TargetLowering.cpp revision e36bfe678df09f46e1eac60b15105c1ccd2c5382
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::SIN_F32] = "sinf";
87  Names[RTLIB::SIN_F64] = "sin";
88  Names[RTLIB::SIN_F80] = "sinl";
89  Names[RTLIB::SIN_PPCF128] = "sinl";
90  Names[RTLIB::COS_F32] = "cosf";
91  Names[RTLIB::COS_F64] = "cos";
92  Names[RTLIB::COS_F80] = "cosl";
93  Names[RTLIB::COS_PPCF128] = "cosl";
94  Names[RTLIB::POW_F32] = "powf";
95  Names[RTLIB::POW_F64] = "pow";
96  Names[RTLIB::POW_F80] = "powl";
97  Names[RTLIB::POW_PPCF128] = "powl";
98  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
99  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
100  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
101  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
102  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
103  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
104  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
105  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
106  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
107  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
108  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
109  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
110  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
111  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
112  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
113  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
114  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
115  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
116  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
117  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
118  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
119  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
120  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
121  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
122  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
123  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
124  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
125  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
126  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
127  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
128  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
129  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
130  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
131  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
132  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
133  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
134  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
135  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
136  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
137  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
138  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
139  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
140  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
141  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
142  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
143  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
144  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
145  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
146  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
147  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
148  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
149  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
150  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
151  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
152  Names[RTLIB::OEQ_F32] = "__eqsf2";
153  Names[RTLIB::OEQ_F64] = "__eqdf2";
154  Names[RTLIB::UNE_F32] = "__nesf2";
155  Names[RTLIB::UNE_F64] = "__nedf2";
156  Names[RTLIB::OGE_F32] = "__gesf2";
157  Names[RTLIB::OGE_F64] = "__gedf2";
158  Names[RTLIB::OLT_F32] = "__ltsf2";
159  Names[RTLIB::OLT_F64] = "__ltdf2";
160  Names[RTLIB::OLE_F32] = "__lesf2";
161  Names[RTLIB::OLE_F64] = "__ledf2";
162  Names[RTLIB::OGT_F32] = "__gtsf2";
163  Names[RTLIB::OGT_F64] = "__gtdf2";
164  Names[RTLIB::UO_F32] = "__unordsf2";
165  Names[RTLIB::UO_F64] = "__unorddf2";
166  Names[RTLIB::O_F32] = "__unordsf2";
167  Names[RTLIB::O_F64] = "__unorddf2";
168}
169
170/// getFPEXT - Return the FPEXT_*_* value for the given types, or
171/// UNKNOWN_LIBCALL if there is none.
172RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
173  if (OpVT == MVT::f32) {
174    if (RetVT == MVT::f64)
175      return FPEXT_F32_F64;
176  }
177  return UNKNOWN_LIBCALL;
178}
179
180/// getFPROUND - Return the FPROUND_*_* value for the given types, or
181/// UNKNOWN_LIBCALL if there is none.
182RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
183  if (RetVT == MVT::f32) {
184    if (OpVT == MVT::f64)
185      return FPROUND_F64_F32;
186    if (OpVT == MVT::f80)
187      return FPROUND_F80_F32;
188    if (OpVT == MVT::ppcf128)
189      return FPROUND_PPCF128_F32;
190  } else if (RetVT == MVT::f64) {
191    if (OpVT == MVT::f80)
192      return FPROUND_F80_F64;
193    if (OpVT == MVT::ppcf128)
194      return FPROUND_PPCF128_F64;
195  }
196  return UNKNOWN_LIBCALL;
197}
198
199/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
200/// UNKNOWN_LIBCALL if there is none.
201RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
202  if (OpVT == MVT::f32) {
203    if (RetVT == MVT::i32)
204      return FPTOSINT_F32_I32;
205    if (RetVT == MVT::i64)
206      return FPTOSINT_F32_I64;
207    if (RetVT == MVT::i128)
208      return FPTOSINT_F32_I128;
209  } else if (OpVT == MVT::f64) {
210    if (RetVT == MVT::i32)
211      return FPTOSINT_F64_I32;
212    if (RetVT == MVT::i64)
213      return FPTOSINT_F64_I64;
214    if (RetVT == MVT::i128)
215      return FPTOSINT_F64_I128;
216  } else if (OpVT == MVT::f80) {
217    if (RetVT == MVT::i32)
218      return FPTOSINT_F80_I32;
219    if (RetVT == MVT::i64)
220      return FPTOSINT_F80_I64;
221    if (RetVT == MVT::i128)
222      return FPTOSINT_F80_I128;
223  } else if (OpVT == MVT::ppcf128) {
224    if (RetVT == MVT::i32)
225      return FPTOSINT_PPCF128_I32;
226    if (RetVT == MVT::i64)
227      return FPTOSINT_PPCF128_I64;
228    if (RetVT == MVT::i128)
229      return FPTOSINT_PPCF128_I128;
230  }
231  return UNKNOWN_LIBCALL;
232}
233
234/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
235/// UNKNOWN_LIBCALL if there is none.
236RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
237  if (OpVT == MVT::f32) {
238    if (RetVT == MVT::i32)
239      return FPTOUINT_F32_I32;
240    if (RetVT == MVT::i64)
241      return FPTOUINT_F32_I64;
242    if (RetVT == MVT::i128)
243      return FPTOUINT_F32_I128;
244  } else if (OpVT == MVT::f64) {
245    if (RetVT == MVT::i32)
246      return FPTOUINT_F64_I32;
247    if (RetVT == MVT::i64)
248      return FPTOUINT_F64_I64;
249    if (RetVT == MVT::i128)
250      return FPTOUINT_F64_I128;
251  } else if (OpVT == MVT::f80) {
252    if (RetVT == MVT::i32)
253      return FPTOUINT_F80_I32;
254    if (RetVT == MVT::i64)
255      return FPTOUINT_F80_I64;
256    if (RetVT == MVT::i128)
257      return FPTOUINT_F80_I128;
258  } else if (OpVT == MVT::ppcf128) {
259    if (RetVT == MVT::i32)
260      return FPTOUINT_PPCF128_I32;
261    if (RetVT == MVT::i64)
262      return FPTOUINT_PPCF128_I64;
263    if (RetVT == MVT::i128)
264      return FPTOUINT_PPCF128_I128;
265  }
266  return UNKNOWN_LIBCALL;
267}
268
269/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
270/// UNKNOWN_LIBCALL if there is none.
271RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
272  if (OpVT == MVT::i32) {
273    if (RetVT == MVT::f32)
274      return SINTTOFP_I32_F32;
275    else if (RetVT == MVT::f64)
276      return SINTTOFP_I32_F64;
277    else if (RetVT == MVT::f80)
278      return SINTTOFP_I32_F80;
279    else if (RetVT == MVT::ppcf128)
280      return SINTTOFP_I32_PPCF128;
281  } else if (OpVT == MVT::i64) {
282    if (RetVT == MVT::f32)
283      return SINTTOFP_I64_F32;
284    else if (RetVT == MVT::f64)
285      return SINTTOFP_I64_F64;
286    else if (RetVT == MVT::f80)
287      return SINTTOFP_I64_F80;
288    else if (RetVT == MVT::ppcf128)
289      return SINTTOFP_I64_PPCF128;
290  } else if (OpVT == MVT::i128) {
291    if (RetVT == MVT::f32)
292      return SINTTOFP_I128_F32;
293    else if (RetVT == MVT::f64)
294      return SINTTOFP_I128_F64;
295    else if (RetVT == MVT::f80)
296      return SINTTOFP_I128_F80;
297    else if (RetVT == MVT::ppcf128)
298      return SINTTOFP_I128_PPCF128;
299  }
300  return UNKNOWN_LIBCALL;
301}
302
303/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
304/// UNKNOWN_LIBCALL if there is none.
305RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
306  if (OpVT == MVT::i32) {
307    if (RetVT == MVT::f32)
308      return UINTTOFP_I32_F32;
309    else if (RetVT == MVT::f64)
310      return UINTTOFP_I32_F64;
311    else if (RetVT == MVT::f80)
312      return UINTTOFP_I32_F80;
313    else if (RetVT == MVT::ppcf128)
314      return UINTTOFP_I32_PPCF128;
315  } else if (OpVT == MVT::i64) {
316    if (RetVT == MVT::f32)
317      return UINTTOFP_I64_F32;
318    else if (RetVT == MVT::f64)
319      return UINTTOFP_I64_F64;
320    else if (RetVT == MVT::f80)
321      return UINTTOFP_I64_F80;
322    else if (RetVT == MVT::ppcf128)
323      return UINTTOFP_I64_PPCF128;
324  } else if (OpVT == MVT::i128) {
325    if (RetVT == MVT::f32)
326      return UINTTOFP_I128_F32;
327    else if (RetVT == MVT::f64)
328      return UINTTOFP_I128_F64;
329    else if (RetVT == MVT::f80)
330      return UINTTOFP_I128_F80;
331    else if (RetVT == MVT::ppcf128)
332      return UINTTOFP_I128_PPCF128;
333  }
334  return UNKNOWN_LIBCALL;
335}
336
337/// InitCmpLibcallCCs - Set default comparison libcall CC.
