TargetLowering.cpp revision eb8146b5ee4b9b66d6294f62a5ed556e332018ab
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetMachine.h"
16#include "llvm/Target/MRegisterInfo.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/Support/MathExtras.h"
20using namespace llvm;
21
22TargetLowering::TargetLowering(TargetMachine &tm)
23  : TM(tm), TD(TM.getTargetData()) {
24  assert(ISD::BUILTIN_OP_END <= 128 &&
25         "Fixed size array in TargetLowering is not large enough!");
26  // All operations default to being supported.
27  memset(OpActions, 0, sizeof(OpActions));
28
29  IsLittleEndian = TD.isLittleEndian();
30  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
31  ShiftAmtHandling = Undefined;
32  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
33  maxStoresPerMemSet = maxStoresPerMemCpy = maxStoresPerMemMove = 8;
34  allowUnalignedMemoryAccesses = false;
35  UseUnderscoreSetJmpLongJmp = false;
36  IntDivIsCheap = false;
37  Pow2DivIsCheap = false;
38  StackPointerRegisterToSaveRestore = 0;
39  SchedPreferenceInfo = SchedulingForLatency;
40}
41
42TargetLowering::~TargetLowering() {}
43
44/// setValueTypeAction - Set the action for a particular value type.  This
45/// assumes an action has not already been set for this value type.
46static void SetValueTypeAction(MVT::ValueType VT,
47                               TargetLowering::LegalizeAction Action,
48                               TargetLowering &TLI,
49                               MVT::ValueType *TransformToType,
50                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
51  ValueTypeActions.setTypeAction(VT, Action);
52  if (Action == TargetLowering::Promote) {
53    MVT::ValueType PromoteTo;
54    if (VT == MVT::f32)
55      PromoteTo = MVT::f64;
56    else {
57      unsigned LargerReg = VT+1;
58      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
59        ++LargerReg;
60        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
61               "Nothing to promote to??");
62      }
63      PromoteTo = (MVT::ValueType)LargerReg;
64    }
65
66    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
67           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
68           "Can only promote from int->int or fp->fp!");
69    assert(VT < PromoteTo && "Must promote to a larger type!");
70    TransformToType[VT] = PromoteTo;
71  } else if (Action == TargetLowering::Expand) {
72    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
73           "Cannot expand this type: target must support SOME integer reg!");
74    // Expand to the next smaller integer type!
75    TransformToType[VT] = (MVT::ValueType)(VT-1);
76  }
77}
78
79
80/// computeRegisterProperties - Once all of the register classes are added,
81/// this allows us to compute derived properties we expose.
82void TargetLowering::computeRegisterProperties() {
83  assert(MVT::LAST_VALUETYPE <= 32 &&
84         "Too many value types for ValueTypeActions to hold!");
85
86  // Everything defaults to one.
87  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
88    NumElementsForVT[i] = 1;
89
90  // Find the largest integer register class.
91  unsigned LargestIntReg = MVT::i128;
92  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
93    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
94
95  // Every integer value type larger than this largest register takes twice as
96  // many registers to represent as the previous ValueType.
97  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
98  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
99    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
100
101  // Inspect all of the ValueType's possible, deciding how to process them.
102  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
103    // If we are expanding this type, expand it!
104    if (getNumElements((MVT::ValueType)IntReg) != 1)
105      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
106                         ValueTypeActions);
107    else if (!isTypeLegal((MVT::ValueType)IntReg))
108      // Otherwise, if we don't have native support, we must promote to a
109      // larger type.
110      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
111                         TransformToType, ValueTypeActions);
112    else
113      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
114
115  // If the target does not have native support for F32, promote it to F64.
