TargetLowering.cpp revision f0144127b98425d214e59e4a1a4b342b78e3642b
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetAsmInfo.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetLoweringObjectFile.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Target/TargetSubtarget.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29using namespace llvm;
30
31namespace llvm {
32TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
33  bool isLocal = GV->hasLocalLinkage();
34  bool isDeclaration = GV->isDeclaration();
35  // FIXME: what should we do for protected and internal visibility?
36  // For variables, is internal different from hidden?
37  bool isHidden = GV->hasHiddenVisibility();
38
39  if (reloc == Reloc::PIC_) {
40    if (isLocal || isHidden)
41      return TLSModel::LocalDynamic;
42    else
43      return TLSModel::GeneralDynamic;
44  } else {
45    if (!isDeclaration || isHidden)
46      return TLSModel::LocalExec;
47    else
48      return TLSModel::InitialExec;
49  }
50}
51}
52
53/// InitLibcallNames - Set default libcall names.
54///
55static void InitLibcallNames(const char **Names) {
56  Names[RTLIB::SHL_I16] = "__ashlhi3";
57  Names[RTLIB::SHL_I32] = "__ashlsi3";
58  Names[RTLIB::SHL_I64] = "__ashldi3";
59  Names[RTLIB::SHL_I128] = "__ashlti3";
60  Names[RTLIB::SRL_I16] = "__lshrhi3";
61  Names[RTLIB::SRL_I32] = "__lshrsi3";
62  Names[RTLIB::SRL_I64] = "__lshrdi3";
63  Names[RTLIB::SRL_I128] = "__lshrti3";
64  Names[RTLIB::SRA_I16] = "__ashrhi3";
65  Names[RTLIB::SRA_I32] = "__ashrsi3";
66  Names[RTLIB::SRA_I64] = "__ashrdi3";
67  Names[RTLIB::SRA_I128] = "__ashrti3";
68  Names[RTLIB::MUL_I16] = "__mulhi3";
69  Names[RTLIB::MUL_I32] = "__mulsi3";
70  Names[RTLIB::MUL_I64] = "__muldi3";
71  Names[RTLIB::MUL_I128] = "__multi3";
72  Names[RTLIB::SDIV_I16] = "__divhi3";
73  Names[RTLIB::SDIV_I32] = "__divsi3";
74  Names[RTLIB::SDIV_I64] = "__divdi3";
75  Names[RTLIB::SDIV_I128] = "__divti3";
76  Names[RTLIB::UDIV_I16] = "__udivhi3";
77  Names[RTLIB::UDIV_I32] = "__udivsi3";
78  Names[RTLIB::UDIV_I64] = "__udivdi3";
79  Names[RTLIB::UDIV_I128] = "__udivti3";
80  Names[RTLIB::SREM_I16] = "__modhi3";
81  Names[RTLIB::SREM_I32] = "__modsi3";
82  Names[RTLIB::SREM_I64] = "__moddi3";
83  Names[RTLIB::SREM_I128] = "__modti3";
84  Names[RTLIB::UREM_I16] = "__umodhi3";
85  Names[RTLIB::UREM_I32] = "__umodsi3";
86  Names[RTLIB::UREM_I64] = "__umoddi3";
87  Names[RTLIB::UREM_I128] = "__umodti3";
88  Names[RTLIB::NEG_I32] = "__negsi2";
89  Names[RTLIB::NEG_I64] = "__negdi2";
90  Names[RTLIB::ADD_F32] = "__addsf3";
91  Names[RTLIB::ADD_F64] = "__adddf3";
92  Names[RTLIB::ADD_F80] = "__addxf3";
93  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
94  Names[RTLIB::SUB_F32] = "__subsf3";
95  Names[RTLIB::SUB_F64] = "__subdf3";
96  Names[RTLIB::SUB_F80] = "__subxf3";
97  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
98  Names[RTLIB::MUL_F32] = "__mulsf3";
99  Names[RTLIB::MUL_F64] = "__muldf3";
100  Names[RTLIB::MUL_F80] = "__mulxf3";
101  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
102  Names[RTLIB::DIV_F32] = "__divsf3";
103  Names[RTLIB::DIV_F64] = "__divdf3";
104  Names[RTLIB::DIV_F80] = "__divxf3";
105  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
106  Names[RTLIB::REM_F32] = "fmodf";
107  Names[RTLIB::REM_F64] = "fmod";
108  Names[RTLIB::REM_F80] = "fmodl";
109  Names[RTLIB::REM_PPCF128] = "fmodl";
110  Names[RTLIB::POWI_F32] = "__powisf2";
111  Names[RTLIB::POWI_F64] = "__powidf2";
112  Names[RTLIB::POWI_F80] = "__powixf2";
113  Names[RTLIB::POWI_PPCF128] = "__powitf2";
114  Names[RTLIB::SQRT_F32] = "sqrtf";
115  Names[RTLIB::SQRT_F64] = "sqrt";
116  Names[RTLIB::SQRT_F80] = "sqrtl";
117  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
118  Names[RTLIB::LOG_F32] = "logf";
119  Names[RTLIB::LOG_F64] = "log";
120  Names[RTLIB::LOG_F80] = "logl";
121  Names[RTLIB::LOG_PPCF128] = "logl";
122  Names[RTLIB::LOG2_F32] = "log2f";
123  Names[RTLIB::LOG2_F64] = "log2";
124  Names[RTLIB::LOG2_F80] = "log2l";
125  Names[RTLIB::LOG2_PPCF128] = "log2l";
126  Names[RTLIB::LOG10_F32] = "log10f";
127  Names[RTLIB::LOG10_F64] = "log10";
128  Names[RTLIB::LOG10_F80] = "log10l";
129  Names[RTLIB::LOG10_PPCF128] = "log10l";
130  Names[RTLIB::EXP_F32] = "expf";
131  Names[RTLIB::EXP_F64] = "exp";
132  Names[RTLIB::EXP_F80] = "expl";
133  Names[RTLIB::EXP_PPCF128] = "expl";
134  Names[RTLIB::EXP2_F32] = "exp2f";
135  Names[RTLIB::EXP2_F64] = "exp2";
136  Names[RTLIB::EXP2_F80] = "exp2l";
137  Names[RTLIB::EXP2_PPCF128] = "exp2l";
138  Names[RTLIB::SIN_F32] = "sinf";
139  Names[RTLIB::SIN_F64] = "sin";
140  Names[RTLIB::SIN_F80] = "sinl";
141  Names[RTLIB::SIN_PPCF128] = "sinl";
142  Names[RTLIB::COS_F32] = "cosf";
143  Names[RTLIB::COS_F64] = "cos";
144  Names[RTLIB::COS_F80] = "cosl";
145  Names[RTLIB::COS_PPCF128] = "cosl";
146  Names[RTLIB::POW_F32] = "powf";
147  Names[RTLIB::POW_F64] = "pow";
148  Names[RTLIB::POW_F80] = "powl";
149  Names[RTLIB::POW_PPCF128] = "powl";
150  Names[RTLIB::CEIL_F32] = "ceilf";
151  Names[RTLIB::CEIL_F64] = "ceil";
152  Names[RTLIB::CEIL_F80] = "ceill";
153  Names[RTLIB::CEIL_PPCF128] = "ceill";
154  Names[RTLIB::TRUNC_F32] = "truncf";
155  Names[RTLIB::TRUNC_F64] = "trunc";
156  Names[RTLIB::TRUNC_F80] = "truncl";
157  Names[RTLIB::TRUNC_PPCF128] = "truncl";
158  Names[RTLIB::RINT_F32] = "rintf";
159  Names[RTLIB::RINT_F64] = "rint";
160  Names[RTLIB::RINT_F80] = "rintl";
161  Names[RTLIB::RINT_PPCF128] = "rintl";
162  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
163  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
164  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
165  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
166  Names[RTLIB::FLOOR_F32] = "floorf";
167  Names[RTLIB::FLOOR_F64] = "floor";
168  Names[RTLIB::FLOOR_F80] = "floorl";
169  Names[RTLIB::FLOOR_PPCF128] = "floorl";
170  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
171  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
172  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
173  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
174  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
175  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
176  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
177  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
178  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
179  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
180  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
181  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
182  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
183  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
184  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
185  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
186  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
187  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
188  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
189  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
190  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
191  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
192  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
193  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
194  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
195  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
196  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
197  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
198  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
199  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
200  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
201  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
202  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
203  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
204  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
205  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
206  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
207  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
208  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
209  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
210  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
211  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
212  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
213  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
214  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
215  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
216  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
217  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
218  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
219  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
220  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
221  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
222  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
223  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
224  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
225  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
226  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
227  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
228  Names[RTLIB::OEQ_F32] = "__eqsf2";
229  Names[RTLIB::OEQ_F64] = "__eqdf2";
230  Names[RTLIB::UNE_F32] = "__nesf2";
231  Names[RTLIB::UNE_F64] = "__nedf2";
232  Names[RTLIB::OGE_F32] = "__gesf2";
233  Names[RTLIB::OGE_F64] = "__gedf2";
234  Names[RTLIB::OLT_F32] = "__ltsf2";
235  Names[RTLIB::OLT_F64] = "__ltdf2";
236  Names[RTLIB::OLE_F32] = "__lesf2";
237  Names[RTLIB::OLE_F64] = "__ledf2";
238  Names[RTLIB::OGT_F32] = "__gtsf2";
239  Names[RTLIB::OGT_F64] = "__gtdf2";
240  Names[RTLIB::UO_F32] = "__unordsf2";
241  Names[RTLIB::UO_F64] = "__unorddf2";
242  Names[RTLIB::O_F32] = "__unordsf2";
243  Names[RTLIB::O_F64] = "__unorddf2";
244  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
245}
246
247/// getFPEXT - Return the FPEXT_*_* value for the given types, or
248/// UNKNOWN_LIBCALL if there is none.
249RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
250  if (OpVT == MVT::f32) {
251    if (RetVT == MVT::f64)
252      return FPEXT_F32_F64;
253  }
254  return UNKNOWN_LIBCALL;
255}
256
257/// getFPROUND - Return the FPROUND_*_* value for the given types, or
258/// UNKNOWN_LIBCALL if there is none.
259RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
260  if (RetVT == MVT::f32) {
261    if (OpVT == MVT::f64)
262      return FPROUND_F64_F32;
263    if (OpVT == MVT::f80)
264      return FPROUND_F80_F32;
265    if (OpVT == MVT::ppcf128)
266      return FPROUND_PPCF128_F32;
267  } else if (RetVT == MVT::f64) {
268    if (OpVT == MVT::f80)
269      return FPROUND_F80_F64;
270    if (OpVT == MVT::ppcf128)
271      return FPROUND_PPCF128_F64;
272  }
273  return UNKNOWN_LIBCALL;
274}
275
276/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
277/// UNKNOWN_LIBCALL if there is none.
278RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
279  if (OpVT == MVT::f32) {
280    if (RetVT == MVT::i8)
281      return FPTOSINT_F32_I8;
282    if (RetVT == MVT::i16)
283      return FPTOSINT_F32_I16;
284    if (RetVT == MVT::i32)
285      return FPTOSINT_F32_I32;
286    if (RetVT == MVT::i64)
287      return FPTOSINT_F32_I64;
288    if (RetVT == MVT::i128)
289      return FPTOSINT_F32_I128;
290  } else if (OpVT == MVT::f64) {
291    if (RetVT == MVT::i32)
292      return FPTOSINT_F64_I32;
293    if (RetVT == MVT::i64)
294      return FPTOSINT_F64_I64;
295    if (RetVT == MVT::i128)
296      return FPTOSINT_F64_I128;
297  } else if (OpVT == MVT::f80) {
298    if (RetVT == MVT::i32)
299      return FPTOSINT_F80_I32;
300    if (RetVT == MVT::i64)
301      return FPTOSINT_F80_I64;
302    if (RetVT == MVT::i128)
303      return FPTOSINT_F80_I128;
304  } else if (OpVT == MVT::ppcf128) {
305    if (RetVT == MVT::i32)
306      return FPTOSINT_PPCF128_I32;
307    if (RetVT == MVT::i64)
308      return FPTOSINT_PPCF128_I64;
309    if (RetVT == MVT::i128)
310      return FPTOSINT_PPCF128_I128;
311  }
312  return UNKNOWN_LIBCALL;
313}
314
315/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
316/// UNKNOWN_LIBCALL if there is none.
317RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
318  if (OpVT == MVT::f32) {
319    if (RetVT == MVT::i8)
320      return FPTOUINT_F32_I8;
321    if (RetVT == MVT::i16)
322      return FPTOUINT_F32_I16;
323    if (RetVT == MVT::i32)
324      return FPTOUINT_F32_I32;
325    if (RetVT == MVT::i64)
326      return FPTOUINT_F32_I64;
327    if (RetVT == MVT::i128)
328      return FPTOUINT_F32_I128;
329  } else if (OpVT == MVT::f64) {
330    if (RetVT == MVT::i32)
331      return FPTOUINT_F64_I32;
332    if (RetVT == MVT::i64)
333      return FPTOUINT_F64_I64;
334    if (RetVT == MVT::i128)
335      return FPTOUINT_F64_I128;
336  } else if (OpVT == MVT::f80) {
337    if (RetVT == MVT::i32)
338      return FPTOUINT_F80_I32;
339    if (RetVT == MVT::i64)
340      return FPTOUINT_F80_I64;
341    if (RetVT == MVT::i128)
342      return FPTOUINT_F80_I128;
343  } else if (OpVT == MVT::ppcf128) {
344    if (RetVT == MVT::i32)
345      return FPTOUINT_PPCF128_I32;
346    if (RetVT == MVT::i64)
347      return FPTOUINT_PPCF128_I64;
348    if (RetVT == MVT::i128)
349      return FPTOUINT_PPCF128_I128;
350  }
351  return UNKNOWN_LIBCALL;
352}
353
354/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
355/// UNKNOWN_LIBCALL if there is none.
356RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
357  if (OpVT == MVT::i32) {
358    if (RetVT == MVT::f32)
359      return SINTTOFP_I32_F32;
360    else if (RetVT == MVT::f64)
361      return SINTTOFP_I32_F64;
362    else if (RetVT == MVT::f80)
363      return SINTTOFP_I32_F80;
364    else if (RetVT == MVT::ppcf128)
365      return SINTTOFP_I32_PPCF128;
366  } else if (OpVT == MVT::i64) {
367    if (RetVT == MVT::f32)
368      return SINTTOFP_I64_F32;
369    else if (RetVT == MVT::f64)
370      return SINTTOFP_I64_F64;
371    else if (RetVT == MVT::f80)
372      return SINTTOFP_I64_F80;
373    else if (RetVT == MVT::ppcf128)
374      return SINTTOFP_I64_PPCF128;
375  } else if (OpVT == MVT::i128) {
376    if (RetVT == MVT::f32)
377      return SINTTOFP_I128_F32;
378    else if (RetVT == MVT::f64)
379      return SINTTOFP_I128_F64;
380    else if (RetVT == MVT::f80)
381      return SINTTOFP_I128_F80;
382    else if (RetVT == MVT::ppcf128)
383      return SINTTOFP_I128_PPCF128;
384  }
385  return UNKNOWN_LIBCALL;
386}
387
388/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
389/// UNKNOWN_LIBCALL if there is none.
390RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
391  if (OpVT == MVT::i32) {
392    if (RetVT == MVT::f32)
393      return UINTTOFP_I32_F32;
394    else if (RetVT == MVT::f64)
395      return UINTTOFP_I32_F64;
396    else if (RetVT == MVT::f80)
397      return UINTTOFP_I32_F80;
398    else if (RetVT == MVT::ppcf128)
399      return UINTTOFP_I32_PPCF128;
400  } else if (OpVT == MVT::i64) {
401    if (RetVT == MVT::f32)
402      return UINTTOFP_I64_F32;
403    else if (RetVT == MVT::f64)
404      return UINTTOFP_I64_F64;
405    else if (RetVT == MVT::f80)
406      return UINTTOFP_I64_F80;
407    else if (RetVT == MVT::ppcf128)
408      return UINTTOFP_I64_PPCF128;
409  } else if (OpVT == MVT::i128) {
410    if (RetVT == MVT::f32)
411      return UINTTOFP_I128_F32;
412    else if (RetVT == MVT::f64)
413      return UINTTOFP_I128_F64;
414    else if (RetVT == MVT::f80)
415      return UINTTOFP_I128_F80;
416    else if (RetVT == MVT::ppcf128)
417      return UINTTOFP_I128_PPCF128;
418  }
419  return UNKNOWN_LIBCALL;
420}
421
422/// InitCmpLibcallCCs - Set default comparison libcall CC.
423///
424static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
425  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
426  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
427  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
428  CCs[RTLIB::UNE_F32] = ISD::SETNE;
429  CCs[RTLIB::UNE_F64] = ISD::SETNE;
430  CCs[RTLIB::OGE_F32] = ISD::SETGE;
431  CCs[RTLIB::OGE_F64] = ISD::SETGE;
432  CCs[RTLIB::OLT_F32] = ISD::SETLT;
433  CCs[RTLIB::OLT_F64] = ISD::SETLT;
434  CCs[RTLIB::OLE_F32] = ISD::SETLE;
435  CCs[RTLIB::OLE_F64] = ISD::SETLE;
436  CCs[RTLIB::OGT_F32] = ISD::SETGT;
437  CCs[RTLIB::OGT_F64] = ISD::SETGT;
438  CCs[RTLIB::UO_F32] = ISD::SETNE;
439  CCs[RTLIB::UO_F64] = ISD::SETNE;
440  CCs[RTLIB::O_F32] = ISD::SETEQ;
441  CCs[RTLIB::O_F64] = ISD::SETEQ;
442}
443
444/// NOTE: The constructor takes ownership of TLOF.
445TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
446  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
447  // All operations default to being supported.
448  memset(OpActions, 0, sizeof(OpActions));
449  memset(LoadExtActions, 0, sizeof(LoadExtActions));
450  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
451  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
452  memset(ConvertActions, 0, sizeof(ConvertActions));
453  memset(CondCodeActions, 0, sizeof(CondCodeActions));
454
455  // Set default actions for various operations.
456  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
457    // Default all indexed load / store to expand.
458    for (unsigned IM = (unsigned)ISD::PRE_INC;
459         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
460      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
461      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
462    }
463
464    // These operations default to expand.
465    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
466    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
467  }
468
469  // Most targets ignore the @llvm.prefetch intrinsic.
470  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
471
472  // ConstantFP nodes default to expand.  Targets can either change this to
473  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
474  // to optimize expansions for certain constants.
475  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
476  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
477  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
478
479  // These library functions default to expand.
480  setOperationAction(ISD::FLOG , MVT::f64, Expand);
481  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
482  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
483  setOperationAction(ISD::FEXP , MVT::f64, Expand);
484  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
485  setOperationAction(ISD::FLOG , MVT::f32, Expand);
486  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
487  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
488  setOperationAction(ISD::FEXP , MVT::f32, Expand);
489  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
490
491  // Default ISD::TRAP to expand (which turns it into abort).
492  setOperationAction(ISD::TRAP, MVT::Other, Expand);
493
494  IsLittleEndian = TD->isLittleEndian();
495  UsesGlobalOffsetTable = false;
496  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
497  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
498  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
499  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
500  allowUnalignedMemoryAccesses = false;
501  benefitFromCodePlacementOpt = false;
502  UseUnderscoreSetJmp = false;
503  UseUnderscoreLongJmp = false;
504  SelectIsExpensive = false;
505  IntDivIsCheap = false;
506  Pow2DivIsCheap = false;
507  StackPointerRegisterToSaveRestore = 0;
508  ExceptionPointerRegister = 0;
509  ExceptionSelectorRegister = 0;
510  BooleanContents = UndefinedBooleanContent;
511  SchedPreferenceInfo = SchedulingForLatency;
512  JumpBufSize = 0;
513  JumpBufAlignment = 0;
514  IfCvtBlockSizeLimit = 2;
515  IfCvtDupBlockSizeLimit = 0;
516  PrefLoopAlignment = 0;
517
518  InitLibcallNames(LibcallRoutineNames);
519  InitCmpLibcallCCs(CmpLibcallCCs);
520
521  // Tell Legalize whether the assembler supports DEBUG_LOC.
522  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
523  if (!TASM || !TASM->hasDotLocAndDotFile())
524    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
525}
526
527TargetLowering::~TargetLowering() {
528  delete &TLOF;
529}
530
531/// computeRegisterProperties - Once all of the register classes are added,
532/// this allows us to compute derived properties we expose.
533void TargetLowering::computeRegisterProperties() {
534  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
535         "Too many value types for ValueTypeActions to hold!");
536
537  // Everything defaults to needing one register.
538  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
539    NumRegistersForVT[i] = 1;
540    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
541  }
542  // ...except isVoid, which doesn't need any registers.
543  NumRegistersForVT[MVT::isVoid] = 0;
544
545  // Find the largest integer register class.
546  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
547  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
548    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
549
550  // Every integer value type larger than this largest register takes twice as
551  // many registers to represent as the previous ValueType.
552  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
553    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
554    if (!EVT.isInteger())
555      break;
556    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
557    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
558    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
559    ValueTypeActions.setTypeAction(EVT, Expand);
560  }
561
562  // Inspect all of the ValueType's smaller than the largest integer
563  // register to see which ones need promotion.
564  unsigned LegalIntReg = LargestIntReg;
565  for (unsigned IntReg = LargestIntReg - 1;
566       IntReg >= (unsigned)MVT::i1; --IntReg) {
567    MVT IVT = (MVT::SimpleValueType)IntReg;
568    if (isTypeLegal(IVT)) {
569      LegalIntReg = IntReg;
570    } else {
571      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
572        (MVT::SimpleValueType)LegalIntReg;
573      ValueTypeActions.setTypeAction(IVT, Promote);
574    }
575  }
576
577  // ppcf128 type is really two f64's.
