TargetLowering.cpp revision cf9668f23d67b171d3529087061b1387b20eb8b9
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Target/TargetMachine.h"
17#include "llvm/Target/MRegisterInfo.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/MathExtras.h"
22using namespace llvm;
23
24TargetLowering::TargetLowering(TargetMachine &tm)
25  : TM(tm), TD(TM.getTargetData()) {
26  assert(ISD::BUILTIN_OP_END <= 156 &&
27         "Fixed size array in TargetLowering is not large enough!");
28  // All operations default to being supported.
29  memset(OpActions, 0, sizeof(OpActions));
30  memset(LoadXActions, 0, sizeof(LoadXActions));
31
32  IsLittleEndian = TD->isLittleEndian();
33  UsesGlobalOffsetTable = false;
34  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
35  ShiftAmtHandling = Undefined;
36  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
37  memset(TargetDAGCombineArray, 0,
38         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
39  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
40  allowUnalignedMemoryAccesses = false;
41  UseUnderscoreSetJmpLongJmp = false;
42  IntDivIsCheap = false;
43  Pow2DivIsCheap = false;
44  StackPointerRegisterToSaveRestore = 0;
45  SchedPreferenceInfo = SchedulingForLatency;
46  JumpBufSize = 0;
47  JumpBufAlignment = 0;
48}
49
50TargetLowering::~TargetLowering() {}
51
52/// setValueTypeAction - Set the action for a particular value type.  This
53/// assumes an action has not already been set for this value type.
54static void SetValueTypeAction(MVT::ValueType VT,
55                               TargetLowering::LegalizeAction Action,
56                               TargetLowering &TLI,
57                               MVT::ValueType *TransformToType,
58                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
59  ValueTypeActions.setTypeAction(VT, Action);
60  if (Action == TargetLowering::Promote) {
61    MVT::ValueType PromoteTo;
62    if (VT == MVT::f32)
63      PromoteTo = MVT::f64;
64    else {
65      unsigned LargerReg = VT+1;
66      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
67        ++LargerReg;
68        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
69               "Nothing to promote to??");
70      }
71      PromoteTo = (MVT::ValueType)LargerReg;
72    }
73
74    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
75           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
76           "Can only promote from int->int or fp->fp!");
77    assert(VT < PromoteTo && "Must promote to a larger type!");
78    TransformToType[VT] = PromoteTo;
79  } else if (Action == TargetLowering::Expand) {
80    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
81           "Cannot expand this type: target must support SOME integer reg!");
82    // Expand to the next smaller integer type!
83    TransformToType[VT] = (MVT::ValueType)(VT-1);
84  }
85}
86
87
88/// computeRegisterProperties - Once all of the register classes are added,
89/// this allows us to compute derived properties we expose.
90void TargetLowering::computeRegisterProperties() {
91  assert(MVT::LAST_VALUETYPE <= 32 &&
92         "Too many value types for ValueTypeActions to hold!");
93
94  // Everything defaults to one.
95  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
96    NumElementsForVT[i] = 1;
97
98  // Find the largest integer register class.
99  unsigned LargestIntReg = MVT::i128;
100  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
101    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
102
103  // Every integer value type larger than this largest register takes twice as
104  // many registers to represent as the previous ValueType.
105  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
106  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
107    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
108
109  // Inspect all of the ValueType's possible, deciding how to process them.
110  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
111    // If we are expanding this type, expand it!
112    if (getNumElements((MVT::ValueType)IntReg) != 1)
113      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
114                         ValueTypeActions);
115    else if (!isTypeLegal((MVT::ValueType)IntReg))
116      // Otherwise, if we don't have native support, we must promote to a
117      // larger type.
118      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
119                         TransformToType, ValueTypeActions);
120    else
121      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
122
123  // If the target does not have native support for F32, promote it to F64.
124  if (!isTypeLegal(MVT::f32))
125    SetValueTypeAction(MVT::f32, Promote, *this,
126                       TransformToType, ValueTypeActions);
127  else
128    TransformToType[MVT::f32] = MVT::f32;
129
130  // Set MVT::Vector to always be Expanded
131  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
132                     ValueTypeActions);
133
134  // Loop over all of the legal vector value types, specifying an identity type
135  // transformation.
136  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
137       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
138    if (isTypeLegal((MVT::ValueType)i))
139      TransformToType[i] = (MVT::ValueType)i;
140  }
141
142  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
143  TransformToType[MVT::f64] = MVT::f64;
144}
145
146const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
147  return NULL;
148}
149
150/// getPackedTypeBreakdown - Packed types are broken down into some number of
151/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
152/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
153///
154/// This method returns the number and type of the resultant breakdown.
155///
156unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy,
157                                                MVT::ValueType &PTyElementVT,
158                                      MVT::ValueType &PTyLegalElementVT) const {
159  // Figure out the right, legal destination reg to copy into.
160  unsigned NumElts = PTy->getNumElements();
161  MVT::ValueType EltTy = getValueType(PTy->getElementType());
162
163  unsigned NumVectorRegs = 1;
164
165  // Divide the input until we get to a supported size.  This will always
166  // end with a scalar if the target doesn't support vectors.
167  while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
168    NumElts >>= 1;
169    NumVectorRegs <<= 1;
170  }
171
172  MVT::ValueType VT;
173  if (NumElts == 1) {
174    VT = EltTy;
175  } else {
176    VT = getVectorType(EltTy, NumElts);
177  }
178  PTyElementVT = VT;
179
180  MVT::ValueType DestVT = getTypeToTransformTo(VT);
181  PTyLegalElementVT = DestVT;
182  if (DestVT < VT) {
183    // Value is expanded, e.g. i64 -> i16.
184    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
185  } else {
186    // Otherwise, promotion or legal types use the same number of registers as
187    // the vector decimated to the appropriate level.
188    return NumVectorRegs;
189  }
190
191  return 1;
192}
193
194//===----------------------------------------------------------------------===//
195//  Optimization Methods
196//===----------------------------------------------------------------------===//
197
198/// ShrinkDemandedConstant - Check to see if the specified operand of the
199/// specified instruction is a constant integer.  If so, check to see if there
200/// are any bits set in the constant that are not demanded.  If so, shrink the
201/// constant and return true.
202bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
203                                                            uint64_t Demanded) {
204  // FIXME: ISD::SELECT, ISD::SELECT_CC
205  switch(Op.getOpcode()) {
206  default: break;
207  case ISD::AND:
208  case ISD::OR:
209  case ISD::XOR:
210    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
211      if ((~Demanded & C->getValue()) != 0) {
212        MVT::ValueType VT = Op.getValueType();
213        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
214                                    DAG.getConstant(Demanded & C->getValue(),
215                                                    VT));
216        return CombineTo(Op, New);
217      }
218    break;
219  }
220  return false;
221}
222
223/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
224/// DemandedMask bits of the result of Op are ever used downstream.  If we can
225/// use this information to simplify Op, create a new simplified DAG node and
226/// return true, returning the original and new nodes in Old and New. Otherwise,
227/// analyze the expression and return a mask of KnownOne and KnownZero bits for
228/// the expression (used to simplify the caller).  The KnownZero/One bits may
229/// only be accurate for those bits in the DemandedMask.
230bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
231                                          uint64_t &KnownZero,
232                                          uint64_t &KnownOne,
233                                          TargetLoweringOpt &TLO,
234                                          unsigned Depth) const {
235  KnownZero = KnownOne = 0;   // Don't know anything.
236  // Other users may use these bits.
237  if (!Op.Val->hasOneUse()) {
238    if (Depth != 0) {
239      // If not at the root, Just compute the KnownZero/KnownOne bits to
240      // simplify things downstream.
241      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
242      return false;
243    }
244    // If this is the root being simplified, allow it to have multiple uses,
245    // just set the DemandedMask to all bits.
246    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
247  } else if (DemandedMask == 0) {
248    // Not demanding any bits from Op.
249    if (Op.getOpcode() != ISD::UNDEF)
250      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
251    return false;
252  } else if (Depth == 6) {        // Limit search depth.
253    return false;
254  }
255
256  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
257  switch (Op.getOpcode()) {
258  case ISD::Constant:
259    // We know all of the bits for a constant!
260    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
261    KnownZero = ~KnownOne & DemandedMask;
262    return false;   // Don't fall through, will infinitely loop.
263  case ISD::AND:
264    // If the RHS is a constant, check to see if the LHS would be zero without
265    // using the bits from the RHS.  Below, we use knowledge about the RHS to
266    // simplify the LHS, here we're using information from the LHS to simplify
267    // the RHS.
268    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
269      uint64_t LHSZero, LHSOne;
270      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
271                        LHSZero, LHSOne, Depth+1);
272      // If the LHS already has zeros where RHSC does, this and is dead.
273      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
274        return TLO.CombineTo(Op, Op.getOperand(0));
275      // If any of the set bits in the RHS are known zero on the LHS, shrink
276      // the constant.
277      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
278        return true;
279    }
280
281    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
282                             KnownOne, TLO, Depth+1))
283      return true;
284    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
285    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
286                             KnownZero2, KnownOne2, TLO, Depth+1))
287      return true;
288    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
289
290    // If all of the demanded bits are known one on one side, return the other.
291    // These bits cannot contribute to the result of the 'and'.
292    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
293      return TLO.CombineTo(Op, Op.getOperand(0));
294    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
295      return TLO.CombineTo(Op, Op.getOperand(1));
296    // If all of the demanded bits in the inputs are known zeros, return zero.
297    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
298      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
299    // If the RHS is a constant, see if we can simplify it.
300    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
301      return true;
302
303    // Output known-1 bits are only known if set in both the LHS & RHS.
304    KnownOne &= KnownOne2;
305    // Output known-0 are known to be clear if zero in either the LHS | RHS.
306    KnownZero |= KnownZero2;
307    break;
308  case ISD::OR:
309    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
310                             KnownOne, TLO, Depth+1))
311      return true;
312    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
313    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
314                             KnownZero2, KnownOne2, TLO, Depth+1))
315      return true;
316    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
317
318    // If all of the demanded bits are known zero on one side, return the other.
319    // These bits cannot contribute to the result of the 'or'.
320    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
321      return TLO.CombineTo(Op, Op.getOperand(0));
322    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
323      return TLO.CombineTo(Op, Op.getOperand(1));
324    // If all of the potentially set bits on one side are known to be set on
325    // the other side, just use the 'other' side.
326    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
327        (DemandedMask & (~KnownZero)))
328      return TLO.CombineTo(Op, Op.getOperand(0));
329    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
330        (DemandedMask & (~KnownZero2)))
331      return TLO.CombineTo(Op, Op.getOperand(1));
332    // If the RHS is a constant, see if we can simplify it.
333    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
334      return true;
335
336    // Output known-0 bits are only known if clear in both the LHS & RHS.
337    KnownZero &= KnownZero2;
338    // Output known-1 are known to be set if set in either the LHS | RHS.
339    KnownOne |= KnownOne2;
340    break;
341  case ISD::XOR:
342    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
343                             KnownOne, TLO, Depth+1))
344      return true;
345    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
346    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
347                             KnownOne2, TLO, Depth+1))
348      return true;
349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351    // If all of the demanded bits are known zero on one side, return the other.
352    // These bits cannot contribute to the result of the 'xor'.
353    if ((DemandedMask & KnownZero) == DemandedMask)
354      return TLO.CombineTo(Op, Op.getOperand(0));
355    if ((DemandedMask & KnownZero2) == DemandedMask)
356      return TLO.CombineTo(Op, Op.getOperand(1));
357
358    // Output known-0 bits are known if clear or set in both the LHS & RHS.
359    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
360    // Output known-1 are known to be set if set in only one of the LHS, RHS.
361    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
362
363    // If all of the unknown bits are known to be zero on one side or the other
364    // (but not both) turn this into an *inclusive* or.
365    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
366    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
367      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
368        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
369                                                 Op.getOperand(0),
370                                                 Op.getOperand(1)));
371    // If all of the demanded bits on one side are known, and all of the set
372    // bits on that side are also known to be set on the other side, turn this
373    // into an AND, as we know the bits will be cleared.
374    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
375    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
376      if ((KnownOne & KnownOne2) == KnownOne) {
377        MVT::ValueType VT = Op.getValueType();
378        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
379        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
380                                                 ANDC));
381      }
382    }
383
384    // If the RHS is a constant, see if we can simplify it.
