TargetLowering.cpp revision f190a030835622ec1d15e32f30939f9495827e39
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I16] = "__ashli16";
33  Names[RTLIB::SHL_I32] = "__ashlsi3";
34  Names[RTLIB::SHL_I64] = "__ashldi3";
35  Names[RTLIB::SHL_I128] = "__ashlti3";
36  Names[RTLIB::SRL_I16] = "__lshri16";
37  Names[RTLIB::SRL_I32] = "__lshrsi3";
38  Names[RTLIB::SRL_I64] = "__lshrdi3";
39  Names[RTLIB::SRL_I128] = "__lshrti3";
40  Names[RTLIB::SRA_I16] = "__ashri16";
41  Names[RTLIB::SRA_I32] = "__ashrsi3";
42  Names[RTLIB::SRA_I64] = "__ashrdi3";
43  Names[RTLIB::SRA_I128] = "__ashrti3";
44  Names[RTLIB::MUL_I16] = "__muli16";
45  Names[RTLIB::MUL_I32] = "__mulsi3";
46  Names[RTLIB::MUL_I64] = "__muldi3";
47  Names[RTLIB::MUL_I128] = "__multi3";
48  Names[RTLIB::SDIV_I32] = "__divsi3";
49  Names[RTLIB::SDIV_I64] = "__divdi3";
50  Names[RTLIB::SDIV_I128] = "__divti3";
51  Names[RTLIB::UDIV_I32] = "__udivsi3";
52  Names[RTLIB::UDIV_I64] = "__udivdi3";
53  Names[RTLIB::UDIV_I128] = "__udivti3";
54  Names[RTLIB::SREM_I32] = "__modsi3";
55  Names[RTLIB::SREM_I64] = "__moddi3";
56  Names[RTLIB::SREM_I128] = "__modti3";
57  Names[RTLIB::UREM_I32] = "__umodsi3";
58  Names[RTLIB::UREM_I64] = "__umoddi3";
59  Names[RTLIB::UREM_I128] = "__umodti3";
60  Names[RTLIB::NEG_I32] = "__negsi2";
61  Names[RTLIB::NEG_I64] = "__negdi2";
62  Names[RTLIB::ADD_F32] = "__addsf3";
63  Names[RTLIB::ADD_F64] = "__adddf3";
64  Names[RTLIB::ADD_F80] = "__addxf3";
65  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
66  Names[RTLIB::SUB_F32] = "__subsf3";
67  Names[RTLIB::SUB_F64] = "__subdf3";
68  Names[RTLIB::SUB_F80] = "__subxf3";
69  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
70  Names[RTLIB::MUL_F32] = "__mulsf3";
71  Names[RTLIB::MUL_F64] = "__muldf3";
72  Names[RTLIB::MUL_F80] = "__mulxf3";
73  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
74  Names[RTLIB::DIV_F32] = "__divsf3";
75  Names[RTLIB::DIV_F64] = "__divdf3";
76  Names[RTLIB::DIV_F80] = "__divxf3";
77  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
78  Names[RTLIB::REM_F32] = "fmodf";
79  Names[RTLIB::REM_F64] = "fmod";
80  Names[RTLIB::REM_F80] = "fmodl";
81  Names[RTLIB::REM_PPCF128] = "fmodl";
82  Names[RTLIB::POWI_F32] = "__powisf2";
83  Names[RTLIB::POWI_F64] = "__powidf2";
84  Names[RTLIB::POWI_F80] = "__powixf2";
85  Names[RTLIB::POWI_PPCF128] = "__powitf2";
86  Names[RTLIB::SQRT_F32] = "sqrtf";
87  Names[RTLIB::SQRT_F64] = "sqrt";
88  Names[RTLIB::SQRT_F80] = "sqrtl";
89  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
90  Names[RTLIB::LOG_F32] = "logf";
91  Names[RTLIB::LOG_F64] = "log";
92  Names[RTLIB::LOG_F80] = "logl";
93  Names[RTLIB::LOG_PPCF128] = "logl";
94  Names[RTLIB::LOG2_F32] = "log2f";
95  Names[RTLIB::LOG2_F64] = "log2";
96  Names[RTLIB::LOG2_F80] = "log2l";
97  Names[RTLIB::LOG2_PPCF128] = "log2l";
98  Names[RTLIB::LOG10_F32] = "log10f";
99  Names[RTLIB::LOG10_F64] = "log10";
100  Names[RTLIB::LOG10_F80] = "log10l";
101  Names[RTLIB::LOG10_PPCF128] = "log10l";
102  Names[RTLIB::EXP_F32] = "expf";
103  Names[RTLIB::EXP_F64] = "exp";
104  Names[RTLIB::EXP_F80] = "expl";
105  Names[RTLIB::EXP_PPCF128] = "expl";
106  Names[RTLIB::EXP2_F32] = "exp2f";
107  Names[RTLIB::EXP2_F64] = "exp2";
108  Names[RTLIB::EXP2_F80] = "exp2l";
109  Names[RTLIB::EXP2_PPCF128] = "exp2l";
110  Names[RTLIB::SIN_F32] = "sinf";
111  Names[RTLIB::SIN_F64] = "sin";
112  Names[RTLIB::SIN_F80] = "sinl";
113  Names[RTLIB::SIN_PPCF128] = "sinl";
114  Names[RTLIB::COS_F32] = "cosf";
115  Names[RTLIB::COS_F64] = "cos";
116  Names[RTLIB::COS_F80] = "cosl";
117  Names[RTLIB::COS_PPCF128] = "cosl";
118  Names[RTLIB::POW_F32] = "powf";
119  Names[RTLIB::POW_F64] = "pow";
120  Names[RTLIB::POW_F80] = "powl";
121  Names[RTLIB::POW_PPCF128] = "powl";
122  Names[RTLIB::CEIL_F32] = "ceilf";
123  Names[RTLIB::CEIL_F64] = "ceil";
124  Names[RTLIB::CEIL_F80] = "ceill";
125  Names[RTLIB::CEIL_PPCF128] = "ceill";
126  Names[RTLIB::TRUNC_F32] = "truncf";
127  Names[RTLIB::TRUNC_F64] = "trunc";
128  Names[RTLIB::TRUNC_F80] = "truncl";
129  Names[RTLIB::TRUNC_PPCF128] = "truncl";
130  Names[RTLIB::RINT_F32] = "rintf";
131  Names[RTLIB::RINT_F64] = "rint";
132  Names[RTLIB::RINT_F80] = "rintl";
133  Names[RTLIB::RINT_PPCF128] = "rintl";
134  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
135  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
136  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
137  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
138  Names[RTLIB::FLOOR_F32] = "floorf";
139  Names[RTLIB::FLOOR_F64] = "floor";
140  Names[RTLIB::FLOOR_F80] = "floorl";
141  Names[RTLIB::FLOOR_PPCF128] = "floorl";
142  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
143  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
144  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
145  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
146  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
147  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
148  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
149  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
150  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