578  if (!isTypeLegal(MVT::ppcf128)) {
579    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
580    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
581    TransformToType[MVT::ppcf128] = MVT::f64;
582    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
583  }
584
585  // Decide how to handle f64. If the target does not have native f64 support,
586  // expand it to i64 and we will be generating soft float library calls.
587  if (!isTypeLegal(MVT::f64)) {
588    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
589    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
590    TransformToType[MVT::f64] = MVT::i64;
591    ValueTypeActions.setTypeAction(MVT::f64, Expand);
592  }
593
594  // Decide how to handle f32. If the target does not have native support for
595  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
596  if (!isTypeLegal(MVT::f32)) {
597    if (isTypeLegal(MVT::f64)) {
598      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
599      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
600      TransformToType[MVT::f32] = MVT::f64;
601      ValueTypeActions.setTypeAction(MVT::f32, Promote);
602    } else {
603      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
604      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
605      TransformToType[MVT::f32] = MVT::i32;
606      ValueTypeActions.setTypeAction(MVT::f32, Expand);
607    }
608  }
609
610  // Loop over all of the vector value types to see which need transformations.
611  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
612       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
613    MVT VT = (MVT::SimpleValueType)i;
614    if (!isTypeLegal(VT)) {
615      MVT IntermediateVT, RegisterVT;
616      unsigned NumIntermediates;
617      NumRegistersForVT[i] =
618        getVectorTypeBreakdown(VT,
619                               IntermediateVT, NumIntermediates,
620                               RegisterVT);
621      RegisterTypeForVT[i] = RegisterVT;
622
623      // Determine if there is a legal wider type.
624      bool IsLegalWiderType = false;
625      MVT EltVT = VT.getVectorElementType();
626      unsigned NElts = VT.getVectorNumElements();
627      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
628        MVT SVT = (MVT::SimpleValueType)nVT;
629        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
630            SVT.getVectorNumElements() > NElts) {
631          TransformToType[i] = SVT;
632          ValueTypeActions.setTypeAction(VT, Promote);
633          IsLegalWiderType = true;
634          break;
635        }
636      }
637      if (!IsLegalWiderType) {
638        MVT NVT = VT.getPow2VectorType();
639        if (NVT == VT) {
640          // Type is already a power of 2.  The default action is to split.
641          TransformToType[i] = MVT::Other;
642          ValueTypeActions.setTypeAction(VT, Expand);
643        } else {
644          TransformToType[i] = NVT;
645          ValueTypeActions.setTypeAction(VT, Promote);
646        }
647      }
648    }
649  }
650}
651
652const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
653  return NULL;
654}
655
656
657MVT TargetLowering::getSetCCResultType(MVT VT) const {
658  return getValueType(TD->getIntPtrType());
659}
660
661
662/// getVectorTypeBreakdown - Vector types are broken down into some number of
663/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
664/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
665/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
666///
667/// This method returns the number of registers needed, and the VT for each
668/// register.  It also returns the VT and quantity of the intermediate values
669/// before they are promoted/expanded.
670///
671unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
672                                                MVT &IntermediateVT,
673                                                unsigned &NumIntermediates,
674                                      MVT &RegisterVT) const {
675  // Figure out the right, legal destination reg to copy into.
676  unsigned NumElts = VT.getVectorNumElements();
677  MVT EltTy = VT.getVectorElementType();
678
679  unsigned NumVectorRegs = 1;
680
681  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
682  // could break down into LHS/RHS like LegalizeDAG does.
683  if (!isPowerOf2_32(NumElts)) {
684    NumVectorRegs = NumElts;
685    NumElts = 1;
686  }
687
688  // Divide the input until we get to a supported size.  This will always
689  // end with a scalar if the target doesn't support vectors.
690  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
691    NumElts >>= 1;
692    NumVectorRegs <<= 1;
693  }
694
695  NumIntermediates = NumVectorRegs;
696
697  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
698  if (!isTypeLegal(NewVT))
699    NewVT = EltTy;
700  IntermediateVT = NewVT;
701
702  MVT DestVT = getRegisterType(NewVT);
703  RegisterVT = DestVT;
704  if (DestVT.bitsLT(NewVT)) {
705    // Value is expanded, e.g. i64 -> i16.
706    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
707  } else {
708    // Otherwise, promotion or legal types use the same number of registers as
709    // the vector decimated to the appropriate level.
710    return NumVectorRegs;
711  }
712
713  return 1;
714}
715
716/// getWidenVectorType: given a vector type, returns the type to widen to
717/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
718/// If there is no vector type that we want to widen to, returns MVT::Other
719/// When and where to widen is target dependent based on the cost of
720/// scalarizing vs using the wider vector type.
721MVT TargetLowering::getWidenVectorType(MVT VT) const {
722  assert(VT.isVector());
723  if (isTypeLegal(VT))
724    return VT;
725
726  // Default is not to widen until moved to LegalizeTypes
727  return MVT::Other;
728}
729
730/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
731/// function arguments in the caller parameter area.  This is the actual
732/// alignment, not its logarithm.
733unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
734  return TD->getCallFrameTypeAlignment(Ty);
735}
736
737SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
738                                                 SelectionDAG &DAG) const {
739  if (usesGlobalOffsetTable())
740    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
741  return Table;
742}
743
744bool
745TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
746  // Assume that everything is safe in static mode.
747  if (getTargetMachine().getRelocationModel() == Reloc::Static)
748    return true;
749
750  // In dynamic-no-pic mode, assume that known defined values are safe.
751  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
752      GA &&
753      !GA->getGlobal()->isDeclaration() &&
754      !GA->getGlobal()->isWeakForLinker())
755    return true;
756
757  // Otherwise assume nothing is safe.
758  return false;
759}
760
761//===----------------------------------------------------------------------===//
762//  Optimization Methods
763//===----------------------------------------------------------------------===//
764
765/// ShrinkDemandedConstant - Check to see if the specified operand of the
766/// specified instruction is a constant integer.  If so, check to see if there
767/// are any bits set in the constant that are not demanded.  If so, shrink the
768/// constant and return true.
769bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
770                                                        const APInt &Demanded) {
771  DebugLoc dl = Op.getDebugLoc();
772
773  // FIXME: ISD::SELECT, ISD::SELECT_CC
774  switch (Op.getOpcode()) {
775  default: break;
776  case ISD::XOR:
777  case ISD::AND:
778  case ISD::OR: {
779    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
780    if (!C) return false;
781
782    if (Op.getOpcode() == ISD::XOR &&
783        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
784      return false;
785
786    // if we can expand it to have all bits set, do it
787    if (C->getAPIntValue().intersects(~Demanded)) {
788      MVT VT = Op.getValueType();
789      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
790                                DAG.getConstant(Demanded &
791                                                C->getAPIntValue(),
792                                                VT));
793      return CombineTo(Op, New);
794    }
795
796    break;
797  }
798  }
799
800  return false;
801}
802
803/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
804/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
805/// cast, but it could be generalized for targets with other types of
806/// implicit widening casts.
807bool
808TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
809                                                    unsigned BitWidth,
810                                                    const APInt &Demanded,
811                                                    DebugLoc dl) {
812  assert(Op.getNumOperands() == 2 &&
813         "ShrinkDemandedOp only supports binary operators!");
814  assert(Op.getNode()->getNumValues() == 1 &&
815         "ShrinkDemandedOp only supports nodes with one result!");
816
817  // Don't do this if the node has another user, which may require the
818  // full value.
819  if (!Op.getNode()->hasOneUse())
820    return false;
821
822  // Search for the smallest integer type with free casts to and from
823  // Op's type. For expedience, just check power-of-2 integer types.
824  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
825  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
826  if (!isPowerOf2_32(SmallVTBits))
827    SmallVTBits = NextPowerOf2(SmallVTBits);
828  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
829    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
830    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
831        TLI.isZExtFree(SmallVT, Op.getValueType())) {
832      // We found a type with free casts.
833      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
834                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
835                                          Op.getNode()->getOperand(0)),
836                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
837                                          Op.getNode()->getOperand(1)));
838      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
839      return CombineTo(Op, Z);
840    }
841  }
842  return false;
843}
844
845/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
846/// DemandedMask bits of the result of Op are ever used downstream.  If we can
847/// use this information to simplify Op, create a new simplified DAG node and
848/// return true, returning the original and new nodes in Old and New. Otherwise,
849/// analyze the expression and return a mask of KnownOne and KnownZero bits for
850/// the expression (used to simplify the caller).  The KnownZero/One bits may
851/// only be accurate for those bits in the DemandedMask.
852bool TargetLowering::SimplifyDemandedBits(SDValue Op,
853                                          const APInt &DemandedMask,
854                                          APInt &KnownZero,
855                                          APInt &KnownOne,
856                                          TargetLoweringOpt &TLO,
857                                          unsigned Depth) const {
858  unsigned BitWidth = DemandedMask.getBitWidth();
859  assert(Op.getValueSizeInBits() == BitWidth &&
860         "Mask size mismatches value type size!");
861  APInt NewMask = DemandedMask;
862  DebugLoc dl = Op.getDebugLoc();
863
864  // Don't know anything.
865  KnownZero = KnownOne = APInt(BitWidth, 0);
866
867  // Other users may use these bits.
868  if (!Op.getNode()->hasOneUse()) {
869    if (Depth != 0) {
870      // If not at the root, Just compute the KnownZero/KnownOne bits to
871      // simplify things downstream.
872      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
873      return false;
874    }
875    // If this is the root being simplified, allow it to have multiple uses,
876    // just set the NewMask to all bits.
877    NewMask = APInt::getAllOnesValue(BitWidth);
878  } else if (DemandedMask == 0) {
879    // Not demanding any bits from Op.
880    if (Op.getOpcode() != ISD::UNDEF)
881      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
882    return false;
883  } else if (Depth == 6) {        // Limit search depth.
884    return false;
885  }
886
887  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
888  switch (Op.getOpcode()) {
889  case ISD::Constant:
890    // We know all of the bits for a constant!
891    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
892    KnownZero = ~KnownOne & NewMask;
893    return false;   // Don't fall through, will infinitely loop.
894  case ISD::AND:
895    // If the RHS is a constant, check to see if the LHS would be zero without
896    // using the bits from the RHS.  Below, we use knowledge about the RHS to
897    // simplify the LHS, here we're using information from the LHS to simplify
898    // the RHS.
899    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
900      APInt LHSZero, LHSOne;
901      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
902                                LHSZero, LHSOne, Depth+1);
903      // If the LHS already has zeros where RHSC does, this and is dead.
904      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
905        return TLO.CombineTo(Op, Op.getOperand(0));
906      // If any of the set bits in the RHS are known zero on the LHS, shrink
907      // the constant.
