TargetLowering.cpp revision ec880283b3682982c750c9b78f6a9b4777e21883
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden,
40  cl::desc("Allow promotion of integer vector element types"));
41
42namespace llvm {
43TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44  bool isLocal = GV->hasLocalLinkage();
45  bool isDeclaration = GV->isDeclaration();
46  // FIXME: what should we do for protected and internal visibility?
47  // For variables, is internal different from hidden?
48  bool isHidden = GV->hasHiddenVisibility();
49
50  if (reloc == Reloc::PIC_) {
51    if (isLocal || isHidden)
52      return TLSModel::LocalDynamic;
53    else
54      return TLSModel::GeneralDynamic;
55  } else {
56    if (!isDeclaration || isHidden)
57      return TLSModel::LocalExec;
58    else
59      return TLSModel::InitialExec;
60  }
61}
62}
63
64/// InitLibcallNames - Set default libcall names.
65///
66static void InitLibcallNames(const char **Names) {
67  Names[RTLIB::SHL_I16] = "__ashlhi3";
68  Names[RTLIB::SHL_I32] = "__ashlsi3";
69  Names[RTLIB::SHL_I64] = "__ashldi3";
70  Names[RTLIB::SHL_I128] = "__ashlti3";
71  Names[RTLIB::SRL_I16] = "__lshrhi3";
72  Names[RTLIB::SRL_I32] = "__lshrsi3";
73  Names[RTLIB::SRL_I64] = "__lshrdi3";
74  Names[RTLIB::SRL_I128] = "__lshrti3";
75  Names[RTLIB::SRA_I16] = "__ashrhi3";
76  Names[RTLIB::SRA_I32] = "__ashrsi3";
77  Names[RTLIB::SRA_I64] = "__ashrdi3";
78  Names[RTLIB::SRA_I128] = "__ashrti3";
79  Names[RTLIB::MUL_I8] = "__mulqi3";
80  Names[RTLIB::MUL_I16] = "__mulhi3";
81  Names[RTLIB::MUL_I32] = "__mulsi3";
82  Names[RTLIB::MUL_I64] = "__muldi3";
83  Names[RTLIB::MUL_I128] = "__multi3";
84  Names[RTLIB::SDIV_I8] = "__divqi3";
85  Names[RTLIB::SDIV_I16] = "__divhi3";
86  Names[RTLIB::SDIV_I32] = "__divsi3";
87  Names[RTLIB::SDIV_I64] = "__divdi3";
88  Names[RTLIB::SDIV_I128] = "__divti3";
89  Names[RTLIB::UDIV_I8] = "__udivqi3";
90  Names[RTLIB::UDIV_I16] = "__udivhi3";
91  Names[RTLIB::UDIV_I32] = "__udivsi3";
92  Names[RTLIB::UDIV_I64] = "__udivdi3";
93  Names[RTLIB::UDIV_I128] = "__udivti3";
94  Names[RTLIB::SREM_I8] = "__modqi3";
95  Names[RTLIB::SREM_I16] = "__modhi3";
96  Names[RTLIB::SREM_I32] = "__modsi3";
97  Names[RTLIB::SREM_I64] = "__moddi3";
98  Names[RTLIB::SREM_I128] = "__modti3";
99  Names[RTLIB::UREM_I8] = "__umodqi3";
100  Names[RTLIB::UREM_I16] = "__umodhi3";
101  Names[RTLIB::UREM_I32] = "__umodsi3";
102  Names[RTLIB::UREM_I64] = "__umoddi3";
103  Names[RTLIB::UREM_I128] = "__umodti3";
104
105  // These are generally not available.
106  Names[RTLIB::SDIVREM_I8] = 0;
107  Names[RTLIB::SDIVREM_I16] = 0;
108  Names[RTLIB::SDIVREM_I32] = 0;
109  Names[RTLIB::SDIVREM_I64] = 0;
110  Names[RTLIB::SDIVREM_I128] = 0;
111  Names[RTLIB::UDIVREM_I8] = 0;
112  Names[RTLIB::UDIVREM_I16] = 0;
113  Names[RTLIB::UDIVREM_I32] = 0;
114  Names[RTLIB::UDIVREM_I64] = 0;
115  Names[RTLIB::UDIVREM_I128] = 0;
116
117  Names[RTLIB::NEG_I32] = "__negsi2";
118  Names[RTLIB::NEG_I64] = "__negdi2";
119  Names[RTLIB::ADD_F32] = "__addsf3";
120  Names[RTLIB::ADD_F64] = "__adddf3";
121  Names[RTLIB::ADD_F80] = "__addxf3";
122  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
123  Names[RTLIB::SUB_F32] = "__subsf3";
124  Names[RTLIB::SUB_F64] = "__subdf3";
125  Names[RTLIB::SUB_F80] = "__subxf3";
126  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
127  Names[RTLIB::MUL_F32] = "__mulsf3";
128  Names[RTLIB::MUL_F64] = "__muldf3";
129  Names[RTLIB::MUL_F80] = "__mulxf3";
130  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
131  Names[RTLIB::DIV_F32] = "__divsf3";
132  Names[RTLIB::DIV_F64] = "__divdf3";
133  Names[RTLIB::DIV_F80] = "__divxf3";
134  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
135  Names[RTLIB::REM_F32] = "fmodf";
136  Names[RTLIB::REM_F64] = "fmod";
137  Names[RTLIB::REM_F80] = "fmodl";
138  Names[RTLIB::REM_PPCF128] = "fmodl";
139  Names[RTLIB::POWI_F32] = "__powisf2";
140  Names[RTLIB::POWI_F64] = "__powidf2";
141  Names[RTLIB::POWI_F80] = "__powixf2";
142  Names[RTLIB::POWI_PPCF128] = "__powitf2";
143  Names[RTLIB::SQRT_F32] = "sqrtf";
144  Names[RTLIB::SQRT_F64] = "sqrt";
145  Names[RTLIB::SQRT_F80] = "sqrtl";
146  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
147  Names[RTLIB::LOG_F32] = "logf";
148  Names[RTLIB::LOG_F64] = "log";
149  Names[RTLIB::LOG_F80] = "logl";
150  Names[RTLIB::LOG_PPCF128] = "logl";
151  Names[RTLIB::LOG2_F32] = "log2f";
152  Names[RTLIB::LOG2_F64] = "log2";
153  Names[RTLIB::LOG2_F80] = "log2l";
154  Names[RTLIB::LOG2_PPCF128] = "log2l";
155  Names[RTLIB::LOG10_F32] = "log10f";
156  Names[RTLIB::LOG10_F64] = "log10";
157  Names[RTLIB::LOG10_F80] = "log10l";
158  Names[RTLIB::LOG10_PPCF128] = "log10l";
159  Names[RTLIB::EXP_F32] = "expf";
160  Names[RTLIB::EXP_F64] = "exp";
161  Names[RTLIB::EXP_F80] = "expl";
162  Names[RTLIB::EXP_PPCF128] = "expl";
163  Names[RTLIB::EXP2_F32] = "exp2f";
164  Names[RTLIB::EXP2_F64] = "exp2";
165  Names[RTLIB::EXP2_F80] = "exp2l";
166  Names[RTLIB::EXP2_PPCF128] = "exp2l";
167  Names[RTLIB::SIN_F32] = "sinf";
168  Names[RTLIB::SIN_F64] = "sin";
169  Names[RTLIB::SIN_F80] = "sinl";
170  Names[RTLIB::SIN_PPCF128] = "sinl";
171  Names[RTLIB::COS_F32] = "cosf";
172  Names[RTLIB::COS_F64] = "cos";
173  Names[RTLIB::COS_F80] = "cosl";
174  Names[RTLIB::COS_PPCF128] = "cosl";
175  Names[RTLIB::POW_F32] = "powf";
176  Names[RTLIB::POW_F64] = "pow";
177  Names[RTLIB::POW_F80] = "powl";
178  Names[RTLIB::POW_PPCF128] = "powl";
179  Names[RTLIB::CEIL_F32] = "ceilf";
180  Names[RTLIB::CEIL_F64] = "ceil";
181  Names[RTLIB::CEIL_F80] = "ceill";
182  Names[RTLIB::CEIL_PPCF128] = "ceill";
183  Names[RTLIB::TRUNC_F32] = "truncf";
184  Names[RTLIB::TRUNC_F64] = "trunc";
185  Names[RTLIB::TRUNC_F80] = "truncl";
186  Names[RTLIB::TRUNC_PPCF128] = "truncl";
187  Names[RTLIB::RINT_F32] = "rintf";
188  Names[RTLIB::RINT_F64] = "rint";
189  Names[RTLIB::RINT_F80] = "rintl";
190  Names[RTLIB::RINT_PPCF128] = "rintl";
191  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
192  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
193  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
194  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
195  Names[RTLIB::FLOOR_F32] = "floorf";
196  Names[RTLIB::FLOOR_F64] = "floor";
197  Names[RTLIB::FLOOR_F80] = "floorl";
198  Names[RTLIB::FLOOR_PPCF128] = "floorl";
199  Names[RTLIB::COPYSIGN_F32] = "copysignf";
200  Names[RTLIB::COPYSIGN_F64] = "copysign";
201  Names[RTLIB::COPYSIGN_F80] = "copysignl";
202  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
203  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
204  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
205  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
206  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
207  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
208  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
209  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
210  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
211  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
212  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
213  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
214  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
215  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
216  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
217  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
218  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
219  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
220  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
221  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
222  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
223  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
224  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
225  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
226  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
227  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
228  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
229  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
230  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
231  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
232  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
233  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
234  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
235  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
236  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
237  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
238  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
239  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
240  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
241  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
242  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
243  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
244  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
245  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
246  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
247  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
248  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
249  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
250  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
251  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
252  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
253  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
254  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
255  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
256  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
257  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
258  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
259  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
260  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
261  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
262  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
263  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
264  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
265  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
266  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
267  Names[RTLIB::OEQ_F32] = "__eqsf2";
268  Names[RTLIB::OEQ_F64] = "__eqdf2";
269  Names[RTLIB::UNE_F32] = "__nesf2";
270  Names[RTLIB::UNE_F64] = "__nedf2";
271  Names[RTLIB::OGE_F32] = "__gesf2";
272  Names[RTLIB::OGE_F64] = "__gedf2";
273  Names[RTLIB::OLT_F32] = "__ltsf2";
274  Names[RTLIB::OLT_F64] = "__ltdf2";
275  Names[RTLIB::OLE_F32] = "__lesf2";
276  Names[RTLIB::OLE_F64] = "__ledf2";
277  Names[RTLIB::OGT_F32] = "__gtsf2";
278  Names[RTLIB::OGT_F64] = "__gtdf2";
279  Names[RTLIB::UO_F32] = "__unordsf2";
280  Names[RTLIB::UO_F64] = "__unorddf2";
281  Names[RTLIB::O_F32] = "__unordsf2";
282  Names[RTLIB::O_F64] = "__unorddf2";
283  Names[RTLIB::MEMCPY] = "memcpy";
284  Names[RTLIB::MEMMOVE] = "memmove";
285  Names[RTLIB::MEMSET] = "memset";
286  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
287  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
288  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
289  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
290  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
291  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
292  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
293  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
294  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
295  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
296  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
297  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
298  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
299  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
300  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
301  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
302  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
303  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
304  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
305  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
306  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
307  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
308  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
309  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
310  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
311  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
312  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
313  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
314  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
315  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
316  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
317  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
318  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
319}
320
321/// InitLibcallCallingConvs - Set default libcall CallingConvs.
322///
323static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
324  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
325    CCs[i] = CallingConv::C;
326  }
327}
328
329/// getFPEXT - Return the FPEXT_*_* value for the given types, or
330/// UNKNOWN_LIBCALL if there is none.
331RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
332  if (OpVT == MVT::f32) {
333    if (RetVT == MVT::f64)
334      return FPEXT_F32_F64;
335  }
336
337  return UNKNOWN_LIBCALL;
338}
339
340/// getFPROUND - Return the FPROUND_*_* value for the given types, or
341/// UNKNOWN_LIBCALL if there is none.
342RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
343  if (RetVT == MVT::f32) {
344    if (OpVT == MVT::f64)
345      return FPROUND_F64_F32;
346    if (OpVT == MVT::f80)
347      return FPROUND_F80_F32;
348    if (OpVT == MVT::ppcf128)
349      return FPROUND_PPCF128_F32;
350  } else if (RetVT == MVT::f64) {
351    if (OpVT == MVT::f80)
352      return FPROUND_F80_F64;
353    if (OpVT == MVT::ppcf128)
354      return FPROUND_PPCF128_F64;
355  }
356
357  return UNKNOWN_LIBCALL;
358}
359
360/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
361/// UNKNOWN_LIBCALL if there is none.
362RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
363  if (OpVT == MVT::f32) {
364    if (RetVT == MVT::i8)
365      return FPTOSINT_F32_I8;
366    if (RetVT == MVT::i16)
367      return FPTOSINT_F32_I16;
368    if (RetVT == MVT::i32)
369      return FPTOSINT_F32_I32;
370    if (RetVT == MVT::i64)
371      return FPTOSINT_F32_I64;
372    if (RetVT == MVT::i128)
373      return FPTOSINT_F32_I128;
374  } else if (OpVT == MVT::f64) {
375    if (RetVT == MVT::i8)
376      return FPTOSINT_F64_I8;
377    if (RetVT == MVT::i16)
378      return FPTOSINT_F64_I16;
379    if (RetVT == MVT::i32)
380      return FPTOSINT_F64_I32;
381    if (RetVT == MVT::i64)
382      return FPTOSINT_F64_I64;
383    if (RetVT == MVT::i128)
384      return FPTOSINT_F64_I128;
385  } else if (OpVT == MVT::f80) {
386    if (RetVT == MVT::i32)
387      return FPTOSINT_F80_I32;
388    if (RetVT == MVT::i64)
389      return FPTOSINT_F80_I64;
390    if (RetVT == MVT::i128)
391      return FPTOSINT_F80_I128;
392  } else if (OpVT == MVT::ppcf128) {
393    if (RetVT == MVT::i32)
394      return FPTOSINT_PPCF128_I32;
395    if (RetVT == MVT::i64)
396      return FPTOSINT_PPCF128_I64;
397    if (RetVT == MVT::i128)
398      return FPTOSINT_PPCF128_I128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
404/// UNKNOWN_LIBCALL if there is none.
405RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
406  if (OpVT == MVT::f32) {
407    if (RetVT == MVT::i8)
408      return FPTOUINT_F32_I8;
409    if (RetVT == MVT::i16)
410      return FPTOUINT_F32_I16;
411    if (RetVT == MVT::i32)
412      return FPTOUINT_F32_I32;
413    if (RetVT == MVT::i64)
414      return FPTOUINT_F32_I64;
415    if (RetVT == MVT::i128)
416      return FPTOUINT_F32_I128;
417  } else if (OpVT == MVT::f64) {
418    if (RetVT == MVT::i8)
419      return FPTOUINT_F64_I8;
420    if (RetVT == MVT::i16)
421      return FPTOUINT_F64_I16;
422    if (RetVT == MVT::i32)
423      return FPTOUINT_F64_I32;
424    if (RetVT == MVT::i64)
425      return FPTOUINT_F64_I64;
426    if (RetVT == MVT::i128)
427      return FPTOUINT_F64_I128;
428  } else if (OpVT == MVT::f80) {
429    if (RetVT == MVT::i32)
430      return FPTOUINT_F80_I32;
431    if (RetVT == MVT::i64)
432      return FPTOUINT_F80_I64;
433    if (RetVT == MVT::i128)
434      return FPTOUINT_F80_I128;
435  } else if (OpVT == MVT::ppcf128) {
436    if (RetVT == MVT::i32)
437      return FPTOUINT_PPCF128_I32;
438    if (RetVT == MVT::i64)
439      return FPTOUINT_PPCF128_I64;
440    if (RetVT == MVT::i128)
441      return FPTOUINT_PPCF128_I128;
442  }
443  return UNKNOWN_LIBCALL;
444}
445
446/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
447/// UNKNOWN_LIBCALL if there is none.
448RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
449  if (OpVT == MVT::i32) {
450    if (RetVT == MVT::f32)
451      return SINTTOFP_I32_F32;
452    else if (RetVT == MVT::f64)
453      return SINTTOFP_I32_F64;
454    else if (RetVT == MVT::f80)
455      return SINTTOFP_I32_F80;
456    else if (RetVT == MVT::ppcf128)
457      return SINTTOFP_I32_PPCF128;
458  } else if (OpVT == MVT::i64) {
459    if (RetVT == MVT::f32)
460      return SINTTOFP_I64_F32;
461    else if (RetVT == MVT::f64)
462      return SINTTOFP_I64_F64;
463    else if (RetVT == MVT::f80)
464      return SINTTOFP_I64_F80;
465    else if (RetVT == MVT::ppcf128)
466      return SINTTOFP_I64_PPCF128;
467  } else if (OpVT == MVT::i128) {
468    if (RetVT == MVT::f32)
469      return SINTTOFP_I128_F32;
470    else if (RetVT == MVT::f64)
471      return SINTTOFP_I128_F64;
472    else if (RetVT == MVT::f80)
473      return SINTTOFP_I128_F80;
474    else if (RetVT == MVT::ppcf128)
475      return SINTTOFP_I128_PPCF128;
476  }
477  return UNKNOWN_LIBCALL;
478}
479
480/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
481/// UNKNOWN_LIBCALL if there is none.
482RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
483  if (OpVT == MVT::i32) {
484    if (RetVT == MVT::f32)
485      return UINTTOFP_I32_F32;
486    else if (RetVT == MVT::f64)
487      return UINTTOFP_I32_F64;
488    else if (RetVT == MVT::f80)
489      return UINTTOFP_I32_F80;
490    else if (RetVT == MVT::ppcf128)
491      return UINTTOFP_I32_PPCF128;
492  } else if (OpVT == MVT::i64) {
493    if (RetVT == MVT::f32)
494      return UINTTOFP_I64_F32;
495    else if (RetVT == MVT::f64)
496      return UINTTOFP_I64_F64;
497    else if (RetVT == MVT::f80)
498      return UINTTOFP_I64_F80;
499    else if (RetVT == MVT::ppcf128)
500      return UINTTOFP_I64_PPCF128;
501  } else if (OpVT == MVT::i128) {
502    if (RetVT == MVT::f32)
503      return UINTTOFP_I128_F32;
504    else if (RetVT == MVT::f64)
505      return UINTTOFP_I128_F64;
506    else if (RetVT == MVT::f80)
507      return UINTTOFP_I128_F80;
508    else if (RetVT == MVT::ppcf128)
509      return UINTTOFP_I128_PPCF128;
510  }
511  return UNKNOWN_LIBCALL;
512}
513
514/// InitCmpLibcallCCs - Set default comparison libcall CC.
515///
516static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
517  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
518  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
519  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
520  CCs[RTLIB::UNE_F32] = ISD::SETNE;
521  CCs[RTLIB::UNE_F64] = ISD::SETNE;
522  CCs[RTLIB::OGE_F32] = ISD::SETGE;
523  CCs[RTLIB::OGE_F64] = ISD::SETGE;
524  CCs[RTLIB::OLT_F32] = ISD::SETLT;
525  CCs[RTLIB::OLT_F64] = ISD::SETLT;
526  CCs[RTLIB::OLE_F32] = ISD::SETLE;
527  CCs[RTLIB::OLE_F64] = ISD::SETLE;
528  CCs[RTLIB::OGT_F32] = ISD::SETGT;
529  CCs[RTLIB::OGT_F64] = ISD::SETGT;
530  CCs[RTLIB::UO_F32] = ISD::SETNE;
531  CCs[RTLIB::UO_F64] = ISD::SETNE;
532  CCs[RTLIB::O_F32] = ISD::SETEQ;
533  CCs[RTLIB::O_F64] = ISD::SETEQ;
534}
535
536/// NOTE: The constructor takes ownership of TLOF.
537TargetLowering::TargetLowering(const TargetMachine &tm,
538                               const TargetLoweringObjectFile *tlof)
539  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
540  mayPromoteElements(AllowPromoteIntElem) {
541  // All operations default to being supported.
542  memset(OpActions, 0, sizeof(OpActions));
543  memset(LoadExtActions, 0, sizeof(LoadExtActions));
544  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
545  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
546  memset(CondCodeActions, 0, sizeof(CondCodeActions));
547
548  // Set default actions for various operations.
549  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
550    // Default all indexed load / store to expand.
551    for (unsigned IM = (unsigned)ISD::PRE_INC;
552         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
553      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
554      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
555    }
556
557    // These operations default to expand.
558    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
560  }
561
562  // Most targets ignore the @llvm.prefetch intrinsic.
563  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
564
565  // ConstantFP nodes default to expand.  Targets can either change this to
566  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
567  // to optimize expansions for certain constants.
568  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
569  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
570  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
571
572  // These library functions default to expand.
573  setOperationAction(ISD::FLOG , MVT::f64, Expand);
574  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
575  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
576  setOperationAction(ISD::FEXP , MVT::f64, Expand);
577  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
578  setOperationAction(ISD::FLOG , MVT::f32, Expand);
579  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
580  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
581  setOperationAction(ISD::FEXP , MVT::f32, Expand);
582  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
583
584  // Default ISD::TRAP to expand (which turns it into abort).
585  setOperationAction(ISD::TRAP, MVT::Other, Expand);
586
587  IsLittleEndian = TD->isLittleEndian();
588  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
589  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
590  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
591  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
592  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
593    = maxStoresPerMemmoveOptSize = 4;
594  benefitFromCodePlacementOpt = false;
595  UseUnderscoreSetJmp = false;
596  UseUnderscoreLongJmp = false;
597  SelectIsExpensive = false;
598  IntDivIsCheap = false;
599  Pow2DivIsCheap = false;
600  JumpIsExpensive = false;
601  StackPointerRegisterToSaveRestore = 0;
602  ExceptionPointerRegister = 0;
603  ExceptionSelectorRegister = 0;
604  BooleanContents = UndefinedBooleanContent;
605  SchedPreferenceInfo = Sched::Latency;
606  JumpBufSize = 0;
607  JumpBufAlignment = 0;
608  MinFunctionAlignment = 0;
609  PrefFunctionAlignment = 0;
610  PrefLoopAlignment = 0;
611  MinStackArgumentAlignment = 1;
612  ShouldFoldAtomicFences = false;
613
614  InitLibcallNames(LibcallRoutineNames);
615  InitCmpLibcallCCs(CmpLibcallCCs);
616  InitLibcallCallingConvs(LibcallCallingConvs);
617}
618
619TargetLowering::~TargetLowering() {
620  delete &TLOF;
621}
622
623MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
624  return MVT::getIntegerVT(8*TD->getPointerSize());
625}
626
627/// canOpTrap - Returns true if the operation can trap for the value type.
628/// VT must be a legal type.
629bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
630  assert(isTypeLegal(VT));
631  switch (Op) {
632  default:
633    return false;
634  case ISD::FDIV:
635  case ISD::FREM:
636  case ISD::SDIV:
637  case ISD::UDIV:
638  case ISD::SREM:
639  case ISD::UREM:
640    return true;
641  }
642}
643
644
645static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
646                                          unsigned &NumIntermediates,
647                                          EVT &RegisterVT,
648                                          TargetLowering *TLI) {
649  // Figure out the right, legal destination reg to copy into.
650  unsigned NumElts = VT.getVectorNumElements();
651  MVT EltTy = VT.getVectorElementType();
652
653  unsigned NumVectorRegs = 1;
654
655  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
656  // could break down into LHS/RHS like LegalizeDAG does.
657  if (!isPowerOf2_32(NumElts)) {
658    NumVectorRegs = NumElts;
659    NumElts = 1;
660  }
661
662  // Divide the input until we get to a supported size.  This will always
663  // end with a scalar if the target doesn't support vectors.
664  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
665    NumElts >>= 1;
666    NumVectorRegs <<= 1;
667  }
668
669  NumIntermediates = NumVectorRegs;
670
671  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
672  if (!TLI->isTypeLegal(NewVT))
673    NewVT = EltTy;
674  IntermediateVT = NewVT;
675
676  EVT DestVT = TLI->getRegisterType(NewVT);
677  RegisterVT = DestVT;
678  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
679    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
680
681  // Otherwise, promotion or legal types use the same number of registers as
682  // the vector decimated to the appropriate level.
683  return NumVectorRegs;
684}
685
686/// isLegalRC - Return true if the value types that can be represented by the
687/// specified register class are all legal.
688bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
689  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
690       I != E; ++I) {
691    if (isTypeLegal(*I))
692      return true;
693  }
694  return false;
695}
696
697/// hasLegalSuperRegRegClasses - Return true if the specified register class
698/// has one or more super-reg register classes that are legal.
699bool
700TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
701  if (*RC->superregclasses_begin() == 0)
702    return false;
703  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
704         E = RC->superregclasses_end(); I != E; ++I) {
705    const TargetRegisterClass *RRC = *I;
706    if (isLegalRC(RRC))
707      return true;
708  }
709  return false;
710}
711
712/// findRepresentativeClass - Return the largest legal super-reg register class
713/// of the register class for the specified type and its associated "cost".
714std::pair<const TargetRegisterClass*, uint8_t>
715TargetLowering::findRepresentativeClass(EVT VT) const {
716  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
717  if (!RC)
718    return std::make_pair(RC, 0);
719  const TargetRegisterClass *BestRC = RC;
720  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
721         E = RC->superregclasses_end(); I != E; ++I) {
722    const TargetRegisterClass *RRC = *I;
723    if (RRC->isASubClass() || !isLegalRC(RRC))
724      continue;
725    if (!hasLegalSuperRegRegClasses(RRC))
726      return std::make_pair(RRC, 1);
727    BestRC = RRC;
728  }
729  return std::make_pair(BestRC, 1);
730}
731
732
733/// computeRegisterProperties - Once all of the register classes are added,
734/// this allows us to compute derived properties we expose.
735void TargetLowering::computeRegisterProperties() {
736  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
737         "Too many value types for ValueTypeActions to hold!");
738
739  // Everything defaults to needing one register.
740  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
741    NumRegistersForVT[i] = 1;
742    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
743  }
744  // ...except isVoid, which doesn't need any registers.
745  NumRegistersForVT[MVT::isVoid] = 0;
746
747  // Find the largest integer register class.
748  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
749  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
750    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
751
752  // Every integer value type larger than this largest register takes twice as
753  // many registers to represent as the previous ValueType.
754  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
755    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
756    if (!ExpandedVT.isInteger())
757      break;
758    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
759    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
760    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
761    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
762  }
763
764  // Inspect all of the ValueType's smaller than the largest integer
765  // register to see which ones need promotion.