116  if (!isTypeLegal(MVT::f32))
117    SetValueTypeAction(MVT::f32, Promote, *this,
118                       TransformToType, ValueTypeActions);
119  else
120    TransformToType[MVT::f32] = MVT::f32;
121
122  // Set MVT::Vector to always be Expanded
123  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
124                     ValueTypeActions);
125
126  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
127  TransformToType[MVT::f64] = MVT::f64;
128}
129
130const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
131  return NULL;
132}
133
134//===----------------------------------------------------------------------===//
135//  Optimization Methods
136//===----------------------------------------------------------------------===//
137
138/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a bit
139/// set operation such as a sign extend or or/xor with constant whose only
140/// use is Op.  If it returns true, the old node that sets bits which are
141/// not demanded is returned in Old, and its replacement node is returned in
142/// New, such that callers of DemandedBitsAreZero may call CombineTo on them if
143/// desired.
144bool TargetLowering::DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask,
145                                         SDOperand &Old, SDOperand &New,
146                                         SelectionDAG &DAG) const {
147  // If the operation has more than one use, we're not interested in it.
148  // Tracking down and checking all uses would be problematic and slow.
149  if (!Op.Val->hasOneUse())
150    return false;
151
152  switch (Op.getOpcode()) {
153  case ISD::AND:
154    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
155    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
156      uint64_t NewVal = Mask & AndRHS->getValue();
157      return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
158    }
159    break;
160  case ISD::SHL:
161    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
162    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
163      uint64_t NewVal = Mask >> ShAmt->getValue();
164      return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
165    }
166    break;
167  case ISD::SIGN_EXTEND_INREG: {
168    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
169    unsigned ExtendBits = MVT::getSizeInBits(EVT);
170    // If we're extending from something smaller than MVT::i64 and all of the
171    // sign extension bits are masked, return true and set New to be the
172    // first operand, since we no longer care what the high bits are.
173    if (ExtendBits < 64 && ((Mask & (~0ULL << ExtendBits)) == 0)) {
174      Old = Op;
175      New = Op.getOperand(0);
176      return true;
177    }
178    break;
179  }
180  case ISD::SRA:
181    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
182      unsigned OpBits = MVT::getSizeInBits(Op.getValueType());
183      unsigned SH = ShAmt->getValue();
184      if (SH && ((Mask & (~0ULL << (OpBits-SH))) == 0)) {
185        Old = Op;
186        New = DAG.getNode(ISD::SRL, Op.getValueType(), Op.getOperand(0),
187                          Op.getOperand(1));
188        return true;
189      }
190    }
191    break;
192  }
193  return false;
194}
195
196/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We use
197/// this predicate to simplify operations downstream.  Op and Mask are known to
198/// be the same type.
199bool TargetLowering::MaskedValueIsZero(const SDOperand &Op,
200                                       uint64_t Mask) const {
201  unsigned SrcBits;
202  if (Mask == 0) return true;
203
204  // If we know the result of a setcc has the top bits zero, use this info.
205  switch (Op.getOpcode()) {
206  case ISD::Constant:
207    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
208  case ISD::SETCC:
209    return ((Mask & 1) == 0) &&
210      getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
211  case ISD::ZEXTLOAD:
212    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
213    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
214  case ISD::ZERO_EXTEND:
215    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
216    return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
217  case ISD::ANY_EXTEND:
218    // If the mask only includes bits in the low part, recurse.
219    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
220    if (Mask >> SrcBits) return false;  // Use of unknown top bits.
221    return MaskedValueIsZero(Op.getOperand(0), Mask);
222  case ISD::AssertZext:
223    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
224    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
225  case ISD::AND:
226    // If either of the operands has zero bits, the result will too.
