TargetLowering.cpp revision eb57ea7ea2378b77bc995371c1888193b960cd03
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Target/TargetMachine.h"
17#include "llvm/Target/MRegisterInfo.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/TargetAsmInfo.h"
24using namespace llvm;
25
26/// InitLibcallNames - Set default libcall names.
27///
28static void InitLibcallNames(const char **Names) {
29  Names[RTLIB::SHL_I32] = "__ashlsi3";
30  Names[RTLIB::SHL_I64] = "__ashldi3";
31  Names[RTLIB::SRL_I32] = "__lshrsi3";
32  Names[RTLIB::SRL_I64] = "__lshrdi3";
33  Names[RTLIB::SRA_I32] = "__ashrsi3";
34  Names[RTLIB::SRA_I64] = "__ashrdi3";
35  Names[RTLIB::MUL_I32] = "__mulsi3";
36  Names[RTLIB::MUL_I64] = "__muldi3";
37  Names[RTLIB::SDIV_I32] = "__divsi3";
38  Names[RTLIB::SDIV_I64] = "__divdi3";
39  Names[RTLIB::UDIV_I32] = "__udivsi3";
40  Names[RTLIB::UDIV_I64] = "__udivdi3";
41  Names[RTLIB::SREM_I32] = "__modsi3";
42  Names[RTLIB::SREM_I64] = "__moddi3";
43  Names[RTLIB::UREM_I32] = "__umodsi3";
44  Names[RTLIB::UREM_I64] = "__umoddi3";
45  Names[RTLIB::NEG_I32] = "__negsi2";
46  Names[RTLIB::NEG_I64] = "__negdi2";
47  Names[RTLIB::ADD_F32] = "__addsf3";
48  Names[RTLIB::ADD_F64] = "__adddf3";
49  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
50  Names[RTLIB::SUB_F32] = "__subsf3";
51  Names[RTLIB::SUB_F64] = "__subdf3";
52  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
53  Names[RTLIB::MUL_F32] = "__mulsf3";
54  Names[RTLIB::MUL_F64] = "__muldf3";
55  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
56  Names[RTLIB::DIV_F32] = "__divsf3";
57  Names[RTLIB::DIV_F64] = "__divdf3";
58  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
59  Names[RTLIB::REM_F32] = "fmodf";
60  Names[RTLIB::REM_F64] = "fmod";
61  Names[RTLIB::REM_PPCF128] = "fmodl";
62  Names[RTLIB::NEG_F32] = "__negsf2";
63  Names[RTLIB::NEG_F64] = "__negdf2";
64  Names[RTLIB::POWI_F32] = "__powisf2";
65  Names[RTLIB::POWI_F64] = "__powidf2";
66  Names[RTLIB::POWI_F80] = "__powixf2";
67  Names[RTLIB::POWI_PPCF128] = "__powitf2";
68  Names[RTLIB::SQRT_F32] = "sqrtf";
69  Names[RTLIB::SQRT_F64] = "sqrt";
70  Names[RTLIB::SQRT_F80] = "sqrtl";
71  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
72  Names[RTLIB::SIN_F32] = "sinf";
73  Names[RTLIB::SIN_F64] = "sin";
74  Names[RTLIB::COS_F32] = "cosf";
75  Names[RTLIB::COS_F64] = "cos";
76  Names[RTLIB::POW_F32] = "powf";
77  Names[RTLIB::POW_F64] = "pow";
78  Names[RTLIB::POW_F80] = "powl";
79  Names[RTLIB::POW_PPCF128] = "powl";
80  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
81  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
82  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
83  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
84  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
85  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
86  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
87  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
88  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
89  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
90  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
91  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
92  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
93  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
94  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
95  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
96  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
97  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
98  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
99  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
100  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
101  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
102  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
103  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
104  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
105  Names[RTLIB::OEQ_F32] = "__eqsf2";
106  Names[RTLIB::OEQ_F64] = "__eqdf2";
107  Names[RTLIB::UNE_F32] = "__nesf2";
108  Names[RTLIB::UNE_F64] = "__nedf2";
109  Names[RTLIB::OGE_F32] = "__gesf2";
110  Names[RTLIB::OGE_F64] = "__gedf2";
111  Names[RTLIB::OLT_F32] = "__ltsf2";
112  Names[RTLIB::OLT_F64] = "__ltdf2";
113  Names[RTLIB::OLE_F32] = "__lesf2";
114  Names[RTLIB::OLE_F64] = "__ledf2";
115  Names[RTLIB::OGT_F32] = "__gtsf2";
116  Names[RTLIB::OGT_F64] = "__gtdf2";
117  Names[RTLIB::UO_F32] = "__unordsf2";
118  Names[RTLIB::UO_F64] = "__unorddf2";
119  Names[RTLIB::O_F32] = "__unordsf2";
120  Names[RTLIB::O_F64] = "__unorddf2";
121}
122
123/// InitCmpLibcallCCs - Set default comparison libcall CC.
124///
125static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
126  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
127  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
128  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
129  CCs[RTLIB::UNE_F32] = ISD::SETNE;
130  CCs[RTLIB::UNE_F64] = ISD::SETNE;
131  CCs[RTLIB::OGE_F32] = ISD::SETGE;
132  CCs[RTLIB::OGE_F64] = ISD::SETGE;
133  CCs[RTLIB::OLT_F32] = ISD::SETLT;
134  CCs[RTLIB::OLT_F64] = ISD::SETLT;
135  CCs[RTLIB::OLE_F32] = ISD::SETLE;
136  CCs[RTLIB::OLE_F64] = ISD::SETLE;
137  CCs[RTLIB::OGT_F32] = ISD::SETGT;
138  CCs[RTLIB::OGT_F64] = ISD::SETGT;
139  CCs[RTLIB::UO_F32] = ISD::SETNE;
140  CCs[RTLIB::UO_F64] = ISD::SETNE;
141  CCs[RTLIB::O_F32] = ISD::SETEQ;
142  CCs[RTLIB::O_F64] = ISD::SETEQ;
143}
144
145TargetLowering::TargetLowering(TargetMachine &tm)
146  : TM(tm), TD(TM.getTargetData()) {
147  assert(ISD::BUILTIN_OP_END <= 156 &&
148         "Fixed size array in TargetLowering is not large enough!");
149  // All operations default to being supported.
150  memset(OpActions, 0, sizeof(OpActions));
151  memset(LoadXActions, 0, sizeof(LoadXActions));
152  memset(&StoreXActions, 0, sizeof(StoreXActions));
153  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
154  memset(&ConvertActions, 0, sizeof(ConvertActions));
155
156  // Set all indexed load / store to expand.
157  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
158    for (unsigned IM = (unsigned)ISD::PRE_INC;
159         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
160      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
161      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
162    }
163  }
164
165  IsLittleEndian = TD->isLittleEndian();
166  UsesGlobalOffsetTable = false;
167  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
168  ShiftAmtHandling = Undefined;
169  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
170  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
171  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
172  allowUnalignedMemoryAccesses = false;
173  UseUnderscoreSetJmp = false;
174  UseUnderscoreLongJmp = false;
175  SelectIsExpensive = false;
176  IntDivIsCheap = false;
177  Pow2DivIsCheap = false;
178  StackPointerRegisterToSaveRestore = 0;
179  ExceptionPointerRegister = 0;
180  ExceptionSelectorRegister = 0;
181  SetCCResultContents = UndefinedSetCCResult;
182  SchedPreferenceInfo = SchedulingForLatency;
183  JumpBufSize = 0;
184  JumpBufAlignment = 0;
185  IfCvtBlockSizeLimit = 2;
186
187  InitLibcallNames(LibcallRoutineNames);
188  InitCmpLibcallCCs(CmpLibcallCCs);
189
190  // Tell Legalize whether the assembler supports DEBUG_LOC.