766  unsigned LegalIntReg = LargestIntReg;
767  for (unsigned IntReg = LargestIntReg - 1;
768       IntReg >= (unsigned)MVT::i1; --IntReg) {
769    EVT IVT = (MVT::SimpleValueType)IntReg;
770    if (isTypeLegal(IVT)) {
771      LegalIntReg = IntReg;
772    } else {
773      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
774        (MVT::SimpleValueType)LegalIntReg;
775      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
776    }
777  }
778
779  // ppcf128 type is really two f64's.
780  if (!isTypeLegal(MVT::ppcf128)) {
781    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
782    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
783    TransformToType[MVT::ppcf128] = MVT::f64;
784    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
785  }
786
787  // Decide how to handle f64. If the target does not have native f64 support,
788  // expand it to i64 and we will be generating soft float library calls.
789  if (!isTypeLegal(MVT::f64)) {
790    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
791    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
792    TransformToType[MVT::f64] = MVT::i64;
793    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
794  }
795
796  // Decide how to handle f32. If the target does not have native support for
797  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
798  if (!isTypeLegal(MVT::f32)) {
799    if (isTypeLegal(MVT::f64)) {
800      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
801      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
802      TransformToType[MVT::f32] = MVT::f64;
803      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
804    } else {
805      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
806      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
807      TransformToType[MVT::f32] = MVT::i32;
808      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
809    }
810  }
811
812  // Loop over all of the vector value types to see which need transformations.
813  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
814       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
815    MVT VT = (MVT::SimpleValueType)i;
816    if (isTypeLegal(VT)) continue;
817
818    // Determine if there is a legal wider type.  If so, we should promote to
819    // that wider vector type.
820    EVT EltVT = VT.getVectorElementType();
821    unsigned NElts = VT.getVectorNumElements();
822    if (NElts != 1) {
823      bool IsLegalWiderType = false;
824      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
825        EVT SVT = (MVT::SimpleValueType)nVT;
826
827        // If we allow the promotion of vector elements using a flag,
828        // then return TypePromoteInteger on vector elements.
829        if (mayPromoteElements) {
830          // Promote vectors of integers to vectors with the same number
831          // of elements, with a wider element type.
832          if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
833              && SVT.getVectorNumElements() == NElts &&
834              isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
835            TransformToType[i] = SVT;
836            RegisterTypeForVT[i] = SVT;
837            NumRegistersForVT[i] = 1;
838            ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
839            IsLegalWiderType = true;
840            break;
841          }
842        }
843
844        if (SVT.getVectorElementType() == EltVT &&
845            SVT.getVectorNumElements() > NElts &&
846            isTypeLegal(SVT)) {
847          TransformToType[i] = SVT;
848          RegisterTypeForVT[i] = SVT;
849          NumRegistersForVT[i] = 1;
850          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
851          IsLegalWiderType = true;
852          break;
853        }
854      }
855      if (IsLegalWiderType) continue;
856    }
857
858    MVT IntermediateVT;
859    EVT RegisterVT;
860    unsigned NumIntermediates;
861    NumRegistersForVT[i] =
862      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
863                                RegisterVT, this);
864    RegisterTypeForVT[i] = RegisterVT;
865
866    EVT NVT = VT.getPow2VectorType();
867    if (NVT == VT) {
868      // Type is already a power of 2.  The default action is to split.
869      TransformToType[i] = MVT::Other;
870      unsigned NumElts = VT.getVectorNumElements();
871      ValueTypeActions.setTypeAction(VT,
872            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
873    } else {
874      TransformToType[i] = NVT;
875      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
876    }
877  }
878
879  // Determine the 'representative' register class for each value type.
880  // An representative register class is the largest (meaning one which is
881  // not a sub-register class / subreg register class) legal register class for
882  // a group of value types. For example, on i386, i8, i16, and i32
883  // representative would be GR32; while on x86_64 it's GR64.
884  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
885    const TargetRegisterClass* RRC;
886    uint8_t Cost;
887    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
888    RepRegClassForVT[i] = RRC;
889    RepRegClassCostForVT[i] = Cost;
890  }
891}
892
893const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
894  return NULL;
895}
896
897
898MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
899  return PointerTy.SimpleTy;
900}
901
902MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
903  return MVT::i32; // return the default value
904}
905
906/// getVectorTypeBreakdown - Vector types are broken down into some number of
907/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
908/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
909/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
910///
911/// This method returns the number of registers needed, and the VT for each
912/// register.  It also returns the VT and quantity of the intermediate values
913/// before they are promoted/expanded.
914///
915unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
916                                                EVT &IntermediateVT,
917                                                unsigned &NumIntermediates,
918                                                EVT &RegisterVT) const {
919  unsigned NumElts = VT.getVectorNumElements();
920
921  // If there is a wider vector type with the same element type as this one,
922  // we should widen to that legal vector type.  This handles things like
923  // <2 x float> -> <4 x float>.
924  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
925    RegisterVT = getTypeToTransformTo(Context, VT);
926    if (isTypeLegal(RegisterVT)) {
927      IntermediateVT = RegisterVT;
928      NumIntermediates = 1;
929      return 1;
930    }
931  }
932
933  // Figure out the right, legal destination reg to copy into.
934  EVT EltTy = VT.getVectorElementType();
935
936  unsigned NumVectorRegs = 1;
937
938  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
939  // could break down into LHS/RHS like LegalizeDAG does.
940  if (!isPowerOf2_32(NumElts)) {
941    NumVectorRegs = NumElts;
942    NumElts = 1;
943  }
944
945  // Divide the input until we get to a supported size.  This will always
946  // end with a scalar if the target doesn't support vectors.
947  while (NumElts > 1 && !isTypeLegal(
948                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
949    NumElts >>= 1;
950    NumVectorRegs <<= 1;
951  }
952
953  NumIntermediates = NumVectorRegs;
954
955  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
956  if (!isTypeLegal(NewVT))
957    NewVT = EltTy;
958  IntermediateVT = NewVT;
959
960  EVT DestVT = getRegisterType(Context, NewVT);
961  RegisterVT = DestVT;
962  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
963    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
964
965  // Otherwise, promotion or legal types use the same number of registers as
966  // the vector decimated to the appropriate level.
967  return NumVectorRegs;
968}
969
970/// Get the EVTs and ArgFlags collections that represent the legalized return
971/// type of the given function.  This does not require a DAG or a return value,
972/// and is suitable for use before any DAGs for the function are constructed.
973/// TODO: Move this out of TargetLowering.cpp.
974void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
975                         SmallVectorImpl<ISD::OutputArg> &Outs,
976                         const TargetLowering &TLI,
977                         SmallVectorImpl<uint64_t> *Offsets) {
978  SmallVector<EVT, 4> ValueVTs;
979  ComputeValueVTs(TLI, ReturnType, ValueVTs);
980  unsigned NumValues = ValueVTs.size();
981  if (NumValues == 0) return;
982  unsigned Offset = 0;
983
984  for (unsigned j = 0, f = NumValues; j != f; ++j) {
985    EVT VT = ValueVTs[j];
986    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
987
988    if (attr & Attribute::SExt)
989      ExtendKind = ISD::SIGN_EXTEND;
990    else if (attr & Attribute::ZExt)
991      ExtendKind = ISD::ZERO_EXTEND;
992
993    // FIXME: C calling convention requires the return type to be promoted to
994    // at least 32-bit. But this is not necessary for non-C calling
995    // conventions. The frontend should mark functions whose return values
996    // require promoting with signext or zeroext attributes.
997    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
998      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
999      if (VT.bitsLT(MinVT))
1000        VT = MinVT;
1001    }
1002
1003    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1004    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1005    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1006                        PartVT.getTypeForEVT(ReturnType->getContext()));
1007
1008    // 'inreg' on function refers to return value
1009    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1010    if (attr & Attribute::InReg)
1011      Flags.setInReg();
1012
1013    // Propagate extension type if any
1014    if (attr & Attribute::SExt)
1015      Flags.setSExt();
1016    else if (attr & Attribute::ZExt)
1017      Flags.setZExt();
1018
1019    for (unsigned i = 0; i < NumParts; ++i) {
1020      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1021      if (Offsets) {
1022        Offsets->push_back(Offset);
1023        Offset += PartSize;
1024      }
1025    }
1026  }
1027}
1028
1029/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1030/// function arguments in the caller parameter area.  This is the actual
1031/// alignment, not its logarithm.
1032unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1033  return TD->getCallFrameTypeAlignment(Ty);
1034}
1035
1036/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1037/// current function.  The returned value is a member of the
1038/// MachineJumpTableInfo::JTEntryKind enum.
1039unsigned TargetLowering::getJumpTableEncoding() const {
1040  // In non-pic modes, just use the address of a block.
1041  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1042    return MachineJumpTableInfo::EK_BlockAddress;
1043
1044  // In PIC mode, if the target supports a GPRel32 directive, use it.
1045  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1046    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1047
1048  // Otherwise, use a label difference.
1049  return MachineJumpTableInfo::EK_LabelDifference32;
1050}
1051
1052SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1053                                                 SelectionDAG &DAG) const {
1054  // If our PIC model is GP relative, use the global offset table as the base.
1055  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1056    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1057  return Table;
1058}
1059
1060/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1061/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1062/// MCExpr.
1063const MCExpr *
1064TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1065                                             unsigned JTI,MCContext &Ctx) const{
1066  // The normal PIC reloc base is the label at the start of the jump table.
1067  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1068}
1069
1070bool
1071TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1072  // Assume that everything is safe in static mode.
1073  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1074    return true;
1075
1076  // In dynamic-no-pic mode, assume that known defined values are safe.
1077  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1078      GA &&
1079      !GA->getGlobal()->isDeclaration() &&
1080      !GA->getGlobal()->isWeakForLinker())
1081    return true;
1082
1083  // Otherwise assume nothing is safe.
1084  return false;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088//  Optimization Methods
1089//===----------------------------------------------------------------------===//
1090
1091/// ShrinkDemandedConstant - Check to see if the specified operand of the
1092/// specified instruction is a constant integer.  If so, check to see if there
1093/// are any bits set in the constant that are not demanded.  If so, shrink the
1094/// constant and return true.
1095bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1096                                                        const APInt &Demanded) {
1097  DebugLoc dl = Op.getDebugLoc();
1098
1099  // FIXME: ISD::SELECT, ISD::SELECT_CC
1100  switch (Op.getOpcode()) {
1101  default: break;
1102  case ISD::XOR:
1103  case ISD::AND:
1104  case ISD::OR: {
1105    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1106    if (!C) return false;
1107
1108    if (Op.getOpcode() == ISD::XOR &&
1109        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1110      return false;
1111
1112    // if we can expand it to have all bits set, do it
1113    if (C->getAPIntValue().intersects(~Demanded)) {
1114      EVT VT = Op.getValueType();
1115      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1116                                DAG.getConstant(Demanded &
1117                                                C->getAPIntValue(),
1118                                                VT));
1119      return CombineTo(Op, New);
1120    }
1121
1122    break;
1123  }
1124  }
1125
1126  return false;
1127}
1128
1129/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1130/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1131/// cast, but it could be generalized for targets with other types of
1132/// implicit widening casts.
1133bool
1134TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1135                                                    unsigned BitWidth,
1136                                                    const APInt &Demanded,
1137                                                    DebugLoc dl) {
1138  assert(Op.getNumOperands() == 2 &&
1139         "ShrinkDemandedOp only supports binary operators!");
1140  assert(Op.getNode()->getNumValues() == 1 &&
1141         "ShrinkDemandedOp only supports nodes with one result!");
1142
1143  // Don't do this if the node has another user, which may require the
1144  // full value.
1145  if (!Op.getNode()->hasOneUse())
1146    return false;
1147
1148  // Search for the smallest integer type with free casts to and from
1149  // Op's type. For expedience, just check power-of-2 integer types.
1150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1151  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1152  if (!isPowerOf2_32(SmallVTBits))
1153    SmallVTBits = NextPowerOf2(SmallVTBits);
1154  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1155    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1156    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1157        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1158      // We found a type with free casts.
1159      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1160                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1161                                          Op.getNode()->getOperand(0)),
1162                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1163                                          Op.getNode()->getOperand(1)));
1164      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1165      return CombineTo(Op, Z);
1166    }
1167  }
1168  return false;
1169}
1170
1171/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1172/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1173/// use this information to simplify Op, create a new simplified DAG node and
1174/// return true, returning the original and new nodes in Old and New. Otherwise,
1175/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1176/// the expression (used to simplify the caller).  The KnownZero/One bits may
1177/// only be accurate for those bits in the DemandedMask.
1178bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1179                                          const APInt &DemandedMask,
1180                                          APInt &KnownZero,
1181                                          APInt &KnownOne,
1182                                          TargetLoweringOpt &TLO,
1183                                          unsigned Depth) const {
1184  unsigned BitWidth = DemandedMask.getBitWidth();
1185  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1186         "Mask size mismatches value type size!");
1187  APInt NewMask = DemandedMask;
1188  DebugLoc dl = Op.getDebugLoc();
1189
1190  // Don't know anything.
1191  KnownZero = KnownOne = APInt(BitWidth, 0);
1192
1193  // Other users may use these bits.
1194  if (!Op.getNode()->hasOneUse()) {
1195    if (Depth != 0) {
1196      // If not at the root, Just compute the KnownZero/KnownOne bits to
1197      // simplify things downstream.