385    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
386    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
387      return true;
388
389    KnownZero = KnownZeroOut;
390    KnownOne  = KnownOneOut;
391    break;
392  case ISD::SETCC:
393    // If we know the result of a setcc has the top bits zero, use this info.
394    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
395      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
396    break;
397  case ISD::SELECT:
398    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
399                             KnownOne, TLO, Depth+1))
400      return true;
401    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
402                             KnownOne2, TLO, Depth+1))
403      return true;
404    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
405    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
406
407    // If the operands are constants, see if we can simplify them.
408    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
409      return true;
410
411    // Only known if known in both the LHS and RHS.
412    KnownOne &= KnownOne2;
413    KnownZero &= KnownZero2;
414    break;
415  case ISD::SELECT_CC:
416    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
417                             KnownOne, TLO, Depth+1))
418      return true;
419    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
420                             KnownOne2, TLO, Depth+1))
421      return true;
422    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
423    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
424
425    // If the operands are constants, see if we can simplify them.
426    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
427      return true;
428
429    // Only known if known in both the LHS and RHS.
430    KnownOne &= KnownOne2;
431    KnownZero &= KnownZero2;
432    break;
433  case ISD::SHL:
434    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
435      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
436                               KnownZero, KnownOne, TLO, Depth+1))
437        return true;
438      KnownZero <<= SA->getValue();
439      KnownOne  <<= SA->getValue();
440      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
441    }
442    break;
443  case ISD::SRL:
444    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
445      MVT::ValueType VT = Op.getValueType();
446      unsigned ShAmt = SA->getValue();
447
448      // Compute the new bits that are at the top now.
449      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
450      if (SimplifyDemandedBits(Op.getOperand(0),
451                               (DemandedMask << ShAmt) & TypeMask,
452                               KnownZero, KnownOne, TLO, Depth+1))
453        return true;
454      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
455      KnownZero &= TypeMask;
456      KnownOne  &= TypeMask;
457      KnownZero >>= ShAmt;
458      KnownOne  >>= ShAmt;
459
460      uint64_t HighBits = (1ULL << ShAmt)-1;
461      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
462      KnownZero |= HighBits;  // High bits known zero.
463    }
464    break;
465  case ISD::SRA:
466    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
467      MVT::ValueType VT = Op.getValueType();
468      unsigned ShAmt = SA->getValue();
469
470      // Compute the new bits that are at the top now.
471      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
472
473      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
474
475      // If any of the demanded bits are produced by the sign extension, we also
476      // demand the input sign bit.
477      uint64_t HighBits = (1ULL << ShAmt)-1;
478      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
479      if (HighBits & DemandedMask)
480        InDemandedMask |= MVT::getIntVTSignBit(VT);
481
482      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
483                               KnownZero, KnownOne, TLO, Depth+1))
484        return true;
485      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
486      KnownZero &= TypeMask;
487      KnownOne  &= TypeMask;
488      KnownZero >>= ShAmt;
489      KnownOne  >>= ShAmt;
490
491      // Handle the sign bits.
492      uint64_t SignBit = MVT::getIntVTSignBit(VT);
493      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
494
495      // If the input sign bit is known to be zero, or if none of the top bits
496      // are demanded, turn this into an unsigned shift right.
497      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
498        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
499                                                 Op.getOperand(1)));
500      } else if (KnownOne & SignBit) { // New bits are known one.
501        KnownOne |= HighBits;
502      }
503    }
504    break;
505  case ISD::SIGN_EXTEND_INREG: {
506    MVT::ValueType  VT = Op.getValueType();
507    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
508
509    // Sign extension.  Compute the demanded bits in the result that are not
510    // present in the input.
511    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
512
513    // If none of the extended bits are demanded, eliminate the sextinreg.
514    if (NewBits == 0)
515      return TLO.CombineTo(Op, Op.getOperand(0));
516
517    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
518    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
519
520    // Since the sign extended bits are demanded, we know that the sign
521    // bit is demanded.
522    InputDemandedBits |= InSignBit;
523
524    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
525                             KnownZero, KnownOne, TLO, Depth+1))
526      return true;
527    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
528
529    // If the sign bit of the input is known set or clear, then we know the
530    // top bits of the result.
531
532    // If the input sign bit is known zero, convert this into a zero extension.
533    if (KnownZero & InSignBit)
534      return TLO.CombineTo(Op,
535                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
536
537    if (KnownOne & InSignBit) {    // Input sign bit known set
538      KnownOne |= NewBits;
539      KnownZero &= ~NewBits;
540    } else {                       // Input sign bit unknown
541      KnownZero &= ~NewBits;
542      KnownOne &= ~NewBits;
543    }
544    break;
545  }
546  case ISD::CTTZ:
547  case ISD::CTLZ:
548  case ISD::CTPOP: {
549    MVT::ValueType VT = Op.getValueType();
550    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
551    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
552    KnownOne  = 0;
553    break;
554  }
555  case ISD::LOADX: {
556    if (ISD::isZEXTLoad(Op.Val)) {
557      MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
558      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
559    }
560    break;
561  }
562  case ISD::ZERO_EXTEND: {
563    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
564
565    // If none of the top bits are demanded, convert this into an any_extend.
566    uint64_t NewBits = (~InMask) & DemandedMask;
567    if (NewBits == 0)
568      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
569                                               Op.getValueType(),
570                                               Op.getOperand(0)));
571
572    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
573                             KnownZero, KnownOne, TLO, Depth+1))
574      return true;
575    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
576    KnownZero |= NewBits;
577    break;
578  }
579  case ISD::SIGN_EXTEND: {
580    MVT::ValueType InVT = Op.getOperand(0).getValueType();
581    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
582    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
583    uint64_t NewBits   = (~InMask) & DemandedMask;
584
585    // If none of the top bits are demanded, convert this into an any_extend.
586    if (NewBits == 0)
587      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
588                                           Op.getOperand(0)));
589
590    // Since some of the sign extended bits are demanded, we know that the sign
591    // bit is demanded.
592    uint64_t InDemandedBits = DemandedMask & InMask;
593    InDemandedBits |= InSignBit;
594
595    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
596                             KnownOne, TLO, Depth+1))
597      return true;
598
599    // If the sign bit is known zero, convert this to a zero extend.
600    if (KnownZero & InSignBit)
601      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
602                                               Op.getValueType(),
603                                               Op.getOperand(0)));
604
605    // If the sign bit is known one, the top bits match.