191  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
192    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
193}
194
195TargetLowering::~TargetLowering() {}
196
197/// computeRegisterProperties - Once all of the register classes are added,
198/// this allows us to compute derived properties we expose.
199void TargetLowering::computeRegisterProperties() {
200  assert(MVT::LAST_VALUETYPE <= 32 &&
201         "Too many value types for ValueTypeActions to hold!");
202
203  // Everything defaults to needing one register.
204  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
205    NumRegistersForVT[i] = 1;
206    RegisterTypeForVT[i] = TransformToType[i] = i;
207  }
208  // ...except isVoid, which doesn't need any registers.
209  NumRegistersForVT[MVT::isVoid] = 0;
210
211  // Find the largest integer register class.
212  unsigned LargestIntReg = MVT::i128;
213  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
214    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
215
216  // Every integer value type larger than this largest register takes twice as
217  // many registers to represent as the previous ValueType.
218  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
219       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
220    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
221    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
222    TransformToType[ExpandedReg] = ExpandedReg - 1;
223    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
224  }
225
226  // Inspect all of the ValueType's smaller than the largest integer
227  // register to see which ones need promotion.
228  MVT::ValueType LegalIntReg = LargestIntReg;
229  for (MVT::ValueType IntReg = LargestIntReg - 1;
230       IntReg >= MVT::i1; --IntReg) {
231    if (isTypeLegal(IntReg)) {
232      LegalIntReg = IntReg;
233    } else {
234      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
235      ValueTypeActions.setTypeAction(IntReg, Promote);
236    }
237  }
238
239  // ppcf128 type is really two f64's.
240  if (!isTypeLegal(MVT::ppcf128)) {
241    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
242    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
243    TransformToType[MVT::ppcf128] = MVT::f64;
244    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
245  }
246
247  // Decide how to handle f64. If the target does not have native f64 support,
248  // expand it to i64 and we will be generating soft float library calls.
249  if (!isTypeLegal(MVT::f64)) {
250    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
251    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
252    TransformToType[MVT::f64] = MVT::i64;
253    ValueTypeActions.setTypeAction(MVT::f64, Expand);
254  }
255
256  // Decide how to handle f32. If the target does not have native support for
257  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
258  if (!isTypeLegal(MVT::f32)) {
259    if (isTypeLegal(MVT::f64)) {
260      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
261      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
262      TransformToType[MVT::f32] = MVT::f64;
263      ValueTypeActions.setTypeAction(MVT::f32, Promote);
264    } else {
265      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
266      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
267      TransformToType[MVT::f32] = MVT::i32;
268      ValueTypeActions.setTypeAction(MVT::f32, Expand);
269    }
270  }
271
272  // Loop over all of the vector value types to see which need transformations.
273  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
274       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
275    if (!isTypeLegal(i)) {
276      MVT::ValueType IntermediateVT, RegisterVT;
277      unsigned NumIntermediates;
278      NumRegistersForVT[i] =
279        getVectorTypeBreakdown(i,
280                               IntermediateVT, NumIntermediates,
281                               RegisterVT);
282      RegisterTypeForVT[i] = RegisterVT;
283      TransformToType[i] = MVT::Other; // this isn't actually used
284      ValueTypeActions.setTypeAction(i, Expand);
285    }
286  }
287}
288
289const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
290  return NULL;
291}
292
293/// getVectorTypeBreakdown - Vector types are broken down into some number of
294/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
295/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
296/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
297///
298/// This method returns the number of registers needed, and the VT for each
299/// register.  It also returns the VT and quantity of the intermediate values
300/// before they are promoted/expanded.
301///
302unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
303                                                MVT::ValueType &IntermediateVT,
304                                                unsigned &NumIntermediates,
305                                      MVT::ValueType &RegisterVT) const {
306  // Figure out the right, legal destination reg to copy into.
307  unsigned NumElts = MVT::getVectorNumElements(VT);
308  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
309
310  unsigned NumVectorRegs = 1;
311
312  // Divide the input until we get to a supported size.  This will always
313  // end with a scalar if the target doesn't support vectors.
314  while (NumElts > 1 &&
315         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
316    NumElts >>= 1;
317    NumVectorRegs <<= 1;
318  }
319
320  NumIntermediates = NumVectorRegs;
321
322  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
323  if (!isTypeLegal(NewVT))
324    NewVT = EltTy;
325  IntermediateVT = NewVT;
326
327  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
328  RegisterVT = DestVT;
329  if (DestVT < NewVT) {
330    // Value is expanded, e.g. i64 -> i16.
331    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
332  } else {
333    // Otherwise, promotion or legal types use the same number of registers as
334    // the vector decimated to the appropriate level.
335    return NumVectorRegs;
336  }
337
338  return 1;
339}
340
341//===----------------------------------------------------------------------===//
342//  Optimization Methods
343//===----------------------------------------------------------------------===//
344
345/// ShrinkDemandedConstant - Check to see if the specified operand of the
346/// specified instruction is a constant integer.  If so, check to see if there
347/// are any bits set in the constant that are not demanded.  If so, shrink the
348/// constant and return true.
349bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
350                                                            uint64_t Demanded) {
351  // FIXME: ISD::SELECT, ISD::SELECT_CC
352  switch(Op.getOpcode()) {
353  default: break;
354  case ISD::AND:
355  case ISD::OR:
356  case ISD::XOR:
357    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
358      if ((~Demanded & C->getValue()) != 0) {
359        MVT::ValueType VT = Op.getValueType();
360        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
361                                    DAG.getConstant(Demanded & C->getValue(),
362                                                    VT));
363        return CombineTo(Op, New);
364      }
365    break;
366  }
367  return false;
368}
369
370/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
371/// DemandedMask bits of the result of Op are ever used downstream.  If we can
372/// use this information to simplify Op, create a new simplified DAG node and
373/// return true, returning the original and new nodes in Old and New. Otherwise,
374/// analyze the expression and return a mask of KnownOne and KnownZero bits for
375/// the expression (used to simplify the caller).  The KnownZero/One bits may
376/// only be accurate for those bits in the DemandedMask.
377bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
378                                          uint64_t &KnownZero,
379                                          uint64_t &KnownOne,
380                                          TargetLoweringOpt &TLO,
381                                          unsigned Depth) const {
382  KnownZero = KnownOne = 0;   // Don't know anything.
383
384  // The masks are not wide enough to represent this type!  Should use APInt.
385  if (Op.getValueType() == MVT::i128)
386    return false;
387
388  // Other users may use these bits.
389  if (!Op.Val->hasOneUse()) {
390    if (Depth != 0) {
391      // If not at the root, Just compute the KnownZero/KnownOne bits to
392      // simplify things downstream.