338///
339static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
340  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
341  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
342  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
343  CCs[RTLIB::UNE_F32] = ISD::SETNE;
344  CCs[RTLIB::UNE_F64] = ISD::SETNE;
345  CCs[RTLIB::OGE_F32] = ISD::SETGE;
346  CCs[RTLIB::OGE_F64] = ISD::SETGE;
347  CCs[RTLIB::OLT_F32] = ISD::SETLT;
348  CCs[RTLIB::OLT_F64] = ISD::SETLT;
349  CCs[RTLIB::OLE_F32] = ISD::SETLE;
350  CCs[RTLIB::OLE_F64] = ISD::SETLE;
351  CCs[RTLIB::OGT_F32] = ISD::SETGT;
352  CCs[RTLIB::OGT_F64] = ISD::SETGT;
353  CCs[RTLIB::UO_F32] = ISD::SETNE;
354  CCs[RTLIB::UO_F64] = ISD::SETNE;
355  CCs[RTLIB::O_F32] = ISD::SETEQ;
356  CCs[RTLIB::O_F64] = ISD::SETEQ;
357}
358
359TargetLowering::TargetLowering(TargetMachine &tm)
360  : TM(tm), TD(TM.getTargetData()) {
361  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
362         "Fixed size array in TargetLowering is not large enough!");
363  // All operations default to being supported.
364  memset(OpActions, 0, sizeof(OpActions));
365  memset(LoadXActions, 0, sizeof(LoadXActions));
366  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
367  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
368  memset(ConvertActions, 0, sizeof(ConvertActions));
369
370  // Set default actions for various operations.
371  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
372    // Default all indexed load / store to expand.
373    for (unsigned IM = (unsigned)ISD::PRE_INC;
374         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
375      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
376      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
377    }
378
379    // These operations default to expand.
380    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
381  }
382
383  // Most targets ignore the @llvm.prefetch intrinsic.
384  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
385
386  // ConstantFP nodes default to expand.  Targets can either change this to
387  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
388  // to optimize expansions for certain constants.
389  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
390  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
391  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
392
393  // Default ISD::TRAP to expand (which turns it into abort).
394  setOperationAction(ISD::TRAP, MVT::Other, Expand);
395
396  IsLittleEndian = TD->isLittleEndian();
397  UsesGlobalOffsetTable = false;
398  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
399  ShiftAmtHandling = Undefined;
400  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
401  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
402  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
403  allowUnalignedMemoryAccesses = false;
404  UseUnderscoreSetJmp = false;
405  UseUnderscoreLongJmp = false;
406  SelectIsExpensive = false;
407  IntDivIsCheap = false;
408  Pow2DivIsCheap = false;
409  StackPointerRegisterToSaveRestore = 0;
410  ExceptionPointerRegister = 0;
411  ExceptionSelectorRegister = 0;
412  SetCCResultContents = UndefinedSetCCResult;
413  SchedPreferenceInfo = SchedulingForLatency;
414  JumpBufSize = 0;
415  JumpBufAlignment = 0;
416  IfCvtBlockSizeLimit = 2;
417  IfCvtDupBlockSizeLimit = 0;
418  PrefLoopAlignment = 0;
419
420  InitLibcallNames(LibcallRoutineNames);
421  InitCmpLibcallCCs(CmpLibcallCCs);
422
423  // Tell Legalize whether the assembler supports DEBUG_LOC.
424  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
425    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
426}
427
428TargetLowering::~TargetLowering() {}
429
430/// computeRegisterProperties - Once all of the register classes are added,
431/// this allows us to compute derived properties we expose.
432void TargetLowering::computeRegisterProperties() {
433  assert(MVT::LAST_VALUETYPE <= 32 &&
434         "Too many value types for ValueTypeActions to hold!");
435
436  // Everything defaults to needing one register.
437  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
438    NumRegistersForVT[i] = 1;
439    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
440  }
441  // ...except isVoid, which doesn't need any registers.
442  NumRegistersForVT[MVT::isVoid] = 0;
443
444  // Find the largest integer register class.
445  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
446  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
447    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
448
449  // Every integer value type larger than this largest register takes twice as
450  // many registers to represent as the previous ValueType.
451  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
452    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
453    if (!EVT.isInteger())
454      break;
455    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
456    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
457    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
458    ValueTypeActions.setTypeAction(EVT, Expand);
459  }
460
461  // Inspect all of the ValueType's smaller than the largest integer
462  // register to see which ones need promotion.
463  unsigned LegalIntReg = LargestIntReg;
464  for (unsigned IntReg = LargestIntReg - 1;
465       IntReg >= (unsigned)MVT::i1; --IntReg) {
466    MVT IVT = (MVT::SimpleValueType)IntReg;
467    if (isTypeLegal(IVT)) {
468      LegalIntReg = IntReg;
469    } else {
470      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
471        (MVT::SimpleValueType)LegalIntReg;
472      ValueTypeActions.setTypeAction(IVT, Promote);
473    }
474  }
475
476  // ppcf128 type is really two f64's.
477  if (!isTypeLegal(MVT::ppcf128)) {
478    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
479    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
480    TransformToType[MVT::ppcf128] = MVT::f64;
481    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
482  }
483
484  // Decide how to handle f64. If the target does not have native f64 support,
485  // expand it to i64 and we will be generating soft float library calls.
486  if (!isTypeLegal(MVT::f64)) {
487    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
488    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
489    TransformToType[MVT::f64] = MVT::i64;
490    ValueTypeActions.setTypeAction(MVT::f64, Expand);
491  }
492
493  // Decide how to handle f32. If the target does not have native support for
494  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
495  if (!isTypeLegal(MVT::f32)) {
496    if (isTypeLegal(MVT::f64)) {
497      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
498      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
499      TransformToType[MVT::f32] = MVT::f64;
500      ValueTypeActions.setTypeAction(MVT::f32, Promote);
501    } else {
502      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
503      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
504      TransformToType[MVT::f32] = MVT::i32;
505      ValueTypeActions.setTypeAction(MVT::f32, Expand);
506    }
507  }
508
509  // Loop over all of the vector value types to see which need transformations.
510  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
511       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
512    MVT VT = (MVT::SimpleValueType)i;
513    if (!isTypeLegal(VT)) {
514      MVT IntermediateVT, RegisterVT;
515      unsigned NumIntermediates;
516      NumRegistersForVT[i] =
517        getVectorTypeBreakdown(VT,
518                               IntermediateVT, NumIntermediates,
519                               RegisterVT);
520      RegisterTypeForVT[i] = RegisterVT;
521      TransformToType[i] = MVT::Other; // this isn't actually used
522      ValueTypeActions.setTypeAction(VT, Expand);
523    }
524  }
525}
526
527const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
528  return NULL;
529}
530
531
532MVT TargetLowering::getSetCCResultType(const SDValue &) const {
533  return getValueType(TD->getIntPtrType());
534}
535
536
537/// getVectorTypeBreakdown - Vector types are broken down into some number of
538/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
539/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
540/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
541///
542/// This method returns the number of registers needed, and the VT for each
543/// register.  It also returns the VT and quantity of the intermediate values
544/// before they are promoted/expanded.
545///
546unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
547                                                MVT &IntermediateVT,
548                                                unsigned &NumIntermediates,
549                                      MVT &RegisterVT) const {
550  // Figure out the right, legal destination reg to copy into.
551  unsigned NumElts = VT.getVectorNumElements();
552  MVT EltTy = VT.getVectorElementType();
553
554  unsigned NumVectorRegs = 1;
555
556  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
557  // could break down into LHS/RHS like LegalizeDAG does.
558  if (!isPowerOf2_32(NumElts)) {
559    NumVectorRegs = NumElts;
560    NumElts = 1;
561  }
562
563  // Divide the input until we get to a supported size.  This will always
564  // end with a scalar if the target doesn't support vectors.
565  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
566    NumElts >>= 1;
567    NumVectorRegs <<= 1;
568  }
569
570  NumIntermediates = NumVectorRegs;
571
572  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
573  if (!isTypeLegal(NewVT))
574    NewVT = EltTy;
575  IntermediateVT = NewVT;
576
577  MVT DestVT = getTypeToTransformTo(NewVT);
578  RegisterVT = DestVT;
579  if (DestVT.bitsLT(NewVT)) {
580    // Value is expanded, e.g. i64 -> i16.
581    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
582  } else {
583    // Otherwise, promotion or legal types use the same number of registers as
584    // the vector decimated to the appropriate level.
585    return NumVectorRegs;
586  }
587
588  return 1;
589}
590
591/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
592/// function arguments in the caller parameter area.  This is the actual
593/// alignment, not its logarithm.
594unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
595  return TD->getCallFrameTypeAlignment(Ty);
596}
597
598SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
599                                                 SelectionDAG &DAG) const {
600  if (usesGlobalOffsetTable())
601    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
602  return Table;
603}
604
605//===----------------------------------------------------------------------===//
606//  Optimization Methods
607//===----------------------------------------------------------------------===//
608
609/// ShrinkDemandedConstant - Check to see if the specified operand of the
610/// specified instruction is a constant integer.  If so, check to see if there
611/// are any bits set in the constant that are not demanded.  If so, shrink the
612/// constant and return true.
613bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
614                                                        const APInt &Demanded) {
615  // FIXME: ISD::SELECT, ISD::SELECT_CC
616  switch(Op.getOpcode()) {
617  default: break;
618  case ISD::AND:
619  case ISD::OR:
620  case ISD::XOR:
621    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
622      if (C->getAPIntValue().intersects(~Demanded)) {
623        MVT VT = Op.getValueType();
624        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
625                                    DAG.getConstant(Demanded &
626                                                      C->getAPIntValue(),
627                                                    VT));
628        return CombineTo(Op, New);
629      }
630    break;
631  }
632  return false;
633}
634
635/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
636/// DemandedMask bits of the result of Op are ever used downstream.  If we can
637/// use this information to simplify Op, create a new simplified DAG node and
638/// return true, returning the original and new nodes in Old and New. Otherwise,
639/// analyze the expression and return a mask of KnownOne and KnownZero bits for
640/// the expression (used to simplify the caller).  The KnownZero/One bits may
641/// only be accurate for those bits in the DemandedMask.
642bool TargetLowering::SimplifyDemandedBits(SDValue Op,
643                                          const APInt &DemandedMask,
644                                          APInt &KnownZero,
645                                          APInt &KnownOne,
646                                          TargetLoweringOpt &TLO,
647                                          unsigned Depth) const {
648  unsigned BitWidth = DemandedMask.getBitWidth();
649  assert(Op.getValueSizeInBits() == BitWidth &&
650         "Mask size mismatches value type size!");
651  APInt NewMask = DemandedMask;
652
653  // Don't know anything.
654  KnownZero = KnownOne = APInt(BitWidth, 0);
655
656  // Other users may use these bits.
657  if (!Op.Val->hasOneUse()) {
658    if (Depth != 0) {
659      // If not at the root, Just compute the KnownZero/KnownOne bits to
660      // simplify things downstream.
661      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
662      return false;
663    }
664    // If this is the root being simplified, allow it to have multiple uses,
665    // just set the NewMask to all bits.
666    NewMask = APInt::getAllOnesValue(BitWidth);
667  } else if (DemandedMask == 0) {
668    // Not demanding any bits from Op.
669    if (Op.getOpcode() != ISD::UNDEF)
670      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
671    return false;
672  } else if (Depth == 6) {        // Limit search depth.
673    return false;
674  }
675
676  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
677  switch (Op.getOpcode()) {
678  case ISD::Constant:
679    // We know all of the bits for a constant!
680    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
681    KnownZero = ~KnownOne & NewMask;
682    return false;   // Don't fall through, will infinitely loop.
683  case ISD::AND:
684    // If the RHS is a constant, check to see if the LHS would be zero without
685    // using the bits from the RHS.  Below, we use knowledge about the RHS to
686    // simplify the LHS, here we're using information from the LHS to simplify
687    // the RHS.
688    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
689      APInt LHSZero, LHSOne;
690      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
691                                LHSZero, LHSOne, Depth+1);
692      // If the LHS already has zeros where RHSC does, this and is dead.
693      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
694        return TLO.CombineTo(Op, Op.getOperand(0));
695      // If any of the set bits in the RHS are known zero on the LHS, shrink
696      // the constant.
697      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
698        return true;
699    }
700
701    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
702                             KnownOne, TLO, Depth+1))
703      return true;
704    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
705    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
706                             KnownZero2, KnownOne2, TLO, Depth+1))
707      return true;
708    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
709
710    // If all of the demanded bits are known one on one side, return the other.
711    // These bits cannot contribute to the result of the 'and'.
712    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
713      return TLO.CombineTo(Op, Op.getOperand(0));
714    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
715      return TLO.CombineTo(Op, Op.getOperand(1));
716    // If all of the demanded bits in the inputs are known zeros, return zero.
717    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
718      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
719    // If the RHS is a constant, see if we can simplify it.
720    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
721      return true;
722
723    // Output known-1 bits are only known if set in both the LHS & RHS.
724    KnownOne &= KnownOne2;
725    // Output known-0 are known to be clear if zero in either the LHS | RHS.
726    KnownZero |= KnownZero2;
727    break;
728  case ISD::OR:
729    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
730                             KnownOne, TLO, Depth+1))
731      return true;
732    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
733    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
734                             KnownZero2, KnownOne2, TLO, Depth+1))
735      return true;
736    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
737
738    // If all of the demanded bits are known zero on one side, return the other.
739    // These bits cannot contribute to the result of the 'or'.
740    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
741      return TLO.CombineTo(Op, Op.getOperand(0));
742    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
743      return TLO.CombineTo(Op, Op.getOperand(1));
744    // If all of the potentially set bits on one side are known to be set on
745    // the other side, just use the 'other' side.
746    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
747      return TLO.CombineTo(Op, Op.getOperand(0));
748    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
749      return TLO.CombineTo(Op, Op.getOperand(1));
750    // If the RHS is a constant, see if we can simplify it.
751    if (TLO.ShrinkDemandedConstant(Op, NewMask))
752      return true;
753
754    // Output known-0 bits are only known if clear in both the LHS & RHS.
755    KnownZero &= KnownZero2;
756    // Output known-1 are known to be set if set in either the LHS | RHS.
757    KnownOne |= KnownOne2;
758    break;
759  case ISD::XOR:
760    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
761                             KnownOne, TLO, Depth+1))
762      return true;
763    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
764    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
765                             KnownOne2, TLO, Depth+1))
766      return true;
767    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
768
769    // If all of the demanded bits are known zero on one side, return the other.
770    // These bits cannot contribute to the result of the 'xor'.
771    if ((KnownZero & NewMask) == NewMask)
772      return TLO.CombineTo(Op, Op.getOperand(0));
773    if ((KnownZero2 & NewMask) == NewMask)
774      return TLO.CombineTo(Op, Op.getOperand(1));
775
776    // If all of the unknown bits are known to be zero on one side or the other
777    // (but not both) turn this into an *inclusive* or.
778    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
779    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
780      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
781                                               Op.getOperand(0),
782                                               Op.getOperand(1)));
783
784    // Output known-0 bits are known if clear or set in both the LHS & RHS.
785    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
786    // Output known-1 are known to be set if set in only one of the LHS, RHS.
787    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
788
789    // If all of the demanded bits on one side are known, and all of the set
790    // bits on that side are also known to be set on the other side, turn this
791    // into an AND, as we know the bits will be cleared.
792    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
793    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
794      if ((KnownOne & KnownOne2) == KnownOne) {
795        MVT VT = Op.getValueType();
796        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
797        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
798                                                 ANDC));
799      }
800    }
801
802    // If the RHS is a constant, see if we can simplify it.
803    // for XOR, we prefer to force bits to 1 if they will make a -1.
804    // if we can't force bits, try to shrink constant
805    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
806      APInt Expanded = C->getAPIntValue() | (~NewMask);
807      // if we can expand it to have all bits set, do it
808      if (Expanded.isAllOnesValue()) {
809        if (Expanded != C->getAPIntValue()) {
810          MVT VT = Op.getValueType();
811          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
812                                          TLO.DAG.getConstant(Expanded, VT));
813          return TLO.CombineTo(Op, New);
814        }
815        // if it already has all the bits set, nothing to change
816        // but don't shrink either!
817      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
818        return true;
819      }
820    }
821
822    KnownZero = KnownZeroOut;
823    KnownOne  = KnownOneOut;
824    break;
825  case ISD::SELECT:
826    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
827                             KnownOne, TLO, Depth+1))
828      return true;
829    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
830                             KnownOne2, TLO, Depth+1))
831      return true;
832    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
833    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
834
835    // If the operands are constants, see if we can simplify them.
836    if (TLO.ShrinkDemandedConstant(Op, NewMask))
837      return true;
838
839    // Only known if known in both the LHS and RHS.
840    KnownOne &= KnownOne2;
841    KnownZero &= KnownZero2;
842    break;
843  case ISD::SELECT_CC:
844    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
845                             KnownOne, TLO, Depth+1))
846      return true;
847    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
848                             KnownOne2, TLO, Depth+1))
849      return true;
850    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
851    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
852
853    // If the operands are constants, see if we can simplify them.
854    if (TLO.ShrinkDemandedConstant(Op, NewMask))
855      return true;
856
857    // Only known if known in both the LHS and RHS.
858    KnownOne &= KnownOne2;
859    KnownZero &= KnownZero2;
860    break;
861  case ISD::SHL:
862    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
863      unsigned ShAmt = SA->getValue();
864      SDValue InOp = Op.getOperand(0);
865
866      // If the shift count is an invalid immediate, don't do anything.
867      if (ShAmt >= BitWidth)
868        break;
869
870      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
871      // single shift.  We can do this if the bottom bits (which are shifted
872      // out) are never demanded.
