TargetLowering.cpp revision c6fd6cd65c88ef1f11da43c11be0152cb69013a7
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetMachine.h"
16#include "llvm/Target/MRegisterInfo.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/Support/MathExtras.h"
20using namespace llvm;
21
22TargetLowering::TargetLowering(TargetMachine &tm)
23  : TM(tm), TD(TM.getTargetData()) {
24  assert(ISD::BUILTIN_OP_END <= 128 &&
25         "Fixed size array in TargetLowering is not large enough!");
26  // All operations default to being supported.
27  memset(OpActions, 0, sizeof(OpActions));
28
29  IsLittleEndian = TD.isLittleEndian();
30  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
31  ShiftAmtHandling = Undefined;
32  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
33  maxStoresPerMemSet = maxStoresPerMemCpy = maxStoresPerMemMove = 8;
34  allowUnalignedMemoryAccesses = false;
35  UseUnderscoreSetJmpLongJmp = false;
36  IntDivIsCheap = false;
37  Pow2DivIsCheap = false;
38  StackPointerRegisterToSaveRestore = 0;
39  SchedPreferenceInfo = SchedulingForLatency;
40}
41
42TargetLowering::~TargetLowering() {}
43
44/// setValueTypeAction - Set the action for a particular value type.  This
45/// assumes an action has not already been set for this value type.
46static void SetValueTypeAction(MVT::ValueType VT,
47                               TargetLowering::LegalizeAction Action,
48                               TargetLowering &TLI,
49                               MVT::ValueType *TransformToType,
50                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
51  ValueTypeActions.setTypeAction(VT, Action);
52  if (Action == TargetLowering::Promote) {
53    MVT::ValueType PromoteTo;
54    if (VT == MVT::f32)
55      PromoteTo = MVT::f64;
56    else {
57      unsigned LargerReg = VT+1;
58      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
59        ++LargerReg;
60        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
61               "Nothing to promote to??");
62      }
63      PromoteTo = (MVT::ValueType)LargerReg;
64    }
65
66    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
67           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
68           "Can only promote from int->int or fp->fp!");
69    assert(VT < PromoteTo && "Must promote to a larger type!");
70    TransformToType[VT] = PromoteTo;
71  } else if (Action == TargetLowering::Expand) {
72    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
73           "Cannot expand this type: target must support SOME integer reg!");
74    // Expand to the next smaller integer type!
75    TransformToType[VT] = (MVT::ValueType)(VT-1);
76  }
77}
78
79
80/// computeRegisterProperties - Once all of the register classes are added,
81/// this allows us to compute derived properties we expose.
82void TargetLowering::computeRegisterProperties() {
83  assert(MVT::LAST_VALUETYPE <= 32 &&
84         "Too many value types for ValueTypeActions to hold!");
85
86  // Everything defaults to one.
87  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
88    NumElementsForVT[i] = 1;
89
90  // Find the largest integer register class.
91  unsigned LargestIntReg = MVT::i128;
92  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
93    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
94
95  // Every integer value type larger than this largest register takes twice as
96  // many registers to represent as the previous ValueType.
97  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
98  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
99    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
100
101  // Inspect all of the ValueType's possible, deciding how to process them.
102  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
103    // If we are expanding this type, expand it!
104    if (getNumElements((MVT::ValueType)IntReg) != 1)
105      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
106                         ValueTypeActions);
107    else if (!isTypeLegal((MVT::ValueType)IntReg))
108      // Otherwise, if we don't have native support, we must promote to a
109      // larger type.
110      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
111                         TransformToType, ValueTypeActions);
112    else
113      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
114
115  // If the target does not have native support for F32, promote it to F64.
116  if (!isTypeLegal(MVT::f32))
117    SetValueTypeAction(MVT::f32, Promote, *this,
118                       TransformToType, ValueTypeActions);
119  else
120    TransformToType[MVT::f32] = MVT::f32;
121
122  // Set MVT::Vector to always be Expanded
123  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
124                     ValueTypeActions);
125
126  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
127  TransformToType[MVT::f64] = MVT::f64;
128}
129
130const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
131  return NULL;
132}
133
134
135
136/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We use
137/// this predicate to simplify operations downstream.  Op and Mask are known to
138/// be the same type.
