG.getConstant(magics.s, getShiftAmountTy()));
2571  } else {
2572    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2573    if (Created)
2574      Created->push_back(NPQ.getNode());
2575    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2576                      DAG.getConstant(1, getShiftAmountTy()));
2577    if (Created)
2578      Created->push_back(NPQ.getNode());
2579    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2580    if (Created)
2581      Created->push_back(NPQ.getNode());
2582    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2583                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2584  }
2585}
2586
2587/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2588/// node that don't prevent tail call optimization.
2589static SDValue IgnoreHarmlessInstructions(SDValue node) {
2590  // Found call return.
2591  if (node.getOpcode() == ISD::CALL) return node;
2592  // Ignore MERGE_VALUES. Will have at least one operand.
2593  if (node.getOpcode() == ISD::MERGE_VALUES)
2594    return IgnoreHarmlessInstructions(node.getOperand(0));
2595  // Ignore ANY_EXTEND node.
2596  if (node.getOpcode() == ISD::ANY_EXTEND)
2597    return IgnoreHarmlessInstructions(node.getOperand(0));
2598  if (node.getOpcode() == ISD::TRUNCATE)
2599    return IgnoreHarmlessInstructions(node.getOperand(0));
2600  // Any other node type.
2601  return node;
2602}
2603
2604bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2605                                                    SDValue Ret) {
2606  unsigned NumOps = Ret.getNumOperands();
2607  // ISD::CALL results:(value0, ..., valuen, chain)
2608  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2609  // Value return:
2610  // Check that operand of the RET node sources from the CALL node. The RET node
2611  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2612  // value.
2613  // Also we need to check that there is no code in between the call and the
2614  // return. Hence we also check that the incomming chain to the return sources
2615  // from the outgoing chain of the call.
2616  if (NumOps > 1 &&
2617      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
2618      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2619    return true;
2620  // void return: The RET node  has the chain result value of the CALL node as
2621  // input.
2622  if (NumOps == 1 &&
2623      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2624    return true;
2625
2626  return false;
2627}
2628