908      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
909        return true;
910    }
911
912    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
913                             KnownOne, TLO, Depth+1))
914      return true;
915    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
917                             KnownZero2, KnownOne2, TLO, Depth+1))
918      return true;
919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
920
921    // If all of the demanded bits are known one on one side, return the other.
922    // These bits cannot contribute to the result of the 'and'.
923    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
924      return TLO.CombineTo(Op, Op.getOperand(0));
925    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
926      return TLO.CombineTo(Op, Op.getOperand(1));
927    // If all of the demanded bits in the inputs are known zeros, return zero.
928    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
929      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
930    // If the RHS is a constant, see if we can simplify it.
931    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
932      return true;
933    // If the operation can be done in a smaller type, do so.
934    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
935      return true;
936
937    // Output known-1 bits are only known if set in both the LHS & RHS.
938    KnownOne &= KnownOne2;
939    // Output known-0 are known to be clear if zero in either the LHS | RHS.
940    KnownZero |= KnownZero2;
941    break;
942  case ISD::OR:
943    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
944                             KnownOne, TLO, Depth+1))
945      return true;
946    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
947    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
948                             KnownZero2, KnownOne2, TLO, Depth+1))
949      return true;
950    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
951
952    // If all of the demanded bits are known zero on one side, return the other.
953    // These bits cannot contribute to the result of the 'or'.
954    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
955      return TLO.CombineTo(Op, Op.getOperand(0));
956    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
957      return TLO.CombineTo(Op, Op.getOperand(1));
958    // If all of the potentially set bits on one side are known to be set on
959    // the other side, just use the 'other' side.
960    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
961      return TLO.CombineTo(Op, Op.getOperand(0));
962    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
963      return TLO.CombineTo(Op, Op.getOperand(1));
964    // If the RHS is a constant, see if we can simplify it.
965    if (TLO.ShrinkDemandedConstant(Op, NewMask))
966      return true;
967    // If the operation can be done in a smaller type, do so.
968    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
969      return true;
970
971    // Output known-0 bits are only known if clear in both the LHS & RHS.
972    KnownZero &= KnownZero2;
973    // Output known-1 are known to be set if set in either the LHS | RHS.
974    KnownOne |= KnownOne2;
975    break;
976  case ISD::XOR:
977    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
978                             KnownOne, TLO, Depth+1))
979      return true;
980    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
981    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
982                             KnownOne2, TLO, Depth+1))
983      return true;
984    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
985
986    // If all of the demanded bits are known zero on one side, return the other.
987    // These bits cannot contribute to the result of the 'xor'.
988    if ((KnownZero & NewMask) == NewMask)
989      return TLO.CombineTo(Op, Op.getOperand(0));
990    if ((KnownZero2 & NewMask) == NewMask)
991      return TLO.CombineTo(Op, Op.getOperand(1));
992    // If the operation can be done in a smaller type, do so.
993    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
994      return true;
995
996    // If all of the unknown bits are known to be zero on one side or the other
997    // (but not both) turn this into an *inclusive* or.
998    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
999    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1000      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1001                                               Op.getOperand(0),
1002                                               Op.getOperand(1)));
1003
1004    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1005    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1006    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1007    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1008
1009    // If all of the demanded bits on one side are known, and all of the set
1010    // bits on that side are also known to be set on the other side, turn this
1011    // into an AND, as we know the bits will be cleared.
1012    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1013    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1014      if ((KnownOne & KnownOne2) == KnownOne) {
1015        MVT VT = Op.getValueType();
1016        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1017        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1018                                                 Op.getOperand(0), ANDC));
1019      }
1020    }
1021
1022    // If the RHS is a constant, see if we can simplify it.
1023    // for XOR, we prefer to force bits to 1 if they will make a -1.
1024    // if we can't force bits, try to shrink constant
1025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1026      APInt Expanded = C->getAPIntValue() | (~NewMask);
1027      // if we can expand it to have all bits set, do it
1028      if (Expanded.isAllOnesValue()) {
1029        if (Expanded != C->getAPIntValue()) {
1030          MVT VT = Op.getValueType();
1031          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1032                                          TLO.DAG.getConstant(Expanded, VT));
1033          return TLO.CombineTo(Op, New);
1034        }
1035        // if it already has all the bits set, nothing to change
1036        // but don't shrink either!
1037      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1038        return true;
1039      }
1040    }
1041
1042    KnownZero = KnownZeroOut;
1043    KnownOne  = KnownOneOut;
1044    break;
1045  case ISD::SELECT:
1046    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1047                             KnownOne, TLO, Depth+1))
1048      return true;
1049    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1050                             KnownOne2, TLO, Depth+1))
1051      return true;
1052    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1053    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1054
1055    // If the operands are constants, see if we can simplify them.
1056    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1057      return true;
1058
1059    // Only known if known in both the LHS and RHS.
1060    KnownOne &= KnownOne2;
1061    KnownZero &= KnownZero2;
1062    break;
1063  case ISD::SELECT_CC:
1064    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1065                             KnownOne, TLO, Depth+1))
1066      return true;
1067    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1068                             KnownOne2, TLO, Depth+1))
1069      return true;
1070    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1071    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1072
1073    // If the operands are constants, see if we can simplify them.
1074    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1075      return true;
1076
1077    // Only known if known in both the LHS and RHS.
1078    KnownOne &= KnownOne2;
1079    KnownZero &= KnownZero2;
1080    break;
1081  case ISD::SHL:
1082    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1083      unsigned ShAmt = SA->getZExtValue();
1084      SDValue InOp = Op.getOperand(0);
1085
1086      // If the shift count is an invalid immediate, don't do anything.
1087      if (ShAmt >= BitWidth)
1088        break;
1089
1090      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1091      // single shift.  We can do this if the bottom bits (which are shifted
1092      // out) are never demanded.
1093      if (InOp.getOpcode() == ISD::SRL &&
1094          isa<ConstantSDNode>(InOp.getOperand(1))) {
1095        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1096          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1097          unsigned Opc = ISD::SHL;
1098          int Diff = ShAmt-C1;
1099          if (Diff < 0) {
1100            Diff = -Diff;
1101            Opc = ISD::SRL;
1102          }
1103
1104          SDValue NewSA =
1105            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1106          MVT VT = Op.getValueType();
1107          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1108                                                   InOp.getOperand(0), NewSA));
1109        }
1110      }
1111
1112      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1113                               KnownZero, KnownOne, TLO, Depth+1))
1114        return true;
1115      KnownZero <<= SA->getZExtValue();
1116      KnownOne  <<= SA->getZExtValue();
1117      // low bits known zero.
1118      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1119    }
1120    break;
1121  case ISD::SRL:
1122    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1123      MVT VT = Op.getValueType();
1124      unsigned ShAmt = SA->getZExtValue();
1125      unsigned VTSize = VT.getSizeInBits();
1126      SDValue InOp = Op.getOperand(0);
1127
1128      // If the shift count is an invalid immediate, don't do anything.
1129      if (ShAmt >= BitWidth)
1130        break;
1131
1132      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1133      // single shift.  We can do this if the top bits (which are shifted out)
1134      // are never demanded.
1135      if (InOp.getOpcode() == ISD::SHL &&
1136          isa<ConstantSDNode>(InOp.getOperand(1))) {
1137        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1138          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1139          unsigned Opc = ISD::SRL;
1140          int Diff = ShAmt-C1;
1141          if (Diff < 0) {
1142            Diff = -Diff;
1143            Opc = ISD::SHL;
1144          }
1145
1146          SDValue NewSA =
1147            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1148          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1149                                                   InOp.getOperand(0), NewSA));
1150        }
1151      }
1152
1153      // Compute the new bits that are at the top now.
1154      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1155                               KnownZero, KnownOne, TLO, Depth+1))
1156        return true;
1157      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158      KnownZero = KnownZero.lshr(ShAmt);
1159      KnownOne  = KnownOne.lshr(ShAmt);
1160
1161      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1162      KnownZero |= HighBits;  // High bits known zero.
1163    }
1164    break;
1165  case ISD::SRA:
1166    // If this is an arithmetic shift right and only the low-bit is set, we can
1167    // always convert this into a logical shr, even if the shift amount is
1168    // variable.  The low bit of the shift cannot be an input sign bit unless
1169    // the shift amount is >= the size of the datatype, which is undefined.
1170    if (DemandedMask == 1)
1171      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1172                                               Op.getOperand(0), Op.getOperand(1)));
1173
1174    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1175      MVT VT = Op.getValueType();
1176      unsigned ShAmt = SA->getZExtValue();
1177
1178      // If the shift count is an invalid immediate, don't do anything.
1179      if (ShAmt >= BitWidth)
1180        break;
1181
1182      APInt InDemandedMask = (NewMask << ShAmt);
1183
1184      // If any of the demanded bits are produced by the sign extension, we also
1185      // demand the input sign bit.
1186      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1187      if (HighBits.intersects(NewMask))
1188        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1189
1190      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1191                               KnownZero, KnownOne, TLO, Depth+1))
1192        return true;
1193      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194      KnownZero = KnownZero.lshr(ShAmt);
1195      KnownOne  = KnownOne.lshr(ShAmt);
1196
1197      // Handle the sign bit, adjusted to where it is now in the mask.
1198      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1199
1200      // If the input sign bit is known to be zero, or if none of the top bits
1201      // are demanded, turn this into an unsigned shift right.
1202      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1203        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1204                                                 Op.getOperand(0),
1205                                                 Op.getOperand(1)));
1206      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1207        KnownOne |= HighBits;
1208      }
1209    }
1210    break;
1211  case ISD::SIGN_EXTEND_INREG: {
1212    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1213
1214    // Sign extension.  Compute the demanded bits in the result that are not
1215    // present in the input.
1216    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1217                                          BitWidth - EVT.getSizeInBits()) &
1218                    NewMask;
1219
1220    // If none of the extended bits are demanded, eliminate the sextinreg.
1221    if (NewBits == 0)
1222      return TLO.CombineTo(Op, Op.getOperand(0));
1223
1224    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1225    InSignBit.zext(BitWidth);
1226    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1227                                                   EVT.getSizeInBits()) &
1228                              NewMask;
1229
1230    // Since the sign extended bits are demanded, we know that the sign
1231    // bit is demanded.
1232    InputDemandedBits |= InSignBit;
1233
1234    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1235                             KnownZero, KnownOne, TLO, Depth+1))
1236      return true;
1237    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238
1239    // If the sign bit of the input is known set or clear, then we know the
1240    // top bits of the result.
1241
1242    // If the input sign bit is known zero, convert this into a zero extension.
1243    if (KnownZero.intersects(InSignBit))
1244      return TLO.CombineTo(Op,
1245                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1246
1247    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1248      KnownOne |= NewBits;
1249      KnownZero &= ~NewBits;
1250    } else {                       // Input sign bit unknown
1251      KnownZero &= ~NewBits;
1252      KnownOne &= ~NewBits;
1253    }
1254    break;
1255  }
1256  case ISD::ZERO_EXTEND: {
1257    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1258    APInt InMask = NewMask;
1259    InMask.trunc(OperandBitWidth);
1260
1261    // If none of the top bits are demanded, convert this into an any_extend.