1198      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1199      return false;
1200    }
1201    // If this is the root being simplified, allow it to have multiple uses,
1202    // just set the NewMask to all bits.
1203    NewMask = APInt::getAllOnesValue(BitWidth);
1204  } else if (DemandedMask == 0) {
1205    // Not demanding any bits from Op.
1206    if (Op.getOpcode() != ISD::UNDEF)
1207      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1208    return false;
1209  } else if (Depth == 6) {        // Limit search depth.
1210    return false;
1211  }
1212
1213  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1214  switch (Op.getOpcode()) {
1215  case ISD::Constant:
1216    // We know all of the bits for a constant!
1217    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1218    KnownZero = ~KnownOne & NewMask;
1219    return false;   // Don't fall through, will infinitely loop.
1220  case ISD::AND:
1221    // If the RHS is a constant, check to see if the LHS would be zero without
1222    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1223    // simplify the LHS, here we're using information from the LHS to simplify
1224    // the RHS.
1225    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1226      APInt LHSZero, LHSOne;
1227      // Do not increment Depth here; that can cause an infinite loop.
1228      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1229                                LHSZero, LHSOne, Depth);
1230      // If the LHS already has zeros where RHSC does, this and is dead.
1231      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1232        return TLO.CombineTo(Op, Op.getOperand(0));
1233      // If any of the set bits in the RHS are known zero on the LHS, shrink
1234      // the constant.
1235      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1236        return true;
1237    }
1238
1239    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1240                             KnownOne, TLO, Depth+1))
1241      return true;
1242    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1244                             KnownZero2, KnownOne2, TLO, Depth+1))
1245      return true;
1246    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1247
1248    // If all of the demanded bits are known one on one side, return the other.
1249    // These bits cannot contribute to the result of the 'and'.
1250    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1251      return TLO.CombineTo(Op, Op.getOperand(0));
1252    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1253      return TLO.CombineTo(Op, Op.getOperand(1));
1254    // If all of the demanded bits in the inputs are known zeros, return zero.
1255    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1256      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1257    // If the RHS is a constant, see if we can simplify it.
1258    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1259      return true;
1260    // If the operation can be done in a smaller type, do so.
1261    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1262      return true;
1263
1264    // Output known-1 bits are only known if set in both the LHS & RHS.
1265    KnownOne &= KnownOne2;
1266    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1267    KnownZero |= KnownZero2;
1268    break;
1269  case ISD::OR:
1270    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1271                             KnownOne, TLO, Depth+1))
1272      return true;
1273    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1274    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1275                             KnownZero2, KnownOne2, TLO, Depth+1))
1276      return true;
1277    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1278
1279    // If all of the demanded bits are known zero on one side, return the other.
1280    // These bits cannot contribute to the result of the 'or'.
1281    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1282      return TLO.CombineTo(Op, Op.getOperand(0));
1283    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1284      return TLO.CombineTo(Op, Op.getOperand(1));
1285    // If all of the potentially set bits on one side are known to be set on
1286    // the other side, just use the 'other' side.
1287    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1288      return TLO.CombineTo(Op, Op.getOperand(0));
1289    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1290      return TLO.CombineTo(Op, Op.getOperand(1));
1291    // If the RHS is a constant, see if we can simplify it.
1292    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1293      return true;
1294    // If the operation can be done in a smaller type, do so.
1295    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1296      return true;
1297
1298    // Output known-0 bits are only known if clear in both the LHS & RHS.
1299    KnownZero &= KnownZero2;
1300    // Output known-1 are known to be set if set in either the LHS | RHS.
1301    KnownOne |= KnownOne2;
1302    break;
1303  case ISD::XOR:
1304    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1305                             KnownOne, TLO, Depth+1))
1306      return true;
1307    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1308    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1309                             KnownOne2, TLO, Depth+1))
1310      return true;
1311    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1312
1313    // If all of the demanded bits are known zero on one side, return the other.
1314    // These bits cannot contribute to the result of the 'xor'.
1315    if ((KnownZero & NewMask) == NewMask)
1316      return TLO.CombineTo(Op, Op.getOperand(0));
1317    if ((KnownZero2 & NewMask) == NewMask)
1318      return TLO.CombineTo(Op, Op.getOperand(1));
1319    // If the operation can be done in a smaller type, do so.
1320    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1321      return true;
1322
1323    // If all of the unknown bits are known to be zero on one side or the other
1324    // (but not both) turn this into an *inclusive* or.
1325    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1326    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1327      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1328                                               Op.getOperand(0),
1329                                               Op.getOperand(1)));
1330
1331    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1332    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1333    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1334    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1335
1336    // If all of the demanded bits on one side are known, and all of the set
1337    // bits on that side are also known to be set on the other side, turn this
1338    // into an AND, as we know the bits will be cleared.
1339    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1340    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1341      if ((KnownOne & KnownOne2) == KnownOne) {
1342        EVT VT = Op.getValueType();
1343        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1344        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1345                                                 Op.getOperand(0), ANDC));
1346      }
1347    }
1348
1349    // If the RHS is a constant, see if we can simplify it.
1350    // for XOR, we prefer to force bits to 1 if they will make a -1.
1351    // if we can't force bits, try to shrink constant
1352    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1353      APInt Expanded = C->getAPIntValue() | (~NewMask);
1354      // if we can expand it to have all bits set, do it
1355      if (Expanded.isAllOnesValue()) {
1356        if (Expanded != C->getAPIntValue()) {
1357          EVT VT = Op.getValueType();
1358          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1359                                          TLO.DAG.getConstant(Expanded, VT));
1360          return TLO.CombineTo(Op, New);
1361        }
1362        // if it already has all the bits set, nothing to change
1363        // but don't shrink either!
1364      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1365        return true;
1366      }
1367    }
1368
1369    KnownZero = KnownZeroOut;
1370    KnownOne  = KnownOneOut;
1371    break;
1372  case ISD::SELECT:
1373    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1374                             KnownOne, TLO, Depth+1))
1375      return true;
1376    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1377                             KnownOne2, TLO, Depth+1))
1378      return true;
1379    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1380    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1381
1382    // If the operands are constants, see if we can simplify them.
1383    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1384      return true;
1385
1386    // Only known if known in both the LHS and RHS.
1387    KnownOne &= KnownOne2;
1388    KnownZero &= KnownZero2;
1389    break;
1390  case ISD::SELECT_CC:
1391    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1392                             KnownOne, TLO, Depth+1))
1393      return true;
1394    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1395                             KnownOne2, TLO, Depth+1))
1396      return true;
1397    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1398    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1399
1400    // If the operands are constants, see if we can simplify them.
1401    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1402      return true;
1403
1404    // Only known if known in both the LHS and RHS.
1405    KnownOne &= KnownOne2;
1406    KnownZero &= KnownZero2;
1407    break;
1408  case ISD::SHL:
1409    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1410      unsigned ShAmt = SA->getZExtValue();
1411      SDValue InOp = Op.getOperand(0);
1412
1413      // If the shift count is an invalid immediate, don't do anything.
1414      if (ShAmt >= BitWidth)
1415        break;
1416
1417      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1418      // single shift.  We can do this if the bottom bits (which are shifted
1419      // out) are never demanded.
1420      if (InOp.getOpcode() == ISD::SRL &&
1421          isa<ConstantSDNode>(InOp.getOperand(1))) {
1422        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1423          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1424          unsigned Opc = ISD::SHL;
1425          int Diff = ShAmt-C1;
1426          if (Diff < 0) {
1427            Diff = -Diff;
1428            Opc = ISD::SRL;
1429          }
1430
1431          SDValue NewSA =
1432            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1433          EVT VT = Op.getValueType();
1434          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1435                                                   InOp.getOperand(0), NewSA));
1436        }
1437      }
1438
1439      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1440                               KnownZero, KnownOne, TLO, Depth+1))
1441        return true;
1442
1443      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1444      // are not demanded. This will likely allow the anyext to be folded away.
1445      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1446        SDValue InnerOp = InOp.getNode()->getOperand(0);
1447        EVT InnerVT = InnerOp.getValueType();
1448        if ((APInt::getHighBitsSet(BitWidth,
1449                                   BitWidth - InnerVT.getSizeInBits()) &
1450               DemandedMask) == 0 &&
1451            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1452          EVT ShTy = getShiftAmountTy(InnerVT);
1453          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1454            ShTy = InnerVT;
1455          SDValue NarrowShl =
1456            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1457                            TLO.DAG.getConstant(ShAmt, ShTy));
1458          return
1459            TLO.CombineTo(Op,
1460                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1461                                          NarrowShl));
1462        }
1463      }
1464
1465      KnownZero <<= SA->getZExtValue();
1466      KnownOne  <<= SA->getZExtValue();
1467      // low bits known zero.
1468      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1469    }
1470    break;
1471  case ISD::SRL:
1472    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1473      EVT VT = Op.getValueType();
1474      unsigned ShAmt = SA->getZExtValue();
1475      unsigned VTSize = VT.getSizeInBits();
1476      SDValue InOp = Op.getOperand(0);
1477
1478      // If the shift count is an invalid immediate, don't do anything.
1479      if (ShAmt >= BitWidth)
1480        break;
1481
1482      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1483      // single shift.  We can do this if the top bits (which are shifted out)
1484      // are never demanded.
1485      if (InOp.getOpcode() == ISD::SHL &&
1486          isa<ConstantSDNode>(InOp.getOperand(1))) {
1487        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1488          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1489          unsigned Opc = ISD::SRL;
1490          int Diff = ShAmt-C1;
1491          if (Diff < 0) {
1492            Diff = -Diff;
1493            Opc = ISD::SHL;
1494          }
1495
1496          SDValue NewSA =
1497            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1498          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1499                                                   InOp.getOperand(0), NewSA));
1500        }
1501      }
1502
1503      // Compute the new bits that are at the top now.
1504      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1505                               KnownZero, KnownOne, TLO, Depth+1))
1506        return true;
1507      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1508      KnownZero = KnownZero.lshr(ShAmt);
1509      KnownOne  = KnownOne.lshr(ShAmt);
1510
1511      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1512      KnownZero |= HighBits;  // High bits known zero.
1513    }
1514    break;
1515  case ISD::SRA:
1516    // If this is an arithmetic shift right and only the low-bit is set, we can
1517    // always convert this into a logical shr, even if the shift amount is
1518    // variable.  The low bit of the shift cannot be an input sign bit unless
1519    // the shift amount is >= the size of the datatype, which is undefined.
1520    if (DemandedMask == 1)
1521      return TLO.CombineTo(Op,
1522                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1523                                           Op.getOperand(0), Op.getOperand(1)));
1524
1525    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1526      EVT VT = Op.getValueType();
1527      unsigned ShAmt = SA->getZExtValue();
1528
1529      // If the shift count is an invalid immediate, don't do anything.
1530      if (ShAmt >= BitWidth)
1531        break;
1532
1533      APInt InDemandedMask = (NewMask << ShAmt);
1534
1535      // If any of the demanded bits are produced by the sign extension, we also
1536      // demand the input sign bit.
1537      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1538      if (HighBits.intersects(NewMask))
1539        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1540
1541      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1542                               KnownZero, KnownOne, TLO, Depth+1))
1543        return true;
1544      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1545      KnownZero = KnownZero.lshr(ShAmt);
1546      KnownOne  = KnownOne.lshr(ShAmt);
1547
1548      // Handle the sign bit, adjusted to where it is now in the mask.
1549      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1550
1551      // If the input sign bit is known to be zero, or if none of the top bits
1552      // are demanded, turn this into an unsigned shift right.
1553      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1554        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1555                                                 Op.getOperand(0),
1556                                                 Op.getOperand(1)));
1557      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1558        KnownOne |= HighBits;
1559      }
1560    }
1561    break;
1562  case ISD::SIGN_EXTEND_INREG: {
1563    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1564
1565    // Sign extension.  Compute the demanded bits in the result that are not
1566    // present in the input.
1567    APInt NewBits =
1568      APInt::getHighBitsSet(BitWidth,
1569                            BitWidth - EVT.getScalarType().getSizeInBits());
1570
1571    // If none of the extended bits are demanded, eliminate the sextinreg.
1572    if ((NewBits & NewMask) == 0)
1573      return TLO.CombineTo(Op, Op.getOperand(0));
1574
1575    APInt InSignBit =
1576      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1577    APInt InputDemandedBits =
1578      APInt::getLowBitsSet(BitWidth,
1579                           EVT.getScalarType().getSizeInBits()) &
1580      NewMask;
1581
1582    // Since the sign extended bits are demanded, we know that the sign
1583    // bit is demanded.
1584    InputDemandedBits |= InSignBit;
1585
1586    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1587                             KnownZero, KnownOne, TLO, Depth+1))
1588      return true;
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590
1591    // If the sign bit of the input is known set or clear, then we know the
1592    // top bits of the result.
1593
1594    // If the input sign bit is known zero, convert this into a zero extension.
1595    if (KnownZero.intersects(InSignBit))
1596      return TLO.CombineTo(Op,
1597                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1598
1599    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1600      KnownOne |= NewBits;
1601      KnownZero &= ~NewBits;
1602    } else {                       // Input sign bit unknown
1603      KnownZero &= ~NewBits;
1604      KnownOne &= ~NewBits;
1605    }
1606    break;
1607  }
1608  case ISD::ZERO_EXTEND: {
1609    unsigned OperandBitWidth =
1610      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1611    APInt InMask = NewMask.trunc(OperandBitWidth);
1612
1613    // If none of the top bits are demanded, convert this into an any_extend.