873      if (InOp.getOpcode() == ISD::SRL &&
874          isa<ConstantSDNode>(InOp.getOperand(1))) {
875        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
876          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
877          unsigned Opc = ISD::SHL;
878          int Diff = ShAmt-C1;
879          if (Diff < 0) {
880            Diff = -Diff;
881            Opc = ISD::SRL;
882          }
883
884          SDValue NewSA =
885            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
886          MVT VT = Op.getValueType();
887          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
888                                                   InOp.getOperand(0), NewSA));
889        }
890      }
891
892      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
893                               KnownZero, KnownOne, TLO, Depth+1))
894        return true;
895      KnownZero <<= SA->getValue();
896      KnownOne  <<= SA->getValue();
897      // low bits known zero.
898      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
899    }
900    break;
901  case ISD::SRL:
902    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
903      MVT VT = Op.getValueType();
904      unsigned ShAmt = SA->getValue();
905      unsigned VTSize = VT.getSizeInBits();
906      SDValue InOp = Op.getOperand(0);
907
908      // If the shift count is an invalid immediate, don't do anything.
909      if (ShAmt >= BitWidth)
910        break;
911
912      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
913      // single shift.  We can do this if the top bits (which are shifted out)
914      // are never demanded.
915      if (InOp.getOpcode() == ISD::SHL &&
916          isa<ConstantSDNode>(InOp.getOperand(1))) {
917        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
918          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
919          unsigned Opc = ISD::SRL;
920          int Diff = ShAmt-C1;
921          if (Diff < 0) {
922            Diff = -Diff;
923            Opc = ISD::SHL;
924          }
925
926          SDValue NewSA =
927            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
928          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
929                                                   InOp.getOperand(0), NewSA));
930        }
931      }
932
933      // Compute the new bits that are at the top now.
934      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
935                               KnownZero, KnownOne, TLO, Depth+1))
936        return true;
937      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
938      KnownZero = KnownZero.lshr(ShAmt);
939      KnownOne  = KnownOne.lshr(ShAmt);
940
941      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
942      KnownZero |= HighBits;  // High bits known zero.
943    }
944    break;
945  case ISD::SRA:
946    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
947      MVT VT = Op.getValueType();
948      unsigned ShAmt = SA->getValue();
949
950      // If the shift count is an invalid immediate, don't do anything.
951      if (ShAmt >= BitWidth)
952        break;
953
954      APInt InDemandedMask = (NewMask << ShAmt);
955
956      // If any of the demanded bits are produced by the sign extension, we also
957      // demand the input sign bit.
958      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
959      if (HighBits.intersects(NewMask))
960        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
961
962      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
963                               KnownZero, KnownOne, TLO, Depth+1))
964        return true;
965      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
966      KnownZero = KnownZero.lshr(ShAmt);
967      KnownOne  = KnownOne.lshr(ShAmt);
968
969      // Handle the sign bit, adjusted to where it is now in the mask.
970      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
971
972      // If the input sign bit is known to be zero, or if none of the top bits
973      // are demanded, turn this into an unsigned shift right.
974      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
975        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
976                                                 Op.getOperand(1)));
977      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
978        KnownOne |= HighBits;
979      }
980    }
981    break;
982  case ISD::SIGN_EXTEND_INREG: {
983    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
984
985    // Sign extension.  Compute the demanded bits in the result that are not
986    // present in the input.
987    APInt NewBits = APInt::getHighBitsSet(BitWidth,
988                                          BitWidth - EVT.getSizeInBits()) &
989                    NewMask;
990
991    // If none of the extended bits are demanded, eliminate the sextinreg.
992    if (NewBits == 0)
993      return TLO.CombineTo(Op, Op.getOperand(0));
994
995    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
996    InSignBit.zext(BitWidth);
997    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
998                                                   EVT.getSizeInBits()) &
999                              NewMask;
1000
1001    // Since the sign extended bits are demanded, we know that the sign
1002    // bit is demanded.
1003    InputDemandedBits |= InSignBit;
1004
1005    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1006                             KnownZero, KnownOne, TLO, Depth+1))
1007      return true;
1008    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1009
1010    // If the sign bit of the input is known set or clear, then we know the
1011    // top bits of the result.
1012
1013    // If the input sign bit is known zero, convert this into a zero extension.
1014    if (KnownZero.intersects(InSignBit))
1015      return TLO.CombineTo(Op,
1016                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1017
1018    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1019      KnownOne |= NewBits;
1020      KnownZero &= ~NewBits;
1021    } else {                       // Input sign bit unknown
1022      KnownZero &= ~NewBits;
1023      KnownOne &= ~NewBits;
1024    }
1025    break;
1026  }
1027  case ISD::ZERO_EXTEND: {
1028    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1029    APInt InMask = NewMask;
1030    InMask.trunc(OperandBitWidth);
1031
1032    // If none of the top bits are demanded, convert this into an any_extend.
1033    APInt NewBits =
1034      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1035    if (!NewBits.intersects(NewMask))
1036      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1037                                               Op.getValueType(),
1038                                               Op.getOperand(0)));
1039
1040    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1041                             KnownZero, KnownOne, TLO, Depth+1))
1042      return true;
1043    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1044    KnownZero.zext(BitWidth);
1045    KnownOne.zext(BitWidth);
1046    KnownZero |= NewBits;
1047    break;
1048  }
1049  case ISD::SIGN_EXTEND: {
1050    MVT InVT = Op.getOperand(0).getValueType();
1051    unsigned InBits = InVT.getSizeInBits();
1052    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1053    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1054    APInt NewBits   = ~InMask & NewMask;
1055
1056    // If none of the top bits are demanded, convert this into an any_extend.
1057    if (NewBits == 0)
1058      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1059                                           Op.getOperand(0)));
1060
1061    // Since some of the sign extended bits are demanded, we know that the sign
1062    // bit is demanded.
1063    APInt InDemandedBits = InMask & NewMask;
1064    InDemandedBits |= InSignBit;
1065    InDemandedBits.trunc(InBits);
1066
1067    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1068                             KnownOne, TLO, Depth+1))
1069      return true;
1070    KnownZero.zext(BitWidth);
1071    KnownOne.zext(BitWidth);
1072
1073    // If the sign bit is known zero, convert this to a zero extend.
1074    if (KnownZero.intersects(InSignBit))
1075      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1076                                               Op.getValueType(),
1077                                               Op.getOperand(0)));
1078
1079    // If the sign bit is known one, the top bits match.
1080    if (KnownOne.intersects(InSignBit)) {
1081      KnownOne  |= NewBits;
1082      KnownZero &= ~NewBits;
1083    } else {   // Otherwise, top bits aren't known.
1084      KnownOne  &= ~NewBits;
1085      KnownZero &= ~NewBits;
1086    }
1087    break;
1088  }
1089  case ISD::ANY_EXTEND: {
1090    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1091    APInt InMask = NewMask;
1092    InMask.trunc(OperandBitWidth);
1093    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1094                             KnownZero, KnownOne, TLO, Depth+1))
1095      return true;
1096    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1097    KnownZero.zext(BitWidth);
1098    KnownOne.zext(BitWidth);
1099    break;
1100  }
1101  case ISD::TRUNCATE: {
1102    // Simplify the input, using demanded bit information, and compute the known
1103    // zero/one bits live out.
1104    APInt TruncMask = NewMask;
1105    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1106    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1107                             KnownZero, KnownOne, TLO, Depth+1))
1108      return true;
1109    KnownZero.trunc(BitWidth);
1110    KnownOne.trunc(BitWidth);
1111
1112    // If the input is only used by this truncate, see if we can shrink it based
1113    // on the known demanded bits.
1114    if (Op.getOperand(0).Val->hasOneUse()) {
1115      SDValue In = Op.getOperand(0);
1116      unsigned InBitWidth = In.getValueSizeInBits();
1117      switch (In.getOpcode()) {
1118      default: break;
1119      case ISD::SRL:
1120        // Shrink SRL by a constant if none of the high bits shifted in are
1121        // demanded.
1122        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1123          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1124                                                 InBitWidth - BitWidth);
1125          HighBits = HighBits.lshr(ShAmt->getValue());
1126          HighBits.trunc(BitWidth);
1127
1128          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
1129            // None of the shifted in bits are needed.  Add a truncate of the
1130            // shift input, then shift it.
1131            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1132                                                 Op.getValueType(),
1133                                                 In.getOperand(0));
1134            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1135                                                   NewTrunc, In.getOperand(1)));
1136          }
1137        }
1138        break;
1139      }
1140    }
1141
1142    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1143    break;
1144  }
1145  case ISD::AssertZext: {
1146    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1147    APInt InMask = APInt::getLowBitsSet(BitWidth,
1148                                        VT.getSizeInBits());
1149    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1150                             KnownZero, KnownOne, TLO, Depth+1))
1151      return true;
1152    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1153    KnownZero |= ~InMask & NewMask;
1154    break;
1155  }
1156  case ISD::BIT_CONVERT:
1157#if 0
1158    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1159    // is demanded, turn this into a FGETSIGN.