227    if (MaskedValueIsZero(Op.getOperand(1), Mask) ||
228        MaskedValueIsZero(Op.getOperand(0), Mask))
229      return true;
230    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
231    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
232      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask);
233    return false;
234  case ISD::OR:
235  case ISD::XOR:
236    return MaskedValueIsZero(Op.getOperand(0), Mask) &&
237           MaskedValueIsZero(Op.getOperand(1), Mask);
238  case ISD::SELECT:
239    return MaskedValueIsZero(Op.getOperand(1), Mask) &&
240           MaskedValueIsZero(Op.getOperand(2), Mask);
241  case ISD::SELECT_CC:
242    return MaskedValueIsZero(Op.getOperand(2), Mask) &&
243           MaskedValueIsZero(Op.getOperand(3), Mask);
244  case ISD::SRL:
245    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
246    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
247      uint64_t NewVal = Mask << ShAmt->getValue();
248      SrcBits = MVT::getSizeInBits(Op.getValueType());
249      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
250      return MaskedValueIsZero(Op.getOperand(0), NewVal);
251    }
252    return false;
253  case ISD::SHL:
254    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
255    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
256      uint64_t NewVal = Mask >> ShAmt->getValue();
257      return MaskedValueIsZero(Op.getOperand(0), NewVal);
258    }
259    return false;
260  case ISD::ADD:
261    // (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
262    if ((Mask&(Mask+1)) == 0) {  // All low bits
263      if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
264          MaskedValueIsZero(Op.getOperand(1), Mask))
265        return true;
266    }
267    break;
268  case ISD::SUB:
269    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
270      // We know that the top bits of C-X are clear if X contains less bits
271      // than C (i.e. no wrap-around can happen).  For example, 20-X is
272      // positive if we can prove that X is >= 0 and < 16.
273      unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0));
274      if ((CLHS->getValue() & (1 << (Bits-1))) == 0) {  // sign bit clear
275        unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
276        uint64_t MaskV = (1ULL << (63-NLZ))-1;
277        if (MaskedValueIsZero(Op.getOperand(1), ~MaskV)) {
278          // High bits are clear this value is known to be >= C.
279          unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
280          if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0)
281            return true;
282        }
283      }
284    }
285    break;
286  case ISD::CTTZ:
287  case ISD::CTLZ:
288  case ISD::CTPOP:
289    // Bit counting instructions can not set the high bits of the result
290    // register.  The max number of bits sets depends on the input.
291    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
292  default:
293    // Allow the target to implement this method for its nodes.
294    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
295      return isMaskedValueZeroForTargetNode(Op, Mask);
296    break;
297  }
298  return false;
299}
300
301bool TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op,
302                                                    uint64_t Mask) const {
303  assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
304         "Should use MaskedValueIsZero if you don't know whether Op"
305         " is a target node!");
306  return false;
307}
308
309//===----------------------------------------------------------------------===//
310//  Inline Assembler Implementation Methods
311//===----------------------------------------------------------------------===//
312
313TargetLowering::ConstraintType
314TargetLowering::getConstraintType(char ConstraintLetter) const {
315  // FIXME: lots more standard ones to handle.
316  switch (ConstraintLetter) {
317  default: return C_Unknown;
318  case 'r': return C_RegisterClass;
319  case 'i':    // Simple Integer or Relocatable Constant
320  case 'n':    // Simple Integer
321  case 's':    // Relocatable Constant
322  case 'I':    // Target registers.
323  case 'J':
324  case 'K':
325  case 'L':
326  case 'M':
327  case 'N':
328  case 'O':
329  case 'P':  return C_Other;
330  }
331}
332
333bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
334                                                 char ConstraintLetter) {
335  switch (ConstraintLetter) {
336  default: return false;
337  case 'i':    // Simple Integer or Relocatable Constant
338  case 'n':    // Simple Integer
339  case 's':    // Relocatable Constant
340    return true;   // FIXME: not right.
341  }
342}
343
344
345std::vector<unsigned> TargetLowering::
346getRegForInlineAsmConstraint(const std::string &Constraint) const {
347  // Not a physreg, must not be a register reference or something.
348  if (Constraint[0] != '{') return std::vector<unsigned>();
349  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
350
351  // Remove the braces from around the name.
352  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
353
354  // Scan to see if this constraint is a register name.
355  const MRegisterInfo *RI = TM.getRegisterInfo();
356  for (unsigned i = 1, e = RI->getNumRegs(); i != e; ++i) {
357    if (const char *Name = RI->get(i).Name)
358      if (StringsEqualNoCase(RegName, Name))
359        return std::vector<unsigned>(1, i);
360  }
361
362  // Unknown physreg.
363  return std::vector<unsigned>();
364}
365
366