393      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
394      return false;
395    }
396    // If this is the root being simplified, allow it to have multiple uses,
397    // just set the DemandedMask to all bits.
398    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
399  } else if (DemandedMask == 0) {
400    // Not demanding any bits from Op.
401    if (Op.getOpcode() != ISD::UNDEF)
402      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
403    return false;
404  } else if (Depth == 6) {        // Limit search depth.
405    return false;
406  }
407
408  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
409  switch (Op.getOpcode()) {
410  case ISD::Constant:
411    // We know all of the bits for a constant!
412    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
413    KnownZero = ~KnownOne & DemandedMask;
414    return false;   // Don't fall through, will infinitely loop.
415  case ISD::AND:
416    // If the RHS is a constant, check to see if the LHS would be zero without
417    // using the bits from the RHS.  Below, we use knowledge about the RHS to
418    // simplify the LHS, here we're using information from the LHS to simplify
419    // the RHS.
420    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
421      uint64_t LHSZero, LHSOne;
422      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
423                                LHSZero, LHSOne, Depth+1);
424      // If the LHS already has zeros where RHSC does, this and is dead.
425      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
426        return TLO.CombineTo(Op, Op.getOperand(0));
427      // If any of the set bits in the RHS are known zero on the LHS, shrink
428      // the constant.
429      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
430        return true;
431    }
432
433    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
434                             KnownOne, TLO, Depth+1))
435      return true;
436    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
437    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
438                             KnownZero2, KnownOne2, TLO, Depth+1))
439      return true;
440    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
441
442    // If all of the demanded bits are known one on one side, return the other.
443    // These bits cannot contribute to the result of the 'and'.
444    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
445      return TLO.CombineTo(Op, Op.getOperand(0));
446    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
447      return TLO.CombineTo(Op, Op.getOperand(1));
448    // If all of the demanded bits in the inputs are known zeros, return zero.
449    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
450      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
451    // If the RHS is a constant, see if we can simplify it.
452    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
453      return true;
454
455    // Output known-1 bits are only known if set in both the LHS & RHS.
456    KnownOne &= KnownOne2;
457    // Output known-0 are known to be clear if zero in either the LHS | RHS.
458    KnownZero |= KnownZero2;
459    break;
460  case ISD::OR:
461    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
462                             KnownOne, TLO, Depth+1))
463      return true;
464    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
465    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
466                             KnownZero2, KnownOne2, TLO, Depth+1))
467      return true;
468    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
469
470    // If all of the demanded bits are known zero on one side, return the other.
471    // These bits cannot contribute to the result of the 'or'.
472    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
473      return TLO.CombineTo(Op, Op.getOperand(0));
474    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
475      return TLO.CombineTo(Op, Op.getOperand(1));
476    // If all of the potentially set bits on one side are known to be set on
477    // the other side, just use the 'other' side.
478    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
479        (DemandedMask & (~KnownZero)))
480      return TLO.CombineTo(Op, Op.getOperand(0));
481    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
482        (DemandedMask & (~KnownZero2)))
483      return TLO.CombineTo(Op, Op.getOperand(1));
484    // If the RHS is a constant, see if we can simplify it.
485    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
486      return true;
487
488    // Output known-0 bits are only known if clear in both the LHS & RHS.
489    KnownZero &= KnownZero2;
490    // Output known-1 are known to be set if set in either the LHS | RHS.
491    KnownOne |= KnownOne2;
492    break;
493  case ISD::XOR:
494    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
495                             KnownOne, TLO, Depth+1))
496      return true;
497    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
498    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
499                             KnownOne2, TLO, Depth+1))
500      return true;
501    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
502
503    // If all of the demanded bits are known zero on one side, return the other.
504    // These bits cannot contribute to the result of the 'xor'.
505    if ((DemandedMask & KnownZero) == DemandedMask)
506      return TLO.CombineTo(Op, Op.getOperand(0));
507    if ((DemandedMask & KnownZero2) == DemandedMask)
508      return TLO.CombineTo(Op, Op.getOperand(1));
509
510    // If all of the unknown bits are known to be zero on one side or the other
511    // (but not both) turn this into an *inclusive* or.
512    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
513    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
514      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
515                                               Op.getOperand(0),
516                                               Op.getOperand(1)));
517
518    // Output known-0 bits are known if clear or set in both the LHS & RHS.
519    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
520    // Output known-1 are known to be set if set in only one of the LHS, RHS.
521    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
522
523    // If all of the demanded bits on one side are known, and all of the set
524    // bits on that side are also known to be set on the other side, turn this
525    // into an AND, as we know the bits will be cleared.
526    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
527    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
528      if ((KnownOne & KnownOne2) == KnownOne) {
529        MVT::ValueType VT = Op.getValueType();
530        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
531        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
532                                                 ANDC));
533      }
534    }
535
536    // If the RHS is a constant, see if we can simplify it.
537    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
538    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
539      return true;
540
541    KnownZero = KnownZeroOut;
542    KnownOne  = KnownOneOut;
543    break;
544  case ISD::SETCC:
545    // If we know the result of a setcc has the top bits zero, use this info.
546    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
547      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
548    break;
549  case ISD::SELECT:
550    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
551                             KnownOne, TLO, Depth+1))
552      return true;
553    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
554                             KnownOne2, TLO, Depth+1))
555      return true;
556    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
557    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
558
559    // If the operands are constants, see if we can simplify them.
560    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
561      return true;
562
563    // Only known if known in both the LHS and RHS.
564    KnownOne &= KnownOne2;
565    KnownZero &= KnownZero2;
566    break;
567  case ISD::SELECT_CC:
568    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
569                             KnownOne, TLO, Depth+1))
570      return true;
571    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
572                             KnownOne2, TLO, Depth+1))
573      return true;
574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
576
577    // If the operands are constants, see if we can simplify them.
578    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
579      return true;
580
581    // Only known if known in both the LHS and RHS.
582    KnownOne &= KnownOne2;
583    KnownZero &= KnownZero2;
584    break;
585  case ISD::SHL:
586    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
587      unsigned ShAmt = SA->getValue();
588      SDOperand InOp = Op.getOperand(0);
589
590      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
591      // single shift.  We can do this if the bottom bits (which are shifted
592      // out) are never demanded.
593      if (InOp.getOpcode() == ISD::SRL &&
594          isa<ConstantSDNode>(InOp.getOperand(1))) {
595        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
596          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
597          unsigned Opc = ISD::SHL;
598          int Diff = ShAmt-C1;
599          if (Diff < 0) {
600            Diff = -Diff;
601            Opc = ISD::SRL;
602          }
603
604          SDOperand NewSA =
605            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
606          MVT::ValueType VT = Op.getValueType();
607          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
608                                                   InOp.getOperand(0), NewSA));
609        }
610      }
611
612      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
613                               KnownZero, KnownOne, TLO, Depth+1))
614        return true;
615      KnownZero <<= SA->getValue();
616      KnownOne  <<= SA->getValue();
617      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
618    }
619    break;
620  case ISD::SRL:
621    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
622      MVT::ValueType VT = Op.getValueType();
623      unsigned ShAmt = SA->getValue();
624      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
625      unsigned VTSize = MVT::getSizeInBits(VT);
626      SDOperand InOp = Op.getOperand(0);
627
628      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
629      // single shift.  We can do this if the top bits (which are shifted out)
630      // are never demanded.
