TargetLowering.cpp revision dd67159ea024c078f6c9f3c41bc400b1f3f2f6e1
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32namespace llvm {
33TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34  bool isLocal = GV->hasLocalLinkage();
35  bool isDeclaration = GV->isDeclaration();
36  // FIXME: what should we do for protected and internal visibility?
37  // For variables, is internal different from hidden?
38  bool isHidden = GV->hasHiddenVisibility();
39
40  if (reloc == Reloc::PIC_) {
41    if (isLocal || isHidden)
42      return TLSModel::LocalDynamic;
43    else
44      return TLSModel::GeneralDynamic;
45  } else {
46    if (!isDeclaration || isHidden)
47      return TLSModel::LocalExec;
48    else
49      return TLSModel::InitialExec;
50  }
51}
52}
53
54/// InitLibcallNames - Set default libcall names.
55///
56static void InitLibcallNames(const char **Names) {
57  Names[RTLIB::SHL_I16] = "__ashlhi3";
58  Names[RTLIB::SHL_I32] = "__ashlsi3";
59  Names[RTLIB::SHL_I64] = "__ashldi3";
60  Names[RTLIB::SHL_I128] = "__ashlti3";
61  Names[RTLIB::SRL_I16] = "__lshrhi3";
62  Names[RTLIB::SRL_I32] = "__lshrsi3";
63  Names[RTLIB::SRL_I64] = "__lshrdi3";
64  Names[RTLIB::SRL_I128] = "__lshrti3";
65  Names[RTLIB::SRA_I16] = "__ashrhi3";
66  Names[RTLIB::SRA_I32] = "__ashrsi3";
67  Names[RTLIB::SRA_I64] = "__ashrdi3";
68  Names[RTLIB::SRA_I128] = "__ashrti3";
69  Names[RTLIB::MUL_I8] = "__mulqi3";
70  Names[RTLIB::MUL_I16] = "__mulhi3";
71  Names[RTLIB::MUL_I32] = "__mulsi3";
72  Names[RTLIB::MUL_I64] = "__muldi3";
73  Names[RTLIB::MUL_I128] = "__multi3";
74  Names[RTLIB::SDIV_I8] = "__divqi3";
75  Names[RTLIB::SDIV_I16] = "__divhi3";
76  Names[RTLIB::SDIV_I32] = "__divsi3";
77  Names[RTLIB::SDIV_I64] = "__divdi3";
78  Names[RTLIB::SDIV_I128] = "__divti3";
79  Names[RTLIB::UDIV_I8] = "__udivqi3";
80  Names[RTLIB::UDIV_I16] = "__udivhi3";
81  Names[RTLIB::UDIV_I32] = "__udivsi3";
82  Names[RTLIB::UDIV_I64] = "__udivdi3";
83  Names[RTLIB::UDIV_I128] = "__udivti3";
84  Names[RTLIB::SREM_I8] = "__modqi3";
85  Names[RTLIB::SREM_I16] = "__modhi3";
86  Names[RTLIB::SREM_I32] = "__modsi3";
87  Names[RTLIB::SREM_I64] = "__moddi3";
88  Names[RTLIB::SREM_I128] = "__modti3";
89  Names[RTLIB::UREM_I8] = "__umodqi3";
90  Names[RTLIB::UREM_I16] = "__umodhi3";
91  Names[RTLIB::UREM_I32] = "__umodsi3";
92  Names[RTLIB::UREM_I64] = "__umoddi3";
93  Names[RTLIB::UREM_I128] = "__umodti3";
94  Names[RTLIB::NEG_I32] = "__negsi2";
95  Names[RTLIB::NEG_I64] = "__negdi2";
96  Names[RTLIB::ADD_F32] = "__addsf3";
97  Names[RTLIB::ADD_F64] = "__adddf3";
98  Names[RTLIB::ADD_F80] = "__addxf3";
99  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100  Names[RTLIB::SUB_F32] = "__subsf3";
101  Names[RTLIB::SUB_F64] = "__subdf3";
102  Names[RTLIB::SUB_F80] = "__subxf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108  Names[RTLIB::DIV_F32] = "__divsf3";
109  Names[RTLIB::DIV_F64] = "__divdf3";
110  Names[RTLIB::DIV_F80] = "__divxf3";
111  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112  Names[RTLIB::REM_F32] = "fmodf";
113  Names[RTLIB::REM_F64] = "fmod";
114  Names[RTLIB::REM_F80] = "fmodl";
115  Names[RTLIB::REM_PPCF128] = "fmodl";
116  Names[RTLIB::POWI_F32] = "__powisf2";
117  Names[RTLIB::POWI_F64] = "__powidf2";
118  Names[RTLIB::POWI_F80] = "__powixf2";
119  Names[RTLIB::POWI_PPCF128] = "__powitf2";
120  Names[RTLIB::SQRT_F32] = "sqrtf";
121  Names[RTLIB::SQRT_F64] = "sqrt";
122  Names[RTLIB::SQRT_F80] = "sqrtl";
123  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124  Names[RTLIB::LOG_F32] = "logf";
125  Names[RTLIB::LOG_F64] = "log";
126  Names[RTLIB::LOG_F80] = "logl";
127  Names[RTLIB::LOG_PPCF128] = "logl";
128  Names[RTLIB::LOG2_F32] = "log2f";
129  Names[RTLIB::LOG2_F64] = "log2";
130  Names[RTLIB::LOG2_F80] = "log2l";
131  Names[RTLIB::LOG2_PPCF128] = "log2l";
132  Names[RTLIB::LOG10_F32] = "log10f";
133  Names[RTLIB::LOG10_F64] = "log10";
134  Names[RTLIB::LOG10_F80] = "log10l";
135  Names[RTLIB::LOG10_PPCF128] = "log10l";
136  Names[RTLIB::EXP_F32] = "expf";
137  Names[RTLIB::EXP_F64] = "exp";
138  Names[RTLIB::EXP_F80] = "expl";
139  Names[RTLIB::EXP_PPCF128] = "expl";
140  Names[RTLIB::EXP2_F32] = "exp2f";
141  Names[RTLIB::EXP2_F64] = "exp2";
142  Names[RTLIB::EXP2_F80] = "exp2l";
143  Names[RTLIB::EXP2_PPCF128] = "exp2l";
144  Names[RTLIB::SIN_F32] = "sinf";
145  Names[RTLIB::SIN_F64] = "sin";
146  Names[RTLIB::SIN_F80] = "sinl";
147  Names[RTLIB::SIN_PPCF128] = "sinl";
148  Names[RTLIB::COS_F32] = "cosf";
149  Names[RTLIB::COS_F64] = "cos";
150  Names[RTLIB::COS_F80] = "cosl";
151  Names[RTLIB::COS_PPCF128] = "cosl";
152  Names[RTLIB::POW_F32] = "powf";
153  Names[RTLIB::POW_F64] = "pow";
154  Names[RTLIB::POW_F80] = "powl";
155  Names[RTLIB::POW_PPCF128] = "powl";
156  Names[RTLIB::CEIL_F32] = "ceilf";
157  Names[RTLIB::CEIL_F64] = "ceil";
158  Names[RTLIB::CEIL_F80] = "ceill";
159  Names[RTLIB::CEIL_PPCF128] = "ceill";
160  Names[RTLIB::TRUNC_F32] = "truncf";
161  Names[RTLIB::TRUNC_F64] = "trunc";
162  Names[RTLIB::TRUNC_F80] = "truncl";
163  Names[RTLIB::TRUNC_PPCF128] = "truncl";
164  Names[RTLIB::RINT_F32] = "rintf";
165  Names[RTLIB::RINT_F64] = "rint";
166  Names[RTLIB::RINT_F80] = "rintl";
167  Names[RTLIB::RINT_PPCF128] = "rintl";
168  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172  Names[RTLIB::FLOOR_F32] = "floorf";
173  Names[RTLIB::FLOOR_F64] = "floor";
174  Names[RTLIB::FLOOR_F80] = "floorl";
175  Names[RTLIB::FLOOR_PPCF128] = "floorl";
176  Names[RTLIB::COPYSIGN_F32] = "copysignf";
177  Names[RTLIB::COPYSIGN_F64] = "copysign";
178  Names[RTLIB::COPYSIGN_F80] = "copysignl";
179  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244  Names[RTLIB::OEQ_F32] = "__eqsf2";
245  Names[RTLIB::OEQ_F64] = "__eqdf2";
246  Names[RTLIB::UNE_F32] = "__nesf2";
247  Names[RTLIB::UNE_F64] = "__nedf2";
248  Names[RTLIB::OGE_F32] = "__gesf2";
249  Names[RTLIB::OGE_F64] = "__gedf2";
250  Names[RTLIB::OLT_F32] = "__ltsf2";
251  Names[RTLIB::OLT_F64] = "__ltdf2";
252  Names[RTLIB::OLE_F32] = "__lesf2";
253  Names[RTLIB::OLE_F64] = "__ledf2";
254  Names[RTLIB::OGT_F32] = "__gtsf2";
255  Names[RTLIB::OGT_F64] = "__gtdf2";
256  Names[RTLIB::UO_F32] = "__unordsf2";
257  Names[RTLIB::UO_F64] = "__unorddf2";
258  Names[RTLIB::O_F32] = "__unordsf2";
259  Names[RTLIB::O_F64] = "__unorddf2";
260  Names[RTLIB::MEMCPY] = "memcpy";
261  Names[RTLIB::MEMMOVE] = "memmove";
262  Names[RTLIB::MEMSET] = "memset";
263  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
268  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
272  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
276  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
280  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
281  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
282  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
283  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
284  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
285  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
286  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
287  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
288  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
292  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
296}
297
298/// InitLibcallCallingConvs - Set default libcall CallingConvs.
299///
300static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
301  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
302    CCs[i] = CallingConv::C;
303  }
304}
305
306/// getFPEXT - Return the FPEXT_*_* value for the given types, or
307/// UNKNOWN_LIBCALL if there is none.
308RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
309  if (OpVT == MVT::f32) {
310    if (RetVT == MVT::f64)
311      return FPEXT_F32_F64;
312  }
313
314  return UNKNOWN_LIBCALL;
315}
316
317/// getFPROUND - Return the FPROUND_*_* value for the given types, or
318/// UNKNOWN_LIBCALL if there is none.
319RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
320  if (RetVT == MVT::f32) {
321    if (OpVT == MVT::f64)
322      return FPROUND_F64_F32;
323    if (OpVT == MVT::f80)
324      return FPROUND_F80_F32;
325    if (OpVT == MVT::ppcf128)
326      return FPROUND_PPCF128_F32;
327  } else if (RetVT == MVT::f64) {
328    if (OpVT == MVT::f80)
329      return FPROUND_F80_F64;
330    if (OpVT == MVT::ppcf128)
331      return FPROUND_PPCF128_F64;
332  }
333
334  return UNKNOWN_LIBCALL;
335}
336
337/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
338/// UNKNOWN_LIBCALL if there is none.
339RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
340  if (OpVT == MVT::f32) {
341    if (RetVT == MVT::i8)
342      return FPTOSINT_F32_I8;
343    if (RetVT == MVT::i16)
344      return FPTOSINT_F32_I16;
345    if (RetVT == MVT::i32)
346      return FPTOSINT_F32_I32;
347    if (RetVT == MVT::i64)
348      return FPTOSINT_F32_I64;
349    if (RetVT == MVT::i128)
350      return FPTOSINT_F32_I128;
351  } else if (OpVT == MVT::f64) {
352    if (RetVT == MVT::i8)
353      return FPTOSINT_F64_I8;
354    if (RetVT == MVT::i16)
355      return FPTOSINT_F64_I16;
356    if (RetVT == MVT::i32)
357      return FPTOSINT_F64_I32;
358    if (RetVT == MVT::i64)
359      return FPTOSINT_F64_I64;
360    if (RetVT == MVT::i128)
361      return FPTOSINT_F64_I128;
362  } else if (OpVT == MVT::f80) {
363    if (RetVT == MVT::i32)
364      return FPTOSINT_F80_I32;
365    if (RetVT == MVT::i64)
366      return FPTOSINT_F80_I64;
367    if (RetVT == MVT::i128)
368      return FPTOSINT_F80_I128;
369  } else if (OpVT == MVT::ppcf128) {
370    if (RetVT == MVT::i32)
371      return FPTOSINT_PPCF128_I32;
372    if (RetVT == MVT::i64)
373      return FPTOSINT_PPCF128_I64;
374    if (RetVT == MVT::i128)
375      return FPTOSINT_PPCF128_I128;
376  }
377  return UNKNOWN_LIBCALL;
378}
379
380/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
381/// UNKNOWN_LIBCALL if there is none.
382RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
383  if (OpVT == MVT::f32) {
384    if (RetVT == MVT::i8)
385      return FPTOUINT_F32_I8;
386    if (RetVT == MVT::i16)
387      return FPTOUINT_F32_I16;
388    if (RetVT == MVT::i32)
389      return FPTOUINT_F32_I32;
390    if (RetVT == MVT::i64)
391      return FPTOUINT_F32_I64;
392    if (RetVT == MVT::i128)
393      return FPTOUINT_F32_I128;
394  } else if (OpVT == MVT::f64) {
395    if (RetVT == MVT::i8)
396      return FPTOUINT_F64_I8;
397    if (RetVT == MVT::i16)
398      return FPTOUINT_F64_I16;
399    if (RetVT == MVT::i32)
400      return FPTOUINT_F64_I32;
401    if (RetVT == MVT::i64)
402      return FPTOUINT_F64_I64;
403    if (RetVT == MVT::i128)
404      return FPTOUINT_F64_I128;
405  } else if (OpVT == MVT::f80) {
406    if (RetVT == MVT::i32)
407      return FPTOUINT_F80_I32;
408    if (RetVT == MVT::i64)
409      return FPTOUINT_F80_I64;
410    if (RetVT == MVT::i128)
411      return FPTOUINT_F80_I128;
412  } else if (OpVT == MVT::ppcf128) {
413    if (RetVT == MVT::i32)
414      return FPTOUINT_PPCF128_I32;
415    if (RetVT == MVT::i64)
416      return FPTOUINT_PPCF128_I64;
417    if (RetVT == MVT::i128)
418      return FPTOUINT_PPCF128_I128;
419  }
420  return UNKNOWN_LIBCALL;
421}
422
423/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
424/// UNKNOWN_LIBCALL if there is none.
425RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
426  if (OpVT == MVT::i32) {
427    if (RetVT == MVT::f32)
428      return SINTTOFP_I32_F32;
429    else if (RetVT == MVT::f64)
430      return SINTTOFP_I32_F64;
431    else if (RetVT == MVT::f80)
432      return SINTTOFP_I32_F80;
433    else if (RetVT == MVT::ppcf128)
434      return SINTTOFP_I32_PPCF128;
435  } else if (OpVT == MVT::i64) {
436    if (RetVT == MVT::f32)
437      return SINTTOFP_I64_F32;
438    else if (RetVT == MVT::f64)
439      return SINTTOFP_I64_F64;
440    else if (RetVT == MVT::f80)
441      return SINTTOFP_I64_F80;
442    else if (RetVT == MVT::ppcf128)
443      return SINTTOFP_I64_PPCF128;
444  } else if (OpVT == MVT::i128) {
445    if (RetVT == MVT::f32)
446      return SINTTOFP_I128_F32;
447    else if (RetVT == MVT::f64)
448      return SINTTOFP_I128_F64;
449    else if (RetVT == MVT::f80)
450      return SINTTOFP_I128_F80;
451    else if (RetVT == MVT::ppcf128)
452      return SINTTOFP_I128_PPCF128;
453  }
454  return UNKNOWN_LIBCALL;
455}
456
457/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
458/// UNKNOWN_LIBCALL if there is none.
459RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
460  if (OpVT == MVT::i32) {
461    if (RetVT == MVT::f32)
462      return UINTTOFP_I32_F32;
463    else if (RetVT == MVT::f64)
464      return UINTTOFP_I32_F64;
465    else if (RetVT == MVT::f80)
466      return UINTTOFP_I32_F80;
467    else if (RetVT == MVT::ppcf128)
468      return UINTTOFP_I32_PPCF128;
469  } else if (OpVT == MVT::i64) {
470    if (RetVT == MVT::f32)
471      return UINTTOFP_I64_F32;
472    else if (RetVT == MVT::f64)
473      return UINTTOFP_I64_F64;
474    else if (RetVT == MVT::f80)
475      return UINTTOFP_I64_F80;
476    else if (RetVT == MVT::ppcf128)
477      return UINTTOFP_I64_PPCF128;
478  } else if (OpVT == MVT::i128) {
479    if (RetVT == MVT::f32)
480      return UINTTOFP_I128_F32;
481    else if (RetVT == MVT::f64)
482      return UINTTOFP_I128_F64;
483    else if (RetVT == MVT::f80)
484      return UINTTOFP_I128_F80;
485    else if (RetVT == MVT::ppcf128)
486      return UINTTOFP_I128_PPCF128;
487  }
488  return UNKNOWN_LIBCALL;
489}
490
491/// InitCmpLibcallCCs - Set default comparison libcall CC.
492///
493static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
494  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
495  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
496  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
497  CCs[RTLIB::UNE_F32] = ISD::SETNE;
498  CCs[RTLIB::UNE_F64] = ISD::SETNE;
499  CCs[RTLIB::OGE_F32] = ISD::SETGE;
500  CCs[RTLIB::OGE_F64] = ISD::SETGE;
501  CCs[RTLIB::OLT_F32] = ISD::SETLT;
502  CCs[RTLIB::OLT_F64] = ISD::SETLT;
503  CCs[RTLIB::OLE_F32] = ISD::SETLE;
504  CCs[RTLIB::OLE_F64] = ISD::SETLE;
505  CCs[RTLIB::OGT_F32] = ISD::SETGT;
506  CCs[RTLIB::OGT_F64] = ISD::SETGT;
507  CCs[RTLIB::UO_F32] = ISD::SETNE;
508  CCs[RTLIB::UO_F64] = ISD::SETNE;
509  CCs[RTLIB::O_F32] = ISD::SETEQ;
510  CCs[RTLIB::O_F64] = ISD::SETEQ;
511}
512
513/// NOTE: The constructor takes ownership of TLOF.
514TargetLowering::TargetLowering(const TargetMachine &tm,
515                               const TargetLoweringObjectFile *tlof)
516  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
517  // All operations default to being supported.
518  memset(OpActions, 0, sizeof(OpActions));
519  memset(LoadExtActions, 0, sizeof(LoadExtActions));
520  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
521  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
522  memset(CondCodeActions, 0, sizeof(CondCodeActions));
523
524  // Set default actions for various operations.
525  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
526    // Default all indexed load / store to expand.
527    for (unsigned IM = (unsigned)ISD::PRE_INC;
528         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
529      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
530      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
531    }
532
533    // These operations default to expand.
534    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
536  }
537
538  // Most targets ignore the @llvm.prefetch intrinsic.
539  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
540
541  // ConstantFP nodes default to expand.  Targets can either change this to
542  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
543  // to optimize expansions for certain constants.
544  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
545  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
547
548  // These library functions default to expand.
549  setOperationAction(ISD::FLOG , MVT::f64, Expand);
550  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
551  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
552  setOperationAction(ISD::FEXP , MVT::f64, Expand);
553  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
554  setOperationAction(ISD::FLOG , MVT::f32, Expand);
555  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
556  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
557  setOperationAction(ISD::FEXP , MVT::f32, Expand);
558  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
559
560  // Default ISD::TRAP to expand (which turns it into abort).
561  setOperationAction(ISD::TRAP, MVT::Other, Expand);
562
563  IsLittleEndian = TD->isLittleEndian();
564  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
565  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
566  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
567  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
568  benefitFromCodePlacementOpt = false;
569  UseUnderscoreSetJmp = false;
570  UseUnderscoreLongJmp = false;
571  SelectIsExpensive = false;
572  IntDivIsCheap = false;
573  Pow2DivIsCheap = false;
574  StackPointerRegisterToSaveRestore = 0;
575  ExceptionPointerRegister = 0;
576  ExceptionSelectorRegister = 0;
577  BooleanContents = UndefinedBooleanContent;
578  SchedPreferenceInfo = Sched::Latency;
579  JumpBufSize = 0;
580  JumpBufAlignment = 0;
581  IfCvtBlockSizeLimit = 2;
582  IfCvtDupBlockSizeLimit = 0;
583  PrefLoopAlignment = 0;
584
585  InitLibcallNames(LibcallRoutineNames);
586  InitCmpLibcallCCs(CmpLibcallCCs);
587  InitLibcallCallingConvs(LibcallCallingConvs);
588}
589
590TargetLowering::~TargetLowering() {
591  delete &TLOF;
592}
593
594/// canOpTrap - Returns true if the operation can trap for the value type.
595/// VT must be a legal type.
596bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
597  assert(isTypeLegal(VT));
598  switch (Op) {
599  default:
600    return false;
601  case ISD::FDIV:
602  case ISD::FREM:
603  case ISD::SDIV:
604  case ISD::UDIV:
605  case ISD::SREM:
606  case ISD::UREM:
607    return true;
608  }
609}
610
611
612static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
613                                       unsigned &NumIntermediates,
614                                       EVT &RegisterVT,
615                                       TargetLowering* TLI) {
616  // Figure out the right, legal destination reg to copy into.
617  unsigned NumElts = VT.getVectorNumElements();
618  MVT EltTy = VT.getVectorElementType();
619
620  unsigned NumVectorRegs = 1;
621
622  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
623  // could break down into LHS/RHS like LegalizeDAG does.
624  if (!isPowerOf2_32(NumElts)) {
625    NumVectorRegs = NumElts;
626    NumElts = 1;
627  }
628
629  // Divide the input until we get to a supported size.  This will always
630  // end with a scalar if the target doesn't support vectors.
631  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
632    NumElts >>= 1;
633    NumVectorRegs <<= 1;
634  }
635
636  NumIntermediates = NumVectorRegs;
637
638  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
639  if (!TLI->isTypeLegal(NewVT))
640    NewVT = EltTy;
641  IntermediateVT = NewVT;
642
643  EVT DestVT = TLI->getRegisterType(NewVT);
644  RegisterVT = DestVT;
645  if (EVT(DestVT).bitsLT(NewVT)) {
646    // Value is expanded, e.g. i64 -> i16.