1160    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1161        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1162        !MVT::isVector(Op.getOperand(0).getValueType())) {
1163      // Only do this xform if FGETSIGN is valid or if before legalize.
1164      if (!TLO.AfterLegalize ||
1165          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1166        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1167        // place.  We expect the SHL to be eliminated by other optimizations.
1168        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1169                                         Op.getOperand(0));
1170        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1171        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1172        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1173                                                 Sign, ShAmt));
1174      }
1175    }
1176#endif
1177    break;
1178  default:
1179    // Just use ComputeMaskedBits to compute output bits.
1180    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1181    break;
1182  }
1183
1184  // If we know the value of all of the demanded bits, return this as a
1185  // constant.
1186  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1187    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1188
1189  return false;
1190}
1191
1192/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1193/// in Mask are known to be either zero or one and return them in the
1194/// KnownZero/KnownOne bitsets.
1195void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1196                                                    const APInt &Mask,
1197                                                    APInt &KnownZero,
1198                                                    APInt &KnownOne,
1199                                                    const SelectionDAG &DAG,
1200                                                    unsigned Depth) const {
1201  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1202          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1203          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1204          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1205         "Should use MaskedValueIsZero if you don't know whether Op"
1206         " is a target node!");
1207  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1208}
1209
1210/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1211/// targets that want to expose additional information about sign bits to the
1212/// DAG Combiner.
1213unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1214                                                         unsigned Depth) const {
1215  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1216          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1217          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1218          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1219         "Should use ComputeNumSignBits if you don't know whether Op"
1220         " is a target node!");
1221  return 1;
1222}
1223
1224
1225/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1226/// and cc. If it is unable to simplify it, return a null SDValue.
1227SDValue
1228TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1229                              ISD::CondCode Cond, bool foldBooleans,
1230                              DAGCombinerInfo &DCI) const {
1231  SelectionDAG &DAG = DCI.DAG;
1232
1233  // These setcc operations always fold.
1234  switch (Cond) {
1235  default: break;
1236  case ISD::SETFALSE:
1237  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1238  case ISD::SETTRUE:
1239  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1240  }
1241
1242  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1243    const APInt &C1 = N1C->getAPIntValue();
1244    if (isa<ConstantSDNode>(N0.Val)) {
1245      return DAG.FoldSetCC(VT, N0, N1, Cond);
1246    } else {
1247      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1248      // equality comparison, then we're just comparing whether X itself is
1249      // zero.
1250      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1251          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1252          N0.getOperand(1).getOpcode() == ISD::Constant) {
1253        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1254        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1255            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1256          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1257            // (srl (ctlz x), 5) == 0  -> X != 0
1258            // (srl (ctlz x), 5) != 1  -> X != 0
1259            Cond = ISD::SETNE;
1260          } else {
1261            // (srl (ctlz x), 5) != 0  -> X == 0
1262            // (srl (ctlz x), 5) == 1  -> X == 0
1263            Cond = ISD::SETEQ;
1264          }
1265          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1266          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1267                              Zero, Cond);
1268        }
1269      }
1270
1271      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1272      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1273        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1274
1275        // If the comparison constant has bits in the upper part, the
1276        // zero-extended value could never match.
1277        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1278                                                C1.getBitWidth() - InSize))) {
1279          switch (Cond) {
1280          case ISD::SETUGT:
1281          case ISD::SETUGE:
1282          case ISD::SETEQ: return DAG.getConstant(0, VT);
1283          case ISD::SETULT:
1284          case ISD::SETULE:
1285          case ISD::SETNE: return DAG.getConstant(1, VT);
1286          case ISD::SETGT:
1287          case ISD::SETGE:
1288            // True if the sign bit of C1 is set.
1289            return DAG.getConstant(C1.isNegative(), VT);
1290          case ISD::SETLT:
1291          case ISD::SETLE:
1292            // True if the sign bit of C1 isn't set.
1293            return DAG.getConstant(C1.isNonNegative(), VT);
1294          default:
1295            break;
1296          }
1297        }
1298
1299        // Otherwise, we can perform the comparison with the low bits.
1300        switch (Cond) {
1301        case ISD::SETEQ:
1302        case ISD::SETNE:
1303        case ISD::SETUGT:
1304        case ISD::SETUGE:
1305        case ISD::SETULT:
1306        case ISD::SETULE:
1307          return DAG.getSetCC(VT, N0.getOperand(0),
1308                          DAG.getConstant(APInt(C1).trunc(InSize),
1309                                          N0.getOperand(0).getValueType()),
1310                          Cond);
1311        default:
1312          break;   // todo, be more careful with signed comparisons
1313        }
1314      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1315                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1316        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1317        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1318        MVT ExtDstTy = N0.getValueType();
1319        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1320
1321        // If the extended part has any inconsistent bits, it cannot ever
1322        // compare equal.  In other words, they have to be all ones or all
1323        // zeros.
1324        APInt ExtBits =
1325          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1326        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1327          return DAG.getConstant(Cond == ISD::SETNE, VT);
1328
1329        SDValue ZextOp;
1330        MVT Op0Ty = N0.getOperand(0).getValueType();
1331        if (Op0Ty == ExtSrcTy) {
1332          ZextOp = N0.getOperand(0);
1333        } else {
1334          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1335          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1336                               DAG.getConstant(Imm, Op0Ty));
1337        }
1338        if (!DCI.isCalledByLegalizer())
1339          DCI.AddToWorklist(ZextOp.Val);
1340        // Otherwise, make this a use of a zext.
1341        return DAG.getSetCC(VT, ZextOp,
1342                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1343                                                               ExtDstTyBits,
1344                                                               ExtSrcTyBits),
1345                                            ExtDstTy),
1346                            Cond);
1347      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1348                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1349
1350        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1351        if (N0.getOpcode() == ISD::SETCC) {
1352          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1353          if (TrueWhenTrue)
1354            return N0;
1355
1356          // Invert the condition.
1357          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1358          CC = ISD::getSetCCInverse(CC,
1359                                   N0.getOperand(0).getValueType().isInteger());
1360          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1361        }
1362
1363        if ((N0.getOpcode() == ISD::XOR ||
1364             (N0.getOpcode() == ISD::AND &&
1365              N0.getOperand(0).getOpcode() == ISD::XOR &&
1366              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1367            isa<ConstantSDNode>(N0.getOperand(1)) &&
1368            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1369          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1370          // can only do this if the top bits are known zero.
1371          unsigned BitWidth = N0.getValueSizeInBits();
1372          if (DAG.MaskedValueIsZero(N0,
1373                                    APInt::getHighBitsSet(BitWidth,
1374                                                          BitWidth-1))) {
1375            // Okay, get the un-inverted input value.
1376            SDValue Val;
1377            if (N0.getOpcode() == ISD::XOR)
1378              Val = N0.getOperand(0);
1379            else {
1380              assert(N0.getOpcode() == ISD::AND &&
1381                     N0.getOperand(0).getOpcode() == ISD::XOR);
1382              // ((X^1)&1)^1 -> X & 1
1383              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1384                                N0.getOperand(0).getOperand(0),
1385                                N0.getOperand(1));
1386            }
1387            return DAG.getSetCC(VT, Val, N1,
1388                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1389          }
1390        }
1391      }
1392
1393      APInt MinVal, MaxVal;
1394      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1395      if (ISD::isSignedIntSetCC(Cond)) {
1396        MinVal = APInt::getSignedMinValue(OperandBitSize);
1397        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1398      } else {
1399        MinVal = APInt::getMinValue(OperandBitSize);
1400        MaxVal = APInt::getMaxValue(OperandBitSize);
1401      }
1402
1403      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1404      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1405        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1406        // X >= C0 --> X > (C0-1)
1407        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1408                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1409      }
1410
1411      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1412        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1413        // X <= C0 --> X < (C0+1)
1414        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1415                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1416      }
1417
1418      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1419        return DAG.getConstant(0, VT);      // X < MIN --> false
1420      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1421        return DAG.getConstant(1, VT);      // X >= MIN --> true
1422      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1423        return DAG.getConstant(0, VT);      // X > MAX --> false
1424      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1425        return DAG.getConstant(1, VT);      // X <= MAX --> true
1426
1427      // Canonicalize setgt X, Min --> setne X, Min
1428      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1429        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1430      // Canonicalize setlt X, Max --> setne X, Max
1431      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1432        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1433
1434      // If we have setult X, 1, turn it into seteq X, 0
1435      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1436        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1437                        ISD::SETEQ);
1438      // If we have setugt X, Max-1, turn it into seteq X, Max
1439      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1440        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1441                        ISD::SETEQ);
1442
1443      // If we have "setcc X, C0", check to see if we can shrink the immediate
1444      // by changing cc.
1445
1446      // SETUGT X, SINTMAX  -> SETLT X, 0
1447      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1448          C1 == (~0ULL >> (65-OperandBitSize)))
1449        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1450                            ISD::SETLT);
1451
1452      // FIXME: Implement the rest of these.
1453
1454      // Fold bit comparisons when we can.
1455      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1456          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1457        if (ConstantSDNode *AndRHS =
1458                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1459          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1460            // Perform the xform if the AND RHS is a single bit.