631      if (InOp.getOpcode() == ISD::SHL &&
632          isa<ConstantSDNode>(InOp.getOperand(1))) {
633        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
634          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
635          unsigned Opc = ISD::SRL;
636          int Diff = ShAmt-C1;
637          if (Diff < 0) {
638            Diff = -Diff;
639            Opc = ISD::SHL;
640          }
641
642          SDOperand NewSA =
643            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
644          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
645                                                   InOp.getOperand(0), NewSA));
646        }
647      }
648
649      // Compute the new bits that are at the top now.
650      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
651                               KnownZero, KnownOne, TLO, Depth+1))
652        return true;
653      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
654      KnownZero &= TypeMask;
655      KnownOne  &= TypeMask;
656      KnownZero >>= ShAmt;
657      KnownOne  >>= ShAmt;
658
659      uint64_t HighBits = (1ULL << ShAmt)-1;
660      HighBits <<= VTSize - ShAmt;
661      KnownZero |= HighBits;  // High bits known zero.
662    }
663    break;
664  case ISD::SRA:
665    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
666      MVT::ValueType VT = Op.getValueType();
667      unsigned ShAmt = SA->getValue();
668
669      // Compute the new bits that are at the top now.
670      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
671
672      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
673
674      // If any of the demanded bits are produced by the sign extension, we also
675      // demand the input sign bit.
676      uint64_t HighBits = (1ULL << ShAmt)-1;
677      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
678      if (HighBits & DemandedMask)
679        InDemandedMask |= MVT::getIntVTSignBit(VT);
680
681      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
682                               KnownZero, KnownOne, TLO, Depth+1))
683        return true;
684      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
685      KnownZero &= TypeMask;
686      KnownOne  &= TypeMask;
687      KnownZero >>= ShAmt;
688      KnownOne  >>= ShAmt;
689
690      // Handle the sign bits.
691      uint64_t SignBit = MVT::getIntVTSignBit(VT);
692      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
693
694      // If the input sign bit is known to be zero, or if none of the top bits
695      // are demanded, turn this into an unsigned shift right.
696      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
697        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
698                                                 Op.getOperand(1)));
699      } else if (KnownOne & SignBit) { // New bits are known one.
700        KnownOne |= HighBits;
701      }
702    }
703    break;
704  case ISD::SIGN_EXTEND_INREG: {
705    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
706
707    // Sign extension.  Compute the demanded bits in the result that are not
708    // present in the input.
709    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
710
711    // If none of the extended bits are demanded, eliminate the sextinreg.
712    if (NewBits == 0)
713      return TLO.CombineTo(Op, Op.getOperand(0));
714
715    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
716    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
717
718    // Since the sign extended bits are demanded, we know that the sign
719    // bit is demanded.
720    InputDemandedBits |= InSignBit;
721
722    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
723                             KnownZero, KnownOne, TLO, Depth+1))
724      return true;
725    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
726
727    // If the sign bit of the input is known set or clear, then we know the
728    // top bits of the result.
729
730    // If the input sign bit is known zero, convert this into a zero extension.
731    if (KnownZero & InSignBit)
732      return TLO.CombineTo(Op,
733                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
734
735    if (KnownOne & InSignBit) {    // Input sign bit known set
736      KnownOne |= NewBits;
737      KnownZero &= ~NewBits;
738    } else {                       // Input sign bit unknown
739      KnownZero &= ~NewBits;
740      KnownOne &= ~NewBits;
741    }
742    break;
743  }
744  case ISD::CTTZ:
745  case ISD::CTLZ:
746  case ISD::CTPOP: {
747    MVT::ValueType VT = Op.getValueType();
748    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
749    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
750    KnownOne  = 0;
751    break;
752  }
753  case ISD::LOAD: {
754    if (ISD::isZEXTLoad(Op.Val)) {
755      LoadSDNode *LD = cast<LoadSDNode>(Op);
756      MVT::ValueType VT = LD->getLoadedVT();
757      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
758    }
759    break;
760  }
761  case ISD::ZERO_EXTEND: {
762    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
763
764    // If none of the top bits are demanded, convert this into an any_extend.
765    uint64_t NewBits = (~InMask) & DemandedMask;
766    if (NewBits == 0)
767      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
768                                               Op.getValueType(),
769                                               Op.getOperand(0)));
770
771    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
772                             KnownZero, KnownOne, TLO, Depth+1))
773      return true;
774    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
775    KnownZero |= NewBits;
776    break;
777  }
778  case ISD::SIGN_EXTEND: {
779    MVT::ValueType InVT = Op.getOperand(0).getValueType();
780    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
781    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
782    uint64_t NewBits   = (~InMask) & DemandedMask;
783
784    // If none of the top bits are demanded, convert this into an any_extend.
785    if (NewBits == 0)
786      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
787                                           Op.getOperand(0)));
788
789    // Since some of the sign extended bits are demanded, we know that the sign
790    // bit is demanded.
791    uint64_t InDemandedBits = DemandedMask & InMask;
792    InDemandedBits |= InSignBit;
793
794    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
795                             KnownOne, TLO, Depth+1))
796      return true;
797
798    // If the sign bit is known zero, convert this to a zero extend.
799    if (KnownZero & InSignBit)
800      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
801                                               Op.getValueType(),
802                                               Op.getOperand(0)));
803
804    // If the sign bit is known one, the top bits match.
805    if (KnownOne & InSignBit) {
806      KnownOne  |= NewBits;
807      KnownZero &= ~NewBits;
808    } else {   // Otherwise, top bits aren't known.
809      KnownOne  &= ~NewBits;
810      KnownZero &= ~NewBits;
811    }
812    break;
813  }
814  case ISD::ANY_EXTEND: {
815    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
816    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
817                             KnownZero, KnownOne, TLO, Depth+1))
818      return true;
819    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
820    break;
821  }
822  case ISD::TRUNCATE: {
823    // Simplify the input, using demanded bit information, and compute the known
824    // zero/one bits live out.
825    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
826                             KnownZero, KnownOne, TLO, Depth+1))
827      return true;
828
829    // If the input is only used by this truncate, see if we can shrink it based
830    // on the known demanded bits.
831    if (Op.getOperand(0).Val->hasOneUse()) {
832      SDOperand In = Op.getOperand(0);
833      switch (In.getOpcode()) {
834      default: break;
835      case ISD::SRL:
836        // Shrink SRL by a constant if none of the high bits shifted in are
837        // demanded.
838        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
839          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
840          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
841          HighBits >>= ShAmt->getValue();
842
843          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
844              (DemandedMask & HighBits) == 0) {
845            // None of the shifted in bits are needed.  Add a truncate of the
846            // shift input, then shift it.