647    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
648  } else {
649    // Otherwise, promotion or legal types use the same number of registers as
650    // the vector decimated to the appropriate level.
651    return NumVectorRegs;
652  }
653
654  return 1;
655}
656
657/// computeRegisterProperties - Once all of the register classes are added,
658/// this allows us to compute derived properties we expose.
659void TargetLowering::computeRegisterProperties() {
660  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
661         "Too many value types for ValueTypeActions to hold!");
662
663  // Everything defaults to needing one register.
664  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
665    NumRegistersForVT[i] = 1;
666    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
667  }
668  // ...except isVoid, which doesn't need any registers.
669  NumRegistersForVT[MVT::isVoid] = 0;
670
671  // Find the largest integer register class.
672  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
673  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
674    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
675
676  // Every integer value type larger than this largest register takes twice as
677  // many registers to represent as the previous ValueType.
678  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
679    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
680    if (!ExpandedVT.isInteger())
681      break;
682    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
683    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
684    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
685    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
686  }
687
688  // Inspect all of the ValueType's smaller than the largest integer
689  // register to see which ones need promotion.
690  unsigned LegalIntReg = LargestIntReg;
691  for (unsigned IntReg = LargestIntReg - 1;
692       IntReg >= (unsigned)MVT::i1; --IntReg) {
693    EVT IVT = (MVT::SimpleValueType)IntReg;
694    if (isTypeLegal(IVT)) {
695      LegalIntReg = IntReg;
696    } else {
697      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
698        (MVT::SimpleValueType)LegalIntReg;
699      ValueTypeActions.setTypeAction(IVT, Promote);
700    }
701  }
702
703  // ppcf128 type is really two f64's.
704  if (!isTypeLegal(MVT::ppcf128)) {
705    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
706    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
707    TransformToType[MVT::ppcf128] = MVT::f64;
708    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
709  }
710
711  // Decide how to handle f64. If the target does not have native f64 support,
712  // expand it to i64 and we will be generating soft float library calls.
713  if (!isTypeLegal(MVT::f64)) {
714    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
715    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
716    TransformToType[MVT::f64] = MVT::i64;
717    ValueTypeActions.setTypeAction(MVT::f64, Expand);
718  }
719
720  // Decide how to handle f32. If the target does not have native support for
721  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
722  if (!isTypeLegal(MVT::f32)) {
723    if (isTypeLegal(MVT::f64)) {
724      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
725      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
726      TransformToType[MVT::f32] = MVT::f64;
727      ValueTypeActions.setTypeAction(MVT::f32, Promote);
728    } else {
729      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
730      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
731      TransformToType[MVT::f32] = MVT::i32;
732      ValueTypeActions.setTypeAction(MVT::f32, Expand);
733    }
734  }
735
736  // Loop over all of the vector value types to see which need transformations.
737  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
738       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
739    MVT VT = (MVT::SimpleValueType)i;
740    if (!isTypeLegal(VT)) {
741      MVT IntermediateVT;
742      EVT RegisterVT;
743      unsigned NumIntermediates;
744      NumRegistersForVT[i] =
745        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
746                                  RegisterVT, this);
747      RegisterTypeForVT[i] = RegisterVT;
748
749      // Determine if there is a legal wider type.
750      bool IsLegalWiderType = false;
751      EVT EltVT = VT.getVectorElementType();
752      unsigned NElts = VT.getVectorNumElements();
753      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
754        EVT SVT = (MVT::SimpleValueType)nVT;
755        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
756            SVT.getVectorNumElements() > NElts && NElts != 1) {
757          TransformToType[i] = SVT;
758          ValueTypeActions.setTypeAction(VT, Promote);
759          IsLegalWiderType = true;
760          break;
761        }
762      }
763      if (!IsLegalWiderType) {
764        EVT NVT = VT.getPow2VectorType();
765        if (NVT == VT) {
766          // Type is already a power of 2.  The default action is to split.
767          TransformToType[i] = MVT::Other;
768          ValueTypeActions.setTypeAction(VT, Expand);
769        } else {
770          TransformToType[i] = NVT;
771          ValueTypeActions.setTypeAction(VT, Promote);
772        }
773      }
774    }
775  }
776}
777
778const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
779  return NULL;
780}
781
782
783MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
784  return PointerTy.SimpleTy;
785}
786
787MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
788  return MVT::i32; // return the default value
789}
790
791/// getVectorTypeBreakdown - Vector types are broken down into some number of
792/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
793/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
794/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
795///
796/// This method returns the number of registers needed, and the VT for each
797/// register.  It also returns the VT and quantity of the intermediate values
798/// before they are promoted/expanded.
799///
800unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
801                                                EVT &IntermediateVT,
802                                                unsigned &NumIntermediates,
803                                                EVT &RegisterVT) const {
804  // Figure out the right, legal destination reg to copy into.
805  unsigned NumElts = VT.getVectorNumElements();
806  EVT EltTy = VT.getVectorElementType();
807
808  unsigned NumVectorRegs = 1;
809
810  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
811  // could break down into LHS/RHS like LegalizeDAG does.
812  if (!isPowerOf2_32(NumElts)) {
813    NumVectorRegs = NumElts;
814    NumElts = 1;
815  }
816
817  // Divide the input until we get to a supported size.  This will always
818  // end with a scalar if the target doesn't support vectors.
819  while (NumElts > 1 && !isTypeLegal(
820                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
821    NumElts >>= 1;
822    NumVectorRegs <<= 1;
823  }
824
825  NumIntermediates = NumVectorRegs;
826
827  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
828  if (!isTypeLegal(NewVT))
829    NewVT = EltTy;
830  IntermediateVT = NewVT;
831
832  EVT DestVT = getRegisterType(Context, NewVT);
833  RegisterVT = DestVT;
834  if (DestVT.bitsLT(NewVT)) {
835    // Value is expanded, e.g. i64 -> i16.
836    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
837  } else {
838    // Otherwise, promotion or legal types use the same number of registers as
839    // the vector decimated to the appropriate level.
840    return NumVectorRegs;
841  }
842
843  return 1;
844}
845
846/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
847/// function arguments in the caller parameter area.  This is the actual
848/// alignment, not its logarithm.
849unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
850  return TD->getCallFrameTypeAlignment(Ty);
851}
852
853/// getJumpTableEncoding - Return the entry encoding for a jump table in the
854/// current function.  The returned value is a member of the
855/// MachineJumpTableInfo::JTEntryKind enum.
856unsigned TargetLowering::getJumpTableEncoding() const {
857  // In non-pic modes, just use the address of a block.
858  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
859    return MachineJumpTableInfo::EK_BlockAddress;
860
861  // In PIC mode, if the target supports a GPRel32 directive, use it.
862  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
863    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
864
865  // Otherwise, use a label difference.
866  return MachineJumpTableInfo::EK_LabelDifference32;
867}
868
869SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
870                                                 SelectionDAG &DAG) const {
871  // If our PIC model is GP relative, use the global offset table as the base.
872  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
873    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
874  return Table;
875}
876
877/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
878/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
879/// MCExpr.
880const MCExpr *
881TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
882                                             unsigned JTI,MCContext &Ctx) const{
883  // The normal PIC reloc base is the label at the start of the jump table.
884  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
885}
886
887bool
888TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
889  // Assume that everything is safe in static mode.
890  if (getTargetMachine().getRelocationModel() == Reloc::Static)
891    return true;
892
893  // In dynamic-no-pic mode, assume that known defined values are safe.
894  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
895      GA &&
896      !GA->getGlobal()->isDeclaration() &&
897      !GA->getGlobal()->isWeakForLinker())
898    return true;
899
900  // Otherwise assume nothing is safe.
901  return false;
902}
903
904//===----------------------------------------------------------------------===//
905//  Optimization Methods
906//===----------------------------------------------------------------------===//
907
908/// ShrinkDemandedConstant - Check to see if the specified operand of the
909/// specified instruction is a constant integer.  If so, check to see if there
910/// are any bits set in the constant that are not demanded.  If so, shrink the
911/// constant and return true.
912bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
913                                                        const APInt &Demanded) {
914  DebugLoc dl = Op.getDebugLoc();
915
916  // FIXME: ISD::SELECT, ISD::SELECT_CC
917  switch (Op.getOpcode()) {
918  default: break;
919  case ISD::XOR:
920  case ISD::AND:
921  case ISD::OR: {
922    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
923    if (!C) return false;
924
925    if (Op.getOpcode() == ISD::XOR &&
926        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
927      return false;
928
929    // if we can expand it to have all bits set, do it
930    if (C->getAPIntValue().intersects(~Demanded)) {
931      EVT VT = Op.getValueType();
932      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
933                                DAG.getConstant(Demanded &
934                                                C->getAPIntValue(),
935                                                VT));
936      return CombineTo(Op, New);
937    }
938
939    break;
940  }
941  }
942
943  return false;
944}
945
946/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
947/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
948/// cast, but it could be generalized for targets with other types of
949/// implicit widening casts.
950bool
951TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
952                                                    unsigned BitWidth,
953                                                    const APInt &Demanded,
954                                                    DebugLoc dl) {
955  assert(Op.getNumOperands() == 2 &&
956         "ShrinkDemandedOp only supports binary operators!");
957  assert(Op.getNode()->getNumValues() == 1 &&
958         "ShrinkDemandedOp only supports nodes with one result!");
959
960  // Don't do this if the node has another user, which may require the
961  // full value.
962  if (!Op.getNode()->hasOneUse())
963    return false;
964
965  // Search for the smallest integer type with free casts to and from
966  // Op's type. For expedience, just check power-of-2 integer types.
967  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
968  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
969  if (!isPowerOf2_32(SmallVTBits))
970    SmallVTBits = NextPowerOf2(SmallVTBits);
971  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
972    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
973    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
974        TLI.isZExtFree(SmallVT, Op.getValueType())) {
975      // We found a type with free casts.
976      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
977                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
978                                          Op.getNode()->getOperand(0)),
979                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
980                                          Op.getNode()->getOperand(1)));
981      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
982      return CombineTo(Op, Z);
983    }
984  }
985  return false;
986}
987
988/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
989/// DemandedMask bits of the result of Op are ever used downstream.  If we can
990/// use this information to simplify Op, create a new simplified DAG node and
991/// return true, returning the original and new nodes in Old and New. Otherwise,
992/// analyze the expression and return a mask of KnownOne and KnownZero bits for
993/// the expression (used to simplify the caller).  The KnownZero/One bits may
994/// only be accurate for those bits in the DemandedMask.
995bool TargetLowering::SimplifyDemandedBits(SDValue Op,
996                                          const APInt &DemandedMask,
997                                          APInt &KnownZero,
998                                          APInt &KnownOne,
999                                          TargetLoweringOpt &TLO,
1000                                          unsigned Depth) const {
1001  unsigned BitWidth = DemandedMask.getBitWidth();
1002  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1003         "Mask size mismatches value type size!");
1004  APInt NewMask = DemandedMask;
1005  DebugLoc dl = Op.getDebugLoc();
1006
1007  // Don't know anything.