606    if (KnownOne & InSignBit) {
607      KnownOne  |= NewBits;
608      KnownZero &= ~NewBits;
609    } else {   // Otherwise, top bits aren't known.
610      KnownOne  &= ~NewBits;
611      KnownZero &= ~NewBits;
612    }
613    break;
614  }
615  case ISD::ANY_EXTEND: {
616    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
617    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
618                             KnownZero, KnownOne, TLO, Depth+1))
619      return true;
620    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
621    break;
622  }
623  case ISD::TRUNCATE: {
624    // Simplify the input, using demanded bit information, and compute the known
625    // zero/one bits live out.
626    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
627                             KnownZero, KnownOne, TLO, Depth+1))
628      return true;
629
630    // If the input is only used by this truncate, see if we can shrink it based
631    // on the known demanded bits.
632    if (Op.getOperand(0).Val->hasOneUse()) {
633      SDOperand In = Op.getOperand(0);
634      switch (In.getOpcode()) {
635      default: break;
636      case ISD::SRL:
637        // Shrink SRL by a constant if none of the high bits shifted in are
638        // demanded.
639        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
640          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
641          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
642          HighBits >>= ShAmt->getValue();
643
644          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
645              (DemandedMask & HighBits) == 0) {
646            // None of the shifted in bits are needed.  Add a truncate of the
647            // shift input, then shift it.
648            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
649                                                 Op.getValueType(),
650                                                 In.getOperand(0));
651            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
652                                                   NewTrunc, In.getOperand(1)));
653          }
654        }
655        break;
656      }
657    }
658
659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
660    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
661    KnownZero &= OutMask;
662    KnownOne &= OutMask;
663    break;
664  }
665  case ISD::AssertZext: {
666    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
667    uint64_t InMask = MVT::getIntVTBitMask(VT);
668    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
669                             KnownZero, KnownOne, TLO, Depth+1))
670      return true;
671    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
672    KnownZero |= ~InMask & DemandedMask;
673    break;
674  }
675  case ISD::ADD:
676  case ISD::SUB:
677  case ISD::INTRINSIC_WO_CHAIN:
678  case ISD::INTRINSIC_W_CHAIN:
679  case ISD::INTRINSIC_VOID:
680    // Just use ComputeMaskedBits to compute output bits.
681    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
682    break;
683  }
684
685  // If we know the value of all of the demanded bits, return this as a
686  // constant.
687  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
688    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
689
690  return false;
691}
692
693/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
694/// this predicate to simplify operations downstream.  Mask is known to be zero
695/// for bits that V cannot have.
696bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
697                                       unsigned Depth) const {
698  uint64_t KnownZero, KnownOne;
699  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
700  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
701  return (KnownZero & Mask) == Mask;
702}
703
704/// ComputeMaskedBits - Determine which of the bits specified in Mask are
705/// known to be either zero or one and return them in the KnownZero/KnownOne
706/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
707/// processing.
708void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
709                                       uint64_t &KnownZero, uint64_t &KnownOne,
710                                       unsigned Depth) const {
711  KnownZero = KnownOne = 0;   // Don't know anything.
712  if (Depth == 6 || Mask == 0)
713    return;  // Limit search depth.
714
715  uint64_t KnownZero2, KnownOne2;
716
717  switch (Op.getOpcode()) {
718  case ISD::Constant:
719    // We know all of the bits for a constant!
720    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
721    KnownZero = ~KnownOne & Mask;
722    return;
723  case ISD::AND:
724    // If either the LHS or the RHS are Zero, the result is zero.
725    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
726    Mask &= ~KnownZero;
727    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
728    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
729    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
730
731    // Output known-1 bits are only known if set in both the LHS & RHS.
732    KnownOne &= KnownOne2;
733    // Output known-0 are known to be clear if zero in either the LHS | RHS.
734    KnownZero |= KnownZero2;
735    return;
736  case ISD::OR:
737    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
738    Mask &= ~KnownOne;
739    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
740    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
741    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
742
743    // Output known-0 bits are only known if clear in both the LHS & RHS.
744    KnownZero &= KnownZero2;
745    // Output known-1 are known to be set if set in either the LHS | RHS.
746    KnownOne |= KnownOne2;
747    return;
748  case ISD::XOR: {
749    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
750    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
751    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
752    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
753
754    // Output known-0 bits are known if clear or set in both the LHS & RHS.
755    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
756    // Output known-1 are known to be set if set in only one of the LHS, RHS.
757    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
758    KnownZero = KnownZeroOut;
759    return;
760  }
761  case ISD::SELECT:
762    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
763    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
764    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
765    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
766
767    // Only known if known in both the LHS and RHS.
768    KnownOne &= KnownOne2;
769    KnownZero &= KnownZero2;
770    return;
771  case ISD::SELECT_CC:
772    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
773    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
774    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
775    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
776
777    // Only known if known in both the LHS and RHS.
778    KnownOne &= KnownOne2;
779    KnownZero &= KnownZero2;
780    return;
781  case ISD::SETCC:
782    // If we know the result of a setcc has the top bits zero, use this info.
783    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
784      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
785    return;
786  case ISD::SHL:
787    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
788    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
789      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
790                        KnownZero, KnownOne, Depth+1);
791      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
792      KnownZero <<= SA->getValue();
793      KnownOne  <<= SA->getValue();
794      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
795    }
796    return;
797  case ISD::SRL:
798    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
799    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
800      MVT::ValueType VT = Op.getValueType();
801      unsigned ShAmt = SA->getValue();
802
803      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
804      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
805                        KnownZero, KnownOne, Depth+1);
806      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
807      KnownZero &= TypeMask;
808      KnownOne  &= TypeMask;
809      KnownZero >>= ShAmt;
810      KnownOne  >>= ShAmt;
811
812      uint64_t HighBits = (1ULL << ShAmt)-1;
813      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
814      KnownZero |= HighBits;  // High bits known zero.
815    }
816    return;
817  case ISD::SRA:
818    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
819      MVT::ValueType VT = Op.getValueType();
820      unsigned ShAmt = SA->getValue();
821
822      // Compute the new bits that are at the top now.
823      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
824
825      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
826      // If any of the demanded bits are produced by the sign extension, we also
827      // demand the input sign bit.