1262    APInt NewBits =
1263      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1264    if (!NewBits.intersects(NewMask))
1265      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1266                                               Op.getValueType(),
1267                                               Op.getOperand(0)));
1268
1269    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1270                             KnownZero, KnownOne, TLO, Depth+1))
1271      return true;
1272    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1273    KnownZero.zext(BitWidth);
1274    KnownOne.zext(BitWidth);
1275    KnownZero |= NewBits;
1276    break;
1277  }
1278  case ISD::SIGN_EXTEND: {
1279    MVT InVT = Op.getOperand(0).getValueType();
1280    unsigned InBits = InVT.getSizeInBits();
1281    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1282    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1283    APInt NewBits   = ~InMask & NewMask;
1284
1285    // If none of the top bits are demanded, convert this into an any_extend.
1286    if (NewBits == 0)
1287      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1288                                              Op.getValueType(),
1289                                              Op.getOperand(0)));
1290
1291    // Since some of the sign extended bits are demanded, we know that the sign
1292    // bit is demanded.
1293    APInt InDemandedBits = InMask & NewMask;
1294    InDemandedBits |= InSignBit;
1295    InDemandedBits.trunc(InBits);
1296
1297    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1298                             KnownOne, TLO, Depth+1))
1299      return true;
1300    KnownZero.zext(BitWidth);
1301    KnownOne.zext(BitWidth);
1302
1303    // If the sign bit is known zero, convert this to a zero extend.
1304    if (KnownZero.intersects(InSignBit))
1305      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1306                                               Op.getValueType(),
1307                                               Op.getOperand(0)));
1308
1309    // If the sign bit is known one, the top bits match.
1310    if (KnownOne.intersects(InSignBit)) {
1311      KnownOne  |= NewBits;
1312      KnownZero &= ~NewBits;
1313    } else {   // Otherwise, top bits aren't known.
1314      KnownOne  &= ~NewBits;
1315      KnownZero &= ~NewBits;
1316    }
1317    break;
1318  }
1319  case ISD::ANY_EXTEND: {
1320    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1321    APInt InMask = NewMask;
1322    InMask.trunc(OperandBitWidth);
1323    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1324                             KnownZero, KnownOne, TLO, Depth+1))
1325      return true;
1326    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1327    KnownZero.zext(BitWidth);
1328    KnownOne.zext(BitWidth);
1329    break;
1330  }
1331  case ISD::TRUNCATE: {
1332    // Simplify the input, using demanded bit information, and compute the known
1333    // zero/one bits live out.
1334    APInt TruncMask = NewMask;
1335    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1336    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1337                             KnownZero, KnownOne, TLO, Depth+1))
1338      return true;
1339    KnownZero.trunc(BitWidth);
1340    KnownOne.trunc(BitWidth);
1341
1342    // If the input is only used by this truncate, see if we can shrink it based
1343    // on the known demanded bits.
1344    if (Op.getOperand(0).getNode()->hasOneUse()) {
1345      SDValue In = Op.getOperand(0);
1346      unsigned InBitWidth = In.getValueSizeInBits();
1347      switch (In.getOpcode()) {
1348      default: break;
1349      case ISD::SRL:
1350        // Shrink SRL by a constant if none of the high bits shifted in are
1351        // demanded.
1352        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1353          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1354                                                 InBitWidth - BitWidth);
1355          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1356          HighBits.trunc(BitWidth);
1357
1358          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1359            // None of the shifted in bits are needed.  Add a truncate of the
1360            // shift input, then shift it.
1361            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1362                                                 Op.getValueType(),
1363                                                 In.getOperand(0));
1364            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1365                                                     Op.getValueType(),
1366                                                     NewTrunc,
1367                                                     In.getOperand(1)));
1368          }
1369        }
1370        break;
1371      }
1372    }
1373
1374    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1375    break;
1376  }
1377  case ISD::AssertZext: {
1378    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1379    APInt InMask = APInt::getLowBitsSet(BitWidth,
1380                                        VT.getSizeInBits());
1381    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1382                             KnownZero, KnownOne, TLO, Depth+1))
1383      return true;
1384    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1385    KnownZero |= ~InMask & NewMask;
1386    break;
1387  }
1388  case ISD::BIT_CONVERT:
1389#if 0
1390    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1391    // is demanded, turn this into a FGETSIGN.
1392    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1393        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1394        !MVT::isVector(Op.getOperand(0).getValueType())) {
1395      // Only do this xform if FGETSIGN is valid or if before legalize.
1396      if (!TLO.AfterLegalize ||
1397          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1398        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1399        // place.  We expect the SHL to be eliminated by other optimizations.
1400        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1401                                         Op.getOperand(0));
1402        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1403        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1404        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1405                                                 Sign, ShAmt));
1406      }
1407    }
1408#endif
1409    break;
1410  case ISD::ADD:
1411  case ISD::MUL:
1412  case ISD::SUB: {
1413    // Add, Sub, and Mul don't demand any bits in positions beyond that
1414    // of the highest bit demanded of them.
1415    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1416                                        BitWidth - NewMask.countLeadingZeros());
1417    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1418                             KnownOne2, TLO, Depth+1))
1419      return true;
1420    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1421                             KnownOne2, TLO, Depth+1))
1422      return true;
1423    // See if the operation should be performed at a smaller bit width.
1424    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1425      return true;
1426  }
1427  // FALL THROUGH
1428  default:
1429    // Just use ComputeMaskedBits to compute output bits.
1430    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1431    break;
1432  }
1433
1434  // If we know the value of all of the demanded bits, return this as a
1435  // constant.
1436  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1437    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1438
1439  return false;
1440}
1441
1442/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1443/// in Mask are known to be either zero or one and return them in the
1444/// KnownZero/KnownOne bitsets.
1445void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1446                                                    const APInt &Mask,
1447                                                    APInt &KnownZero,
1448                                                    APInt &KnownOne,
1449                                                    const SelectionDAG &DAG,
1450                                                    unsigned Depth) const {
1451  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1452          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1453          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1454          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1455         "Should use MaskedValueIsZero if you don't know whether Op"
1456         " is a target node!");
1457  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1458}
1459
1460/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1461/// targets that want to expose additional information about sign bits to the
1462/// DAG Combiner.
1463unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1464                                                         unsigned Depth) const {
1465  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1466          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1467          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1468          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1469         "Should use ComputeNumSignBits if you don't know whether Op"
1470         " is a target node!");
1471  return 1;
1472}
1473
1474/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1475/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1476/// determine which bit is set.
1477///
1478static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1479  // A left-shift of a constant one will have exactly one bit set, because
1480  // shifting the bit off the end is undefined.
1481  if (Val.getOpcode() == ISD::SHL)
1482    if (ConstantSDNode *C =
1483         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1484      if (C->getAPIntValue() == 1)
1485        return true;
1486
1487  // Similarly, a right-shift of a constant sign-bit will have exactly
1488  // one bit set.
1489  if (Val.getOpcode() == ISD::SRL)
1490    if (ConstantSDNode *C =
1491         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1492      if (C->getAPIntValue().isSignBit())
1493        return true;
1494
1495  // More could be done here, though the above checks are enough
1496  // to handle some common cases.
1497
1498  // Fall back to ComputeMaskedBits to catch other known cases.
1499  MVT OpVT = Val.getValueType();
1500  unsigned BitWidth = OpVT.getSizeInBits();
1501  APInt Mask = APInt::getAllOnesValue(BitWidth);
1502  APInt KnownZero, KnownOne;
1503  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1504  return (KnownZero.countPopulation() == BitWidth - 1) &&
1505         (KnownOne.countPopulation() == 1);
1506}
1507
1508/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1509/// and cc. If it is unable to simplify it, return a null SDValue.
1510SDValue
1511TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1512                              ISD::CondCode Cond, bool foldBooleans,
1513                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1514  SelectionDAG &DAG = DCI.DAG;
1515
1516  // These setcc operations always fold.
1517  switch (Cond) {
1518  default: break;
1519  case ISD::SETFALSE:
1520  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1521  case ISD::SETTRUE:
1522  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1523  }
1524
1525  if (isa<ConstantSDNode>(N0.getNode())) {
1526    // Ensure that the constant occurs on the RHS, and fold constant
1527    // comparisons.
1528    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1529  }
1530
1531  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1532    const APInt &C1 = N1C->getAPIntValue();
1533
1534    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1535    // equality comparison, then we're just comparing whether X itself is
1536    // zero.
1537    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1538        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1539        N0.getOperand(1).getOpcode() == ISD::Constant) {
1540      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1541      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1542          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1543        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1544          // (srl (ctlz x), 5) == 0  -> X != 0
1545          // (srl (ctlz x), 5) != 1  -> X != 0
1546          Cond = ISD::SETNE;
1547        } else {
1548          // (srl (ctlz x), 5) != 0  -> X == 0
1549          // (srl (ctlz x), 5) == 1  -> X == 0
1550          Cond = ISD::SETEQ;
1551        }
1552        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1553        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1554                            Zero, Cond);
1555      }
1556    }
1557
1558    // If the LHS is '(and load, const)', the RHS is 0,
1559    // the test is for equality or unsigned, and all 1 bits of the const are
1560    // in the same partial word, see if we can shorten the load.
1561    if (DCI.isBeforeLegalize() &&
1562        N0.getOpcode() == ISD::AND && C1 == 0 &&
1563        N0.getNode()->hasOneUse() &&
1564        isa<LoadSDNode>(N0.getOperand(0)) &&
1565        N0.getOperand(0).getNode()->hasOneUse() &&
1566        isa<ConstantSDNode>(N0.getOperand(1))) {
1567      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1568      uint64_t bestMask = 0;
1569      unsigned bestWidth = 0, bestOffset = 0;
1570      if (!Lod->isVolatile() && Lod->isUnindexed() &&
1571          // FIXME: This uses getZExtValue() below so it only works on i64 and
1572          // below.
1573          N0.getValueType().getSizeInBits() <= 64) {
1574        unsigned origWidth = N0.getValueType().getSizeInBits();
1575        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1576        // 8 bits, but have to be careful...