1008  KnownZero = KnownOne = APInt(BitWidth, 0);
1009
1010  // Other users may use these bits.
1011  if (!Op.getNode()->hasOneUse()) {
1012    if (Depth != 0) {
1013      // If not at the root, Just compute the KnownZero/KnownOne bits to
1014      // simplify things downstream.
1015      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1016      return false;
1017    }
1018    // If this is the root being simplified, allow it to have multiple uses,
1019    // just set the NewMask to all bits.
1020    NewMask = APInt::getAllOnesValue(BitWidth);
1021  } else if (DemandedMask == 0) {
1022    // Not demanding any bits from Op.
1023    if (Op.getOpcode() != ISD::UNDEF)
1024      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1025    return false;
1026  } else if (Depth == 6) {        // Limit search depth.
1027    return false;
1028  }
1029
1030  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1031  switch (Op.getOpcode()) {
1032  case ISD::Constant:
1033    // We know all of the bits for a constant!
1034    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1035    KnownZero = ~KnownOne & NewMask;
1036    return false;   // Don't fall through, will infinitely loop.
1037  case ISD::AND:
1038    // If the RHS is a constant, check to see if the LHS would be zero without
1039    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1040    // simplify the LHS, here we're using information from the LHS to simplify
1041    // the RHS.
1042    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1043      APInt LHSZero, LHSOne;
1044      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1045                                LHSZero, LHSOne, Depth+1);
1046      // If the LHS already has zeros where RHSC does, this and is dead.
1047      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1048        return TLO.CombineTo(Op, Op.getOperand(0));
1049      // If any of the set bits in the RHS are known zero on the LHS, shrink
1050      // the constant.
1051      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1052        return true;
1053    }
1054
1055    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1056                             KnownOne, TLO, Depth+1))
1057      return true;
1058    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1059    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1060                             KnownZero2, KnownOne2, TLO, Depth+1))
1061      return true;
1062    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1063
1064    // If all of the demanded bits are known one on one side, return the other.
1065    // These bits cannot contribute to the result of the 'and'.
1066    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1067      return TLO.CombineTo(Op, Op.getOperand(0));
1068    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1069      return TLO.CombineTo(Op, Op.getOperand(1));
1070    // If all of the demanded bits in the inputs are known zeros, return zero.
1071    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1072      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1073    // If the RHS is a constant, see if we can simplify it.
1074    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1075      return true;
1076    // If the operation can be done in a smaller type, do so.
1077    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1078      return true;
1079
1080    // Output known-1 bits are only known if set in both the LHS & RHS.
1081    KnownOne &= KnownOne2;
1082    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1083    KnownZero |= KnownZero2;
1084    break;
1085  case ISD::OR:
1086    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1087                             KnownOne, TLO, Depth+1))
1088      return true;
1089    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1091                             KnownZero2, KnownOne2, TLO, Depth+1))
1092      return true;
1093    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1094
1095    // If all of the demanded bits are known zero on one side, return the other.
1096    // These bits cannot contribute to the result of the 'or'.
1097    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1098      return TLO.CombineTo(Op, Op.getOperand(0));
1099    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1100      return TLO.CombineTo(Op, Op.getOperand(1));
1101    // If all of the potentially set bits on one side are known to be set on
1102    // the other side, just use the 'other' side.
1103    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1104      return TLO.CombineTo(Op, Op.getOperand(0));
1105    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1106      return TLO.CombineTo(Op, Op.getOperand(1));
1107    // If the RHS is a constant, see if we can simplify it.
1108    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1109      return true;
1110    // If the operation can be done in a smaller type, do so.
1111    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1112      return true;
1113
1114    // Output known-0 bits are only known if clear in both the LHS & RHS.
1115    KnownZero &= KnownZero2;
1116    // Output known-1 are known to be set if set in either the LHS | RHS.
1117    KnownOne |= KnownOne2;
1118    break;
1119  case ISD::XOR:
1120    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1121                             KnownOne, TLO, Depth+1))
1122      return true;
1123    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1124    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1125                             KnownOne2, TLO, Depth+1))
1126      return true;
1127    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1128
1129    // If all of the demanded bits are known zero on one side, return the other.
1130    // These bits cannot contribute to the result of the 'xor'.
1131    if ((KnownZero & NewMask) == NewMask)
1132      return TLO.CombineTo(Op, Op.getOperand(0));
1133    if ((KnownZero2 & NewMask) == NewMask)
1134      return TLO.CombineTo(Op, Op.getOperand(1));
1135    // If the operation can be done in a smaller type, do so.
1136    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1137      return true;
1138
1139    // If all of the unknown bits are known to be zero on one side or the other
1140    // (but not both) turn this into an *inclusive* or.
1141    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1142    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1143      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1144                                               Op.getOperand(0),
1145                                               Op.getOperand(1)));
1146
1147    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1148    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1149    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1150    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1151
1152    // If all of the demanded bits on one side are known, and all of the set
1153    // bits on that side are also known to be set on the other side, turn this
1154    // into an AND, as we know the bits will be cleared.
1155    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1156    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1157      if ((KnownOne & KnownOne2) == KnownOne) {
1158        EVT VT = Op.getValueType();
1159        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1160        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1161                                                 Op.getOperand(0), ANDC));
1162      }
1163    }
1164
1165    // If the RHS is a constant, see if we can simplify it.
1166    // for XOR, we prefer to force bits to 1 if they will make a -1.
1167    // if we can't force bits, try to shrink constant
1168    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1169      APInt Expanded = C->getAPIntValue() | (~NewMask);
1170      // if we can expand it to have all bits set, do it
1171      if (Expanded.isAllOnesValue()) {
1172        if (Expanded != C->getAPIntValue()) {
1173          EVT VT = Op.getValueType();
1174          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1175                                          TLO.DAG.getConstant(Expanded, VT));
1176          return TLO.CombineTo(Op, New);
1177        }
1178        // if it already has all the bits set, nothing to change
1179        // but don't shrink either!
1180      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1181        return true;
1182      }
1183    }
1184
1185    KnownZero = KnownZeroOut;
1186    KnownOne  = KnownOneOut;
1187    break;
1188  case ISD::SELECT:
1189    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1190                             KnownOne, TLO, Depth+1))
1191      return true;
1192    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1193                             KnownOne2, TLO, Depth+1))
1194      return true;
1195    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1197
1198    // If the operands are constants, see if we can simplify them.
1199    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1200      return true;
1201
1202    // Only known if known in both the LHS and RHS.
1203    KnownOne &= KnownOne2;
1204    KnownZero &= KnownZero2;
1205    break;
1206  case ISD::SELECT_CC:
1207    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1208                             KnownOne, TLO, Depth+1))
1209      return true;
1210    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1211                             KnownOne2, TLO, Depth+1))
1212      return true;
1213    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1215
1216    // If the operands are constants, see if we can simplify them.
1217    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1218      return true;
1219
1220    // Only known if known in both the LHS and RHS.
1221    KnownOne &= KnownOne2;
1222    KnownZero &= KnownZero2;
1223    break;
1224  case ISD::SHL:
1225    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1226      unsigned ShAmt = SA->getZExtValue();
1227      SDValue InOp = Op.getOperand(0);
1228
1229      // If the shift count is an invalid immediate, don't do anything.
1230      if (ShAmt >= BitWidth)
1231        break;
1232
1233      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1234      // single shift.  We can do this if the bottom bits (which are shifted
1235      // out) are never demanded.
1236      if (InOp.getOpcode() == ISD::SRL &&
1237          isa<ConstantSDNode>(InOp.getOperand(1))) {
1238        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1239          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1240          unsigned Opc = ISD::SHL;
1241          int Diff = ShAmt-C1;
1242          if (Diff < 0) {
1243            Diff = -Diff;
1244            Opc = ISD::SRL;
1245          }
1246
1247          SDValue NewSA =
1248            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1249          EVT VT = Op.getValueType();
1250          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1251                                                   InOp.getOperand(0), NewSA));
1252        }
1253      }
1254
1255      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1256                               KnownZero, KnownOne, TLO, Depth+1))
1257        return true;
1258      KnownZero <<= SA->getZExtValue();
1259      KnownOne  <<= SA->getZExtValue();
1260      // low bits known zero.
1261      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1262    }
1263    break;
1264  case ISD::SRL:
1265    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1266      EVT VT = Op.getValueType();
1267      unsigned ShAmt = SA->getZExtValue();
1268      unsigned VTSize = VT.getSizeInBits();
1269      SDValue InOp = Op.getOperand(0);
1270
1271      // If the shift count is an invalid immediate, don't do anything.
1272      if (ShAmt >= BitWidth)
1273        break;
1274
1275      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1276      // single shift.  We can do this if the top bits (which are shifted out)
1277      // are never demanded.
1278      if (InOp.getOpcode() == ISD::SHL &&
1279          isa<ConstantSDNode>(InOp.getOperand(1))) {
1280        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1281          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1282          unsigned Opc = ISD::SRL;
1283          int Diff = ShAmt-C1;
1284          if (Diff < 0) {
1285            Diff = -Diff;
1286            Opc = ISD::SHL;
1287          }
1288
1289          SDValue NewSA =
1290            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1291          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1292                                                   InOp.getOperand(0), NewSA));
1293        }
1294      }
1295
1296      // Compute the new bits that are at the top now.
1297      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1298                               KnownZero, KnownOne, TLO, Depth+1))
1299        return true;
1300      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1301      KnownZero = KnownZero.lshr(ShAmt);
1302      KnownOne  = KnownOne.lshr(ShAmt);
1303
1304      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1305      KnownZero |= HighBits;  // High bits known zero.
1306    }
1307    break;
1308  case ISD::SRA:
1309    // If this is an arithmetic shift right and only the low-bit is set, we can
1310    // always convert this into a logical shr, even if the shift amount is
1311    // variable.  The low bit of the shift cannot be an input sign bit unless
1312    // the shift amount is >= the size of the datatype, which is undefined.
1313    if (DemandedMask == 1)
1314      return TLO.CombineTo(Op,
1315                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1316                                           Op.getOperand(0), Op.getOperand(1)));
1317
1318    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1319      EVT VT = Op.getValueType();
1320      unsigned ShAmt = SA->getZExtValue();
1321
1322      // If the shift count is an invalid immediate, don't do anything.
1323      if (ShAmt >= BitWidth)
1324        break;
1325
1326      APInt InDemandedMask = (NewMask << ShAmt);
1327
1328      // If any of the demanded bits are produced by the sign extension, we also
1329      // demand the input sign bit.
1330      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1331      if (HighBits.intersects(NewMask))
1332        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1333
1334      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1335                               KnownZero, KnownOne, TLO, Depth+1))
1336        return true;
1337      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1338      KnownZero = KnownZero.lshr(ShAmt);
1339      KnownOne  = KnownOne.lshr(ShAmt);
1340
1341      // Handle the sign bit, adjusted to where it is now in the mask.
1342      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1343
1344      // If the input sign bit is known to be zero, or if none of the top bits
1345      // are demanded, turn this into an unsigned shift right.