1614    APInt NewBits =
1615      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1616    if (!NewBits.intersects(NewMask))
1617      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1618                                               Op.getValueType(),
1619                                               Op.getOperand(0)));
1620
1621    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1622                             KnownZero, KnownOne, TLO, Depth+1))
1623      return true;
1624    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1625    KnownZero = KnownZero.zext(BitWidth);
1626    KnownOne = KnownOne.zext(BitWidth);
1627    KnownZero |= NewBits;
1628    break;
1629  }
1630  case ISD::SIGN_EXTEND: {
1631    EVT InVT = Op.getOperand(0).getValueType();
1632    unsigned InBits = InVT.getScalarType().getSizeInBits();
1633    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1634    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1635    APInt NewBits   = ~InMask & NewMask;
1636
1637    // If none of the top bits are demanded, convert this into an any_extend.
1638    if (NewBits == 0)
1639      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1640                                              Op.getValueType(),
1641                                              Op.getOperand(0)));
1642
1643    // Since some of the sign extended bits are demanded, we know that the sign
1644    // bit is demanded.
1645    APInt InDemandedBits = InMask & NewMask;
1646    InDemandedBits |= InSignBit;
1647    InDemandedBits = InDemandedBits.trunc(InBits);
1648
1649    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1650                             KnownOne, TLO, Depth+1))
1651      return true;
1652    KnownZero = KnownZero.zext(BitWidth);
1653    KnownOne = KnownOne.zext(BitWidth);
1654
1655    // If the sign bit is known zero, convert this to a zero extend.
1656    if (KnownZero.intersects(InSignBit))
1657      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1658                                               Op.getValueType(),
1659                                               Op.getOperand(0)));
1660
1661    // If the sign bit is known one, the top bits match.
1662    if (KnownOne.intersects(InSignBit)) {
1663      KnownOne  |= NewBits;
1664      KnownZero &= ~NewBits;
1665    } else {   // Otherwise, top bits aren't known.
1666      KnownOne  &= ~NewBits;
1667      KnownZero &= ~NewBits;
1668    }
1669    break;
1670  }
1671  case ISD::ANY_EXTEND: {
1672    unsigned OperandBitWidth =
1673      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1674    APInt InMask = NewMask.trunc(OperandBitWidth);
1675    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1676                             KnownZero, KnownOne, TLO, Depth+1))
1677      return true;
1678    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1679    KnownZero = KnownZero.zext(BitWidth);
1680    KnownOne = KnownOne.zext(BitWidth);
1681    break;
1682  }
1683  case ISD::TRUNCATE: {
1684    // Simplify the input, using demanded bit information, and compute the known
1685    // zero/one bits live out.
1686    unsigned OperandBitWidth =
1687      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1688    APInt TruncMask = NewMask.zext(OperandBitWidth);
1689    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1690                             KnownZero, KnownOne, TLO, Depth+1))
1691      return true;
1692    KnownZero = KnownZero.trunc(BitWidth);
1693    KnownOne = KnownOne.trunc(BitWidth);
1694
1695    // If the input is only used by this truncate, see if we can shrink it based
1696    // on the known demanded bits.
1697    if (Op.getOperand(0).getNode()->hasOneUse()) {
1698      SDValue In = Op.getOperand(0);
1699      switch (In.getOpcode()) {
1700      default: break;
1701      case ISD::SRL:
1702        // Shrink SRL by a constant if none of the high bits shifted in are
1703        // demanded.
1704        if (TLO.LegalTypes() &&
1705            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1706          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1707          // undesirable.
1708          break;
1709        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1710        if (!ShAmt)
1711          break;
1712        SDValue Shift = In.getOperand(1);
1713        if (TLO.LegalTypes()) {
1714          uint64_t ShVal = ShAmt->getZExtValue();
1715          Shift =
1716            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1717        }
1718
1719        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1720                                               OperandBitWidth - BitWidth);
1721        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1722
1723        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1724          // None of the shifted in bits are needed.  Add a truncate of the
1725          // shift input, then shift it.
1726          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1727                                             Op.getValueType(),
1728                                             In.getOperand(0));
1729          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1730                                                   Op.getValueType(),
1731                                                   NewTrunc,
1732                                                   Shift));
1733        }
1734        break;
1735      }
1736    }
1737
1738    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1739    break;
1740  }
1741  case ISD::AssertZext: {
1742    // Demand all the bits of the input that are demanded in the output.
1743    // The low bits are obvious; the high bits are demanded because we're
1744    // asserting that they're zero here.
1745    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1746                             KnownZero, KnownOne, TLO, Depth+1))
1747      return true;
1748    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1749
1750    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1751    APInt InMask = APInt::getLowBitsSet(BitWidth,
1752                                        VT.getSizeInBits());
1753    KnownZero |= ~InMask & NewMask;
1754    break;
1755  }
1756  case ISD::BITCAST:
1757    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1758    // is demanded, turn this into a FGETSIGN.
1759    if (NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1760        Op.getOperand(0).getValueType().isFloatingPoint() &&
1761        !Op.getOperand(0).getValueType().isVector()) {
1762      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1763      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1764      if (OpVTLegal || i32Legal) {
1765        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1766        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1767        // place.  We expect the SHL to be eliminated by other optimizations.
1768        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1769        if (!OpVTLegal)
1770          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1771        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1772        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1773        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1774                                                 Op.getValueType(),
1775                                                 Sign, ShAmt));
1776      }
1777    }
1778    break;
1779  case ISD::ADD:
1780  case ISD::MUL:
1781  case ISD::SUB: {
1782    // Add, Sub, and Mul don't demand any bits in positions beyond that
1783    // of the highest bit demanded of them.
1784    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1785                                        BitWidth - NewMask.countLeadingZeros());
1786    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1787                             KnownOne2, TLO, Depth+1))
1788      return true;
1789    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1790                             KnownOne2, TLO, Depth+1))
1791      return true;
1792    // See if the operation should be performed at a smaller bit width.
1793    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1794      return true;
1795  }
1796  // FALL THROUGH
1797  default:
1798    // Just use ComputeMaskedBits to compute output bits.
1799    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1800    break;
1801  }
1802
1803  // If we know the value of all of the demanded bits, return this as a
1804  // constant.
1805  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1806    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1807
1808  return false;
1809}
1810
1811/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1812/// in Mask are known to be either zero or one and return them in the
1813/// KnownZero/KnownOne bitsets.
1814void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1815                                                    const APInt &Mask,
1816                                                    APInt &KnownZero,
1817                                                    APInt &KnownOne,
1818                                                    const SelectionDAG &DAG,
1819                                                    unsigned Depth) const {
1820  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1821          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1822          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1823          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1824         "Should use MaskedValueIsZero if you don't know whether Op"
1825         " is a target node!");
1826  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1827}
1828
1829/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1830/// targets that want to expose additional information about sign bits to the
1831/// DAG Combiner.
1832unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1833                                                         unsigned Depth) const {
1834  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1835          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1836          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1837          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1838         "Should use ComputeNumSignBits if you don't know whether Op"
1839         " is a target node!");
1840  return 1;
1841}
1842
1843/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1844/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1845/// determine which bit is set.
1846///
1847static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1848  // A left-shift of a constant one will have exactly one bit set, because
1849  // shifting the bit off the end is undefined.
1850  if (Val.getOpcode() == ISD::SHL)
1851    if (ConstantSDNode *C =
1852         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1853      if (C->getAPIntValue() == 1)
1854        return true;
1855
1856  // Similarly, a right-shift of a constant sign-bit will have exactly
1857  // one bit set.
1858  if (Val.getOpcode() == ISD::SRL)
1859    if (ConstantSDNode *C =
1860         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1861      if (C->getAPIntValue().isSignBit())
1862        return true;
1863
1864  // More could be done here, though the above checks are enough
1865  // to handle some common cases.
1866
1867  // Fall back to ComputeMaskedBits to catch other known cases.
1868  EVT OpVT = Val.getValueType();
1869  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1870  APInt Mask = APInt::getAllOnesValue(BitWidth);
1871  APInt KnownZero, KnownOne;
1872  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1873  return (KnownZero.countPopulation() == BitWidth - 1) &&
1874         (KnownOne.countPopulation() == 1);
1875}
1876
1877/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1878/// and cc. If it is unable to simplify it, return a null SDValue.
1879SDValue
1880TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1881                              ISD::CondCode Cond, bool foldBooleans,
1882                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1883  SelectionDAG &DAG = DCI.DAG;
1884
1885  // These setcc operations always fold.
1886  switch (Cond) {
1887  default: break;
1888  case ISD::SETFALSE:
1889  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1890  case ISD::SETTRUE:
1891  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1892  }
1893
1894  // Ensure that the constant occurs on the RHS, and fold constant
1895  // comparisons.
1896  if (isa<ConstantSDNode>(N0.getNode()))
1897    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1898
1899  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1900    const APInt &C1 = N1C->getAPIntValue();
1901
1902    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1903    // equality comparison, then we're just comparing whether X itself is
1904    // zero.
1905    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1906        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1907        N0.getOperand(1).getOpcode() == ISD::Constant) {
1908      const APInt &ShAmt
1909        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1910      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1911          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1912        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1913          // (srl (ctlz x), 5) == 0  -> X != 0
1914          // (srl (ctlz x), 5) != 1  -> X != 0
1915          Cond = ISD::SETNE;
1916        } else {
1917          // (srl (ctlz x), 5) != 0  -> X == 0
1918          // (srl (ctlz x), 5) == 1  -> X == 0
1919          Cond = ISD::SETEQ;
1920        }
1921        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1922        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1923                            Zero, Cond);
1924      }
1925    }
1926
1927    SDValue CTPOP = N0;
1928    // Look through truncs that don't change the value of a ctpop.
1929    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1930      CTPOP = N0.getOperand(0);
1931
1932    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1933        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1934                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1935      EVT CTVT = CTPOP.getValueType();
1936      SDValue CTOp = CTPOP.getOperand(0);
1937
1938      // (ctpop x) u< 2 -> (x & x-1) == 0
1939      // (ctpop x) u> 1 -> (x & x-1) != 0
1940      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1941        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1942                                  DAG.getConstant(1, CTVT));
1943        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1944        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1945        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1946      }
1947
1948      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1949    }
1950
1951    // (zext x) == C --> x == (trunc C)
1952    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1953        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1954      unsigned MinBits = N0.getValueSizeInBits();
1955      SDValue PreZExt;
1956      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1957        // ZExt
1958        MinBits = N0->getOperand(0).getValueSizeInBits();
1959        PreZExt = N0->getOperand(0);
1960      } else if (N0->getOpcode() == ISD::AND) {
1961        // DAGCombine turns costly ZExts into ANDs
1962        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1963          if ((C->getAPIntValue()+1).isPowerOf2()) {
1964            MinBits = C->getAPIntValue().countTrailingOnes();
1965            PreZExt = N0->getOperand(0);
1966          }
1967      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1968        // ZEXTLOAD
1969        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1970          MinBits = LN0->getMemoryVT().getSizeInBits();
1971          PreZExt = N0;
1972        }
1973      }
1974
1975      // Make sure we're not loosing bits from the constant.
1976      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1977        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1978        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1979          // Will get folded away.
1980          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1981          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1982          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1983        }
1984      }
1985    }
1986
1987    // If the LHS is '(and load, const)', the RHS is 0,
1988    // the test is for equality or unsigned, and all 1 bits of the const are
1989    // in the same partial word, see if we can shorten the load.
1990    if (DCI.isBeforeLegalize() &&
1991        N0.getOpcode() == ISD::AND && C1 == 0 &&
1992        N0.getNode()->hasOneUse() &&
1993        isa<LoadSDNode>(N0.getOperand(0)) &&
1994        N0.getOperand(0).getNode()->hasOneUse() &&
1995        isa<ConstantSDNode>(N0.getOperand(1))) {
1996      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1997      APInt bestMask;
1998      unsigned bestWidth = 0, bestOffset = 0;
1999      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2000        unsigned origWidth = N0.getValueType().getSizeInBits();
2001        unsigned maskWidth = origWidth;
2002        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2003        // 8 bits, but have to be careful...
2004        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2005          origWidth = Lod->getMemoryVT().getSizeInBits();
2006        const APInt &Mask =
2007          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2008        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2009          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2010          for (unsigned offset=0; offset<origWidth/width; offset++) {
2011            if ((newMask & Mask) == Mask) {
2012              if (!TD->isLittleEndian())
2013                bestOffset = (origWidth/width - offset - 1) * (width/8);
2014              else
2015                bestOffset = (uint64_t)offset * (width/8);
2016              bestMask = Mask.lshr(offset * (width/8) * 8);
2017              bestWidth = width;
2018              break;
2019            }
2020            newMask = newMask << width;
2021          }
2022        }
2023      }
2024      if (bestWidth) {
2025        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2026        if (newVT.isRound()) {
2027          EVT PtrType = Lod->getOperand(1).getValueType();
2028          SDValue Ptr = Lod->getBasePtr();
2029          if (bestOffset != 0)
2030            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2031                              DAG.getConstant(bestOffset, PtrType));
2032          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2033          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2034                                Lod->getPointerInfo().getWithOffset(bestOffset),
2035                                        false, false, NewAlign);
2036          return DAG.getSetCC(dl, VT,
2037                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2038                                      DAG.getConstant(bestMask.trunc(bestWidth),
2039                                                      newVT)),
2040                              DAG.getConstant(0LL, newVT), Cond);
2041        }
2042      }
2043    }
2044
2045    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2046    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2047      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2048
2049      // If the comparison constant has bits in the upper part, the
2050      // zero-extended value could never match.