828      uint64_t HighBits = (1ULL << ShAmt)-1;
829      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
830      if (HighBits & Mask)
831        InDemandedMask |= MVT::getIntVTSignBit(VT);
832
833      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
834                        Depth+1);
835      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
836      KnownZero &= TypeMask;
837      KnownOne  &= TypeMask;
838      KnownZero >>= ShAmt;
839      KnownOne  >>= ShAmt;
840
841      // Handle the sign bits.
842      uint64_t SignBit = MVT::getIntVTSignBit(VT);
843      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
844
845      if (KnownZero & SignBit) {
846        KnownZero |= HighBits;  // New bits are known zero.
847      } else if (KnownOne & SignBit) {
848        KnownOne  |= HighBits;  // New bits are known one.
849      }
850    }
851    return;
852  case ISD::SIGN_EXTEND_INREG: {
853    MVT::ValueType  VT = Op.getValueType();
854    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
855
856    // Sign extension.  Compute the demanded bits in the result that are not
857    // present in the input.
858    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
859
860    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
861    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
862
863    // If the sign extended bits are demanded, we know that the sign
864    // bit is demanded.
865    if (NewBits)
866      InputDemandedBits |= InSignBit;
867
868    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
869                      KnownZero, KnownOne, Depth+1);
870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
871
872    // If the sign bit of the input is known set or clear, then we know the
873    // top bits of the result.
874    if (KnownZero & InSignBit) {          // Input sign bit known clear
875      KnownZero |= NewBits;
876      KnownOne  &= ~NewBits;
877    } else if (KnownOne & InSignBit) {    // Input sign bit known set
878      KnownOne  |= NewBits;
879      KnownZero &= ~NewBits;
880    } else {                              // Input sign bit unknown
881      KnownZero &= ~NewBits;
882      KnownOne  &= ~NewBits;
883    }
884    return;
885  }
886  case ISD::CTTZ:
887  case ISD::CTLZ:
888  case ISD::CTPOP: {
889    MVT::ValueType VT = Op.getValueType();
890    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
891    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
892    KnownOne  = 0;
893    return;
894  }
895  case ISD::LOADX: {
896    if (ISD::isZEXTLoad(Op.Val)) {
897      MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
898      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
899    }
900    return;
901  }
902  case ISD::ZERO_EXTEND: {
903    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
904    uint64_t NewBits = (~InMask) & Mask;
905    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
906                      KnownOne, Depth+1);
907    KnownZero |= NewBits & Mask;
908    KnownOne  &= ~NewBits;
909    return;
910  }
911  case ISD::SIGN_EXTEND: {
912    MVT::ValueType InVT = Op.getOperand(0).getValueType();
913    unsigned InBits    = MVT::getSizeInBits(InVT);
914    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
915    uint64_t InSignBit = 1ULL << (InBits-1);
916    uint64_t NewBits   = (~InMask) & Mask;
917    uint64_t InDemandedBits = Mask & InMask;
918
919    // If any of the sign extended bits are demanded, we know that the sign
920    // bit is demanded.
921    if (NewBits & Mask)
922      InDemandedBits |= InSignBit;
923
924    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
925                      KnownOne, Depth+1);
926    // If the sign bit is known zero or one, the  top bits match.
927    if (KnownZero & InSignBit) {
928      KnownZero |= NewBits;
929      KnownOne  &= ~NewBits;
930    } else if (KnownOne & InSignBit) {
931      KnownOne  |= NewBits;
932      KnownZero &= ~NewBits;
933    } else {   // Otherwise, top bits aren't known.
934      KnownOne  &= ~NewBits;
935      KnownZero &= ~NewBits;
936    }
937    return;
938  }
939  case ISD::ANY_EXTEND: {
940    MVT::ValueType VT = Op.getOperand(0).getValueType();
941    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
942                      KnownZero, KnownOne, Depth+1);
943    return;
944  }
945  case ISD::TRUNCATE: {
946    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
947    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
948    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
949    KnownZero &= OutMask;
950    KnownOne &= OutMask;
951    break;
952  }
953  case ISD::AssertZext: {
954    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
955    uint64_t InMask = MVT::getIntVTBitMask(VT);
956    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
957                      KnownOne, Depth+1);
958    KnownZero |= (~InMask) & Mask;
959    return;
960  }
961  case ISD::ADD: {
962    // If either the LHS or the RHS are Zero, the result is zero.
963    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
964    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
965    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
967
968    // Output known-0 bits are known if clear or set in both the low clear bits
969    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
970    // low 3 bits clear.
971    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
972                                     CountTrailingZeros_64(~KnownZero2));
973
974    KnownZero = (1ULL << KnownZeroOut) - 1;
975    KnownOne = 0;
976    return;
977  }
978  case ISD::SUB: {
979    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
980    if (!CLHS) return;
981
982    // We know that the top bits of C-X are clear if X contains less bits
983    // than C (i.e. no wrap-around can happen).  For example, 20-X is
984    // positive if we can prove that X is >= 0 and < 16.
985    MVT::ValueType VT = CLHS->getValueType(0);
986    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
987      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
988      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
989      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
990      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
991
992      // If all of the MaskV bits are known to be zero, then we know the output
993      // top bits are zero, because we now know that the output is from [0-C].
994      if ((KnownZero & MaskV) == MaskV) {
995        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
996        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
997        KnownOne = 0;   // No one bits known.
998      } else {
999        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1000      }
1001    }
1002    return;
1003  }
1004  default:
1005    // Allow the target to implement this method for its nodes.
1006    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1007  case ISD::INTRINSIC_WO_CHAIN:
1008  case ISD::INTRINSIC_W_CHAIN:
1009  case ISD::INTRINSIC_VOID:
1010      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
1011    }
1012    return;
1013  }
1014}
1015
1016/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1017/// in Mask are known to be either zero or one and return them in the
1018/// KnownZero/KnownOne bitsets.
1019void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1020                                                    uint64_t Mask,
1021                                                    uint64_t &KnownZero,
1022                                                    uint64_t &KnownOne,
1023                                                    unsigned Depth) const {
1024  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1025          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1026          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1027          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1028         "Should use MaskedValueIsZero if you don't know whether Op"
1029         " is a target node!");
1030  KnownZero = 0;
1031  KnownOne = 0;
1032}
1033
1034/// ComputeNumSignBits - Return the number of times the sign bit of the
1035/// register is replicated into the other bits.  We know that at least 1 bit
1036/// is always equal to the sign bit (itself), but other cases can give us
1037/// information.  For example, immediately after an "SRA X, 2", we know that
1038/// the top 3 bits are all equal to each other, so we return 3.