1461            if (isPowerOf2_64(AndRHS->getValue())) {
1462              return DAG.getNode(ISD::SRL, VT, N0,
1463                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1464                                             getShiftAmountTy()));
1465            }
1466          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1467            // (X & 8) == 8  -->  (X & 8) >> 3
1468            // Perform the xform if C1 is a single bit.
1469            if (C1.isPowerOf2()) {
1470              return DAG.getNode(ISD::SRL, VT, N0,
1471                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1472            }
1473          }
1474        }
1475    }
1476  } else if (isa<ConstantSDNode>(N0.Val)) {
1477      // Ensure that the constant occurs on the RHS.
1478    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1479  }
1480
1481  if (isa<ConstantFPSDNode>(N0.Val)) {
1482    // Constant fold or commute setcc.
1483    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1484    if (O.Val) return O;
1485  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1486    // If the RHS of an FP comparison is a constant, simplify it away in
1487    // some cases.
1488    if (CFP->getValueAPF().isNaN()) {
1489      // If an operand is known to be a nan, we can fold it.
1490      switch (ISD::getUnorderedFlavor(Cond)) {
1491      default: assert(0 && "Unknown flavor!");
1492      case 0:  // Known false.
1493        return DAG.getConstant(0, VT);
1494      case 1:  // Known true.
1495        return DAG.getConstant(1, VT);
1496      case 2:  // Undefined.
1497        return DAG.getNode(ISD::UNDEF, VT);
1498      }
1499    }
1500
1501    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1502    // constant if knowing that the operand is non-nan is enough.  We prefer to
1503    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1504    // materialize 0.0.
1505    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1506      return DAG.getSetCC(VT, N0, N0, Cond);
1507  }
1508
1509  if (N0 == N1) {
1510    // We can always fold X == X for integer setcc's.
1511    if (N0.getValueType().isInteger())
1512      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1513    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1514    if (UOF == 2)   // FP operators that are undefined on NaNs.
1515      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1516    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1517      return DAG.getConstant(UOF, VT);
1518    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1519    // if it is not already.
1520    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1521    if (NewCond != Cond)
1522      return DAG.getSetCC(VT, N0, N1, NewCond);
1523  }
1524
1525  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1526      N0.getValueType().isInteger()) {
1527    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1528        N0.getOpcode() == ISD::XOR) {
1529      // Simplify (X+Y) == (X+Z) -->  Y == Z
1530      if (N0.getOpcode() == N1.getOpcode()) {
1531        if (N0.getOperand(0) == N1.getOperand(0))
1532          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1533        if (N0.getOperand(1) == N1.getOperand(1))
1534          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1535        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1536          // If X op Y == Y op X, try other combinations.
1537          if (N0.getOperand(0) == N1.getOperand(1))
1538            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1539          if (N0.getOperand(1) == N1.getOperand(0))
1540            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1541        }
1542      }
1543
1544      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1545        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1546          // Turn (X+C1) == C2 --> X == C2-C1
1547          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1548            return DAG.getSetCC(VT, N0.getOperand(0),
1549                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1550                                N0.getValueType()), Cond);
1551          }
1552
1553          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1554          if (N0.getOpcode() == ISD::XOR)
1555            // If we know that all of the inverted bits are zero, don't bother
1556            // performing the inversion.
1557            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1558              return
1559                DAG.getSetCC(VT, N0.getOperand(0),
1560                             DAG.getConstant(LHSR->getAPIntValue() ^
1561                                               RHSC->getAPIntValue(),
1562                                             N0.getValueType()),
1563                             Cond);
1564        }
1565
1566        // Turn (C1-X) == C2 --> X == C1-C2
1567        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1568          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1569            return
1570              DAG.getSetCC(VT, N0.getOperand(1),
1571                           DAG.getConstant(SUBC->getAPIntValue() -
1572                                             RHSC->getAPIntValue(),
1573                                           N0.getValueType()),
1574                           Cond);
1575          }
1576        }
1577      }
1578
1579      // Simplify (X+Z) == X -->  Z == 0
1580      if (N0.getOperand(0) == N1)
1581        return DAG.getSetCC(VT, N0.getOperand(1),
1582                        DAG.getConstant(0, N0.getValueType()), Cond);
1583      if (N0.getOperand(1) == N1) {
1584        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1585          return DAG.getSetCC(VT, N0.getOperand(0),
1586                          DAG.getConstant(0, N0.getValueType()), Cond);
1587        else if (N0.Val->hasOneUse()) {
1588          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1589          // (Z-X) == X  --> Z == X<<1
1590          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1591                                     N1,
1592                                     DAG.getConstant(1, getShiftAmountTy()));
1593          if (!DCI.isCalledByLegalizer())
1594            DCI.AddToWorklist(SH.Val);
1595          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1596        }
1597      }
1598    }
1599
1600    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1601        N1.getOpcode() == ISD::XOR) {
1602      // Simplify  X == (X+Z) -->  Z == 0
1603      if (N1.getOperand(0) == N0) {
1604        return DAG.getSetCC(VT, N1.getOperand(1),
1605                        DAG.getConstant(0, N1.getValueType()), Cond);
1606      } else if (N1.getOperand(1) == N0) {
1607        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1608          return DAG.getSetCC(VT, N1.getOperand(0),
1609                          DAG.getConstant(0, N1.getValueType()), Cond);
1610        } else if (N1.Val->hasOneUse()) {
1611          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1612          // X == (Z-X)  --> X<<1 == Z
1613          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1614                                     DAG.getConstant(1, getShiftAmountTy()));
1615          if (!DCI.isCalledByLegalizer())
1616            DCI.AddToWorklist(SH.Val);
1617          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1618        }
1619      }
1620    }
1621  }
1622
1623  // Fold away ALL boolean setcc's.
1624  SDValue Temp;
1625  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1626    switch (Cond) {
1627    default: assert(0 && "Unknown integer setcc!");
1628    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1629      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1630      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1631      if (!DCI.isCalledByLegalizer())
1632        DCI.AddToWorklist(Temp.Val);
1633      break;
1634    case ISD::SETNE:  // X != Y   -->  (X^Y)
1635      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1636      break;
1637    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1638    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1639      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1640      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1641      if (!DCI.isCalledByLegalizer())
1642        DCI.AddToWorklist(Temp.Val);
1643      break;
1644    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1645    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1646      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1647      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1648      if (!DCI.isCalledByLegalizer())
1649        DCI.AddToWorklist(Temp.Val);
1650      break;
1651    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1652    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1653      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1654      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1655      if (!DCI.isCalledByLegalizer())
1656        DCI.AddToWorklist(Temp.Val);
1657      break;
1658    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1659    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1660      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1661      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1662      break;
1663    }
1664    if (VT != MVT::i1) {
1665      if (!DCI.isCalledByLegalizer())
1666        DCI.AddToWorklist(N0.Val);
1667      // FIXME: If running after legalize, we probably can't do this.
1668      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1669    }
1670    return N0;
1671  }
1672
1673  // Could not fold it.
1674  return SDValue();
1675}
1676
1677/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1678/// node is a GlobalAddress + offset.
1679bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1680                                    int64_t &Offset) const {
1681  if (isa<GlobalAddressSDNode>(N)) {
1682    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1683    GA = GASD->getGlobal();
1684    Offset += GASD->getOffset();
1685    return true;
1686  }
1687
1688  if (N->getOpcode() == ISD::ADD) {
1689    SDValue N1 = N->getOperand(0);
1690    SDValue N2 = N->getOperand(1);
1691    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1692      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1693      if (V) {
1694        Offset += V->getSignExtended();
1695        return true;
1696      }
1697    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1698      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1699      if (V) {
1700        Offset += V->getSignExtended();
1701        return true;
1702      }
1703    }
1704  }
1705  return false;
1706}
1707
1708
1709/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1710/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1711/// location that the 'Base' load is loading from.
1712bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1713                                       unsigned Bytes, int Dist,
1714                                       const MachineFrameInfo *MFI) const {
1715  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1716    return false;
1717  MVT VT = LD->getValueType(0);
1718  if (VT.getSizeInBits() / 8 != Bytes)
1719    return false;
1720
1721  SDValue Loc = LD->getOperand(1);
1722  SDValue BaseLoc = Base->getOperand(1);
1723  if (Loc.getOpcode() == ISD::FrameIndex) {
1724    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1725      return false;
1726    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1727    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1728    int FS  = MFI->getObjectSize(FI);
1729    int BFS = MFI->getObjectSize(BFI);
1730    if (FS != BFS || FS != (int)Bytes) return false;
1731    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1732  }
1733
1734  GlobalValue *GV1 = NULL;
1735  GlobalValue *GV2 = NULL;
1736  int64_t Offset1 = 0;
1737  int64_t Offset2 = 0;
1738  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1739  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1740  if (isGA1 && isGA2 && GV1 == GV2)
1741    return Offset1 == (Offset2 + Dist*Bytes);
1742  return false;
1743}
1744
1745
1746SDValue TargetLowering::
1747PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1748  // Default implementation: no optimization.