1346      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1347        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1348                                                 Op.getOperand(0),
1349                                                 Op.getOperand(1)));
1350      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1351        KnownOne |= HighBits;
1352      }
1353    }
1354    break;
1355  case ISD::SIGN_EXTEND_INREG: {
1356    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1357
1358    // Sign extension.  Compute the demanded bits in the result that are not
1359    // present in the input.
1360    APInt NewBits =
1361      APInt::getHighBitsSet(BitWidth,
1362                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1363      NewMask;
1364
1365    // If none of the extended bits are demanded, eliminate the sextinreg.
1366    if (NewBits == 0)
1367      return TLO.CombineTo(Op, Op.getOperand(0));
1368
1369    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1370    InSignBit.zext(BitWidth);
1371    APInt InputDemandedBits =
1372      APInt::getLowBitsSet(BitWidth,
1373                           EVT.getScalarType().getSizeInBits()) &
1374      NewMask;
1375
1376    // Since the sign extended bits are demanded, we know that the sign
1377    // bit is demanded.
1378    InputDemandedBits |= InSignBit;
1379
1380    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1381                             KnownZero, KnownOne, TLO, Depth+1))
1382      return true;
1383    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1384
1385    // If the sign bit of the input is known set or clear, then we know the
1386    // top bits of the result.
1387
1388    // If the input sign bit is known zero, convert this into a zero extension.
1389    if (KnownZero.intersects(InSignBit))
1390      return TLO.CombineTo(Op,
1391                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1392
1393    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1394      KnownOne |= NewBits;
1395      KnownZero &= ~NewBits;
1396    } else {                       // Input sign bit unknown
1397      KnownZero &= ~NewBits;
1398      KnownOne &= ~NewBits;
1399    }
1400    break;
1401  }
1402  case ISD::ZERO_EXTEND: {
1403    unsigned OperandBitWidth =
1404      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1405    APInt InMask = NewMask;
1406    InMask.trunc(OperandBitWidth);
1407
1408    // If none of the top bits are demanded, convert this into an any_extend.
1409    APInt NewBits =
1410      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1411    if (!NewBits.intersects(NewMask))
1412      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1413                                               Op.getValueType(),
1414                                               Op.getOperand(0)));
1415
1416    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1417                             KnownZero, KnownOne, TLO, Depth+1))
1418      return true;
1419    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1420    KnownZero.zext(BitWidth);
1421    KnownOne.zext(BitWidth);
1422    KnownZero |= NewBits;
1423    break;
1424  }
1425  case ISD::SIGN_EXTEND: {
1426    EVT InVT = Op.getOperand(0).getValueType();
1427    unsigned InBits = InVT.getScalarType().getSizeInBits();
1428    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1429    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1430    APInt NewBits   = ~InMask & NewMask;
1431
1432    // If none of the top bits are demanded, convert this into an any_extend.
1433    if (NewBits == 0)
1434      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1435                                              Op.getValueType(),
1436                                              Op.getOperand(0)));
1437
1438    // Since some of the sign extended bits are demanded, we know that the sign
1439    // bit is demanded.
1440    APInt InDemandedBits = InMask & NewMask;
1441    InDemandedBits |= InSignBit;
1442    InDemandedBits.trunc(InBits);
1443
1444    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1445                             KnownOne, TLO, Depth+1))
1446      return true;
1447    KnownZero.zext(BitWidth);
1448    KnownOne.zext(BitWidth);
1449
1450    // If the sign bit is known zero, convert this to a zero extend.
1451    if (KnownZero.intersects(InSignBit))
1452      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1453                                               Op.getValueType(),
1454                                               Op.getOperand(0)));
1455
1456    // If the sign bit is known one, the top bits match.
1457    if (KnownOne.intersects(InSignBit)) {
1458      KnownOne  |= NewBits;
1459      KnownZero &= ~NewBits;
1460    } else {   // Otherwise, top bits aren't known.
1461      KnownOne  &= ~NewBits;
1462      KnownZero &= ~NewBits;
1463    }
1464    break;
1465  }
1466  case ISD::ANY_EXTEND: {
1467    unsigned OperandBitWidth =
1468      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1469    APInt InMask = NewMask;
1470    InMask.trunc(OperandBitWidth);
1471    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1472                             KnownZero, KnownOne, TLO, Depth+1))
1473      return true;
1474    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1475    KnownZero.zext(BitWidth);
1476    KnownOne.zext(BitWidth);
1477    break;
1478  }
1479  case ISD::TRUNCATE: {
1480    // Simplify the input, using demanded bit information, and compute the known
1481    // zero/one bits live out.
1482    unsigned OperandBitWidth =
1483      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1484    APInt TruncMask = NewMask;
1485    TruncMask.zext(OperandBitWidth);
1486    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1487                             KnownZero, KnownOne, TLO, Depth+1))
1488      return true;
1489    KnownZero.trunc(BitWidth);
1490    KnownOne.trunc(BitWidth);
1491
1492    // If the input is only used by this truncate, see if we can shrink it based
1493    // on the known demanded bits.
1494    if (Op.getOperand(0).getNode()->hasOneUse()) {
1495      SDValue In = Op.getOperand(0);
1496      switch (In.getOpcode()) {
1497      default: break;
1498      case ISD::SRL:
1499        // Shrink SRL by a constant if none of the high bits shifted in are
1500        // demanded.
1501        if (TLO.LegalTypes() &&
1502            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1503          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1504          // undesirable.
1505          break;
1506        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1507        if (!ShAmt)
1508          break;
1509        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1510                                               OperandBitWidth - BitWidth);
1511        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1512        HighBits.trunc(BitWidth);
1513
1514        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1515          // None of the shifted in bits are needed.  Add a truncate of the
1516          // shift input, then shift it.
1517          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1518                                             Op.getValueType(),
1519                                             In.getOperand(0));
1520          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1521                                                   Op.getValueType(),
1522                                                   NewTrunc,
1523                                                   In.getOperand(1)));
1524        }
1525        break;
1526      }
1527    }
1528
1529    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1530    break;
1531  }
1532  case ISD::AssertZext: {
1533    // Demand all the bits of the input that are demanded in the output.
1534    // The low bits are obvious; the high bits are demanded because we're
1535    // asserting that they're zero here.
1536    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1537                             KnownZero, KnownOne, TLO, Depth+1))
1538      return true;
1539    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1540
1541    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1542    APInt InMask = APInt::getLowBitsSet(BitWidth,
1543                                        VT.getSizeInBits());
1544    KnownZero |= ~InMask & NewMask;
1545    break;
1546  }
1547  case ISD::BIT_CONVERT:
1548#if 0
1549    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1550    // is demanded, turn this into a FGETSIGN.
1551    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1552        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1553        !MVT::isVector(Op.getOperand(0).getValueType())) {
1554      // Only do this xform if FGETSIGN is valid or if before legalize.
1555      if (!TLO.AfterLegalize ||
1556          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1557        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1558        // place.  We expect the SHL to be eliminated by other optimizations.
1559        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1560                                         Op.getOperand(0));
1561        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1562        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1563        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1564                                                 Sign, ShAmt));
1565      }
1566    }
1567#endif
1568    break;
1569  case ISD::ADD:
1570  case ISD::MUL:
1571  case ISD::SUB: {
1572    // Add, Sub, and Mul don't demand any bits in positions beyond that
1573    // of the highest bit demanded of them.
1574    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1575                                        BitWidth - NewMask.countLeadingZeros());
1576    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1577                             KnownOne2, TLO, Depth+1))
1578      return true;
1579    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1580                             KnownOne2, TLO, Depth+1))
1581      return true;
1582    // See if the operation should be performed at a smaller bit width.
1583    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1584      return true;
1585  }
1586  // FALL THROUGH
1587  default:
1588    // Just use ComputeMaskedBits to compute output bits.
1589    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1590    break;
1591  }
1592
1593  // If we know the value of all of the demanded bits, return this as a
1594  // constant.
1595  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1596    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1597
1598  return false;
1599}
1600
1601/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1602/// in Mask are known to be either zero or one and return them in the
1603/// KnownZero/KnownOne bitsets.
1604void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1605                                                    const APInt &Mask,
1606                                                    APInt &KnownZero,
1607                                                    APInt &KnownOne,
1608                                                    const SelectionDAG &DAG,
1609                                                    unsigned Depth) const {
1610  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1611          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1612          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1613          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1614         "Should use MaskedValueIsZero if you don't know whether Op"
1615         " is a target node!");
1616  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1617}
1618
1619/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1620/// targets that want to expose additional information about sign bits to the
1621/// DAG Combiner.
1622unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1623                                                         unsigned Depth) const {
1624  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1625          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1626          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1627          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1628         "Should use ComputeNumSignBits if you don't know whether Op"
1629         " is a target node!");
1630  return 1;
1631}
1632
1633/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1634/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1635/// determine which bit is set.
1636///
1637static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1638  // A left-shift of a constant one will have exactly one bit set, because
1639  // shifting the bit off the end is undefined.
1640  if (Val.getOpcode() == ISD::SHL)
1641    if (ConstantSDNode *C =
1642         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1643      if (C->getAPIntValue() == 1)
1644        return true;
1645
1646  // Similarly, a right-shift of a constant sign-bit will have exactly
1647  // one bit set.
1648  if (Val.getOpcode() == ISD::SRL)
1649    if (ConstantSDNode *C =
1650         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1651      if (C->getAPIntValue().isSignBit())
1652        return true;
1653
1654  // More could be done here, though the above checks are enough
1655  // to handle some common cases.
1656
1657  // Fall back to ComputeMaskedBits to catch other known cases.
1658  EVT OpVT = Val.getValueType();
1659  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1660  APInt Mask = APInt::getAllOnesValue(BitWidth);
1661  APInt KnownZero, KnownOne;
1662  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1663  return (KnownZero.countPopulation() == BitWidth - 1) &&
1664         (KnownOne.countPopulation() == 1);
1665}
1666
1667/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1668/// and cc. If it is unable to simplify it, return a null SDValue.
1669SDValue
1670TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1671                              ISD::CondCode Cond, bool foldBooleans,
1672                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1673  SelectionDAG &DAG = DCI.DAG;
1674  LLVMContext &Context = *DAG.getContext();
1675
1676  // These setcc operations always fold.
1677  switch (Cond) {
1678  default: break;
1679  case ISD::SETFALSE:
1680  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1681  case ISD::SETTRUE:
1682  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1683  }
1684
1685  if (isa<ConstantSDNode>(N0.getNode())) {
1686    // Ensure that the constant occurs on the RHS, and fold constant
1687    // comparisons.
1688    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1689  }
1690
1691  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1692    const APInt &C1 = N1C->getAPIntValue();
1693
1694    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1695    // equality comparison, then we're just comparing whether X itself is
1696    // zero.
1697    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1698        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1699        N0.getOperand(1).getOpcode() == ISD::Constant) {
1700      const APInt &ShAmt
1701        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1702      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1703          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1704        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1705          // (srl (ctlz x), 5) == 0  -> X != 0
1706          // (srl (ctlz x), 5) != 1  -> X != 0
1707          Cond = ISD::SETNE;
1708        } else {
1709          // (srl (ctlz x), 5) != 0  -> X == 0
1710          // (srl (ctlz x), 5) == 1  -> X == 0
1711          Cond = ISD::SETEQ;
1712        }
1713        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1714        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1715                            Zero, Cond);
1716      }
1717    }
1718
1719    // If the LHS is '(and load, const)', the RHS is 0,
1720    // the test is for equality or unsigned, and all 1 bits of the const are
1721    // in the same partial word, see if we can shorten the load.