2051      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2052                                              C1.getBitWidth() - InSize))) {
2053        switch (Cond) {
2054        case ISD::SETUGT:
2055        case ISD::SETUGE:
2056        case ISD::SETEQ: return DAG.getConstant(0, VT);
2057        case ISD::SETULT:
2058        case ISD::SETULE:
2059        case ISD::SETNE: return DAG.getConstant(1, VT);
2060        case ISD::SETGT:
2061        case ISD::SETGE:
2062          // True if the sign bit of C1 is set.
2063          return DAG.getConstant(C1.isNegative(), VT);
2064        case ISD::SETLT:
2065        case ISD::SETLE:
2066          // True if the sign bit of C1 isn't set.
2067          return DAG.getConstant(C1.isNonNegative(), VT);
2068        default:
2069          break;
2070        }
2071      }
2072
2073      // Otherwise, we can perform the comparison with the low bits.
2074      switch (Cond) {
2075      case ISD::SETEQ:
2076      case ISD::SETNE:
2077      case ISD::SETUGT:
2078      case ISD::SETUGE:
2079      case ISD::SETULT:
2080      case ISD::SETULE: {
2081        EVT newVT = N0.getOperand(0).getValueType();
2082        if (DCI.isBeforeLegalizeOps() ||
2083            (isOperationLegal(ISD::SETCC, newVT) &&
2084              getCondCodeAction(Cond, newVT)==Legal))
2085          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2086                              DAG.getConstant(C1.trunc(InSize), newVT),
2087                              Cond);
2088        break;
2089      }
2090      default:
2091        break;   // todo, be more careful with signed comparisons
2092      }
2093    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2094               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2095      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2096      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2097      EVT ExtDstTy = N0.getValueType();
2098      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2099
2100      // If the constant doesn't fit into the number of bits for the source of
2101      // the sign extension, it is impossible for both sides to be equal.
2102      if (C1.getMinSignedBits() > ExtSrcTyBits)
2103        return DAG.getConstant(Cond == ISD::SETNE, VT);
2104
2105      SDValue ZextOp;
2106      EVT Op0Ty = N0.getOperand(0).getValueType();
2107      if (Op0Ty == ExtSrcTy) {
2108        ZextOp = N0.getOperand(0);
2109      } else {
2110        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2111        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2112                              DAG.getConstant(Imm, Op0Ty));
2113      }
2114      if (!DCI.isCalledByLegalizer())
2115        DCI.AddToWorklist(ZextOp.getNode());
2116      // Otherwise, make this a use of a zext.
2117      return DAG.getSetCC(dl, VT, ZextOp,
2118                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2119                                                              ExtDstTyBits,
2120                                                              ExtSrcTyBits),
2121                                          ExtDstTy),
2122                          Cond);
2123    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2124                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2125      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2126      if (N0.getOpcode() == ISD::SETCC &&
2127          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2128        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2129        if (TrueWhenTrue)
2130          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2131        // Invert the condition.
2132        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2133        CC = ISD::getSetCCInverse(CC,
2134                                  N0.getOperand(0).getValueType().isInteger());
2135        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2136      }
2137
2138      if ((N0.getOpcode() == ISD::XOR ||
2139           (N0.getOpcode() == ISD::AND &&
2140            N0.getOperand(0).getOpcode() == ISD::XOR &&
2141            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2142          isa<ConstantSDNode>(N0.getOperand(1)) &&
2143          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2144        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2145        // can only do this if the top bits are known zero.
2146        unsigned BitWidth = N0.getValueSizeInBits();
2147        if (DAG.MaskedValueIsZero(N0,
2148                                  APInt::getHighBitsSet(BitWidth,
2149                                                        BitWidth-1))) {
2150          // Okay, get the un-inverted input value.
2151          SDValue Val;
2152          if (N0.getOpcode() == ISD::XOR)
2153            Val = N0.getOperand(0);
2154          else {
2155            assert(N0.getOpcode() == ISD::AND &&
2156                    N0.getOperand(0).getOpcode() == ISD::XOR);
2157            // ((X^1)&1)^1 -> X & 1
2158            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2159                              N0.getOperand(0).getOperand(0),
2160                              N0.getOperand(1));
2161          }
2162
2163          return DAG.getSetCC(dl, VT, Val, N1,
2164                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2165        }
2166      } else if (N1C->getAPIntValue() == 1 &&
2167                 (VT == MVT::i1 ||
2168                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2169        SDValue Op0 = N0;
2170        if (Op0.getOpcode() == ISD::TRUNCATE)
2171          Op0 = Op0.getOperand(0);
2172
2173        if ((Op0.getOpcode() == ISD::XOR) &&
2174            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2175            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2176          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2177          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2178          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2179                              Cond);
2180        } else if (Op0.getOpcode() == ISD::AND &&
2181                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2182                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2183          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2184          if (Op0.getValueType().bitsGT(VT))
2185            Op0 = DAG.getNode(ISD::AND, dl, VT,
2186                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2187                          DAG.getConstant(1, VT));
2188          else if (Op0.getValueType().bitsLT(VT))
2189            Op0 = DAG.getNode(ISD::AND, dl, VT,
2190                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2191                        DAG.getConstant(1, VT));
2192
2193          return DAG.getSetCC(dl, VT, Op0,
2194                              DAG.getConstant(0, Op0.getValueType()),
2195                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2196        }
2197      }
2198    }
2199
2200    APInt MinVal, MaxVal;
2201    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2202    if (ISD::isSignedIntSetCC(Cond)) {
2203      MinVal = APInt::getSignedMinValue(OperandBitSize);
2204      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2205    } else {
2206      MinVal = APInt::getMinValue(OperandBitSize);
2207      MaxVal = APInt::getMaxValue(OperandBitSize);
2208    }
2209
2210    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2211    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2212      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2213      // X >= C0 --> X > (C0-1)
2214      return DAG.getSetCC(dl, VT, N0,
2215                          DAG.getConstant(C1-1, N1.getValueType()),
2216                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2217    }
2218
2219    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2220      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2221      // X <= C0 --> X < (C0+1)
2222      return DAG.getSetCC(dl, VT, N0,
2223                          DAG.getConstant(C1+1, N1.getValueType()),
2224                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2225    }
2226
2227    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2228      return DAG.getConstant(0, VT);      // X < MIN --> false
2229    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2230      return DAG.getConstant(1, VT);      // X >= MIN --> true
2231    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2232      return DAG.getConstant(0, VT);      // X > MAX --> false
2233    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2234      return DAG.getConstant(1, VT);      // X <= MAX --> true
2235
2236    // Canonicalize setgt X, Min --> setne X, Min
2237    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2238      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2239    // Canonicalize setlt X, Max --> setne X, Max
2240    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2241      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2242
2243    // If we have setult X, 1, turn it into seteq X, 0
2244    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2245      return DAG.getSetCC(dl, VT, N0,
2246                          DAG.getConstant(MinVal, N0.getValueType()),
2247                          ISD::SETEQ);
2248    // If we have setugt X, Max-1, turn it into seteq X, Max
2249    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2250      return DAG.getSetCC(dl, VT, N0,
2251                          DAG.getConstant(MaxVal, N0.getValueType()),
2252                          ISD::SETEQ);
2253
2254    // If we have "setcc X, C0", check to see if we can shrink the immediate
2255    // by changing cc.
2256
2257    // SETUGT X, SINTMAX  -> SETLT X, 0
2258    if (Cond == ISD::SETUGT &&
2259        C1 == APInt::getSignedMaxValue(OperandBitSize))
2260      return DAG.getSetCC(dl, VT, N0,
2261                          DAG.getConstant(0, N1.getValueType()),
2262                          ISD::SETLT);
2263
2264    // SETULT X, SINTMIN  -> SETGT X, -1
2265    if (Cond == ISD::SETULT &&
2266        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2267      SDValue ConstMinusOne =
2268          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2269                          N1.getValueType());
2270      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2271    }
2272
2273    // Fold bit comparisons when we can.
2274    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2275        (VT == N0.getValueType() ||
2276         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2277        N0.getOpcode() == ISD::AND)
2278      if (ConstantSDNode *AndRHS =
2279                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2280        EVT ShiftTy = DCI.isBeforeLegalize() ?
2281          getPointerTy() : getShiftAmountTy(N0.getValueType());
2282        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2283          // Perform the xform if the AND RHS is a single bit.
2284          if (AndRHS->getAPIntValue().isPowerOf2()) {
2285            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2286                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2287                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2288          }
2289        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2290          // (X & 8) == 8  -->  (X & 8) >> 3
2291          // Perform the xform if C1 is a single bit.
2292          if (C1.isPowerOf2()) {
2293            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2294                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2295                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2296          }
2297        }
2298      }
2299  }
2300
2301  if (isa<ConstantFPSDNode>(N0.getNode())) {
2302    // Constant fold or commute setcc.
2303    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2304    if (O.getNode()) return O;
2305  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2306    // If the RHS of an FP comparison is a constant, simplify it away in
2307    // some cases.
2308    if (CFP->getValueAPF().isNaN()) {
2309      // If an operand is known to be a nan, we can fold it.
2310      switch (ISD::getUnorderedFlavor(Cond)) {
2311      default: llvm_unreachable("Unknown flavor!");
2312      case 0:  // Known false.
2313        return DAG.getConstant(0, VT);
2314      case 1:  // Known true.
2315        return DAG.getConstant(1, VT);
2316      case 2:  // Undefined.
2317        return DAG.getUNDEF(VT);
2318      }
2319    }
2320
2321    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2322    // constant if knowing that the operand is non-nan is enough.  We prefer to
2323    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2324    // materialize 0.0.
2325    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2326      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2327
2328    // If the condition is not legal, see if we can find an equivalent one
2329    // which is legal.
2330    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2331      // If the comparison was an awkward floating-point == or != and one of
2332      // the comparison operands is infinity or negative infinity, convert the
2333      // condition to a less-awkward <= or >=.
2334      if (CFP->getValueAPF().isInfinity()) {
2335        if (CFP->getValueAPF().isNegative()) {
2336          if (Cond == ISD::SETOEQ &&
2337              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2338            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2339          if (Cond == ISD::SETUEQ &&
2340              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2341            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2342          if (Cond == ISD::SETUNE &&
2343              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2344            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2345          if (Cond == ISD::SETONE &&
2346              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2347            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2348        } else {
2349          if (Cond == ISD::SETOEQ &&
2350              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2351            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2352          if (Cond == ISD::SETUEQ &&
2353              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2354            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2355          if (Cond == ISD::SETUNE &&
2356              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2357            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2358          if (Cond == ISD::SETONE &&
2359              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2360            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2361        }
2362      }
2363    }
2364  }
2365
2366  if (N0 == N1) {
2367    // We can always fold X == X for integer setcc's.
2368    if (N0.getValueType().isInteger())
2369      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2370    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2371    if (UOF == 2)   // FP operators that are undefined on NaNs.
2372      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2373    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2374      return DAG.getConstant(UOF, VT);
2375    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2376    // if it is not already.
2377    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2378    if (NewCond != Cond)
2379      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2380  }
2381
2382  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2383      N0.getValueType().isInteger()) {
2384    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2385        N0.getOpcode() == ISD::XOR) {
2386      // Simplify (X+Y) == (X+Z) -->  Y == Z
2387      if (N0.getOpcode() == N1.getOpcode()) {
2388        if (N0.getOperand(0) == N1.getOperand(0))
2389          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2390        if (N0.getOperand(1) == N1.getOperand(1))
2391          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2392        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2393          // If X op Y == Y op X, try other combinations.
2394          if (N0.getOperand(0) == N1.getOperand(1))
2395            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2396                                Cond);
2397          if (N0.getOperand(1) == N1.getOperand(0))
2398            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2399                                Cond);
2400        }
2401      }
2402
2403      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2404        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2405          // Turn (X+C1) == C2 --> X == C2-C1
2406          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2407            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2408                                DAG.getConstant(RHSC->getAPIntValue()-
2409                                                LHSR->getAPIntValue(),
2410                                N0.getValueType()), Cond);
2411          }
2412
2413          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2414          if (N0.getOpcode() == ISD::XOR)
2415            // If we know that all of the inverted bits are zero, don't bother
2416            // performing the inversion.