1039unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1040  MVT::ValueType VT = Op.getValueType();
1041  assert(MVT::isInteger(VT) && "Invalid VT!");
1042  unsigned VTBits = MVT::getSizeInBits(VT);
1043  unsigned Tmp, Tmp2;
1044
1045  if (Depth == 6)
1046    return 1;  // Limit search depth.
1047
1048  switch (Op.getOpcode()) {
1049  default: break;
1050  case ISD::AssertSext:
1051    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1052    return VTBits-Tmp+1;
1053  case ISD::AssertZext:
1054    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1055    return VTBits-Tmp;
1056
1057  case ISD::Constant: {
1058    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1059    // If negative, invert the bits, then look at it.
1060    if (Val & MVT::getIntVTSignBit(VT))
1061      Val = ~Val;
1062
1063    // Shift the bits so they are the leading bits in the int64_t.
1064    Val <<= 64-VTBits;
1065
1066    // Return # leading zeros.  We use 'min' here in case Val was zero before
1067    // shifting.  We don't want to return '64' as for an i32 "0".
1068    return std::min(VTBits, CountLeadingZeros_64(Val));
1069  }
1070
1071  case ISD::SIGN_EXTEND:
1072    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1073    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1074
1075  case ISD::SIGN_EXTEND_INREG:
1076    // Max of the input and what this extends.
1077    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1078    Tmp = VTBits-Tmp+1;
1079
1080    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1081    return std::max(Tmp, Tmp2);
1082
1083  case ISD::SRA:
1084    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1085    // SRA X, C   -> adds C sign bits.
1086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1087      Tmp += C->getValue();
1088      if (Tmp > VTBits) Tmp = VTBits;
1089    }
1090    return Tmp;
1091  case ISD::SHL:
1092    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1093      // shl destroys sign bits.
1094      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1095      if (C->getValue() >= VTBits ||      // Bad shift.
1096          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1097      return Tmp - C->getValue();
1098    }
1099    break;
1100  case ISD::AND:
1101  case ISD::OR:
1102  case ISD::XOR:    // NOT is handled here.
1103    // Logical binary ops preserve the number of sign bits.
1104    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1105    if (Tmp == 1) return 1;  // Early out.
1106    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1107    return std::min(Tmp, Tmp2);
1108
1109  case ISD::SELECT:
1110    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1111    if (Tmp == 1) return 1;  // Early out.
1112    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1113    return std::min(Tmp, Tmp2);
1114
1115  case ISD::SETCC:
1116    // If setcc returns 0/-1, all bits are sign bits.
1117    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1118      return VTBits;
1119    break;
1120  case ISD::ROTL:
1121  case ISD::ROTR:
1122    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1123      unsigned RotAmt = C->getValue() & (VTBits-1);
1124
1125      // Handle rotate right by N like a rotate left by 32-N.
1126      if (Op.getOpcode() == ISD::ROTR)
1127        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1128
1129      // If we aren't rotating out all of the known-in sign bits, return the
1130      // number that are left.  This handles rotl(sext(x), 1) for example.
1131      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1132      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1133    }
1134    break;
1135  case ISD::ADD:
1136    // Add can have at most one carry bit.  Thus we know that the output
1137    // is, at worst, one more bit than the inputs.
1138    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1139    if (Tmp == 1) return 1;  // Early out.
1140
1141    // Special case decrementing a value (ADD X, -1):
1142    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1143      if (CRHS->isAllOnesValue()) {
1144        uint64_t KnownZero, KnownOne;
1145        uint64_t Mask = MVT::getIntVTBitMask(VT);
1146        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1147
1148        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1149        // sign bits set.
1150        if ((KnownZero|1) == Mask)
1151          return VTBits;
1152
1153        // If we are subtracting one from a positive number, there is no carry
1154        // out of the result.
1155        if (KnownZero & MVT::getIntVTSignBit(VT))
1156          return Tmp;
1157      }
1158
1159    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1160    if (Tmp2 == 1) return 1;
1161      return std::min(Tmp, Tmp2)-1;
1162    break;
1163
1164  case ISD::SUB:
1165    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1166    if (Tmp2 == 1) return 1;
1167
1168    // Handle NEG.
1169    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1170      if (CLHS->getValue() == 0) {
1171        uint64_t KnownZero, KnownOne;
1172        uint64_t Mask = MVT::getIntVTBitMask(VT);
1173        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1174        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1175        // sign bits set.
1176        if ((KnownZero|1) == Mask)
1177          return VTBits;
1178
1179        // If the input is known to be positive (the sign bit is known clear),
1180        // the output of the NEG has the same number of sign bits as the input.
1181        if (KnownZero & MVT::getIntVTSignBit(VT))
1182          return Tmp2;
1183
1184        // Otherwise, we treat this like a SUB.
1185      }
1186
1187    // Sub can have at most one carry bit.  Thus we know that the output
1188    // is, at worst, one more bit than the inputs.
1189    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1190    if (Tmp == 1) return 1;  // Early out.
1191      return std::min(Tmp, Tmp2)-1;
1192    break;
1193  case ISD::TRUNCATE:
1194    // FIXME: it's tricky to do anything useful for this, but it is an important
1195    // case for targets like X86.
1196    break;
1197  }
1198
1199  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1200  if (Op.getOpcode() == ISD::LOADX) {
1201    unsigned LType = Op.getConstantOperandVal(4);
1202    switch (LType) {
1203    default: break;
1204    case ISD::SEXTLOAD:    // '17' bits known
1205      Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1206      return VTBits-Tmp+1;
1207    case ISD::ZEXTLOAD:    // '16' bits known
1208      Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1209      return VTBits-Tmp;
1210    }
1211  }
1212
1213  // Allow the target to implement this method for its nodes.
1214  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1215      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1216      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1217      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1218    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1219    if (NumBits > 1) return NumBits;
1220  }
1221
1222  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1223  // use this information.