847            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
848                                                 Op.getValueType(),
849                                                 In.getOperand(0));
850            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
851                                                   NewTrunc, In.getOperand(1)));
852          }
853        }
854        break;
855      }
856    }
857
858    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
859    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
860    KnownZero &= OutMask;
861    KnownOne &= OutMask;
862    break;
863  }
864  case ISD::AssertZext: {
865    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
866    uint64_t InMask = MVT::getIntVTBitMask(VT);
867    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
868                             KnownZero, KnownOne, TLO, Depth+1))
869      return true;
870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
871    KnownZero |= ~InMask & DemandedMask;
872    break;
873  }
874  case ISD::ADD:
875  case ISD::SUB:
876  case ISD::INTRINSIC_WO_CHAIN:
877  case ISD::INTRINSIC_W_CHAIN:
878  case ISD::INTRINSIC_VOID:
879    // Just use ComputeMaskedBits to compute output bits.
880    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
881    break;
882  }
883
884  // If we know the value of all of the demanded bits, return this as a
885  // constant.
886  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
887    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
888
889  return false;
890}
891
892/// computeMaskedBitsForTargetNode - Determine which of the bits specified
893/// in Mask are known to be either zero or one and return them in the
894/// KnownZero/KnownOne bitsets.
895void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
896                                                    uint64_t Mask,
897                                                    uint64_t &KnownZero,
898                                                    uint64_t &KnownOne,
899                                                    const SelectionDAG &DAG,
900                                                    unsigned Depth) const {
901  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
902          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
903          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
904          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
905         "Should use MaskedValueIsZero if you don't know whether Op"
906         " is a target node!");
907  KnownZero = 0;
908  KnownOne = 0;
909}
910
911/// ComputeNumSignBitsForTargetNode - This method can be implemented by
912/// targets that want to expose additional information about sign bits to the
913/// DAG Combiner.
914unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
915                                                         unsigned Depth) const {
916  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
917          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
918          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
919          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
920         "Should use ComputeNumSignBits if you don't know whether Op"
921         " is a target node!");
922  return 1;
923}
924
925
926/// SimplifySetCC - Try to simplify a setcc built with the specified operands
927/// and cc. If it is unable to simplify it, return a null SDOperand.
928SDOperand
929TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
930                              ISD::CondCode Cond, bool foldBooleans,
931                              DAGCombinerInfo &DCI) const {
932  SelectionDAG &DAG = DCI.DAG;
933
934  // These setcc operations always fold.
935  switch (Cond) {
936  default: break;
937  case ISD::SETFALSE:
938  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
939  case ISD::SETTRUE:
940  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
941  }
942
943  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
944    uint64_t C1 = N1C->getValue();
945    if (isa<ConstantSDNode>(N0.Val)) {
946      return DAG.FoldSetCC(VT, N0, N1, Cond);
947    } else {
948      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
949      // equality comparison, then we're just comparing whether X itself is
950      // zero.
951      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
952          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
953          N0.getOperand(1).getOpcode() == ISD::Constant) {
954        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
955        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
956            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
957          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
958            // (srl (ctlz x), 5) == 0  -> X != 0
959            // (srl (ctlz x), 5) != 1  -> X != 0
960            Cond = ISD::SETNE;
961          } else {
962            // (srl (ctlz x), 5) != 0  -> X == 0
963            // (srl (ctlz x), 5) == 1  -> X == 0
964            Cond = ISD::SETEQ;
965          }
966          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
967          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
968                              Zero, Cond);
969        }
970      }
971
972      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
973      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
974        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
975
976        // If the comparison constant has bits in the upper part, the
977        // zero-extended value could never match.
978        if (C1 & (~0ULL << InSize)) {
979          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
980          switch (Cond) {
981          case ISD::SETUGT:
982          case ISD::SETUGE:
983          case ISD::SETEQ: return DAG.getConstant(0, VT);
984          case ISD::SETULT:
985          case ISD::SETULE:
986          case ISD::SETNE: return DAG.getConstant(1, VT);
987          case ISD::SETGT:
988          case ISD::SETGE:
989            // True if the sign bit of C1 is set.
990            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
991          case ISD::SETLT:
992          case ISD::SETLE:
993            // True if the sign bit of C1 isn't set.
994            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
995          default:
996            break;
997          }
998        }
999
1000        // Otherwise, we can perform the comparison with the low bits.
1001        switch (Cond) {
1002        case ISD::SETEQ:
1003        case ISD::SETNE:
1004        case ISD::SETUGT:
1005        case ISD::SETUGE:
1006        case ISD::SETULT:
1007        case ISD::SETULE:
1008          return DAG.getSetCC(VT, N0.getOperand(0),
1009                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1010                          Cond);
1011        default:
1012          break;   // todo, be more careful with signed comparisons
1013        }
1014      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1015                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1016        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1017        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1018        MVT::ValueType ExtDstTy = N0.getValueType();
1019        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1020
1021        // If the extended part has any inconsistent bits, it cannot ever
1022        // compare equal.  In other words, they have to be all ones or all
1023        // zeros.
1024        uint64_t ExtBits =
1025          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1026        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1027          return DAG.getConstant(Cond == ISD::SETNE, VT);
1028
1029        SDOperand ZextOp;
1030        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1031        if (Op0Ty == ExtSrcTy) {
1032          ZextOp = N0.getOperand(0);
1033        } else {
1034          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1035          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1036                               DAG.getConstant(Imm, Op0Ty));
1037        }
1038        if (!DCI.isCalledByLegalizer())
1039          DCI.AddToWorklist(ZextOp.Val);
1040        // Otherwise, make this a use of a zext.
1041        return DAG.getSetCC(VT, ZextOp,
1042                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1043                                            ExtDstTy),
1044                            Cond);
1045      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1046                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1047
1048        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1049        if (N0.getOpcode() == ISD::SETCC) {
1050          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1051          if (TrueWhenTrue)
1052            return N0;
1053
1054          // Invert the condition.
1055          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1056          CC = ISD::getSetCCInverse(CC,
1057                               MVT::isInteger(N0.getOperand(0).getValueType()));
1058          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1059        }
1060
1061        if ((N0.getOpcode() == ISD::XOR ||
1062             (N0.getOpcode() == ISD::AND &&
1063              N0.getOperand(0).getOpcode() == ISD::XOR &&
1064              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1065            isa<ConstantSDNode>(N0.getOperand(1)) &&
1066            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1067          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1068          // can only do this if the top bits are known zero.
1069          if (DAG.MaskedValueIsZero(N0,
1070                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1071            // Okay, get the un-inverted input value.