2417            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2418              return
2419                DAG.getSetCC(dl, VT, N0.getOperand(0),
2420                             DAG.getConstant(LHSR->getAPIntValue() ^
2421                                               RHSC->getAPIntValue(),
2422                                             N0.getValueType()),
2423                             Cond);
2424        }
2425
2426        // Turn (C1-X) == C2 --> X == C1-C2
2427        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2428          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2429            return
2430              DAG.getSetCC(dl, VT, N0.getOperand(1),
2431                           DAG.getConstant(SUBC->getAPIntValue() -
2432                                             RHSC->getAPIntValue(),
2433                                           N0.getValueType()),
2434                           Cond);
2435          }
2436        }
2437      }
2438
2439      // Simplify (X+Z) == X -->  Z == 0
2440      if (N0.getOperand(0) == N1)
2441        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2442                        DAG.getConstant(0, N0.getValueType()), Cond);
2443      if (N0.getOperand(1) == N1) {
2444        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2445          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2446                          DAG.getConstant(0, N0.getValueType()), Cond);
2447        else if (N0.getNode()->hasOneUse()) {
2448          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2449          // (Z-X) == X  --> Z == X<<1
2450          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2451                                     N1,
2452                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2453          if (!DCI.isCalledByLegalizer())
2454            DCI.AddToWorklist(SH.getNode());
2455          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2456        }
2457      }
2458    }
2459
2460    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2461        N1.getOpcode() == ISD::XOR) {
2462      // Simplify  X == (X+Z) -->  Z == 0
2463      if (N1.getOperand(0) == N0) {
2464        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2465                        DAG.getConstant(0, N1.getValueType()), Cond);
2466      } else if (N1.getOperand(1) == N0) {
2467        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2468          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2469                          DAG.getConstant(0, N1.getValueType()), Cond);
2470        } else if (N1.getNode()->hasOneUse()) {
2471          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2472          // X == (Z-X)  --> X<<1 == Z
2473          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2474                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2475          if (!DCI.isCalledByLegalizer())
2476            DCI.AddToWorklist(SH.getNode());
2477          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2478        }
2479      }
2480    }
2481
2482    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2483    // Note that where y is variable and is known to have at most
2484    // one bit set (for example, if it is z&1) we cannot do this;
2485    // the expressions are not equivalent when y==0.
2486    if (N0.getOpcode() == ISD::AND)
2487      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2488        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2489          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2490          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2491          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2492        }
2493      }
2494    if (N1.getOpcode() == ISD::AND)
2495      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2496        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2497          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2498          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2499          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2500        }
2501      }
2502  }
2503
2504  // Fold away ALL boolean setcc's.
2505  SDValue Temp;
2506  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2507    switch (Cond) {
2508    default: llvm_unreachable("Unknown integer setcc!");
2509    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2510      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2511      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2512      if (!DCI.isCalledByLegalizer())
2513        DCI.AddToWorklist(Temp.getNode());
2514      break;
2515    case ISD::SETNE:  // X != Y   -->  (X^Y)
2516      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2517      break;
2518    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2519    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2520      Temp = DAG.getNOT(dl, N0, MVT::i1);
2521      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2522      if (!DCI.isCalledByLegalizer())
2523        DCI.AddToWorklist(Temp.getNode());
2524      break;
2525    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2526    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2527      Temp = DAG.getNOT(dl, N1, MVT::i1);
2528      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2529      if (!DCI.isCalledByLegalizer())
2530        DCI.AddToWorklist(Temp.getNode());
2531      break;
2532    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2533    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2534      Temp = DAG.getNOT(dl, N0, MVT::i1);
2535      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2536      if (!DCI.isCalledByLegalizer())
2537        DCI.AddToWorklist(Temp.getNode());
2538      break;
2539    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2540    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2541      Temp = DAG.getNOT(dl, N1, MVT::i1);
2542      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2543      break;
2544    }
2545    if (VT != MVT::i1) {
2546      if (!DCI.isCalledByLegalizer())
2547        DCI.AddToWorklist(N0.getNode());
2548      // FIXME: If running after legalize, we probably can't do this.
2549      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2550    }
2551    return N0;
2552  }
2553
2554  // Could not fold it.
2555  return SDValue();
2556}
2557
2558/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2559/// node is a GlobalAddress + offset.
2560bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2561                                    int64_t &Offset) const {
2562  if (isa<GlobalAddressSDNode>(N)) {
2563    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2564    GA = GASD->getGlobal();
2565    Offset += GASD->getOffset();
2566    return true;
2567  }
2568
2569  if (N->getOpcode() == ISD::ADD) {
2570    SDValue N1 = N->getOperand(0);
2571    SDValue N2 = N->getOperand(1);
2572    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2573      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2574      if (V) {
2575        Offset += V->getSExtValue();
2576        return true;
2577      }
2578    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2579      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2580      if (V) {
2581        Offset += V->getSExtValue();
2582        return true;
2583      }
2584    }
2585  }
2586
2587  return false;
2588}
2589
2590
2591SDValue TargetLowering::
2592PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2593  // Default implementation: no optimization.
2594  return SDValue();
2595}
2596
2597//===----------------------------------------------------------------------===//
2598//  Inline Assembler Implementation Methods
2599//===----------------------------------------------------------------------===//
2600
2601
2602TargetLowering::ConstraintType
2603TargetLowering::getConstraintType(const std::string &Constraint) const {
2604  // FIXME: lots more standard ones to handle.
2605  if (Constraint.size() == 1) {
2606    switch (Constraint[0]) {
2607    default: break;
2608    case 'r': return C_RegisterClass;
2609    case 'm':    // memory
2610    case 'o':    // offsetable
2611    case 'V':    // not offsetable
2612      return C_Memory;
2613    case 'i':    // Simple Integer or Relocatable Constant
2614    case 'n':    // Simple Integer
2615    case 'E':    // Floating Point Constant
2616    case 'F':    // Floating Point Constant
2617    case 's':    // Relocatable Constant
2618    case 'p':    // Address.
2619    case 'X':    // Allow ANY value.
2620    case 'I':    // Target registers.
2621    case 'J':
2622    case 'K':
2623    case 'L':
2624    case 'M':
2625    case 'N':
2626    case 'O':
2627    case 'P':
2628    case '<':
2629    case '>':
2630      return C_Other;
2631    }
2632  }
2633
2634  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2635      Constraint[Constraint.size()-1] == '}')
2636    return C_Register;
2637  return C_Unknown;
2638}
2639
2640/// LowerXConstraint - try to replace an X constraint, which matches anything,
2641/// with another that has more specific requirements based on the type of the
2642/// corresponding operand.
2643const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2644  if (ConstraintVT.isInteger())
2645    return "r";
2646  if (ConstraintVT.isFloatingPoint())
2647    return "f";      // works for many targets
2648  return 0;
2649}
2650
2651/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2652/// vector.  If it is invalid, don't add anything to Ops.
2653void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2654                                                  char ConstraintLetter,
2655                                                  std::vector<SDValue> &Ops,
2656                                                  SelectionDAG &DAG) const {
2657  switch (ConstraintLetter) {
2658  default: break;
2659  case 'X':     // Allows any operand; labels (basic block) use this.
2660    if (Op.getOpcode() == ISD::BasicBlock) {
2661      Ops.push_back(Op);
2662      return;
2663    }
2664    // fall through
2665  case 'i':    // Simple Integer or Relocatable Constant
2666  case 'n':    // Simple Integer
2667  case 's': {  // Relocatable Constant
2668    // These operands are interested in values of the form (GV+C), where C may
2669    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2670    // is possible and fine if either GV or C are missing.
2671    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2672    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2673
2674    // If we have "(add GV, C)", pull out GV/C
2675    if (Op.getOpcode() == ISD::ADD) {
2676      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2677      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2678      if (C == 0 || GA == 0) {
2679        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2680        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2681      }
2682      if (C == 0 || GA == 0)
2683        C = 0, GA = 0;
2684    }
2685
2686    // If we find a valid operand, map to the TargetXXX version so that the
2687    // value itself doesn't get selected.
2688    if (GA) {   // Either &GV   or   &GV+C
2689      if (ConstraintLetter != 'n') {
2690        int64_t Offs = GA->getOffset();
2691        if (C) Offs += C->getZExtValue();
2692        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2693                                                 C ? C->getDebugLoc() : DebugLoc(),
2694                                                 Op.getValueType(), Offs));
2695        return;
2696      }
2697    }
2698    if (C) {   // just C, no GV.
2699      // Simple constants are not allowed for 's'.
2700      if (ConstraintLetter != 's') {
2701        // gcc prints these as sign extended.  Sign extend value to 64 bits
2702        // now; without this it would get ZExt'd later in
2703        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2704        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2705                                            MVT::i64));
2706        return;
2707      }
2708    }
2709    break;
2710  }
2711  }
2712}
2713
2714std::vector<unsigned> TargetLowering::
2715getRegClassForInlineAsmConstraint(const std::string &Constraint,
2716                                  EVT VT) const {
2717  return std::vector<unsigned>();
2718}
2719
2720
2721std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2722getRegForInlineAsmConstraint(const std::string &Constraint,
2723                             EVT VT) const {
2724  if (Constraint[0] != '{')
2725    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2726  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2727
2728  // Remove the braces from around the name.
2729  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2730
2731  // Figure out which register class contains this reg.
2732  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2733  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2734       E = RI->regclass_end(); RCI != E; ++RCI) {
2735    const TargetRegisterClass *RC = *RCI;
2736
2737    // If none of the value types for this register class are valid, we
2738    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2739    bool isLegal = false;
2740    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2741         I != E; ++I) {
2742      if (isTypeLegal(*I)) {
2743        isLegal = true;
2744        break;
2745      }
2746    }
2747
2748    if (!isLegal) continue;
2749
2750    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2751         I != E; ++I) {
2752      if (RegName.equals_lower(RI->getName(*I)))
2753        return std::make_pair(*I, RC);
2754    }
2755  }
2756
2757  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2758}
2759
2760//===----------------------------------------------------------------------===//
2761// Constraint Selection.
2762
2763/// isMatchingInputConstraint - Return true of this is an input operand that is
2764/// a matching constraint like "4".
2765bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2766  assert(!ConstraintCode.empty() && "No known constraint!");
2767  return isdigit(ConstraintCode[0]);
2768}
2769
2770/// getMatchedOperand - If this is an input matching constraint, this method
2771/// returns the output operand it matches.
2772unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2773  assert(!ConstraintCode.empty() && "No known constraint!");
2774  return atoi(ConstraintCode.c_str());
2775}
2776
2777
2778/// ParseConstraints - Split up the constraint string from the inline
2779/// assembly value into the specific constraints and their prefixes,
2780/// and also tie in the associated operand values.
2781/// If this returns an empty vector, and if the constraint string itself
2782/// isn't empty, there was an error parsing.
2783TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2784    ImmutableCallSite CS) const {
2785  /// ConstraintOperands - Information about all of the constraints.
2786  AsmOperandInfoVector ConstraintOperands;
2787  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2788  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2789
2790  // Do a prepass over the constraints, canonicalizing them, and building up the
2791  // ConstraintOperands list.
2792  InlineAsm::ConstraintInfoVector
2793    ConstraintInfos = IA->ParseConstraints();
2794
2795  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2796  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2797
2798  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2799    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2800    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2801
2802    // Update multiple alternative constraint count.
2803    if (OpInfo.multipleAlternatives.size() > maCount)
2804      maCount = OpInfo.multipleAlternatives.size();
2805
2806    OpInfo.ConstraintVT = MVT::Other;
2807
2808    // Compute the value type for each operand.
2809    switch (OpInfo.Type) {
2810    case InlineAsm::isOutput:
2811      // Indirect outputs just consume an argument.
2812      if (OpInfo.isIndirect) {
2813        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2814        break;
2815      }
2816
2817      // The return value of the call is this value.  As such, there is no
2818      // corresponding argument.
2819      assert(!CS.getType()->isVoidTy() &&
2820             "Bad inline asm!");
2821      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2822        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2823      } else {
2824        assert(ResNo == 0 && "Asm only has one result!");
2825        OpInfo.ConstraintVT = getValueType(CS.getType());
2826      }
2827      ++ResNo;
2828      break;
2829    case InlineAsm::isInput:
2830      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2831      break;
2832    case InlineAsm::isClobber:
2833      // Nothing to do.
2834      break;
2835    }
2836
2837    if (OpInfo.CallOperandVal) {
2838      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2839      if (OpInfo.isIndirect) {
2840        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2841        if (!PtrTy)
2842          report_fatal_error("Indirect operand for inline asm not a pointer!");
2843        OpTy = PtrTy->getElementType();
2844      }
2845
2846      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2847      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2848        if (STy->getNumElements() == 1)
2849          OpTy = STy->getElementType(0);
2850
2851      // If OpTy is not a single value, it may be a struct/union that we
2852      // can tile with integers.
2853      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2854        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2855        switch (BitSize) {
2856        default: break;
2857        case 1:
2858        case 8:
2859        case 16:
2860        case 32:
2861        case 64:
2862        case 128:
2863          OpInfo.ConstraintVT =
2864              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2865          break;
2866        }
2867      } else if (dyn_cast<PointerType>(OpTy)) {
2868        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2869      } else {
2870        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2871      }
2872    }
2873  }
2874
2875  // If we have multiple alternative constraints, select the best alternative.
2876  if (ConstraintInfos.size()) {
2877    if (maCount) {
2878      unsigned bestMAIndex = 0;
2879      int bestWeight = -1;
2880      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2881      int weight = -1;
2882      unsigned maIndex;
2883      // Compute the sums of the weights for each alternative, keeping track
2884      // of the best (highest weight) one so far.
2885      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2886        int weightSum = 0;
2887        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2888            cIndex != eIndex; ++cIndex) {
2889          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2890          if (OpInfo.Type == InlineAsm::isClobber)
2891            continue;
2892
2893          // If this is an output operand with a matching input operand,
2894          // look up the matching input. If their types mismatch, e.g. one
2895          // is an integer, the other is floating point, or their sizes are
2896          // different, flag it as an maCantMatch.