1749  return SDValue();
1750}
1751
1752//===----------------------------------------------------------------------===//
1753//  Inline Assembler Implementation Methods
1754//===----------------------------------------------------------------------===//
1755
1756
1757TargetLowering::ConstraintType
1758TargetLowering::getConstraintType(const std::string &Constraint) const {
1759  // FIXME: lots more standard ones to handle.
1760  if (Constraint.size() == 1) {
1761    switch (Constraint[0]) {
1762    default: break;
1763    case 'r': return C_RegisterClass;
1764    case 'm':    // memory
1765    case 'o':    // offsetable
1766    case 'V':    // not offsetable
1767      return C_Memory;
1768    case 'i':    // Simple Integer or Relocatable Constant
1769    case 'n':    // Simple Integer
1770    case 's':    // Relocatable Constant
1771    case 'X':    // Allow ANY value.
1772    case 'I':    // Target registers.
1773    case 'J':
1774    case 'K':
1775    case 'L':
1776    case 'M':
1777    case 'N':
1778    case 'O':
1779    case 'P':
1780      return C_Other;
1781    }
1782  }
1783
1784  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1785      Constraint[Constraint.size()-1] == '}')
1786    return C_Register;
1787  return C_Unknown;
1788}
1789
1790/// LowerXConstraint - try to replace an X constraint, which matches anything,
1791/// with another that has more specific requirements based on the type of the
1792/// corresponding operand.
1793const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1794  if (ConstraintVT.isInteger())
1795    return "r";
1796  if (ConstraintVT.isFloatingPoint())
1797    return "f";      // works for many targets
1798  return 0;
1799}
1800
1801/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1802/// vector.  If it is invalid, don't add anything to Ops.
1803void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1804                                                  char ConstraintLetter,
1805                                                  std::vector<SDValue> &Ops,
1806                                                  SelectionDAG &DAG) const {
1807  switch (ConstraintLetter) {
1808  default: break;
1809  case 'X':     // Allows any operand; labels (basic block) use this.
1810    if (Op.getOpcode() == ISD::BasicBlock) {
1811      Ops.push_back(Op);
1812      return;
1813    }
1814    // fall through
1815  case 'i':    // Simple Integer or Relocatable Constant
1816  case 'n':    // Simple Integer
1817  case 's': {  // Relocatable Constant
1818    // These operands are interested in values of the form (GV+C), where C may
1819    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1820    // is possible and fine if either GV or C are missing.
1821    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1822    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1823
1824    // If we have "(add GV, C)", pull out GV/C
1825    if (Op.getOpcode() == ISD::ADD) {
1826      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1827      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1828      if (C == 0 || GA == 0) {
1829        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1830        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1831      }
1832      if (C == 0 || GA == 0)
1833        C = 0, GA = 0;
1834    }
1835
1836    // If we find a valid operand, map to the TargetXXX version so that the
1837    // value itself doesn't get selected.
1838    if (GA) {   // Either &GV   or   &GV+C
1839      if (ConstraintLetter != 'n') {
1840        int64_t Offs = GA->getOffset();
1841        if (C) Offs += C->getValue();
1842        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1843                                                 Op.getValueType(), Offs));
1844        return;
1845      }
1846    }
1847    if (C) {   // just C, no GV.
1848      // Simple constants are not allowed for 's'.
1849      if (ConstraintLetter != 's') {
1850        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1851        return;
1852      }
1853    }
1854    break;
1855  }
1856  }
1857}
1858
1859std::vector<unsigned> TargetLowering::
1860getRegClassForInlineAsmConstraint(const std::string &Constraint,
1861                                  MVT VT) const {
1862  return std::vector<unsigned>();
1863}
1864
1865
1866std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1867getRegForInlineAsmConstraint(const std::string &Constraint,
1868                             MVT VT) const {
1869  if (Constraint[0] != '{')
1870    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1871  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1872
1873  // Remove the braces from around the name.
1874  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1875
1876  // Figure out which register class contains this reg.
1877  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1878  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1879       E = RI->regclass_end(); RCI != E; ++RCI) {
1880    const TargetRegisterClass *RC = *RCI;
1881
1882    // If none of the the value types for this register class are valid, we
1883    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1884    bool isLegal = false;
1885    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1886         I != E; ++I) {
1887      if (isTypeLegal(*I)) {
1888        isLegal = true;
1889        break;
1890      }
1891    }
1892
1893    if (!isLegal) continue;
1894
1895    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1896         I != E; ++I) {
1897      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1898        return std::make_pair(*I, RC);
1899    }
1900  }
1901
1902  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1903}
1904
1905//===----------------------------------------------------------------------===//
1906// Constraint Selection.
1907
1908/// getConstraintGenerality - Return an integer indicating how general CT
1909/// is.
1910static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1911  switch (CT) {
1912  default: assert(0 && "Unknown constraint type!");
1913  case TargetLowering::C_Other:
1914  case TargetLowering::C_Unknown:
1915    return 0;
1916  case TargetLowering::C_Register:
1917    return 1;
1918  case TargetLowering::C_RegisterClass:
1919    return 2;
1920  case TargetLowering::C_Memory:
1921    return 3;
1922  }
1923}
1924
1925/// ChooseConstraint - If there are multiple different constraints that we
1926/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1927/// This is somewhat tricky: constraints fall into four classes:
1928///    Other         -> immediates and magic values
1929///    Register      -> one specific register
1930///    RegisterClass -> a group of regs
1931///    Memory        -> memory
1932/// Ideally, we would pick the most specific constraint possible: if we have
1933/// something that fits into a register, we would pick it.  The problem here
1934/// is that if we have something that could either be in a register or in
1935/// memory that use of the register could cause selection of *other*
1936/// operands to fail: they might only succeed if we pick memory.  Because of
1937/// this the heuristic we use is:
1938///
1939///  1) If there is an 'other' constraint, and if the operand is valid for
1940///     that constraint, use it.  This makes us take advantage of 'i'
1941///     constraints when available.
1942///  2) Otherwise, pick the most general constraint present.  This prefers
1943///     'm' over 'r', for example.
1944///
1945static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1946                             const TargetLowering &TLI,
1947                             SDValue Op, SelectionDAG *DAG) {
1948  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1949  unsigned BestIdx = 0;
1950  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1951  int BestGenerality = -1;
1952
1953  // Loop over the options, keeping track of the most general one.
1954  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1955    TargetLowering::ConstraintType CType =
1956      TLI.getConstraintType(OpInfo.Codes[i]);
1957
1958    // If this is an 'other' constraint, see if the operand is valid for it.
1959    // For example, on X86 we might have an 'rI' constraint.  If the operand
1960    // is an integer in the range [0..31] we want to use I (saving a load
1961    // of a register), otherwise we must use 'r'.
1962    if (CType == TargetLowering::C_Other && Op.Val) {
1963      assert(OpInfo.Codes[i].size() == 1 &&
1964             "Unhandled multi-letter 'other' constraint");
1965      std::vector<SDValue> ResultOps;
1966      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1967                                       ResultOps, *DAG);
1968      if (!ResultOps.empty()) {
1969        BestType = CType;
1970        BestIdx = i;
1971        break;
1972      }
1973    }
1974
1975    // This constraint letter is more general than the previous one, use it.
1976    int Generality = getConstraintGenerality(CType);
1977    if (Generality > BestGenerality) {
1978      BestType = CType;
1979      BestIdx = i;
1980      BestGenerality = Generality;
1981    }
1982  }
1983
1984  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1985  OpInfo.ConstraintType = BestType;
1986}
1987
1988/// ComputeConstraintToUse - Determines the constraint code and constraint
1989/// type to use for the specific AsmOperandInfo, setting
1990/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1991void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1992                                            SDValue Op,
1993                                            SelectionDAG *DAG) const {
1994  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1995
1996  // Single-letter constraints ('r') are very common.
1997  if (OpInfo.Codes.size() == 1) {
1998    OpInfo.ConstraintCode = OpInfo.Codes[0];
1999    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2000  } else {
2001    ChooseConstraint(OpInfo, *this, Op, DAG);
2002  }
2003
2004  // 'X' matches anything.
2005  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2006    // Labels and constants are handled elsewhere ('X' is the only thing
2007    // that matches labels).
2008    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2009        isa<ConstantInt>(OpInfo.CallOperandVal))
2010      return;
2011
2012    // Otherwise, try to resolve it to something we know about by looking at
2013    // the actual operand type.
2014    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2015      OpInfo.ConstraintCode = Repl;
2016      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2017    }
2018  }
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//  Loop Strength Reduction hooks
2023//===----------------------------------------------------------------------===//
2024
2025/// isLegalAddressingMode - Return true if the addressing mode represented
2026/// by AM is legal for this target, for a load/store of the specified type.
2027bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2028                                           const Type *Ty) const {
2029  // The default implementation of this implements a conservative RISCy, r+r and
2030  // r+i addr mode.
2031
2032  // Allows a sign-extended 16-bit immediate field.
2033  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2034    return false;
2035
2036  // No global is ever allowed as a base.