1224  uint64_t KnownZero, KnownOne;
1225  uint64_t Mask = MVT::getIntVTBitMask(VT);
1226  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1227
1228  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1229  if (KnownZero & SignBit) {        // SignBit is 0
1230    Mask = KnownZero;
1231  } else if (KnownOne & SignBit) {  // SignBit is 1;
1232    Mask = KnownOne;
1233  } else {
1234    // Nothing known.
1235    return 1;
1236  }
1237
1238  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1239  // the number of identical bits in the top of the input value.
1240  Mask ^= ~0ULL;
1241  Mask <<= 64-VTBits;
1242  // Return # leading zeros.  We use 'min' here in case Val was zero before
1243  // shifting.  We don't want to return '64' as for an i32 "0".
1244  return std::min(VTBits, CountLeadingZeros_64(Mask));
1245}
1246
1247
1248
1249/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1250/// targets that want to expose additional information about sign bits to the
1251/// DAG Combiner.
1252unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1253                                                         unsigned Depth) const {
1254  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1255          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1256          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1257          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1258         "Should use ComputeNumSignBits if you don't know whether Op"
1259         " is a target node!");
1260  return 1;
1261}
1262
1263
1264SDOperand TargetLowering::
1265PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1266  // Default implementation: no optimization.
1267  return SDOperand();
1268}
1269
1270//===----------------------------------------------------------------------===//
1271//  Inline Assembler Implementation Methods
1272//===----------------------------------------------------------------------===//
1273
1274TargetLowering::ConstraintType
1275TargetLowering::getConstraintType(char ConstraintLetter) const {
1276  // FIXME: lots more standard ones to handle.
1277  switch (ConstraintLetter) {
1278  default: return C_Unknown;
1279  case 'r': return C_RegisterClass;
1280  case 'm':    // memory
1281  case 'o':    // offsetable
1282  case 'V':    // not offsetable
1283    return C_Memory;
1284  case 'i':    // Simple Integer or Relocatable Constant
1285  case 'n':    // Simple Integer
1286  case 's':    // Relocatable Constant
1287  case 'I':    // Target registers.
1288  case 'J':
1289  case 'K':
1290  case 'L':
1291  case 'M':
1292  case 'N':
1293  case 'O':
1294  case 'P':
1295    return C_Other;
1296  }
1297}
1298
1299bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
1300                                                 char ConstraintLetter) {
1301  switch (ConstraintLetter) {
1302  default: return false;
1303  case 'i':    // Simple Integer or Relocatable Constant
1304  case 'n':    // Simple Integer
1305  case 's':    // Relocatable Constant
1306    return true;   // FIXME: not right.
1307  }
1308}
1309
1310
1311std::vector<unsigned> TargetLowering::
1312getRegClassForInlineAsmConstraint(const std::string &Constraint,
1313                                  MVT::ValueType VT) const {
1314  return std::vector<unsigned>();
1315}
1316
1317
1318std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1319getRegForInlineAsmConstraint(const std::string &Constraint,
1320                             MVT::ValueType VT) const {
1321  if (Constraint[0] != '{')
1322    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1323  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1324
1325  // Remove the braces from around the name.
1326  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1327
1328  // Figure out which register class contains this reg.
1329  const MRegisterInfo *RI = TM.getRegisterInfo();
1330  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1331       E = RI->regclass_end(); RCI != E; ++RCI) {
1332    const TargetRegisterClass *RC = *RCI;
1333
1334    // If none of the the value types for this register class are valid, we
1335    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1336    bool isLegal = false;
1337    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1338         I != E; ++I) {
1339      if (isTypeLegal(*I)) {
1340        isLegal = true;
1341        break;
1342      }
1343    }
1344
1345    if (!isLegal) continue;
1346
1347    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1348         I != E; ++I) {
1349      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1350        return std::make_pair(*I, RC);
1351    }
1352  }
1353
1354  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1355}
1356
1357//===----------------------------------------------------------------------===//
1358//  Loop Strength Reduction hooks
1359//===----------------------------------------------------------------------===//
1360
1361/// isLegalAddressImmediate - Return true if the integer value or
1362/// GlobalValue can be used as the offset of the target addressing mode.
1363bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
1364  return false;
1365}
1366bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
1367  return false;
1368}
1369
1370
1371// Magic for divide replacement
1372
1373struct ms {
1374  int64_t m;  // magic number
1375  int64_t s;  // shift amount
1376};
1377
1378struct mu {
1379  uint64_t m; // magic number
1380  int64_t a;  // add indicator
1381  int64_t s;  // shift amount
1382};
1383
1384/// magic - calculate the magic numbers required to codegen an integer sdiv as
1385/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1386/// or -1.
1387static ms magic32(int32_t d) {
1388  int32_t p;
1389  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1390  const uint32_t two31 = 0x80000000U;
1391  struct ms mag;
1392
1393  ad = abs(d);
1394  t = two31 + ((uint32_t)d >> 31);
1395  anc = t - 1 - t%ad;   // absolute value of nc
1396  p = 31;               // initialize p
1397  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1398  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1399  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1400  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1401  do {
1402    p = p + 1;
1403    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1404    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1405    if (r1 >= anc) {  // must be unsigned comparison
1406      q1 = q1 + 1;
1407      r1 = r1 - anc;
1408    }
1409    q2 = 2*q2;        // update q2 = 2p/abs(d)
1410    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1411    if (r2 >= ad) {   // must be unsigned comparison
1412      q2 = q2 + 1;
1413      r2 = r2 - ad;
1414    }
1415    delta = ad - r2;
1416  } while (q1 < delta || (q1 == delta && r1 == 0));
1417
1418  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1419  if (d < 0) mag.m = -mag.m; // resulting magic number
1420  mag.s = p - 32;            // resulting shift
1421  return mag;
1422}
1423
1424/// magicu - calculate the magic numbers required to codegen an integer udiv as
1425/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1426static mu magicu32(uint32_t d) {
1427  int32_t p;
1428  uint32_t nc, delta, q1, r1, q2, r2;
1429  struct mu magu;
1430  magu.a = 0;               // initialize "add" indicator
1431  nc = - 1 - (-d)%d;
1432  p = 31;                   // initialize p
1433  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1434  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1435  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1436  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1437  do {
1438    p = p + 1;
1439    if (r1 >= nc - r1 ) {
1440      q1 = 2*q1 + 1;  // update q1
1441      r1 = 2*r1 - nc; // update r1
1442    }
1443    else {
1444      q1 = 2*q1; // update q1
1445      r1 = 2*r1; // update r1
1446    }
1447    if (r2 + 1 >= d - r2) {
1448      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1449      q2 = 2*q2 + 1;     // update q2
1450      r2 = 2*r2 + 1 - d; // update r2
1451    }
1452    else {
1453      if (q2 >= 0x80000000) magu.a = 1;
1454      q2 = 2*q2;     // update q2
1455      r2 = 2*r2 + 1; // update r2
1456    }
1457    delta = d - 1 - r2;
1458  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1459  magu.m = q2 + 1; // resulting magic number
1460  magu.s = p - 32;  // resulting shift
1461  return magu;
1462}
1463
1464/// magic - calculate the magic numbers required to codegen an integer sdiv as
1465/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1466/// or -1.