139bool TargetLowering::MaskedValueIsZero(const SDOperand &Op,
140                                       uint64_t Mask) const {
141  unsigned SrcBits;
142  if (Mask == 0) return true;
143
144  // If we know the result of a setcc has the top bits zero, use this info.
145  switch (Op.getOpcode()) {
146  case ISD::Constant:
147    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
148  case ISD::SETCC:
149    return ((Mask & 1) == 0) &&
150      getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
151  case ISD::ZEXTLOAD:
152    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
153    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
154  case ISD::ZERO_EXTEND:
155    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
156    return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
157  case ISD::AssertZext:
158    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
159    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
160  case ISD::AND:
161    // If either of the operands has zero bits, the result will too.
162    if (MaskedValueIsZero(Op.getOperand(1), Mask) ||
163        MaskedValueIsZero(Op.getOperand(0), Mask))
164      return true;
165    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
166    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
167      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask);
168    return false;
169  case ISD::OR:
170  case ISD::XOR:
171    return MaskedValueIsZero(Op.getOperand(0), Mask) &&
172           MaskedValueIsZero(Op.getOperand(1), Mask);
173  case ISD::SELECT:
174    return MaskedValueIsZero(Op.getOperand(1), Mask) &&
175           MaskedValueIsZero(Op.getOperand(2), Mask);
176  case ISD::SELECT_CC:
177    return MaskedValueIsZero(Op.getOperand(2), Mask) &&
178           MaskedValueIsZero(Op.getOperand(3), Mask);
179  case ISD::SRL:
180    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
181    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
182      uint64_t NewVal = Mask << ShAmt->getValue();
183      SrcBits = MVT::getSizeInBits(Op.getValueType());
184      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
185      return MaskedValueIsZero(Op.getOperand(0), NewVal);
186    }
187    return false;
188  case ISD::SHL:
189    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
190    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
191      uint64_t NewVal = Mask >> ShAmt->getValue();
192      return MaskedValueIsZero(Op.getOperand(0), NewVal);
193    }
194    return false;
195  case ISD::ADD:
196    // (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
197    if ((Mask&(Mask+1)) == 0) {  // All low bits
198      if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
199          MaskedValueIsZero(Op.getOperand(1), Mask))
200        return true;
201    }
202    break;
203  case ISD::SUB:
204    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
205      // We know that the top bits of C-X are clear if X contains less bits
206      // than C (i.e. no wrap-around can happen).  For example, 20-X is
207      // positive if we can prove that X is >= 0 and < 16.
208      unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0));
209      if ((CLHS->getValue() & (1 << (Bits-1))) == 0) {  // sign bit clear
210        unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
211        uint64_t MaskV = (1ULL << (63-NLZ))-1;
212        if (MaskedValueIsZero(Op.getOperand(1), ~MaskV)) {
213          // High bits are clear this value is known to be >= C.
214          unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
215          if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0)
216            return true;
217        }
218      }
219    }
220    break;
221  case ISD::CTTZ:
222  case ISD::CTLZ:
223  case ISD::CTPOP:
224    // Bit counting instructions can not set the high bits of the result
225    // register.  The max number of bits sets depends on the input.
226    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
227  default:
228    // Allow the target to implement this method for its nodes.
229    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
230      return isMaskedValueZeroForTargetNode(Op, Mask);
231    break;
232  }
233  return false;
234}
235
236bool TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op,
237                                                    uint64_t Mask) const {
238  assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
239         "Should use MaskedValueIsZero if you don't know whether Op"
240         " is a target node!");
241  return false;
242}
243
244std::vector<unsigned> TargetLowering::
245getRegForInlineAsmConstraint(const std::string &Constraint) const {
246  // Scan to see if this constraint is a register name.
247  const MRegisterInfo *RI = TM.getRegisterInfo();
248  for (unsigned i = 1, e = RI->getNumRegs(); i != e; ++i) {
249    if (const char *Name = RI->get(i).Name)
250      if (StringsEqualNoCase(Constraint, Name))
251        return std::vector<unsigned>(1, i);
252  }
253
254  // Not a physreg, must not be a register reference or something.
255  return std::vector<unsigned>();
256}
257
258