1072            SDOperand Val;
1073            if (N0.getOpcode() == ISD::XOR)
1074              Val = N0.getOperand(0);
1075            else {
1076              assert(N0.getOpcode() == ISD::AND &&
1077                     N0.getOperand(0).getOpcode() == ISD::XOR);
1078              // ((X^1)&1)^1 -> X & 1
1079              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1080                                N0.getOperand(0).getOperand(0),
1081                                N0.getOperand(1));
1082            }
1083            return DAG.getSetCC(VT, Val, N1,
1084                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1085          }
1086        }
1087      }
1088
1089      uint64_t MinVal, MaxVal;
1090      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1091      if (ISD::isSignedIntSetCC(Cond)) {
1092        MinVal = 1ULL << (OperandBitSize-1);
1093        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1094          MaxVal = ~0ULL >> (65-OperandBitSize);
1095        else
1096          MaxVal = 0;
1097      } else {
1098        MinVal = 0;
1099        MaxVal = ~0ULL >> (64-OperandBitSize);
1100      }
1101
1102      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1103      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1104        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1105        --C1;                                          // X >= C0 --> X > (C0-1)
1106        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1107                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1108      }
1109
1110      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1111        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1112        ++C1;                                          // X <= C0 --> X < (C0+1)
1113        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1114                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1115      }
1116
1117      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1118        return DAG.getConstant(0, VT);      // X < MIN --> false
1119      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1120        return DAG.getConstant(1, VT);      // X >= MIN --> true
1121      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1122        return DAG.getConstant(0, VT);      // X > MAX --> false
1123      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1124        return DAG.getConstant(1, VT);      // X <= MAX --> true
1125
1126      // Canonicalize setgt X, Min --> setne X, Min
1127      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1128        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1129      // Canonicalize setlt X, Max --> setne X, Max
1130      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1131        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1132
1133      // If we have setult X, 1, turn it into seteq X, 0
1134      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1135        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1136                        ISD::SETEQ);
1137      // If we have setugt X, Max-1, turn it into seteq X, Max
1138      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1139        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1140                        ISD::SETEQ);
1141
1142      // If we have "setcc X, C0", check to see if we can shrink the immediate
1143      // by changing cc.
1144
1145      // SETUGT X, SINTMAX  -> SETLT X, 0
1146      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1147          C1 == (~0ULL >> (65-OperandBitSize)))
1148        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1149                            ISD::SETLT);
1150
1151      // FIXME: Implement the rest of these.
1152
1153      // Fold bit comparisons when we can.
1154      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1155          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1156        if (ConstantSDNode *AndRHS =
1157                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1158          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1159            // Perform the xform if the AND RHS is a single bit.
1160            if (isPowerOf2_64(AndRHS->getValue())) {
1161              return DAG.getNode(ISD::SRL, VT, N0,
1162                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1163                                             getShiftAmountTy()));
1164            }
1165          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1166            // (X & 8) == 8  -->  (X & 8) >> 3
1167            // Perform the xform if C1 is a single bit.
1168            if (isPowerOf2_64(C1)) {
1169              return DAG.getNode(ISD::SRL, VT, N0,
1170                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1171            }
1172          }
1173        }
1174    }
1175  } else if (isa<ConstantSDNode>(N0.Val)) {
1176      // Ensure that the constant occurs on the RHS.
1177    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1178  }
1179
1180  if (isa<ConstantFPSDNode>(N0.Val)) {
1181    // Constant fold or commute setcc.
1182    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1183    if (O.Val) return O;
1184  }
1185
1186  if (N0 == N1) {
1187    // We can always fold X == X for integer setcc's.
1188    if (MVT::isInteger(N0.getValueType()))
1189      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1190    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1191    if (UOF == 2)   // FP operators that are undefined on NaNs.
1192      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1193    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1194      return DAG.getConstant(UOF, VT);
1195    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1196    // if it is not already.
1197    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1198    if (NewCond != Cond)
1199      return DAG.getSetCC(VT, N0, N1, NewCond);
1200  }
1201
1202  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1203      MVT::isInteger(N0.getValueType())) {
1204    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1205        N0.getOpcode() == ISD::XOR) {
1206      // Simplify (X+Y) == (X+Z) -->  Y == Z
1207      if (N0.getOpcode() == N1.getOpcode()) {
1208        if (N0.getOperand(0) == N1.getOperand(0))
1209          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1210        if (N0.getOperand(1) == N1.getOperand(1))
1211          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1212        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1213          // If X op Y == Y op X, try other combinations.
1214          if (N0.getOperand(0) == N1.getOperand(1))
1215            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1216          if (N0.getOperand(1) == N1.getOperand(0))
1217            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1218        }
1219      }
1220
1221      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1222        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1223          // Turn (X+C1) == C2 --> X == C2-C1
1224          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1225            return DAG.getSetCC(VT, N0.getOperand(0),
1226                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1227                                N0.getValueType()), Cond);
1228          }
1229
1230          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1231          if (N0.getOpcode() == ISD::XOR)
1232            // If we know that all of the inverted bits are zero, don't bother
1233            // performing the inversion.
1234            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1235              return DAG.getSetCC(VT, N0.getOperand(0),
1236                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1237                                              N0.getValueType()), Cond);
1238        }
1239
1240        // Turn (C1-X) == C2 --> X == C1-C2
1241        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1242          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1243            return DAG.getSetCC(VT, N0.getOperand(1),
1244                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1245                                             N0.getValueType()), Cond);
1246          }
1247        }
1248      }
1249
1250      // Simplify (X+Z) == X -->  Z == 0
1251      if (N0.getOperand(0) == N1)
1252        return DAG.getSetCC(VT, N0.getOperand(1),
1253                        DAG.getConstant(0, N0.getValueType()), Cond);
1254      if (N0.getOperand(1) == N1) {
1255        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1256          return DAG.getSetCC(VT, N0.getOperand(0),
1257                          DAG.getConstant(0, N0.getValueType()), Cond);
1258        else if (N0.Val->hasOneUse()) {
1259          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1260          // (Z-X) == X  --> Z == X<<1
1261          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1262                                     N1,
1263                                     DAG.getConstant(1, getShiftAmountTy()));
1264          if (!DCI.isCalledByLegalizer())
1265            DCI.AddToWorklist(SH.Val);
1266          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1267        }
1268      }
1269    }
1270
1271    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1272        N1.getOpcode() == ISD::XOR) {
1273      // Simplify  X == (X+Z) -->  Z == 0
1274      if (N1.getOperand(0) == N0) {
1275        return DAG.getSetCC(VT, N1.getOperand(1),
1276                        DAG.getConstant(0, N1.getValueType()), Cond);
1277      } else if (N1.getOperand(1) == N0) {
1278        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1279          return DAG.getSetCC(VT, N1.getOperand(0),
1280                          DAG.getConstant(0, N1.getValueType()), Cond);
1281        } else if (N1.Val->hasOneUse()) {
1282          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1283          // X == (Z-X)  --> X<<1 == Z
1284          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1285                                     DAG.getConstant(1, getShiftAmountTy()));
1286          if (!DCI.isCalledByLegalizer())
1287            DCI.AddToWorklist(SH.Val);
1288          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1289        }
1290      }
1291    }
1292  }
1293
1294  // Fold away ALL boolean setcc's.
1295  SDOperand Temp;
1296  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1297    switch (Cond) {
1298    default: assert(0 && "Unknown integer setcc!");
1299    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1300      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1301      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1302      if (!DCI.isCalledByLegalizer())
1303        DCI.AddToWorklist(Temp.Val);
1304      break;
1305    case ISD::SETNE:  // X != Y   -->  (X^Y)
1306      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1307      break;
1308    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1309    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1310      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1311      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1312      if (!DCI.isCalledByLegalizer())
1313        DCI.AddToWorklist(Temp.Val);
1314      break;
1315    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1316    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1317      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1318      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1319      if (!DCI.isCalledByLegalizer())
1320        DCI.AddToWorklist(Temp.Val);
1321      break;
1322    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1323    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1324      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1325      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1326      if (!DCI.isCalledByLegalizer())
1327        DCI.AddToWorklist(Temp.Val);
1328      break;
1329    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1330    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1331      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1332      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1333      break;
1334    }
1335    if (VT != MVT::i1) {
1336      if (!DCI.isCalledByLegalizer())
1337        DCI.AddToWorklist(N0.Val);
1338      // FIXME: If running after legalize, we probably can't do this.