2897          if (OpInfo.hasMatchingInput()) {
2898            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2899            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2900              if ((OpInfo.ConstraintVT.isInteger() !=
2901                   Input.ConstraintVT.isInteger()) ||
2902                  (OpInfo.ConstraintVT.getSizeInBits() !=
2903                   Input.ConstraintVT.getSizeInBits())) {
2904                weightSum = -1;  // Can't match.
2905                break;
2906              }
2907            }
2908          }
2909          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2910          if (weight == -1) {
2911            weightSum = -1;
2912            break;
2913          }
2914          weightSum += weight;
2915        }
2916        // Update best.
2917        if (weightSum > bestWeight) {
2918          bestWeight = weightSum;
2919          bestMAIndex = maIndex;
2920        }
2921      }
2922
2923      // Now select chosen alternative in each constraint.
2924      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2925          cIndex != eIndex; ++cIndex) {
2926        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2927        if (cInfo.Type == InlineAsm::isClobber)
2928          continue;
2929        cInfo.selectAlternative(bestMAIndex);
2930      }
2931    }
2932  }
2933
2934  // Check and hook up tied operands, choose constraint code to use.
2935  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2936      cIndex != eIndex; ++cIndex) {
2937    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2938
2939    // If this is an output operand with a matching input operand, look up the
2940    // matching input. If their types mismatch, e.g. one is an integer, the
2941    // other is floating point, or their sizes are different, flag it as an
2942    // error.
2943    if (OpInfo.hasMatchingInput()) {
2944      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2945
2946      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2947        if ((OpInfo.ConstraintVT.isInteger() !=
2948             Input.ConstraintVT.isInteger()) ||
2949            (OpInfo.ConstraintVT.getSizeInBits() !=
2950             Input.ConstraintVT.getSizeInBits())) {
2951          report_fatal_error("Unsupported asm: input constraint"
2952                             " with a matching output constraint of"
2953                             " incompatible type!");
2954        }
2955      }
2956
2957    }
2958  }
2959
2960  return ConstraintOperands;
2961}
2962
2963
2964/// getConstraintGenerality - Return an integer indicating how general CT
2965/// is.
2966static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2967  switch (CT) {
2968  default: llvm_unreachable("Unknown constraint type!");
2969  case TargetLowering::C_Other:
2970  case TargetLowering::C_Unknown:
2971    return 0;
2972  case TargetLowering::C_Register:
2973    return 1;
2974  case TargetLowering::C_RegisterClass:
2975    return 2;
2976  case TargetLowering::C_Memory:
2977    return 3;
2978  }
2979}
2980
2981/// Examine constraint type and operand type and determine a weight value.
2982/// This object must already have been set up with the operand type
2983/// and the current alternative constraint selected.
2984TargetLowering::ConstraintWeight
2985  TargetLowering::getMultipleConstraintMatchWeight(
2986    AsmOperandInfo &info, int maIndex) const {
2987  InlineAsm::ConstraintCodeVector *rCodes;
2988  if (maIndex >= (int)info.multipleAlternatives.size())
2989    rCodes = &info.Codes;
2990  else
2991    rCodes = &info.multipleAlternatives[maIndex].Codes;
2992  ConstraintWeight BestWeight = CW_Invalid;
2993
2994  // Loop over the options, keeping track of the most general one.
2995  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2996    ConstraintWeight weight =
2997      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2998    if (weight > BestWeight)
2999      BestWeight = weight;
3000  }
3001
3002  return BestWeight;
3003}
3004
3005/// Examine constraint type and operand type and determine a weight value.
3006/// This object must already have been set up with the operand type
3007/// and the current alternative constraint selected.
3008TargetLowering::ConstraintWeight
3009  TargetLowering::getSingleConstraintMatchWeight(
3010    AsmOperandInfo &info, const char *constraint) const {
3011  ConstraintWeight weight = CW_Invalid;
3012  Value *CallOperandVal = info.CallOperandVal;
3013    // If we don't have a value, we can't do a match,
3014    // but allow it at the lowest weight.
3015  if (CallOperandVal == NULL)
3016    return CW_Default;
3017  // Look at the constraint type.
3018  switch (*constraint) {
3019    case 'i': // immediate integer.
3020    case 'n': // immediate integer with a known value.
3021      if (isa<ConstantInt>(CallOperandVal))
3022        weight = CW_Constant;
3023      break;
3024    case 's': // non-explicit intregal immediate.
3025      if (isa<GlobalValue>(CallOperandVal))
3026        weight = CW_Constant;
3027      break;
3028    case 'E': // immediate float if host format.
3029    case 'F': // immediate float.
3030      if (isa<ConstantFP>(CallOperandVal))
3031        weight = CW_Constant;
3032      break;
3033    case '<': // memory operand with autodecrement.
3034    case '>': // memory operand with autoincrement.
3035    case 'm': // memory operand.
3036    case 'o': // offsettable memory operand
3037    case 'V': // non-offsettable memory operand
3038      weight = CW_Memory;
3039      break;
3040    case 'r': // general register.
3041    case 'g': // general register, memory operand or immediate integer.
3042              // note: Clang converts "g" to "imr".
3043      if (CallOperandVal->getType()->isIntegerTy())
3044        weight = CW_Register;
3045      break;
3046    case 'X': // any operand.
3047    default:
3048      weight = CW_Default;
3049      break;
3050  }
3051  return weight;
3052}
3053
3054/// ChooseConstraint - If there are multiple different constraints that we
3055/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3056/// This is somewhat tricky: constraints fall into four classes:
3057///    Other         -> immediates and magic values
3058///    Register      -> one specific register
3059///    RegisterClass -> a group of regs
3060///    Memory        -> memory
3061/// Ideally, we would pick the most specific constraint possible: if we have
3062/// something that fits into a register, we would pick it.  The problem here
3063/// is that if we have something that could either be in a register or in
3064/// memory that use of the register could cause selection of *other*
3065/// operands to fail: they might only succeed if we pick memory.  Because of
3066/// this the heuristic we use is:
3067///
3068///  1) If there is an 'other' constraint, and if the operand is valid for
3069///     that constraint, use it.  This makes us take advantage of 'i'
3070///     constraints when available.
3071///  2) Otherwise, pick the most general constraint present.  This prefers
3072///     'm' over 'r', for example.
3073///
3074static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3075                             const TargetLowering &TLI,
3076                             SDValue Op, SelectionDAG *DAG) {
3077  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3078  unsigned BestIdx = 0;
3079  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3080  int BestGenerality = -1;
3081
3082  // Loop over the options, keeping track of the most general one.
3083  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3084    TargetLowering::ConstraintType CType =
3085      TLI.getConstraintType(OpInfo.Codes[i]);
3086
3087    // If this is an 'other' constraint, see if the operand is valid for it.
3088    // For example, on X86 we might have an 'rI' constraint.  If the operand
3089    // is an integer in the range [0..31] we want to use I (saving a load
3090    // of a register), otherwise we must use 'r'.
3091    if (CType == TargetLowering::C_Other && Op.getNode()) {
3092      assert(OpInfo.Codes[i].size() == 1 &&
3093             "Unhandled multi-letter 'other' constraint");
3094      std::vector<SDValue> ResultOps;
3095      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3096                                       ResultOps, *DAG);
3097      if (!ResultOps.empty()) {
3098        BestType = CType;
3099        BestIdx = i;
3100        break;
3101      }
3102    }
3103
3104    // Things with matching constraints can only be registers, per gcc
3105    // documentation.  This mainly affects "g" constraints.
3106    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3107      continue;
3108
3109    // This constraint letter is more general than the previous one, use it.
3110    int Generality = getConstraintGenerality(CType);
3111    if (Generality > BestGenerality) {
3112      BestType = CType;
3113      BestIdx = i;
3114      BestGenerality = Generality;
3115    }
3116  }
3117
3118  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3119  OpInfo.ConstraintType = BestType;
3120}
3121
3122/// ComputeConstraintToUse - Determines the constraint code and constraint
3123/// type to use for the specific AsmOperandInfo, setting
3124/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3125void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3126                                            SDValue Op,
3127                                            SelectionDAG *DAG) const {
3128  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3129
3130  // Single-letter constraints ('r') are very common.
3131  if (OpInfo.Codes.size() == 1) {
3132    OpInfo.ConstraintCode = OpInfo.Codes[0];
3133    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3134  } else {
3135    ChooseConstraint(OpInfo, *this, Op, DAG);
3136  }
3137
3138  // 'X' matches anything.
3139  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3140    // Labels and constants are handled elsewhere ('X' is the only thing
3141    // that matches labels).  For Functions, the type here is the type of
3142    // the result, which is not what we want to look at; leave them alone.
3143    Value *v = OpInfo.CallOperandVal;
3144    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3145      OpInfo.CallOperandVal = v;
3146      return;
3147    }
3148
3149    // Otherwise, try to resolve it to something we know about by looking at
3150    // the actual operand type.
3151    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3152      OpInfo.ConstraintCode = Repl;
3153      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3154    }
3155  }
3156}
3157
3158//===----------------------------------------------------------------------===//
3159//  Loop Strength Reduction hooks
3160//===----------------------------------------------------------------------===//
3161
3162/// isLegalAddressingMode - Return true if the addressing mode represented
3163/// by AM is legal for this target, for a load/store of the specified type.
3164bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3165                                           const Type *Ty) const {
3166  // The default implementation of this implements a conservative RISCy, r+r and
3167  // r+i addr mode.
3168
3169  // Allows a sign-extended 16-bit immediate field.
3170  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3171    return false;
3172
3173  // No global is ever allowed as a base.
3174  if (AM.BaseGV)
3175    return false;
3176
3177  // Only support r+r,
3178  switch (AM.Scale) {
3179  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3180    break;
3181  case 1:
3182    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3183      return false;
3184    // Otherwise we have r+r or r+i.
3185    break;
3186  case 2:
3187    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3188      return false;
3189    // Allow 2*r as r+r.
3190    break;
3191  }
3192
3193  return true;
3194}
3195
3196/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3197/// return a DAG expression to select that will generate the same value by
3198/// multiplying by a magic number.  See:
3199/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3200SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3201                                  std::vector<SDNode*>* Created) const {
3202  EVT VT = N->getValueType(0);
3203  DebugLoc dl= N->getDebugLoc();
3204
3205  // Check to see if we can do this.
3206  // FIXME: We should be more aggressive here.
3207  if (!isTypeLegal(VT))
3208    return SDValue();
3209
3210  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3211  APInt::ms magics = d.magic();
3212
3213  // Multiply the numerator (operand 0) by the magic value
3214  // FIXME: We should support doing a MUL in a wider type
3215  SDValue Q;
3216  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3217    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3218                    DAG.getConstant(magics.m, VT));
3219  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3220    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3221                              N->getOperand(0),
3222                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3223  else
3224    return SDValue();       // No mulhs or equvialent
3225  // If d > 0 and m < 0, add the numerator
3226  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3227    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3228    if (Created)
3229      Created->push_back(Q.getNode());
3230  }
3231  // If d < 0 and m > 0, subtract the numerator.
3232  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3233    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3234    if (Created)
3235      Created->push_back(Q.getNode());
3236  }
3237  // Shift right algebraic if shift value is nonzero
3238  if (magics.s > 0) {
3239    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3240                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3241    if (Created)
3242      Created->push_back(Q.getNode());
3243  }
3244  // Extract the sign bit and add it to the quotient
3245  SDValue T =
3246    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3247                                           getShiftAmountTy(Q.getValueType())));
3248  if (Created)
3249    Created->push_back(T.getNode());
3250  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3251}
3252
3253/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3254/// return a DAG expression to select that will generate the same value by
3255/// multiplying by a magic number.  See:
3256/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3257SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3258                                  std::vector<SDNode*>* Created) const {
3259  EVT VT = N->getValueType(0);
3260  DebugLoc dl = N->getDebugLoc();
3261
3262  // Check to see if we can do this.
3263  // FIXME: We should be more aggressive here.
3264  if (!isTypeLegal(VT))
3265    return SDValue();
3266
3267  // FIXME: We should use a narrower constant when the upper
3268  // bits are known to be zero.
3269  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3270  APInt::mu magics = N1C.magicu();
3271
3272  SDValue Q = N->getOperand(0);
3273
3274  // If the divisor is even, we can avoid using the expensive fixup by shifting
3275  // the divided value upfront.
3276  if (magics.a != 0 && !N1C[0]) {
3277    unsigned Shift = N1C.countTrailingZeros();
3278    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3279                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3280    if (Created)
3281      Created->push_back(Q.getNode());
3282
3283    // Get magic number for the shifted divisor.
3284    magics = N1C.lshr(Shift).magicu(Shift);
3285    assert(magics.a == 0 && "Should use cheap fixup now");
3286  }
3287
3288  // Multiply the numerator (operand 0) by the magic value
3289  // FIXME: We should support doing a MUL in a wider type
3290  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3291    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3292  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3293    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3294                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3295  else
3296    return SDValue();       // No mulhu or equvialent
3297  if (Created)
3298    Created->push_back(Q.getNode());
3299
3300  if (magics.a == 0) {
3301    assert(magics.s < N1C.getBitWidth() &&
3302           "We shouldn't generate an undefined shift!");
3303    return DAG.getNode(ISD::SRL, dl, VT, Q,
3304                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3305  } else {
3306    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3307    if (Created)
3308      Created->push_back(NPQ.getNode());
3309    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3310                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3311    if (Created)
3312      Created->push_back(NPQ.getNode());
3313    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3314    if (Created)
3315      Created->push_back(NPQ.getNode());
3316    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3317             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3318  }
3319}
3320