1577        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1578          origWidth = Lod->getMemoryVT().getSizeInBits();
1579        uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1580        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1581          uint64_t newMask = (1ULL << width) - 1;
1582          for (unsigned offset=0; offset<origWidth/width; offset++) {
1583            if ((newMask & Mask) == Mask) {
1584              if (!TD->isLittleEndian())
1585                bestOffset = (origWidth/width - offset - 1) * (width/8);
1586              else
1587                bestOffset = (uint64_t)offset * (width/8);
1588              bestMask = Mask >> (offset * (width/8) * 8);
1589              bestWidth = width;
1590              break;
1591            }
1592            newMask = newMask << width;
1593          }
1594        }
1595      }
1596      if (bestWidth) {
1597        MVT newVT = MVT::getIntegerVT(bestWidth);
1598        if (newVT.isRound()) {
1599          MVT PtrType = Lod->getOperand(1).getValueType();
1600          SDValue Ptr = Lod->getBasePtr();
1601          if (bestOffset != 0)
1602            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1603                              DAG.getConstant(bestOffset, PtrType));
1604          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1605          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1606                                        Lod->getSrcValue(),
1607                                        Lod->getSrcValueOffset() + bestOffset,
1608                                        false, NewAlign);
1609          return DAG.getSetCC(dl, VT,
1610                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1611                                          DAG.getConstant(bestMask, newVT)),
1612                              DAG.getConstant(0LL, newVT), Cond);
1613        }
1614      }
1615    }
1616
1617    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1618    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1619      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1620
1621      // If the comparison constant has bits in the upper part, the
1622      // zero-extended value could never match.
1623      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1624                                              C1.getBitWidth() - InSize))) {
1625        switch (Cond) {
1626        case ISD::SETUGT:
1627        case ISD::SETUGE:
1628        case ISD::SETEQ: return DAG.getConstant(0, VT);
1629        case ISD::SETULT:
1630        case ISD::SETULE:
1631        case ISD::SETNE: return DAG.getConstant(1, VT);
1632        case ISD::SETGT:
1633        case ISD::SETGE:
1634          // True if the sign bit of C1 is set.
1635          return DAG.getConstant(C1.isNegative(), VT);
1636        case ISD::SETLT:
1637        case ISD::SETLE:
1638          // True if the sign bit of C1 isn't set.
1639          return DAG.getConstant(C1.isNonNegative(), VT);
1640        default:
1641          break;
1642        }
1643      }
1644
1645      // Otherwise, we can perform the comparison with the low bits.
1646      switch (Cond) {
1647      case ISD::SETEQ:
1648      case ISD::SETNE:
1649      case ISD::SETUGT:
1650      case ISD::SETUGE:
1651      case ISD::SETULT:
1652      case ISD::SETULE: {
1653        MVT newVT = N0.getOperand(0).getValueType();
1654        if (DCI.isBeforeLegalizeOps() ||
1655            (isOperationLegal(ISD::SETCC, newVT) &&
1656              getCondCodeAction(Cond, newVT)==Legal))
1657          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1658                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1659                              Cond);
1660        break;
1661      }
1662      default:
1663        break;   // todo, be more careful with signed comparisons
1664      }
1665    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1666                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1667      MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1668      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1669      MVT ExtDstTy = N0.getValueType();
1670      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1671
1672      // If the extended part has any inconsistent bits, it cannot ever
1673      // compare equal.  In other words, they have to be all ones or all
1674      // zeros.
1675      APInt ExtBits =
1676        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1677      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1678        return DAG.getConstant(Cond == ISD::SETNE, VT);
1679
1680      SDValue ZextOp;
1681      MVT Op0Ty = N0.getOperand(0).getValueType();
1682      if (Op0Ty == ExtSrcTy) {
1683        ZextOp = N0.getOperand(0);
1684      } else {
1685        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1686        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1687                              DAG.getConstant(Imm, Op0Ty));
1688      }
1689      if (!DCI.isCalledByLegalizer())
1690        DCI.AddToWorklist(ZextOp.getNode());
1691      // Otherwise, make this a use of a zext.
1692      return DAG.getSetCC(dl, VT, ZextOp,
1693                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1694                                                              ExtDstTyBits,
1695                                                              ExtSrcTyBits),
1696                                          ExtDstTy),
1697                          Cond);
1698    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1699                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1700
1701      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1702      if (N0.getOpcode() == ISD::SETCC) {
1703        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1704        if (TrueWhenTrue)
1705          return N0;
1706
1707        // Invert the condition.
1708        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1709        CC = ISD::getSetCCInverse(CC,
1710                                  N0.getOperand(0).getValueType().isInteger());
1711        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1712      }
1713
1714      if ((N0.getOpcode() == ISD::XOR ||
1715            (N0.getOpcode() == ISD::AND &&
1716            N0.getOperand(0).getOpcode() == ISD::XOR &&
1717            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1718          isa<ConstantSDNode>(N0.getOperand(1)) &&
1719          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1720        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1721        // can only do this if the top bits are known zero.
1722        unsigned BitWidth = N0.getValueSizeInBits();
1723        if (DAG.MaskedValueIsZero(N0,
1724                                  APInt::getHighBitsSet(BitWidth,
1725                                                        BitWidth-1))) {
1726          // Okay, get the un-inverted input value.
1727          SDValue Val;
1728          if (N0.getOpcode() == ISD::XOR)
1729            Val = N0.getOperand(0);
1730          else {
1731            assert(N0.getOpcode() == ISD::AND &&
1732                    N0.getOperand(0).getOpcode() == ISD::XOR);
1733            // ((X^1)&1)^1 -> X & 1
1734            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1735                              N0.getOperand(0).getOperand(0),
1736                              N0.getOperand(1));
1737          }
1738          return DAG.getSetCC(dl, VT, Val, N1,
1739                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1740        }
1741      }
1742    }
1743
1744    APInt MinVal, MaxVal;
1745    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1746    if (ISD::isSignedIntSetCC(Cond)) {
1747      MinVal = APInt::getSignedMinValue(OperandBitSize);
1748      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1749    } else {
1750      MinVal = APInt::getMinValue(OperandBitSize);
1751      MaxVal = APInt::getMaxValue(OperandBitSize);
1752    }
1753
1754    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1755    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1756      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1757      // X >= C0 --> X > (C0-1)
1758      return DAG.getSetCC(dl, VT, N0,
1759                          DAG.getConstant(C1-1, N1.getValueType()),
1760                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1761    }
1762
1763    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1764      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1765      // X <= C0 --> X < (C0+1)
1766      return DAG.getSetCC(dl, VT, N0,
1767                          DAG.getConstant(C1+1, N1.getValueType()),
1768                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1769    }
1770
1771    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1772      return DAG.getConstant(0, VT);      // X < MIN --> false
1773    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1774      return DAG.getConstant(1, VT);      // X >= MIN --> true
1775    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1776      return DAG.getConstant(0, VT);      // X > MAX --> false
1777    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1778      return DAG.getConstant(1, VT);      // X <= MAX --> true
1779
1780    // Canonicalize setgt X, Min --> setne X, Min
1781    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1782      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1783    // Canonicalize setlt X, Max --> setne X, Max
1784    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1785      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1786
1787    // If we have setult X, 1, turn it into seteq X, 0
1788    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1789      return DAG.getSetCC(dl, VT, N0,
1790                          DAG.getConstant(MinVal, N0.getValueType()),
1791                          ISD::SETEQ);
1792    // If we have setugt X, Max-1, turn it into seteq X, Max
1793    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1794      return DAG.getSetCC(dl, VT, N0,
1795                          DAG.getConstant(MaxVal, N0.getValueType()),
1796                          ISD::SETEQ);
1797
1798    // If we have "setcc X, C0", check to see if we can shrink the immediate
1799    // by changing cc.
1800
1801    // SETUGT X, SINTMAX  -> SETLT X, 0
1802    if (Cond == ISD::SETUGT &&
1803        C1 == APInt::getSignedMaxValue(OperandBitSize))
1804      return DAG.getSetCC(dl, VT, N0,
1805                          DAG.getConstant(0, N1.getValueType()),
1806                          ISD::SETLT);
1807
1808    // SETULT X, SINTMIN  -> SETGT X, -1
1809    if (Cond == ISD::SETULT &&
1810        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1811      SDValue ConstMinusOne =
1812          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1813                          N1.getValueType());
1814      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1815    }
1816
1817    // Fold bit comparisons when we can.
1818    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1819        VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1820      if (ConstantSDNode *AndRHS =
1821                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1822        MVT ShiftTy = DCI.isBeforeLegalize() ?
1823          getPointerTy() : getShiftAmountTy();
1824        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1825          // Perform the xform if the AND RHS is a single bit.
1826          if (isPowerOf2_64(AndRHS->getZExtValue())) {
1827            return DAG.getNode(ISD::SRL, dl, VT, N0,
1828                                DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1829                                                ShiftTy));
1830          }
1831        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1832          // (X & 8) == 8  -->  (X & 8) >> 3
1833          // Perform the xform if C1 is a single bit.
1834          if (C1.isPowerOf2()) {
1835            return DAG.getNode(ISD::SRL, dl, VT, N0,
1836                                DAG.getConstant(C1.logBase2(), ShiftTy));
1837          }
1838        }
1839      }
1840  }
1841
1842  if (isa<ConstantFPSDNode>(N0.getNode())) {
1843    // Constant fold or commute setcc.
1844    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1845    if (O.getNode()) return O;
1846  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1847    // If the RHS of an FP comparison is a constant, simplify it away in
1848    // some cases.
1849    if (CFP->getValueAPF().isNaN()) {
1850      // If an operand is known to be a nan, we can fold it.
1851      switch (ISD::getUnorderedFlavor(Cond)) {
1852      default: llvm_unreachable("Unknown flavor!");
1853      case 0:  // Known false.
1854        return DAG.getConstant(0, VT);
1855      case 1:  // Known true.
1856        return DAG.getConstant(1, VT);
1857      case 2:  // Undefined.
1858        return DAG.getUNDEF(VT);
1859      }
1860    }
1861
1862    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1863    // constant if knowing that the operand is non-nan is enough.  We prefer to
1864    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1865    // materialize 0.0.
1866    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1867      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1868  }
1869
1870  if (N0 == N1) {
1871    // We can always fold X == X for integer setcc's.
1872    if (N0.getValueType().isInteger())
1873      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1874    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1875    if (UOF == 2)   // FP operators that are undefined on NaNs.
1876      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1877    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1878      return DAG.getConstant(UOF, VT);
1879    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1880    // if it is not already.
1881    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1882    if (NewCond != Cond)
1883      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1884  }
1885
1886  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1887      N0.getValueType().isInteger()) {
1888    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1889        N0.getOpcode() == ISD::XOR) {
1890      // Simplify (X+Y) == (X+Z) -->  Y == Z
1891      if (N0.getOpcode() == N1.getOpcode()) {
1892        if (N0.getOperand(0) == N1.getOperand(0))
1893          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1894        if (N0.getOperand(1) == N1.getOperand(1))
1895          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1896        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1897          // If X op Y == Y op X, try other combinations.
1898          if (N0.getOperand(0) == N1.getOperand(1))
1899            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1900                                Cond);
1901          if (N0.getOperand(1) == N1.getOperand(0))
1902            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1903                                Cond);
1904        }
1905      }
1906
1907      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1908        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1909          // Turn (X+C1) == C2 --> X == C2-C1
1910          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1911            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1912                                DAG.getConstant(RHSC->getAPIntValue()-
1913                                                LHSR->getAPIntValue(),
1914                                N0.getValueType()), Cond);
1915          }
1916
1917          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1918          if (N0.getOpcode() == ISD::XOR)
1919            // If we know that all of the inverted bits are zero, don't bother
1920            // performing the inversion.