1339      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1340    }
1341    return N0;
1342  }
1343
1344  // Could not fold it.
1345  return SDOperand();
1346}
1347
1348SDOperand TargetLowering::
1349PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1350  // Default implementation: no optimization.
1351  return SDOperand();
1352}
1353
1354//===----------------------------------------------------------------------===//
1355//  Inline Assembler Implementation Methods
1356//===----------------------------------------------------------------------===//
1357
1358TargetLowering::ConstraintType
1359TargetLowering::getConstraintType(const std::string &Constraint) const {
1360  // FIXME: lots more standard ones to handle.
1361  if (Constraint.size() == 1) {
1362    switch (Constraint[0]) {
1363    default: break;
1364    case 'r': return C_RegisterClass;
1365    case 'm':    // memory
1366    case 'o':    // offsetable
1367    case 'V':    // not offsetable
1368      return C_Memory;
1369    case 'i':    // Simple Integer or Relocatable Constant
1370    case 'n':    // Simple Integer
1371    case 's':    // Relocatable Constant
1372    case 'X':    // Allow ANY value.
1373    case 'I':    // Target registers.
1374    case 'J':
1375    case 'K':
1376    case 'L':
1377    case 'M':
1378    case 'N':
1379    case 'O':
1380    case 'P':
1381      return C_Other;
1382    }
1383  }
1384
1385  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1386      Constraint[Constraint.size()-1] == '}')
1387    return C_Register;
1388  return C_Unknown;
1389}
1390
1391/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1392/// vector.  If it is invalid, don't add anything to Ops.
1393void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1394                                                  char ConstraintLetter,
1395                                                  std::vector<SDOperand> &Ops,
1396                                                  SelectionDAG &DAG) {
1397  switch (ConstraintLetter) {
1398  default: break;
1399  case 'X':     // Allows any operand; labels (basic block) use this.
1400    if (Op.getOpcode() == ISD::BasicBlock) {
1401      Ops.push_back(Op);
1402      return;
1403    }
1404    // fall through
1405  case 'i':    // Simple Integer or Relocatable Constant
1406  case 'n':    // Simple Integer
1407  case 's': {  // Relocatable Constant
1408    // These operands are interested in values of the form (GV+C), where C may
1409    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1410    // is possible and fine if either GV or C are missing.
1411    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1412    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1413
1414    // If we have "(add GV, C)", pull out GV/C
1415    if (Op.getOpcode() == ISD::ADD) {
1416      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1417      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1418      if (C == 0 || GA == 0) {
1419        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1420        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1421      }
1422      if (C == 0 || GA == 0)
1423        C = 0, GA = 0;
1424    }
1425
1426    // If we find a valid operand, map to the TargetXXX version so that the
1427    // value itself doesn't get selected.
1428    if (GA) {   // Either &GV   or   &GV+C
1429      if (ConstraintLetter != 'n') {
1430        int64_t Offs = GA->getOffset();
1431        if (C) Offs += C->getValue();
1432        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1433                                                 Op.getValueType(), Offs));
1434        return;
1435      }
1436    }
1437    if (C) {   // just C, no GV.
1438      // Simple constants are not allowed for 's'.
1439      if (ConstraintLetter != 's') {
1440        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1441        return;
1442      }
1443    }
1444    break;
1445  }
1446  }
1447}
1448
1449std::vector<unsigned> TargetLowering::
1450getRegClassForInlineAsmConstraint(const std::string &Constraint,
1451                                  MVT::ValueType VT) const {
1452  return std::vector<unsigned>();
1453}
1454
1455
1456std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1457getRegForInlineAsmConstraint(const std::string &Constraint,
1458                             MVT::ValueType VT) const {
1459  if (Constraint[0] != '{')
1460    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1461  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1462
1463  // Remove the braces from around the name.
1464  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1465
1466  // Figure out which register class contains this reg.
1467  const MRegisterInfo *RI = TM.getRegisterInfo();
1468  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1469       E = RI->regclass_end(); RCI != E; ++RCI) {
1470    const TargetRegisterClass *RC = *RCI;
1471
1472    // If none of the the value types for this register class are valid, we
1473    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1474    bool isLegal = false;
1475    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1476         I != E; ++I) {
1477      if (isTypeLegal(*I)) {
1478        isLegal = true;
1479        break;
1480      }
1481    }
1482
1483    if (!isLegal) continue;
1484
1485    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1486         I != E; ++I) {
1487      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1488        return std::make_pair(*I, RC);
1489    }
1490  }
1491
1492  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1493}
1494
1495//===----------------------------------------------------------------------===//
1496//  Loop Strength Reduction hooks
1497//===----------------------------------------------------------------------===//
1498
1499/// isLegalAddressingMode - Return true if the addressing mode represented
1500/// by AM is legal for this target, for a load/store of the specified type.
1501bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1502                                           const Type *Ty) const {
1503  // The default implementation of this implements a conservative RISCy, r+r and
1504  // r+i addr mode.
1505
1506  // Allows a sign-extended 16-bit immediate field.
1507  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1508    return false;
1509
1510  // No global is ever allowed as a base.
1511  if (AM.BaseGV)
1512    return false;
1513
1514  // Only support r+r,
1515  switch (AM.Scale) {
1516  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1517    break;
1518  case 1:
1519    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1520      return false;
1521    // Otherwise we have r+r or r+i.
1522    break;
1523  case 2:
1524    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1525      return false;
1526    // Allow 2*r as r+r.
1527    break;
1528  }
1529
1530  return true;
1531}
1532
1533// Magic for divide replacement
1534
1535struct ms {
1536  int64_t m;  // magic number
1537  int64_t s;  // shift amount
1538};
1539
1540struct mu {
1541  uint64_t m; // magic number
1542  int64_t a;  // add indicator
1543  int64_t s;  // shift amount
1544};
1545
1546/// magic - calculate the magic numbers required to codegen an integer sdiv as
1547/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1548/// or -1.