1722    if (DCI.isBeforeLegalize() &&
1723        N0.getOpcode() == ISD::AND && C1 == 0 &&
1724        N0.getNode()->hasOneUse() &&
1725        isa<LoadSDNode>(N0.getOperand(0)) &&
1726        N0.getOperand(0).getNode()->hasOneUse() &&
1727        isa<ConstantSDNode>(N0.getOperand(1))) {
1728      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1729      APInt bestMask;
1730      unsigned bestWidth = 0, bestOffset = 0;
1731      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1732        unsigned origWidth = N0.getValueType().getSizeInBits();
1733        unsigned maskWidth = origWidth;
1734        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1735        // 8 bits, but have to be careful...
1736        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1737          origWidth = Lod->getMemoryVT().getSizeInBits();
1738        const APInt &Mask =
1739          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1740        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1741          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1742          for (unsigned offset=0; offset<origWidth/width; offset++) {
1743            if ((newMask & Mask) == Mask) {
1744              if (!TD->isLittleEndian())
1745                bestOffset = (origWidth/width - offset - 1) * (width/8);
1746              else
1747                bestOffset = (uint64_t)offset * (width/8);
1748              bestMask = Mask.lshr(offset * (width/8) * 8);
1749              bestWidth = width;
1750              break;
1751            }
1752            newMask = newMask << width;
1753          }
1754        }
1755      }
1756      if (bestWidth) {
1757        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1758        if (newVT.isRound()) {
1759          EVT PtrType = Lod->getOperand(1).getValueType();
1760          SDValue Ptr = Lod->getBasePtr();
1761          if (bestOffset != 0)
1762            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1763                              DAG.getConstant(bestOffset, PtrType));
1764          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1765          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1766                                        Lod->getSrcValue(),
1767                                        Lod->getSrcValueOffset() + bestOffset,
1768                                        false, false, NewAlign);
1769          return DAG.getSetCC(dl, VT,
1770                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1771                                      DAG.getConstant(bestMask.trunc(bestWidth),
1772                                                      newVT)),
1773                              DAG.getConstant(0LL, newVT), Cond);
1774        }
1775      }
1776    }
1777
1778    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1779    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1780      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1781
1782      // If the comparison constant has bits in the upper part, the
1783      // zero-extended value could never match.
1784      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1785                                              C1.getBitWidth() - InSize))) {
1786        switch (Cond) {
1787        case ISD::SETUGT:
1788        case ISD::SETUGE:
1789        case ISD::SETEQ: return DAG.getConstant(0, VT);
1790        case ISD::SETULT:
1791        case ISD::SETULE:
1792        case ISD::SETNE: return DAG.getConstant(1, VT);
1793        case ISD::SETGT:
1794        case ISD::SETGE:
1795          // True if the sign bit of C1 is set.
1796          return DAG.getConstant(C1.isNegative(), VT);
1797        case ISD::SETLT:
1798        case ISD::SETLE:
1799          // True if the sign bit of C1 isn't set.
1800          return DAG.getConstant(C1.isNonNegative(), VT);
1801        default:
1802          break;
1803        }
1804      }
1805
1806      // Otherwise, we can perform the comparison with the low bits.
1807      switch (Cond) {
1808      case ISD::SETEQ:
1809      case ISD::SETNE:
1810      case ISD::SETUGT:
1811      case ISD::SETUGE:
1812      case ISD::SETULT:
1813      case ISD::SETULE: {
1814        EVT newVT = N0.getOperand(0).getValueType();
1815        if (DCI.isBeforeLegalizeOps() ||
1816            (isOperationLegal(ISD::SETCC, newVT) &&
1817              getCondCodeAction(Cond, newVT)==Legal))
1818          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1819                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1820                              Cond);
1821        break;
1822      }
1823      default:
1824        break;   // todo, be more careful with signed comparisons
1825      }
1826    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1827               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1828      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1829      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1830      EVT ExtDstTy = N0.getValueType();
1831      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1832
1833      // If the extended part has any inconsistent bits, it cannot ever
1834      // compare equal.  In other words, they have to be all ones or all
1835      // zeros.
1836      APInt ExtBits =
1837        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1838      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1839        return DAG.getConstant(Cond == ISD::SETNE, VT);
1840
1841      SDValue ZextOp;
1842      EVT Op0Ty = N0.getOperand(0).getValueType();
1843      if (Op0Ty == ExtSrcTy) {
1844        ZextOp = N0.getOperand(0);
1845      } else {
1846        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1847        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1848                              DAG.getConstant(Imm, Op0Ty));
1849      }
1850      if (!DCI.isCalledByLegalizer())
1851        DCI.AddToWorklist(ZextOp.getNode());
1852      // Otherwise, make this a use of a zext.
1853      return DAG.getSetCC(dl, VT, ZextOp,
1854                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1855                                                              ExtDstTyBits,
1856                                                              ExtSrcTyBits),
1857                                          ExtDstTy),
1858                          Cond);
1859    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1860                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1861      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1862      if (N0.getOpcode() == ISD::SETCC &&
1863          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1864        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1865        if (TrueWhenTrue)
1866          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1867        // Invert the condition.
1868        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1869        CC = ISD::getSetCCInverse(CC,
1870                                  N0.getOperand(0).getValueType().isInteger());
1871        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1872      }
1873
1874      if ((N0.getOpcode() == ISD::XOR ||
1875           (N0.getOpcode() == ISD::AND &&
1876            N0.getOperand(0).getOpcode() == ISD::XOR &&
1877            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1878          isa<ConstantSDNode>(N0.getOperand(1)) &&
1879          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1880        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1881        // can only do this if the top bits are known zero.
1882        unsigned BitWidth = N0.getValueSizeInBits();
1883        if (DAG.MaskedValueIsZero(N0,
1884                                  APInt::getHighBitsSet(BitWidth,
1885                                                        BitWidth-1))) {
1886          // Okay, get the un-inverted input value.
1887          SDValue Val;
1888          if (N0.getOpcode() == ISD::XOR)
1889            Val = N0.getOperand(0);
1890          else {
1891            assert(N0.getOpcode() == ISD::AND &&
1892                    N0.getOperand(0).getOpcode() == ISD::XOR);
1893            // ((X^1)&1)^1 -> X & 1
1894            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1895                              N0.getOperand(0).getOperand(0),
1896                              N0.getOperand(1));
1897          }
1898
1899          return DAG.getSetCC(dl, VT, Val, N1,
1900                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1901        }
1902      } else if (N1C->getAPIntValue() == 1 &&
1903                 (VT == MVT::i1 ||
1904                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1905        SDValue Op0 = N0;
1906        if (Op0.getOpcode() == ISD::TRUNCATE)
1907          Op0 = Op0.getOperand(0);
1908
1909        if ((Op0.getOpcode() == ISD::XOR) &&
1910            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1911            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1912          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1913          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1914          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1915                              Cond);
1916        } else if (Op0.getOpcode() == ISD::AND &&
1917                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1918                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1919          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1920          if (Op0.getValueType().bitsGT(VT))
1921            Op0 = DAG.getNode(ISD::AND, dl, VT,
1922                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1923                          DAG.getConstant(1, VT));
1924          else if (Op0.getValueType().bitsLT(VT))
1925            Op0 = DAG.getNode(ISD::AND, dl, VT,
1926                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1927                        DAG.getConstant(1, VT));
1928
1929          return DAG.getSetCC(dl, VT, Op0,
1930                              DAG.getConstant(0, Op0.getValueType()),
1931                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1932        }
1933      }
1934    }
1935
1936    APInt MinVal, MaxVal;
1937    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1938    if (ISD::isSignedIntSetCC(Cond)) {
1939      MinVal = APInt::getSignedMinValue(OperandBitSize);
1940      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1941    } else {
1942      MinVal = APInt::getMinValue(OperandBitSize);
1943      MaxVal = APInt::getMaxValue(OperandBitSize);
1944    }
1945
1946    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1947    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1948      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1949      // X >= C0 --> X > (C0-1)
1950      return DAG.getSetCC(dl, VT, N0,
1951                          DAG.getConstant(C1-1, N1.getValueType()),
1952                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1953    }
1954
1955    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1956      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1957      // X <= C0 --> X < (C0+1)
1958      return DAG.getSetCC(dl, VT, N0,
1959                          DAG.getConstant(C1+1, N1.getValueType()),
1960                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1961    }
1962
1963    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1964      return DAG.getConstant(0, VT);      // X < MIN --> false
1965    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1966      return DAG.getConstant(1, VT);      // X >= MIN --> true
1967    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1968      return DAG.getConstant(0, VT);      // X > MAX --> false
1969    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1970      return DAG.getConstant(1, VT);      // X <= MAX --> true
1971
1972    // Canonicalize setgt X, Min --> setne X, Min
1973    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1974      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1975    // Canonicalize setlt X, Max --> setne X, Max
1976    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1977      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1978
1979    // If we have setult X, 1, turn it into seteq X, 0
1980    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1981      return DAG.getSetCC(dl, VT, N0,
1982                          DAG.getConstant(MinVal, N0.getValueType()),
1983                          ISD::SETEQ);
1984    // If we have setugt X, Max-1, turn it into seteq X, Max
1985    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1986      return DAG.getSetCC(dl, VT, N0,
1987                          DAG.getConstant(MaxVal, N0.getValueType()),
1988                          ISD::SETEQ);
1989
1990    // If we have "setcc X, C0", check to see if we can shrink the immediate
1991    // by changing cc.
1992
1993    // SETUGT X, SINTMAX  -> SETLT X, 0
1994    if (Cond == ISD::SETUGT &&
1995        C1 == APInt::getSignedMaxValue(OperandBitSize))
1996      return DAG.getSetCC(dl, VT, N0,
1997                          DAG.getConstant(0, N1.getValueType()),
1998                          ISD::SETLT);
1999
2000    // SETULT X, SINTMIN  -> SETGT X, -1
2001    if (Cond == ISD::SETULT &&
2002        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2003      SDValue ConstMinusOne =
2004          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2005                          N1.getValueType());
2006      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2007    }
2008
2009    // Fold bit comparisons when we can.
2010    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2011        (VT == N0.getValueType() ||
2012         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2013        N0.getOpcode() == ISD::AND)
2014      if (ConstantSDNode *AndRHS =
2015                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2016        EVT ShiftTy = DCI.isBeforeLegalize() ?
2017          getPointerTy() : getShiftAmountTy();
2018        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2019          // Perform the xform if the AND RHS is a single bit.
2020          if (AndRHS->getAPIntValue().isPowerOf2()) {
2021            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2022                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2023                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2024          }
2025        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2026          // (X & 8) == 8  -->  (X & 8) >> 3
2027          // Perform the xform if C1 is a single bit.
2028          if (C1.isPowerOf2()) {
2029            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2030                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2031                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2032          }
2033        }
2034      }
2035  }
2036
2037  if (isa<ConstantFPSDNode>(N0.getNode())) {
2038    // Constant fold or commute setcc.