1921            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1922              return
1923                DAG.getSetCC(dl, VT, N0.getOperand(0),
1924                             DAG.getConstant(LHSR->getAPIntValue() ^
1925                                               RHSC->getAPIntValue(),
1926                                             N0.getValueType()),
1927                             Cond);
1928        }
1929
1930        // Turn (C1-X) == C2 --> X == C1-C2
1931        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1932          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1933            return
1934              DAG.getSetCC(dl, VT, N0.getOperand(1),
1935                           DAG.getConstant(SUBC->getAPIntValue() -
1936                                             RHSC->getAPIntValue(),
1937                                           N0.getValueType()),
1938                           Cond);
1939          }
1940        }
1941      }
1942
1943      // Simplify (X+Z) == X -->  Z == 0
1944      if (N0.getOperand(0) == N1)
1945        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1946                        DAG.getConstant(0, N0.getValueType()), Cond);
1947      if (N0.getOperand(1) == N1) {
1948        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1949          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1950                          DAG.getConstant(0, N0.getValueType()), Cond);
1951        else if (N0.getNode()->hasOneUse()) {
1952          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1953          // (Z-X) == X  --> Z == X<<1
1954          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1955                                     N1,
1956                                     DAG.getConstant(1, getShiftAmountTy()));
1957          if (!DCI.isCalledByLegalizer())
1958            DCI.AddToWorklist(SH.getNode());
1959          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1960        }
1961      }
1962    }
1963
1964    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1965        N1.getOpcode() == ISD::XOR) {
1966      // Simplify  X == (X+Z) -->  Z == 0
1967      if (N1.getOperand(0) == N0) {
1968        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1969                        DAG.getConstant(0, N1.getValueType()), Cond);
1970      } else if (N1.getOperand(1) == N0) {
1971        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1972          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1973                          DAG.getConstant(0, N1.getValueType()), Cond);
1974        } else if (N1.getNode()->hasOneUse()) {
1975          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1976          // X == (Z-X)  --> X<<1 == Z
1977          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1978                                     DAG.getConstant(1, getShiftAmountTy()));
1979          if (!DCI.isCalledByLegalizer())
1980            DCI.AddToWorklist(SH.getNode());
1981          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1982        }
1983      }
1984    }
1985
1986    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1987    // Note that where y is variable and is known to have at most
1988    // one bit set (for example, if it is z&1) we cannot do this;
1989    // the expressions are not equivalent when y==0.
1990    if (N0.getOpcode() == ISD::AND)
1991      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1992        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1993          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1994          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1995          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1996        }
1997      }
1998    if (N1.getOpcode() == ISD::AND)
1999      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2000        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2001          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2002          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2003          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2004        }
2005      }
2006  }
2007
2008  // Fold away ALL boolean setcc's.
2009  SDValue Temp;
2010  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2011    switch (Cond) {
2012    default: llvm_unreachable("Unknown integer setcc!");
2013    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2014      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2015      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2016      if (!DCI.isCalledByLegalizer())
2017        DCI.AddToWorklist(Temp.getNode());
2018      break;
2019    case ISD::SETNE:  // X != Y   -->  (X^Y)
2020      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2021      break;
2022    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2023    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2024      Temp = DAG.getNOT(dl, N0, MVT::i1);
2025      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2026      if (!DCI.isCalledByLegalizer())
2027        DCI.AddToWorklist(Temp.getNode());
2028      break;
2029    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2030    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2031      Temp = DAG.getNOT(dl, N1, MVT::i1);
2032      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2033      if (!DCI.isCalledByLegalizer())
2034        DCI.AddToWorklist(Temp.getNode());
2035      break;
2036    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2037    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2038      Temp = DAG.getNOT(dl, N0, MVT::i1);
2039      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2040      if (!DCI.isCalledByLegalizer())
2041        DCI.AddToWorklist(Temp.getNode());
2042      break;
2043    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2044    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2045      Temp = DAG.getNOT(dl, N1, MVT::i1);
2046      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2047      break;
2048    }
2049    if (VT != MVT::i1) {
2050      if (!DCI.isCalledByLegalizer())
2051        DCI.AddToWorklist(N0.getNode());
2052      // FIXME: If running after legalize, we probably can't do this.
2053      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2054    }
2055    return N0;
2056  }
2057
2058  // Could not fold it.
2059  return SDValue();
2060}
2061
2062/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2063/// node is a GlobalAddress + offset.
2064bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2065                                    int64_t &Offset) const {
2066  if (isa<GlobalAddressSDNode>(N)) {
2067    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2068    GA = GASD->getGlobal();
2069    Offset += GASD->getOffset();
2070    return true;
2071  }
2072
2073  if (N->getOpcode() == ISD::ADD) {
2074    SDValue N1 = N->getOperand(0);
2075    SDValue N2 = N->getOperand(1);
2076    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2077      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2078      if (V) {
2079        Offset += V->getSExtValue();
2080        return true;
2081      }
2082    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2083      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2084      if (V) {
2085        Offset += V->getSExtValue();
2086        return true;
2087      }
2088    }
2089  }
2090  return false;
2091}
2092
2093
2094/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2095/// location that is 'Dist' units away from the location that the 'Base' load
2096/// is loading from.
2097bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2098                                       unsigned Bytes, int Dist,
2099                                       const MachineFrameInfo *MFI) const {
2100  if (LD->getChain() != Base->getChain())
2101    return false;
2102  MVT VT = LD->getValueType(0);
2103  if (VT.getSizeInBits() / 8 != Bytes)
2104    return false;
2105
2106  SDValue Loc = LD->getOperand(1);
2107  SDValue BaseLoc = Base->getOperand(1);
2108  if (Loc.getOpcode() == ISD::FrameIndex) {
2109    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2110      return false;
2111    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2112    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2113    int FS  = MFI->getObjectSize(FI);
2114    int BFS = MFI->getObjectSize(BFI);
2115    if (FS != BFS || FS != (int)Bytes) return false;
2116    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2117  }
2118  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2119    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2120    if (V && (V->getSExtValue() == Dist*Bytes))
2121      return true;
2122  }
2123
2124  GlobalValue *GV1 = NULL;
2125  GlobalValue *GV2 = NULL;
2126  int64_t Offset1 = 0;
2127  int64_t Offset2 = 0;
2128  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2129  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2130  if (isGA1 && isGA2 && GV1 == GV2)
2131    return Offset1 == (Offset2 + Dist*Bytes);
2132  return false;
2133}
2134
2135
2136SDValue TargetLowering::
2137PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2138  // Default implementation: no optimization.
2139  return SDValue();
2140}
2141
2142//===----------------------------------------------------------------------===//
2143//  Inline Assembler Implementation Methods
2144//===----------------------------------------------------------------------===//
2145
2146
2147TargetLowering::ConstraintType
2148TargetLowering::getConstraintType(const std::string &Constraint) const {
2149  // FIXME: lots more standard ones to handle.
2150  if (Constraint.size() == 1) {
2151    switch (Constraint[0]) {
2152    default: break;
2153    case 'r': return C_RegisterClass;
2154    case 'm':    // memory
2155    case 'o':    // offsetable
2156    case 'V':    // not offsetable
2157      return C_Memory;
2158    case 'i':    // Simple Integer or Relocatable Constant
2159    case 'n':    // Simple Integer
2160    case 's':    // Relocatable Constant
2161    case 'X':    // Allow ANY value.
2162    case 'I':    // Target registers.
2163    case 'J':
2164    case 'K':
2165    case 'L':
2166    case 'M':
2167    case 'N':
2168    case 'O':
2169    case 'P':
2170      return C_Other;
2171    }
2172  }
2173
2174  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2175      Constraint[Constraint.size()-1] == '}')
2176    return C_Register;
2177  return C_Unknown;
2178}
2179
2180/// LowerXConstraint - try to replace an X constraint, which matches anything,
2181/// with another that has more specific requirements based on the type of the
2182/// corresponding operand.
2183const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2184  if (ConstraintVT.isInteger())
2185    return "r";
2186  if (ConstraintVT.isFloatingPoint())
2187    return "f";      // works for many targets
2188  return 0;
2189}
2190
2191/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2192/// vector.  If it is invalid, don't add anything to Ops.
2193void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2194                                                  char ConstraintLetter,
2195                                                  bool hasMemory,
2196                                                  std::vector<SDValue> &Ops,
2197                                                  SelectionDAG &DAG) const {
2198  switch (ConstraintLetter) {
2199  default: break;
2200  case 'X':     // Allows any operand; labels (basic block) use this.
2201    if (Op.getOpcode() == ISD::BasicBlock) {
2202      Ops.push_back(Op);
2203      return;
2204    }
2205    // fall through
2206  case 'i':    // Simple Integer or Relocatable Constant
2207  case 'n':    // Simple Integer
2208  case 's': {  // Relocatable Constant
2209    // These operands are interested in values of the form (GV+C), where C may
2210    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2211    // is possible and fine if either GV or C are missing.
2212    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2213    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2214
2215    // If we have "(add GV, C)", pull out GV/C
2216    if (Op.getOpcode() == ISD::ADD) {
2217      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2218      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2219      if (C == 0 || GA == 0) {
2220        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2221        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2222      }
2223      if (C == 0 || GA == 0)
2224        C = 0, GA = 0;
2225    }
2226
2227    // If we find a valid operand, map to the TargetXXX version so that the
2228    // value itself doesn't get selected.
2229    if (GA) {   // Either &GV   or   &GV+C
2230      if (ConstraintLetter != 'n') {
2231        int64_t Offs = GA->getOffset();
2232        if (C) Offs += C->getZExtValue();
2233        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2234                                                 Op.getValueType(), Offs));
2235        return;
2236      }
2237    }
2238    if (C) {   // just C, no GV.
2239      // Simple constants are not allowed for 's'.
2240      if (ConstraintLetter != 's') {
2241        // gcc prints these as sign extended.  Sign extend value to 64 bits
2242        // now; without this it would get ZExt'd later in
2243        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2244        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2245                                            MVT::i64));
2246        return;
2247      }
2248    }
2249    break;
2250  }
2251  }
2252}
2253
2254std::vector<unsigned> TargetLowering::
2255getRegClassForInlineAsmConstraint(const std::string &Constraint,
2256                                  MVT VT) const {
2257  return std::vector<unsigned>();
2258}
2259
2260
2261std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2262getRegForInlineAsmConstraint(const std::string &Constraint,
2263                             MVT VT) const {
2264  if (Constraint[0] != '{')
2265    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2266  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2267
2268  // Remove the braces from around the name.
2269  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2270
2271  // Figure out which register class contains this reg.