1549static ms magic32(int32_t d) {
1550  int32_t p;
1551  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1552  const uint32_t two31 = 0x80000000U;
1553  struct ms mag;
1554
1555  ad = abs(d);
1556  t = two31 + ((uint32_t)d >> 31);
1557  anc = t - 1 - t%ad;   // absolute value of nc
1558  p = 31;               // initialize p
1559  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1560  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1561  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1562  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1563  do {
1564    p = p + 1;
1565    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1566    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1567    if (r1 >= anc) {  // must be unsigned comparison
1568      q1 = q1 + 1;
1569      r1 = r1 - anc;
1570    }
1571    q2 = 2*q2;        // update q2 = 2p/abs(d)
1572    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1573    if (r2 >= ad) {   // must be unsigned comparison
1574      q2 = q2 + 1;
1575      r2 = r2 - ad;
1576    }
1577    delta = ad - r2;
1578  } while (q1 < delta || (q1 == delta && r1 == 0));
1579
1580  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1581  if (d < 0) mag.m = -mag.m; // resulting magic number
1582  mag.s = p - 32;            // resulting shift
1583  return mag;
1584}
1585
1586/// magicu - calculate the magic numbers required to codegen an integer udiv as
1587/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1588static mu magicu32(uint32_t d) {
1589  int32_t p;
1590  uint32_t nc, delta, q1, r1, q2, r2;
1591  struct mu magu;
1592  magu.a = 0;               // initialize "add" indicator
1593  nc = - 1 - (-d)%d;
1594  p = 31;                   // initialize p
1595  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1596  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1597  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1598  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1599  do {
1600    p = p + 1;
1601    if (r1 >= nc - r1 ) {
1602      q1 = 2*q1 + 1;  // update q1
1603      r1 = 2*r1 - nc; // update r1
1604    }
1605    else {
1606      q1 = 2*q1; // update q1
1607      r1 = 2*r1; // update r1
1608    }
1609    if (r2 + 1 >= d - r2) {
1610      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1611      q2 = 2*q2 + 1;     // update q2
1612      r2 = 2*r2 + 1 - d; // update r2
1613    }
1614    else {
1615      if (q2 >= 0x80000000) magu.a = 1;
1616      q2 = 2*q2;     // update q2
1617      r2 = 2*r2 + 1; // update r2
1618    }
1619    delta = d - 1 - r2;
1620  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1621  magu.m = q2 + 1; // resulting magic number
1622  magu.s = p - 32;  // resulting shift
1623  return magu;
1624}
1625
1626/// magic - calculate the magic numbers required to codegen an integer sdiv as
1627/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1628/// or -1.
1629static ms magic64(int64_t d) {
1630  int64_t p;
1631  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1632  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1633  struct ms mag;
1634
1635  ad = d >= 0 ? d : -d;
1636  t = two63 + ((uint64_t)d >> 63);
1637  anc = t - 1 - t%ad;   // absolute value of nc
1638  p = 63;               // initialize p
1639  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1640  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1641  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1642  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1643  do {
1644    p = p + 1;
1645    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1646    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1647    if (r1 >= anc) {  // must be unsigned comparison
1648      q1 = q1 + 1;
1649      r1 = r1 - anc;
1650    }
1651    q2 = 2*q2;        // update q2 = 2p/abs(d)
1652    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1653    if (r2 >= ad) {   // must be unsigned comparison
1654      q2 = q2 + 1;
1655      r2 = r2 - ad;
1656    }
1657    delta = ad - r2;
1658  } while (q1 < delta || (q1 == delta && r1 == 0));
1659
1660  mag.m = q2 + 1;
1661  if (d < 0) mag.m = -mag.m; // resulting magic number
1662  mag.s = p - 64;            // resulting shift
1663  return mag;
1664}
1665
1666/// magicu - calculate the magic numbers required to codegen an integer udiv as
1667/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1668static mu magicu64(uint64_t d)
1669{
1670  int64_t p;
1671  uint64_t nc, delta, q1, r1, q2, r2;
1672  struct mu magu;
1673  magu.a = 0;               // initialize "add" indicator
1674  nc = - 1 - (-d)%d;
1675  p = 63;                   // initialize p
1676  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1677  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1678  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1679  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1680  do {
1681    p = p + 1;
1682    if (r1 >= nc - r1 ) {
1683      q1 = 2*q1 + 1;  // update q1
1684      r1 = 2*r1 - nc; // update r1
1685    }
1686    else {
1687      q1 = 2*q1; // update q1
1688      r1 = 2*r1; // update r1
1689    }
1690    if (r2 + 1 >= d - r2) {
1691      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1692      q2 = 2*q2 + 1;     // update q2
1693      r2 = 2*r2 + 1 - d; // update r2
1694    }
1695    else {
1696      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1697      q2 = 2*q2;     // update q2
1698      r2 = 2*r2 + 1; // update r2
1699    }
1700    delta = d - 1 - r2;
1701  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1702  magu.m = q2 + 1; // resulting magic number
1703  magu.s = p - 64;  // resulting shift
1704  return magu;
1705}
1706
1707/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1708/// return a DAG expression to select that will generate the same value by
1709/// multiplying by a magic number.  See:
1710/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1711SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1712                                    std::vector<SDNode*>* Created) const {
1713  MVT::ValueType VT = N->getValueType(0);
1714
1715  // Check to see if we can do this.
1716  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1717    return SDOperand();       // BuildSDIV only operates on i32 or i64
1718
1719  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1720  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1721
1722  // Multiply the numerator (operand 0) by the magic value
1723  SDOperand Q;
1724  if (isOperationLegal(ISD::MULHS, VT))
1725    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1726                    DAG.getConstant(magics.m, VT));
1727  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1728    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1729                              N->getOperand(0),
1730                              DAG.getConstant(magics.m, VT)).Val, 1);
1731  else
1732    return SDOperand();       // No mulhs or equvialent
1733  // If d > 0 and m < 0, add the numerator
1734  if (d > 0 && magics.m < 0) {
1735    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1736    if (Created)
1737      Created->push_back(Q.Val);
1738  }
1739  // If d < 0 and m > 0, subtract the numerator.
1740  if (d < 0 && magics.m > 0) {
1741    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1742    if (Created)
1743      Created->push_back(Q.Val);
1744  }
1745  // Shift right algebraic if shift value is nonzero
1746  if (magics.s > 0) {
1747    Q = DAG.getNode(ISD::SRA, VT, Q,
1748                    DAG.getConstant(magics.s, getShiftAmountTy()));
1749    if (Created)
1750      Created->push_back(Q.Val);
1751  }
1752  // Extract the sign bit and add it to the quotient
1753  SDOperand T =
1754    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1755                                                 getShiftAmountTy()));
1756  if (Created)
1757    Created->push_back(T.Val);
1758  return DAG.getNode(ISD::ADD, VT, Q, T);
1759}
1760
1761/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1762/// return a DAG expression to select that will generate the same value by
1763/// multiplying by a magic number.  See:
1764/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1765SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1766                                    std::vector<SDNode*>* Created) const {
1767  MVT::ValueType VT = N->getValueType(0);
1768
1769  // Check to see if we can do this.
1770  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1771    return SDOperand();       // BuildUDIV only operates on i32 or i64
1772
1773  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1774  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1775
1776  // Multiply the numerator (operand 0) by the magic value
1777  SDOperand Q;
1778  if (isOperationLegal(ISD::MULHU, VT))
1779    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1780                    DAG.getConstant(magics.m, VT));
1781  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1782    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1783                              N->getOperand(0),
1784                              DAG.getConstant(magics.m, VT)).Val, 1);
1785  else
1786    return SDOperand();       // No mulhu or equvialent
1787  if (Created)
1788    Created->push_back(Q.Val);
1789
1790  if (magics.a == 0) {
1791    return DAG.getNode(ISD::SRL, VT, Q,
1792                       DAG.getConstant(magics.s, getShiftAmountTy()));
1793  } else {
1794    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1795    if (Created)
1796      Created->push_back(NPQ.Val);
1797    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1798                      DAG.getConstant(1, getShiftAmountTy()));
1799    if (Created)
1800      Created->push_back(NPQ.Val);
1801    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1802    if (Created)
1803      Created->push_back(NPQ.Val);
1804    return DAG.getNode(ISD::SRL, VT, NPQ,
1805                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1806  }
1807}
1808