2039    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2040    if (O.getNode()) return O;
2041  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2042    // If the RHS of an FP comparison is a constant, simplify it away in
2043    // some cases.
2044    if (CFP->getValueAPF().isNaN()) {
2045      // If an operand is known to be a nan, we can fold it.
2046      switch (ISD::getUnorderedFlavor(Cond)) {
2047      default: llvm_unreachable("Unknown flavor!");
2048      case 0:  // Known false.
2049        return DAG.getConstant(0, VT);
2050      case 1:  // Known true.
2051        return DAG.getConstant(1, VT);
2052      case 2:  // Undefined.
2053        return DAG.getUNDEF(VT);
2054      }
2055    }
2056
2057    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2058    // constant if knowing that the operand is non-nan is enough.  We prefer to
2059    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2060    // materialize 0.0.
2061    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2062      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2063
2064    // If the condition is not legal, see if we can find an equivalent one
2065    // which is legal.
2066    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2067      // If the comparison was an awkward floating-point == or != and one of
2068      // the comparison operands is infinity or negative infinity, convert the
2069      // condition to a less-awkward <= or >=.
2070      if (CFP->getValueAPF().isInfinity()) {
2071        if (CFP->getValueAPF().isNegative()) {
2072          if (Cond == ISD::SETOEQ &&
2073              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2074            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2075          if (Cond == ISD::SETUEQ &&
2076              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2077            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2078          if (Cond == ISD::SETUNE &&
2079              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2080            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2081          if (Cond == ISD::SETONE &&
2082              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2083            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2084        } else {
2085          if (Cond == ISD::SETOEQ &&
2086              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2087            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2088          if (Cond == ISD::SETUEQ &&
2089              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2090            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2091          if (Cond == ISD::SETUNE &&
2092              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2093            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2094          if (Cond == ISD::SETONE &&
2095              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2096            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2097        }
2098      }
2099    }
2100  }
2101
2102  if (N0 == N1) {
2103    // We can always fold X == X for integer setcc's.
2104    if (N0.getValueType().isInteger())
2105      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2106    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2107    if (UOF == 2)   // FP operators that are undefined on NaNs.
2108      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2109    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2110      return DAG.getConstant(UOF, VT);
2111    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2112    // if it is not already.
2113    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2114    if (NewCond != Cond)
2115      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2116  }
2117
2118  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2119      N0.getValueType().isInteger()) {
2120    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2121        N0.getOpcode() == ISD::XOR) {
2122      // Simplify (X+Y) == (X+Z) -->  Y == Z
2123      if (N0.getOpcode() == N1.getOpcode()) {
2124        if (N0.getOperand(0) == N1.getOperand(0))
2125          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2126        if (N0.getOperand(1) == N1.getOperand(1))
2127          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2128        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2129          // If X op Y == Y op X, try other combinations.
2130          if (N0.getOperand(0) == N1.getOperand(1))
2131            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2132                                Cond);
2133          if (N0.getOperand(1) == N1.getOperand(0))
2134            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2135                                Cond);
2136        }
2137      }
2138
2139      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2140        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2141          // Turn (X+C1) == C2 --> X == C2-C1
2142          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2143            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2144                                DAG.getConstant(RHSC->getAPIntValue()-
2145                                                LHSR->getAPIntValue(),
2146                                N0.getValueType()), Cond);
2147          }
2148
2149          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2150          if (N0.getOpcode() == ISD::XOR)
2151            // If we know that all of the inverted bits are zero, don't bother
2152            // performing the inversion.
2153            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2154              return
2155                DAG.getSetCC(dl, VT, N0.getOperand(0),
2156                             DAG.getConstant(LHSR->getAPIntValue() ^
2157                                               RHSC->getAPIntValue(),
2158                                             N0.getValueType()),
2159                             Cond);
2160        }
2161
2162        // Turn (C1-X) == C2 --> X == C1-C2
2163        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2164          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2165            return
2166              DAG.getSetCC(dl, VT, N0.getOperand(1),
2167                           DAG.getConstant(SUBC->getAPIntValue() -
2168                                             RHSC->getAPIntValue(),
2169                                           N0.getValueType()),
2170                           Cond);
2171          }
2172        }
2173      }
2174
2175      // Simplify (X+Z) == X -->  Z == 0
2176      if (N0.getOperand(0) == N1)
2177        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2178                        DAG.getConstant(0, N0.getValueType()), Cond);
2179      if (N0.getOperand(1) == N1) {
2180        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2181          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2182                          DAG.getConstant(0, N0.getValueType()), Cond);
2183        else if (N0.getNode()->hasOneUse()) {
2184          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2185          // (Z-X) == X  --> Z == X<<1
2186          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2187                                     N1,
2188                                     DAG.getConstant(1, getShiftAmountTy()));
2189          if (!DCI.isCalledByLegalizer())
2190            DCI.AddToWorklist(SH.getNode());
2191          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2192        }
2193      }
2194    }
2195
2196    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2197        N1.getOpcode() == ISD::XOR) {
2198      // Simplify  X == (X+Z) -->  Z == 0
2199      if (N1.getOperand(0) == N0) {
2200        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2201                        DAG.getConstant(0, N1.getValueType()), Cond);
2202      } else if (N1.getOperand(1) == N0) {
2203        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2204          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2205                          DAG.getConstant(0, N1.getValueType()), Cond);
2206        } else if (N1.getNode()->hasOneUse()) {
2207          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2208          // X == (Z-X)  --> X<<1 == Z
2209          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2210                                     DAG.getConstant(1, getShiftAmountTy()));
2211          if (!DCI.isCalledByLegalizer())
2212            DCI.AddToWorklist(SH.getNode());
2213          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2214        }
2215      }
2216    }
2217
2218    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2219    // Note that where y is variable and is known to have at most
2220    // one bit set (for example, if it is z&1) we cannot do this;
2221    // the expressions are not equivalent when y==0.
2222    if (N0.getOpcode() == ISD::AND)
2223      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2224        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2225          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2226          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2227          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2228        }
2229      }
2230    if (N1.getOpcode() == ISD::AND)
2231      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2232        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2233          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2234          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2235          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2236        }
2237      }
2238  }
2239
2240  // Fold away ALL boolean setcc's.
2241  SDValue Temp;
2242  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2243    switch (Cond) {
2244    default: llvm_unreachable("Unknown integer setcc!");
2245    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2246      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2247      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2248      if (!DCI.isCalledByLegalizer())
2249        DCI.AddToWorklist(Temp.getNode());
2250      break;
2251    case ISD::SETNE:  // X != Y   -->  (X^Y)
2252      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2253      break;
2254    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2255    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2256      Temp = DAG.getNOT(dl, N0, MVT::i1);
2257      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2258      if (!DCI.isCalledByLegalizer())
2259        DCI.AddToWorklist(Temp.getNode());
2260      break;
2261    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2262    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2263      Temp = DAG.getNOT(dl, N1, MVT::i1);
2264      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2265      if (!DCI.isCalledByLegalizer())
2266        DCI.AddToWorklist(Temp.getNode());
2267      break;
2268    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2269    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2270      Temp = DAG.getNOT(dl, N0, MVT::i1);
2271      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2272      if (!DCI.isCalledByLegalizer())
2273        DCI.AddToWorklist(Temp.getNode());
2274      break;
2275    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2276    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2277      Temp = DAG.getNOT(dl, N1, MVT::i1);
2278      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2279      break;
2280    }
2281    if (VT != MVT::i1) {
2282      if (!DCI.isCalledByLegalizer())
2283        DCI.AddToWorklist(N0.getNode());
2284      // FIXME: If running after legalize, we probably can't do this.
2285      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2286    }
2287    return N0;
2288  }
2289
2290  // Could not fold it.
2291  return SDValue();
2292}
2293
2294/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2295/// node is a GlobalAddress + offset.
2296bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2297                                    int64_t &Offset) const {
2298  if (isa<GlobalAddressSDNode>(N)) {
2299    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2300    GA = GASD->getGlobal();
2301    Offset += GASD->getOffset();
2302    return true;
2303  }
2304
2305  if (N->getOpcode() == ISD::ADD) {
2306    SDValue N1 = N->getOperand(0);
2307    SDValue N2 = N->getOperand(1);
2308    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2309      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2310      if (V) {
2311        Offset += V->getSExtValue();
2312        return true;
2313      }
2314    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2315      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2316      if (V) {
2317        Offset += V->getSExtValue();
2318        return true;
2319      }
2320    }
2321  }
2322  return false;
2323}
2324
2325
2326SDValue TargetLowering::
2327PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2328  // Default implementation: no optimization.
2329  return SDValue();
2330}
2331
2332//===----------------------------------------------------------------------===//
2333//  Inline Assembler Implementation Methods
2334//===----------------------------------------------------------------------===//
2335
2336
2337TargetLowering::ConstraintType
2338TargetLowering::getConstraintType(const std::string &Constraint) const {
2339  // FIXME: lots more standard ones to handle.
2340  if (Constraint.size() == 1) {
2341    switch (Constraint[0]) {
2342    default: break;
2343    case 'r': return C_RegisterClass;
2344    case 'm':    // memory
2345    case 'o':    // offsetable
2346    case 'V':    // not offsetable
2347      return C_Memory;
2348    case 'i':    // Simple Integer or Relocatable Constant
2349    case 'n':    // Simple Integer
2350    case 's':    // Relocatable Constant
2351    case 'X':    // Allow ANY value.
2352    case 'I':    // Target registers.
2353    case 'J':
2354    case 'K':
2355    case 'L':
2356    case 'M':
2357    case 'N':
2358    case 'O':
2359    case 'P':
2360      return C_Other;
2361    }
2362  }
2363
2364  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2365      Constraint[Constraint.size()-1] == '}')
2366    return C_Register;
2367  return C_Unknown;
2368}
2369
2370/// LowerXConstraint - try to replace an X constraint, which matches anything,
2371/// with another that has more specific requirements based on the type of the
2372/// corresponding operand.
2373const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2374  if (ConstraintVT.isInteger())
2375    return "r";
2376  if (ConstraintVT.isFloatingPoint())
2377    return "f";      // works for many targets
2378  return 0;
2379}
2380
2381/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2382/// vector.  If it is invalid, don't add anything to Ops.
2383void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2384                                                  char ConstraintLetter,
2385                                                  bool hasMemory,
2386                                                  std::vector<SDValue> &Ops,
2387                                                  SelectionDAG &DAG) const {
2388  switch (ConstraintLetter) {
2389  default: break;
2390  case 'X':     // Allows any operand; labels (basic block) use this.
2391    if (Op.getOpcode() == ISD::BasicBlock) {
2392      Ops.push_back(Op);
2393      return;
2394    }
2395    // fall through
2396  case 'i':    // Simple Integer or Relocatable Constant
2397  case 'n':    // Simple Integer
2398  case 's': {  // Relocatable Constant
2399    // These operands are interested in values of the form (GV+C), where C may
2400    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2401    // is possible and fine if either GV or C are missing.