2272  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2273  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2274       E = RI->regclass_end(); RCI != E; ++RCI) {
2275    const TargetRegisterClass *RC = *RCI;
2276
2277    // If none of the the value types for this register class are valid, we
2278    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2279    bool isLegal = false;
2280    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2281         I != E; ++I) {
2282      if (isTypeLegal(*I)) {
2283        isLegal = true;
2284        break;
2285      }
2286    }
2287
2288    if (!isLegal) continue;
2289
2290    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2291         I != E; ++I) {
2292      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2293        return std::make_pair(*I, RC);
2294    }
2295  }
2296
2297  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2298}
2299
2300//===----------------------------------------------------------------------===//
2301// Constraint Selection.
2302
2303/// isMatchingInputConstraint - Return true of this is an input operand that is
2304/// a matching constraint like "4".
2305bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2306  assert(!ConstraintCode.empty() && "No known constraint!");
2307  return isdigit(ConstraintCode[0]);
2308}
2309
2310/// getMatchedOperand - If this is an input matching constraint, this method
2311/// returns the output operand it matches.
2312unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2313  assert(!ConstraintCode.empty() && "No known constraint!");
2314  return atoi(ConstraintCode.c_str());
2315}
2316
2317
2318/// getConstraintGenerality - Return an integer indicating how general CT
2319/// is.
2320static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2321  switch (CT) {
2322  default: llvm_unreachable("Unknown constraint type!");
2323  case TargetLowering::C_Other:
2324  case TargetLowering::C_Unknown:
2325    return 0;
2326  case TargetLowering::C_Register:
2327    return 1;
2328  case TargetLowering::C_RegisterClass:
2329    return 2;
2330  case TargetLowering::C_Memory:
2331    return 3;
2332  }
2333}
2334
2335/// ChooseConstraint - If there are multiple different constraints that we
2336/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2337/// This is somewhat tricky: constraints fall into four classes:
2338///    Other         -> immediates and magic values
2339///    Register      -> one specific register
2340///    RegisterClass -> a group of regs
2341///    Memory        -> memory
2342/// Ideally, we would pick the most specific constraint possible: if we have
2343/// something that fits into a register, we would pick it.  The problem here
2344/// is that if we have something that could either be in a register or in
2345/// memory that use of the register could cause selection of *other*
2346/// operands to fail: they might only succeed if we pick memory.  Because of
2347/// this the heuristic we use is:
2348///
2349///  1) If there is an 'other' constraint, and if the operand is valid for
2350///     that constraint, use it.  This makes us take advantage of 'i'
2351///     constraints when available.
2352///  2) Otherwise, pick the most general constraint present.  This prefers
2353///     'm' over 'r', for example.
2354///
2355static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2356                             bool hasMemory,  const TargetLowering &TLI,
2357                             SDValue Op, SelectionDAG *DAG) {
2358  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2359  unsigned BestIdx = 0;
2360  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2361  int BestGenerality = -1;
2362
2363  // Loop over the options, keeping track of the most general one.
2364  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2365    TargetLowering::ConstraintType CType =
2366      TLI.getConstraintType(OpInfo.Codes[i]);
2367
2368    // If this is an 'other' constraint, see if the operand is valid for it.
2369    // For example, on X86 we might have an 'rI' constraint.  If the operand
2370    // is an integer in the range [0..31] we want to use I (saving a load
2371    // of a register), otherwise we must use 'r'.
2372    if (CType == TargetLowering::C_Other && Op.getNode()) {
2373      assert(OpInfo.Codes[i].size() == 1 &&
2374             "Unhandled multi-letter 'other' constraint");
2375      std::vector<SDValue> ResultOps;
2376      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2377                                       ResultOps, *DAG);
2378      if (!ResultOps.empty()) {
2379        BestType = CType;
2380        BestIdx = i;
2381        break;
2382      }
2383    }
2384
2385    // This constraint letter is more general than the previous one, use it.
2386    int Generality = getConstraintGenerality(CType);
2387    if (Generality > BestGenerality) {
2388      BestType = CType;
2389      BestIdx = i;
2390      BestGenerality = Generality;
2391    }
2392  }
2393
2394  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2395  OpInfo.ConstraintType = BestType;
2396}
2397
2398/// ComputeConstraintToUse - Determines the constraint code and constraint
2399/// type to use for the specific AsmOperandInfo, setting
2400/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2401void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2402                                            SDValue Op,
2403                                            bool hasMemory,
2404                                            SelectionDAG *DAG) const {
2405  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2406
2407  // Single-letter constraints ('r') are very common.
2408  if (OpInfo.Codes.size() == 1) {
2409    OpInfo.ConstraintCode = OpInfo.Codes[0];
2410    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2411  } else {
2412    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2413  }
2414
2415  // 'X' matches anything.
2416  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2417    // Labels and constants are handled elsewhere ('X' is the only thing
2418    // that matches labels).  For Functions, the type here is the type of
2419    // the result, which is not what we want to look at; leave them alone.
2420    Value *v = OpInfo.CallOperandVal;
2421    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2422      OpInfo.CallOperandVal = v;
2423      return;
2424    }
2425
2426    // Otherwise, try to resolve it to something we know about by looking at
2427    // the actual operand type.
2428    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2429      OpInfo.ConstraintCode = Repl;
2430      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2431    }
2432  }
2433}
2434
2435//===----------------------------------------------------------------------===//
2436//  Loop Strength Reduction hooks
2437//===----------------------------------------------------------------------===//
2438
2439/// isLegalAddressingMode - Return true if the addressing mode represented
2440/// by AM is legal for this target, for a load/store of the specified type.
2441bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2442                                           const Type *Ty) const {
2443  // The default implementation of this implements a conservative RISCy, r+r and
2444  // r+i addr mode.
2445
2446  // Allows a sign-extended 16-bit immediate field.
2447  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2448    return false;
2449
2450  // No global is ever allowed as a base.
2451  if (AM.BaseGV)
2452    return false;
2453
2454  // Only support r+r,
2455  switch (AM.Scale) {
2456  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2457    break;
2458  case 1:
2459    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2460      return false;
2461    // Otherwise we have r+r or r+i.
2462    break;
2463  case 2:
2464    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2465      return false;
2466    // Allow 2*r as r+r.
2467    break;
2468  }
2469
2470  return true;
2471}
2472
2473/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2474/// return a DAG expression to select that will generate the same value by
2475/// multiplying by a magic number.  See:
2476/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2477SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2478                                  std::vector<SDNode*>* Created) const {
2479  MVT VT = N->getValueType(0);
2480  DebugLoc dl= N->getDebugLoc();
2481
2482  // Check to see if we can do this.
2483  // FIXME: We should be more aggressive here.
2484  if (!isTypeLegal(VT))
2485    return SDValue();
2486
2487  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2488  APInt::ms magics = d.magic();
2489
2490  // Multiply the numerator (operand 0) by the magic value
2491  // FIXME: We should support doing a MUL in a wider type
2492  SDValue Q;
2493  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2494    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2495                    DAG.getConstant(magics.m, VT));
2496  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2497    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2498                              N->getOperand(0),
2499                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2500  else
2501    return SDValue();       // No mulhs or equvialent
2502  // If d > 0 and m < 0, add the numerator
2503  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2504    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2505    if (Created)
2506      Created->push_back(Q.getNode());
2507  }
2508  // If d < 0 and m > 0, subtract the numerator.
2509  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2510    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2511    if (Created)
2512      Created->push_back(Q.getNode());
2513  }
2514  // Shift right algebraic if shift value is nonzero
2515  if (magics.s > 0) {
2516    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2517                    DAG.getConstant(magics.s, getShiftAmountTy()));
2518    if (Created)
2519      Created->push_back(Q.getNode());
2520  }
2521  // Extract the sign bit and add it to the quotient
2522  SDValue T =
2523    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2524                                                 getShiftAmountTy()));
2525  if (Created)
2526    Created->push_back(T.getNode());
2527  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2528}
2529
2530/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2531/// return a DAG expression to select that will generate the same value by
2532/// multiplying by a magic number.  See:
2533/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2534SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2535                                  std::vector<SDNode*>* Created) const {
2536  MVT VT = N->getValueType(0);
2537  DebugLoc dl = N->getDebugLoc();
2538
2539  // Check to see if we can do this.
2540  // FIXME: We should be more aggressive here.
2541  if (!isTypeLegal(VT))
2542    return SDValue();
2543
2544  // FIXME: We should use a narrower constant when the upper
2545  // bits are known to be zero.
2546  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2547  APInt::mu magics = N1C->getAPIntValue().magicu();
2548
2549  // Multiply the numerator (operand 0) by the magic value
2550  // FIXME: We should support doing a MUL in a wider type
2551  SDValue Q;
2552  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2553    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2554                    DAG.getConstant(magics.m, VT));
2555  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2556    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2557                              N->getOperand(0),
2558                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2559  else
2560    return SDValue();       // No mulhu or equvialent
2561  if (Created)
2562    Created->push_back(Q.getNode());
2563
2564  if (magics.a == 0) {
2565    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2566           "We shouldn't generate an undefined shift!");
2567    return DAG.getNode(ISD::SRL, dl, VT, Q,
2568                       DAG.getConstant(magics.s, getShiftAmountTy()));
2569  } else {
2570    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2571    if (Created)
2572      Created->push_back(NPQ.getNode());
2573    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2574                      DAG.getConstant(1, getShiftAmountTy()));
2575    if (Created)
2576      Created->push_back(NPQ.getNode());
2577    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2578    if (Created)
2579      Created->push_back(NPQ.getNode());
2580    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2581                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2582  }
2583}
2584
2585/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2586/// node that don't prevent tail call optimization.
2587static SDValue IgnoreHarmlessInstructions(SDValue node) {
2588  // Found call return.
2589  if (node.getOpcode() == ISD::CALL) return node;
2590  // Ignore MERGE_VALUES. Will have at least one operand.
2591  if (node.getOpcode() == ISD::MERGE_VALUES)
2592    return IgnoreHarmlessInstructions(node.getOperand(0));
2593  // Ignore ANY_EXTEND node.
2594  if (node.getOpcode() == ISD::ANY_EXTEND)
2595    return IgnoreHarmlessInstructions(node.getOperand(0));
2596  if (node.getOpcode() == ISD::TRUNCATE)
2597    return IgnoreHarmlessInstructions(node.getOperand(0));
2598  // Any other node type.
2599  return node;
2600}
2601
2602bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2603                                                    SDValue Ret) {
2604  unsigned NumOps = Ret.getNumOperands();
2605  // ISD::CALL results:(value0, ..., valuen, chain)
2606  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2607  // Value return:
2608  // Check that operand of the RET node sources from the CALL node. The RET node
2609  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2610  // value.
2611  // Also we need to check that there is no code in between the call and the
2612  // return. Hence we also check that the incomming chain to the return sources
2613  // from the outgoing chain of the call.
2614  if (NumOps > 1 &&
2615      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
2616      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2617    return true;
2618  // void return: The RET node  has the chain result value of the CALL node as
2619  // input.
2620  if (NumOps == 1 &&
2621      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2622    return true;
2623
2624  return false;
2625}
2626