2037  if (AM.BaseGV)
2038    return false;
2039
2040  // Only support r+r,
2041  switch (AM.Scale) {
2042  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2043    break;
2044  case 1:
2045    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2046      return false;
2047    // Otherwise we have r+r or r+i.
2048    break;
2049  case 2:
2050    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2051      return false;
2052    // Allow 2*r as r+r.
2053    break;
2054  }
2055
2056  return true;
2057}
2058
2059// Magic for divide replacement
2060
2061struct ms {
2062  int64_t m;  // magic number
2063  int64_t s;  // shift amount
2064};
2065
2066struct mu {
2067  uint64_t m; // magic number
2068  int64_t a;  // add indicator
2069  int64_t s;  // shift amount
2070};
2071
2072/// magic - calculate the magic numbers required to codegen an integer sdiv as
2073/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2074/// or -1.
2075static ms magic32(int32_t d) {
2076  int32_t p;
2077  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2078  const uint32_t two31 = 0x80000000U;
2079  struct ms mag;
2080
2081  ad = abs(d);
2082  t = two31 + ((uint32_t)d >> 31);
2083  anc = t - 1 - t%ad;   // absolute value of nc
2084  p = 31;               // initialize p
2085  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2086  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2087  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2088  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2089  do {
2090    p = p + 1;
2091    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2092    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2093    if (r1 >= anc) {  // must be unsigned comparison
2094      q1 = q1 + 1;
2095      r1 = r1 - anc;
2096    }
2097    q2 = 2*q2;        // update q2 = 2p/abs(d)
2098    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2099    if (r2 >= ad) {   // must be unsigned comparison
2100      q2 = q2 + 1;
2101      r2 = r2 - ad;
2102    }
2103    delta = ad - r2;
2104  } while (q1 < delta || (q1 == delta && r1 == 0));
2105
2106  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2107  if (d < 0) mag.m = -mag.m; // resulting magic number
2108  mag.s = p - 32;            // resulting shift
2109  return mag;
2110}
2111
2112/// magicu - calculate the magic numbers required to codegen an integer udiv as
2113/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2114static mu magicu32(uint32_t d) {
2115  int32_t p;
2116  uint32_t nc, delta, q1, r1, q2, r2;
2117  struct mu magu;
2118  magu.a = 0;               // initialize "add" indicator
2119  nc = - 1 - (-d)%d;
2120  p = 31;                   // initialize p
2121  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2122  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2123  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2124  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2125  do {
2126    p = p + 1;
2127    if (r1 >= nc - r1 ) {
2128      q1 = 2*q1 + 1;  // update q1
2129      r1 = 2*r1 - nc; // update r1
2130    }
2131    else {
2132      q1 = 2*q1; // update q1
2133      r1 = 2*r1; // update r1
2134    }
2135    if (r2 + 1 >= d - r2) {
2136      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2137      q2 = 2*q2 + 1;     // update q2
2138      r2 = 2*r2 + 1 - d; // update r2
2139    }
2140    else {
2141      if (q2 >= 0x80000000) magu.a = 1;
2142      q2 = 2*q2;     // update q2
2143      r2 = 2*r2 + 1; // update r2
2144    }
2145    delta = d - 1 - r2;
2146  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2147  magu.m = q2 + 1; // resulting magic number
2148  magu.s = p - 32;  // resulting shift
2149  return magu;
2150}
2151
2152/// magic - calculate the magic numbers required to codegen an integer sdiv as
2153/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2154/// or -1.
2155static ms magic64(int64_t d) {
2156  int64_t p;
2157  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2158  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2159  struct ms mag;
2160
2161  ad = d >= 0 ? d : -d;
2162  t = two63 + ((uint64_t)d >> 63);
2163  anc = t - 1 - t%ad;   // absolute value of nc
2164  p = 63;               // initialize p
2165  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2166  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2167  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2168  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2169  do {
2170    p = p + 1;
2171    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2172    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2173    if (r1 >= anc) {  // must be unsigned comparison
2174      q1 = q1 + 1;
2175      r1 = r1 - anc;
2176    }
2177    q2 = 2*q2;        // update q2 = 2p/abs(d)
2178    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2179    if (r2 >= ad) {   // must be unsigned comparison
2180      q2 = q2 + 1;
2181      r2 = r2 - ad;
2182    }
2183    delta = ad - r2;
2184  } while (q1 < delta || (q1 == delta && r1 == 0));
2185
2186  mag.m = q2 + 1;
2187  if (d < 0) mag.m = -mag.m; // resulting magic number
2188  mag.s = p - 64;            // resulting shift
2189  return mag;
2190}
2191
2192/// magicu - calculate the magic numbers required to codegen an integer udiv as
2193/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2194static mu magicu64(uint64_t d)
2195{
2196  int64_t p;
2197  uint64_t nc, delta, q1, r1, q2, r2;
2198  struct mu magu;
2199  magu.a = 0;               // initialize "add" indicator
2200  nc = - 1 - (-d)%d;
2201  p = 63;                   // initialize p
2202  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2203  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2204  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2205  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2206  do {
2207    p = p + 1;
2208    if (r1 >= nc - r1 ) {
2209      q1 = 2*q1 + 1;  // update q1
2210      r1 = 2*r1 - nc; // update r1
2211    }
2212    else {
2213      q1 = 2*q1; // update q1
2214      r1 = 2*r1; // update r1
2215    }
2216    if (r2 + 1 >= d - r2) {
2217      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2218      q2 = 2*q2 + 1;     // update q2
2219      r2 = 2*r2 + 1 - d; // update r2
2220    }
2221    else {
2222      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2223      q2 = 2*q2;     // update q2
2224      r2 = 2*r2 + 1; // update r2
2225    }
2226    delta = d - 1 - r2;
2227  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2228  magu.m = q2 + 1; // resulting magic number
2229  magu.s = p - 64;  // resulting shift
2230  return magu;
2231}
2232
2233/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2234/// return a DAG expression to select that will generate the same value by
2235/// multiplying by a magic number.  See:
2236/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2237SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2238                                  std::vector<SDNode*>* Created) const {
2239  MVT VT = N->getValueType(0);
2240
2241  // Check to see if we can do this.
2242  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2243    return SDValue();       // BuildSDIV only operates on i32 or i64
2244
2245  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2246  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2247
2248  // Multiply the numerator (operand 0) by the magic value
2249  SDValue Q;
2250  if (isOperationLegal(ISD::MULHS, VT))
2251    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2252                    DAG.getConstant(magics.m, VT));
2253  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2254    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2255                              N->getOperand(0),
2256                              DAG.getConstant(magics.m, VT)).Val, 1);
2257  else
2258    return SDValue();       // No mulhs or equvialent
2259  // If d > 0 and m < 0, add the numerator
2260  if (d > 0 && magics.m < 0) {
2261    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2262    if (Created)
2263      Created->push_back(Q.Val);
2264  }
2265  // If d < 0 and m > 0, subtract the numerator.
2266  if (d < 0 && magics.m > 0) {
2267    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2268    if (Created)
2269      Created->push_back(Q.Val);
2270  }
2271  // Shift right algebraic if shift value is nonzero
2272  if (magics.s > 0) {
2273    Q = DAG.getNode(ISD::SRA, VT, Q,
2274                    DAG.getConstant(magics.s, getShiftAmountTy()));
2275    if (Created)
2276      Created->push_back(Q.Val);
2277  }
2278  // Extract the sign bit and add it to the quotient
2279  SDValue T =
2280    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2281                                                 getShiftAmountTy()));
2282  if (Created)
2283    Created->push_back(T.Val);
2284  return DAG.getNode(ISD::ADD, VT, Q, T);
2285}
2286
2287/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2288/// return a DAG expression to select that will generate the same value by
2289/// multiplying by a magic number.  See:
2290/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2291SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2292                                  std::vector<SDNode*>* Created) const {
2293  MVT VT = N->getValueType(0);
2294
2295  // Check to see if we can do this.
2296  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2297    return SDValue();       // BuildUDIV only operates on i32 or i64
2298
2299  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2300  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2301
2302  // Multiply the numerator (operand 0) by the magic value
2303  SDValue Q;
2304  if (isOperationLegal(ISD::MULHU, VT))
2305    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2306                    DAG.getConstant(magics.m, VT));
2307  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2308    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2309                              N->getOperand(0),
2310                              DAG.getConstant(magics.m, VT)).Val, 1);
2311  else
2312    return SDValue();       // No mulhu or equvialent
2313  if (Created)
2314    Created->push_back(Q.Val);
2315
2316  if (magics.a == 0) {
2317    return DAG.getNode(ISD::SRL, VT, Q,
2318                       DAG.getConstant(magics.s, getShiftAmountTy()));
2319  } else {
2320    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2321    if (Created)
2322      Created->push_back(NPQ.Val);
2323    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2324                      DAG.getConstant(1, getShiftAmountTy()));
2325    if (Created)
2326      Created->push_back(NPQ.Val);
2327    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2328    if (Created)
2329      Created->push_back(NPQ.Val);
2330    return DAG.getNode(ISD::SRL, VT, NPQ,
2331                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2332  }
2333}
2334