2402    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2403    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2404
2405    // If we have "(add GV, C)", pull out GV/C
2406    if (Op.getOpcode() == ISD::ADD) {
2407      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2408      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2409      if (C == 0 || GA == 0) {
2410        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2411        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2412      }
2413      if (C == 0 || GA == 0)
2414        C = 0, GA = 0;
2415    }
2416
2417    // If we find a valid operand, map to the TargetXXX version so that the
2418    // value itself doesn't get selected.
2419    if (GA) {   // Either &GV   or   &GV+C
2420      if (ConstraintLetter != 'n') {
2421        int64_t Offs = GA->getOffset();
2422        if (C) Offs += C->getZExtValue();
2423        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2424                                                 Op.getValueType(), Offs));
2425        return;
2426      }
2427    }
2428    if (C) {   // just C, no GV.
2429      // Simple constants are not allowed for 's'.
2430      if (ConstraintLetter != 's') {
2431        // gcc prints these as sign extended.  Sign extend value to 64 bits
2432        // now; without this it would get ZExt'd later in
2433        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2434        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2435                                            MVT::i64));
2436        return;
2437      }
2438    }
2439    break;
2440  }
2441  }
2442}
2443
2444std::vector<unsigned> TargetLowering::
2445getRegClassForInlineAsmConstraint(const std::string &Constraint,
2446                                  EVT VT) const {
2447  return std::vector<unsigned>();
2448}
2449
2450
2451std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2452getRegForInlineAsmConstraint(const std::string &Constraint,
2453                             EVT VT) const {
2454  if (Constraint[0] != '{')
2455    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2456  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2457
2458  // Remove the braces from around the name.
2459  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2460
2461  // Figure out which register class contains this reg.
2462  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2463  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2464       E = RI->regclass_end(); RCI != E; ++RCI) {
2465    const TargetRegisterClass *RC = *RCI;
2466
2467    // If none of the value types for this register class are valid, we
2468    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2469    bool isLegal = false;
2470    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2471         I != E; ++I) {
2472      if (isTypeLegal(*I)) {
2473        isLegal = true;
2474        break;
2475      }
2476    }
2477
2478    if (!isLegal) continue;
2479
2480    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2481         I != E; ++I) {
2482      if (RegName.equals_lower(RI->getName(*I)))
2483        return std::make_pair(*I, RC);
2484    }
2485  }
2486
2487  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2488}
2489
2490//===----------------------------------------------------------------------===//
2491// Constraint Selection.
2492
2493/// isMatchingInputConstraint - Return true of this is an input operand that is
2494/// a matching constraint like "4".
2495bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2496  assert(!ConstraintCode.empty() && "No known constraint!");
2497  return isdigit(ConstraintCode[0]);
2498}
2499
2500/// getMatchedOperand - If this is an input matching constraint, this method
2501/// returns the output operand it matches.
2502unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2503  assert(!ConstraintCode.empty() && "No known constraint!");
2504  return atoi(ConstraintCode.c_str());
2505}
2506
2507
2508/// getConstraintGenerality - Return an integer indicating how general CT
2509/// is.
2510static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2511  switch (CT) {
2512  default: llvm_unreachable("Unknown constraint type!");
2513  case TargetLowering::C_Other:
2514  case TargetLowering::C_Unknown:
2515    return 0;
2516  case TargetLowering::C_Register:
2517    return 1;
2518  case TargetLowering::C_RegisterClass:
2519    return 2;
2520  case TargetLowering::C_Memory:
2521    return 3;
2522  }
2523}
2524
2525/// ChooseConstraint - If there are multiple different constraints that we
2526/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2527/// This is somewhat tricky: constraints fall into four classes:
2528///    Other         -> immediates and magic values
2529///    Register      -> one specific register
2530///    RegisterClass -> a group of regs
2531///    Memory        -> memory
2532/// Ideally, we would pick the most specific constraint possible: if we have
2533/// something that fits into a register, we would pick it.  The problem here
2534/// is that if we have something that could either be in a register or in
2535/// memory that use of the register could cause selection of *other*
2536/// operands to fail: they might only succeed if we pick memory.  Because of
2537/// this the heuristic we use is:
2538///
2539///  1) If there is an 'other' constraint, and if the operand is valid for
2540///     that constraint, use it.  This makes us take advantage of 'i'
2541///     constraints when available.
2542///  2) Otherwise, pick the most general constraint present.  This prefers
2543///     'm' over 'r', for example.
2544///
2545static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2546                             bool hasMemory,  const TargetLowering &TLI,
2547                             SDValue Op, SelectionDAG *DAG) {
2548  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2549  unsigned BestIdx = 0;
2550  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2551  int BestGenerality = -1;
2552
2553  // Loop over the options, keeping track of the most general one.
2554  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2555    TargetLowering::ConstraintType CType =
2556      TLI.getConstraintType(OpInfo.Codes[i]);
2557
2558    // If this is an 'other' constraint, see if the operand is valid for it.
2559    // For example, on X86 we might have an 'rI' constraint.  If the operand
2560    // is an integer in the range [0..31] we want to use I (saving a load
2561    // of a register), otherwise we must use 'r'.
2562    if (CType == TargetLowering::C_Other && Op.getNode()) {
2563      assert(OpInfo.Codes[i].size() == 1 &&
2564             "Unhandled multi-letter 'other' constraint");
2565      std::vector<SDValue> ResultOps;
2566      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2567                                       ResultOps, *DAG);
2568      if (!ResultOps.empty()) {
2569        BestType = CType;
2570        BestIdx = i;
2571        break;
2572      }
2573    }
2574
2575    // This constraint letter is more general than the previous one, use it.
2576    int Generality = getConstraintGenerality(CType);
2577    if (Generality > BestGenerality) {
2578      BestType = CType;
2579      BestIdx = i;
2580      BestGenerality = Generality;
2581    }
2582  }
2583
2584  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2585  OpInfo.ConstraintType = BestType;
2586}
2587
2588/// ComputeConstraintToUse - Determines the constraint code and constraint
2589/// type to use for the specific AsmOperandInfo, setting
2590/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2591void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2592                                            SDValue Op,
2593                                            bool hasMemory,
2594                                            SelectionDAG *DAG) const {
2595  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2596
2597  // Single-letter constraints ('r') are very common.
2598  if (OpInfo.Codes.size() == 1) {
2599    OpInfo.ConstraintCode = OpInfo.Codes[0];
2600    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2601  } else {
2602    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2603  }
2604
2605  // 'X' matches anything.
2606  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2607    // Labels and constants are handled elsewhere ('X' is the only thing
2608    // that matches labels).  For Functions, the type here is the type of
2609    // the result, which is not what we want to look at; leave them alone.
2610    Value *v = OpInfo.CallOperandVal;
2611    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2612      OpInfo.CallOperandVal = v;
2613      return;
2614    }
2615
2616    // Otherwise, try to resolve it to something we know about by looking at
2617    // the actual operand type.
2618    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2619      OpInfo.ConstraintCode = Repl;
2620      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2621    }
2622  }
2623}
2624
2625//===----------------------------------------------------------------------===//
2626//  Loop Strength Reduction hooks
2627//===----------------------------------------------------------------------===//
2628
2629/// isLegalAddressingMode - Return true if the addressing mode represented
2630/// by AM is legal for this target, for a load/store of the specified type.
2631bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2632                                           const Type *Ty) const {
2633  // The default implementation of this implements a conservative RISCy, r+r and
2634  // r+i addr mode.
2635
2636  // Allows a sign-extended 16-bit immediate field.
2637  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2638    return false;
2639
2640  // No global is ever allowed as a base.
2641  if (AM.BaseGV)
2642    return false;
2643
2644  // Only support r+r,
2645  switch (AM.Scale) {
2646  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2647    break;
2648  case 1:
2649    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2650      return false;
2651    // Otherwise we have r+r or r+i.
2652    break;
2653  case 2:
2654    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2655      return false;
2656    // Allow 2*r as r+r.
2657    break;
2658  }
2659
2660  return true;
2661}
2662
2663/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2664/// return a DAG expression to select that will generate the same value by
2665/// multiplying by a magic number.  See:
2666/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2667SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2668                                  std::vector<SDNode*>* Created) const {
2669  EVT VT = N->getValueType(0);
2670  DebugLoc dl= N->getDebugLoc();
2671
2672  // Check to see if we can do this.
2673  // FIXME: We should be more aggressive here.
2674  if (!isTypeLegal(VT))
2675    return SDValue();
2676
2677  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2678  APInt::ms magics = d.magic();
2679
2680  // Multiply the numerator (operand 0) by the magic value
2681  // FIXME: We should support doing a MUL in a wider type
2682  SDValue Q;
2683  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2684    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2685                    DAG.getConstant(magics.m, VT));
2686  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2687    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2688                              N->getOperand(0),
2689                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2690  else
2691    return SDValue();       // No mulhs or equvialent
2692  // If d > 0 and m < 0, add the numerator
2693  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2694    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2695    if (Created)
2696      Created->push_back(Q.getNode());
2697  }
2698  // If d < 0 and m > 0, subtract the numerator.
2699  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2700    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2701    if (Created)
2702      Created->push_back(Q.getNode());
2703  }
2704  // Shift right algebraic if shift value is nonzero
2705  if (magics.s > 0) {
2706    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2707                    DAG.getConstant(magics.s, getShiftAmountTy()));
2708    if (Created)
2709      Created->push_back(Q.getNode());
2710  }
2711  // Extract the sign bit and add it to the quotient
2712  SDValue T =
2713    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2714                                                 getShiftAmountTy()));
2715  if (Created)
2716    Created->push_back(T.getNode());
2717  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2718}
2719
2720/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2721/// return a DAG expression to select that will generate the same value by
2722/// multiplying by a magic number.  See:
2723/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2724SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2725                                  std::vector<SDNode*>* Created) const {
2726  EVT VT = N->getValueType(0);
2727  DebugLoc dl = N->getDebugLoc();
2728
2729  // Check to see if we can do this.
2730  // FIXME: We should be more aggressive here.
2731  if (!isTypeLegal(VT))
2732    return SDValue();
2733
2734  // FIXME: We should use a narrower constant when the upper
2735  // bits are known to be zero.
2736  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2737  APInt::mu magics = N1C->getAPIntValue().magicu();
2738
2739  // Multiply the numerator (operand 0) by the magic value
2740  // FIXME: We should support doing a MUL in a wider type
2741  SDValue Q;
2742  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2743    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2744                    DAG.getConstant(magics.m, VT));
2745  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2746    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2747                              N->getOperand(0),
2748                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2749  else
2750    return SDValue();       // No mulhu or equvialent
2751  if (Created)
2752    Created->push_back(Q.getNode());
2753
2754  if (magics.a == 0) {
2755    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2756           "We shouldn't generate an undefined shift!");
2757    return DAG.getNode(ISD::SRL, dl, VT, Q,
2758                       DAG.getConstant(magics.s, getShiftAmountTy()));
2759  } else {
2760    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2761    if (Created)
2762      Created->push_back(NPQ.getNode());
2763    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2764                      DAG.getConstant(1, getShiftAmountTy()));
2765    if (Created)
2766      Created->push_back(NPQ.getNode());
2767    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2768    if (Created)
2769      Created->push_back(NPQ.getNode());
2770    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2771                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2772  }
2773}
2774