1467static ms magic64(int64_t d) {
1468  int64_t p;
1469  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1470  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1471  struct ms mag;
1472
1473  ad = d >= 0 ? d : -d;
1474  t = two63 + ((uint64_t)d >> 63);
1475  anc = t - 1 - t%ad;   // absolute value of nc
1476  p = 63;               // initialize p
1477  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1478  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1479  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1480  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1481  do {
1482    p = p + 1;
1483    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1484    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1485    if (r1 >= anc) {  // must be unsigned comparison
1486      q1 = q1 + 1;
1487      r1 = r1 - anc;
1488    }
1489    q2 = 2*q2;        // update q2 = 2p/abs(d)
1490    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1491    if (r2 >= ad) {   // must be unsigned comparison
1492      q2 = q2 + 1;
1493      r2 = r2 - ad;
1494    }
1495    delta = ad - r2;
1496  } while (q1 < delta || (q1 == delta && r1 == 0));
1497
1498  mag.m = q2 + 1;
1499  if (d < 0) mag.m = -mag.m; // resulting magic number
1500  mag.s = p - 64;            // resulting shift
1501  return mag;
1502}
1503
1504/// magicu - calculate the magic numbers required to codegen an integer udiv as
1505/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1506static mu magicu64(uint64_t d)
1507{
1508  int64_t p;
1509  uint64_t nc, delta, q1, r1, q2, r2;
1510  struct mu magu;
1511  magu.a = 0;               // initialize "add" indicator
1512  nc = - 1 - (-d)%d;
1513  p = 63;                   // initialize p
1514  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1515  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1516  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1517  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1518  do {
1519    p = p + 1;
1520    if (r1 >= nc - r1 ) {
1521      q1 = 2*q1 + 1;  // update q1
1522      r1 = 2*r1 - nc; // update r1
1523    }
1524    else {
1525      q1 = 2*q1; // update q1
1526      r1 = 2*r1; // update r1
1527    }
1528    if (r2 + 1 >= d - r2) {
1529      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1530      q2 = 2*q2 + 1;     // update q2
1531      r2 = 2*r2 + 1 - d; // update r2
1532    }
1533    else {
1534      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1535      q2 = 2*q2;     // update q2
1536      r2 = 2*r2 + 1; // update r2
1537    }
1538    delta = d - 1 - r2;
1539  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1540  magu.m = q2 + 1; // resulting magic number
1541  magu.s = p - 64;  // resulting shift
1542  return magu;
1543}
1544
1545/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1546/// return a DAG expression to select that will generate the same value by
1547/// multiplying by a magic number.  See:
1548/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1549SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1550				    std::vector<SDNode*>* Created) const {
1551  MVT::ValueType VT = N->getValueType(0);
1552
1553  // Check to see if we can do this.
1554  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1555    return SDOperand();       // BuildSDIV only operates on i32 or i64
1556  if (!isOperationLegal(ISD::MULHS, VT))
1557    return SDOperand();       // Make sure the target supports MULHS.
1558
1559  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1560  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1561
1562  // Multiply the numerator (operand 0) by the magic value
1563  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1564                            DAG.getConstant(magics.m, VT));
1565  // If d > 0 and m < 0, add the numerator
1566  if (d > 0 && magics.m < 0) {
1567    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1568    if (Created)
1569      Created->push_back(Q.Val);
1570  }
1571  // If d < 0 and m > 0, subtract the numerator.
1572  if (d < 0 && magics.m > 0) {
1573    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1574    if (Created)
1575      Created->push_back(Q.Val);
1576  }
1577  // Shift right algebraic if shift value is nonzero
1578  if (magics.s > 0) {
1579    Q = DAG.getNode(ISD::SRA, VT, Q,
1580                    DAG.getConstant(magics.s, getShiftAmountTy()));
1581    if (Created)
1582      Created->push_back(Q.Val);
1583  }
1584  // Extract the sign bit and add it to the quotient
1585  SDOperand T =
1586    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1587                                                 getShiftAmountTy()));
1588  if (Created)
1589    Created->push_back(T.Val);
1590  return DAG.getNode(ISD::ADD, VT, Q, T);
1591}
1592
1593/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1594/// return a DAG expression to select that will generate the same value by
1595/// multiplying by a magic number.  See:
1596/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1597SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1598				    std::vector<SDNode*>* Created) const {
1599  MVT::ValueType VT = N->getValueType(0);
1600
1601  // Check to see if we can do this.
1602  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1603    return SDOperand();       // BuildUDIV only operates on i32 or i64
1604  if (!isOperationLegal(ISD::MULHU, VT))
1605    return SDOperand();       // Make sure the target supports MULHU.
1606
1607  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1608  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1609
1610  // Multiply the numerator (operand 0) by the magic value
1611  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1612                            DAG.getConstant(magics.m, VT));
1613  if (Created)
1614    Created->push_back(Q.Val);
1615
1616  if (magics.a == 0) {
1617    return DAG.getNode(ISD::SRL, VT, Q,
1618                       DAG.getConstant(magics.s, getShiftAmountTy()));
1619  } else {
1620    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1621    if (Created)
1622      Created->push_back(NPQ.Val);
1623    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1624                      DAG.getConstant(1, getShiftAmountTy()));
1625    if (Created)
1626      Created->push_back(NPQ.Val);
1627    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1628    if (Created)
1629      Created->push_back(NPQ.Val);
1630    return DAG.getNode(ISD::SRL, VT, NPQ,
1631                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1632  }
1633}
1634