151  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
152  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
153  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
154  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
155  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
156  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
157  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
158  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
159  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
160  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
161  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
162  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
163  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
164  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
165  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
166  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
167  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
168  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
169  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
170  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
171  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
172  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
173  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
174  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
175  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
176  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
177  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
178  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
179  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
180  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
181  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
182  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
183  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
184  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
185  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
186  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
187  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
188  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
189  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
190  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
191  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
192  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
193  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
194  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
195  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
196  Names[RTLIB::OEQ_F32] = "__eqsf2";
197  Names[RTLIB::OEQ_F64] = "__eqdf2";
198  Names[RTLIB::UNE_F32] = "__nesf2";
199  Names[RTLIB::UNE_F64] = "__nedf2";
200  Names[RTLIB::OGE_F32] = "__gesf2";
201  Names[RTLIB::OGE_F64] = "__gedf2";
202  Names[RTLIB::OLT_F32] = "__ltsf2";
203  Names[RTLIB::OLT_F64] = "__ltdf2";
204  Names[RTLIB::OLE_F32] = "__lesf2";
205  Names[RTLIB::OLE_F64] = "__ledf2";
206  Names[RTLIB::OGT_F32] = "__gtsf2";
207  Names[RTLIB::OGT_F64] = "__gtdf2";
208  Names[RTLIB::UO_F32] = "__unordsf2";
209  Names[RTLIB::UO_F64] = "__unorddf2";
210  Names[RTLIB::O_F32] = "__unordsf2";
211  Names[RTLIB::O_F64] = "__unorddf2";
212}
213
214/// getFPEXT - Return the FPEXT_*_* value for the given types, or
215/// UNKNOWN_LIBCALL if there is none.
216RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
217  if (OpVT == MVT::f32) {
218    if (RetVT == MVT::f64)
219      return FPEXT_F32_F64;
220  }
221  return UNKNOWN_LIBCALL;
222}
223
224/// getFPROUND - Return the FPROUND_*_* value for the given types, or
225/// UNKNOWN_LIBCALL if there is none.
226RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
227  if (RetVT == MVT::f32) {
228    if (OpVT == MVT::f64)
229      return FPROUND_F64_F32;
230    if (OpVT == MVT::f80)
231      return FPROUND_F80_F32;
232    if (OpVT == MVT::ppcf128)
233      return FPROUND_PPCF128_F32;
234  } else if (RetVT == MVT::f64) {
235    if (OpVT == MVT::f80)
236      return FPROUND_F80_F64;
237    if (OpVT == MVT::ppcf128)
238      return FPROUND_PPCF128_F64;
239  }
240  return UNKNOWN_LIBCALL;
241}
242
243/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
244/// UNKNOWN_LIBCALL if there is none.
245RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
246  if (OpVT == MVT::f32) {
247    if (RetVT == MVT::i32)
248      return FPTOSINT_F32_I32;
249    if (RetVT == MVT::i64)
250      return FPTOSINT_F32_I64;
251    if (RetVT == MVT::i128)
252      return FPTOSINT_F32_I128;
253  } else if (OpVT == MVT::f64) {
254    if (RetVT == MVT::i32)
255      return FPTOSINT_F64_I32;
256    if (RetVT == MVT::i64)
257      return FPTOSINT_F64_I64;
258    if (RetVT == MVT::i128)
259      return FPTOSINT_F64_I128;
260  } else if (OpVT == MVT::f80) {
261    if (RetVT == MVT::i32)
262      return FPTOSINT_F80_I32;
263    if (RetVT == MVT::i64)
264      return FPTOSINT_F80_I64;
265    if (RetVT == MVT::i128)
266      return FPTOSINT_F80_I128;
267  } else if (OpVT == MVT::ppcf128) {
268    if (RetVT == MVT::i32)
269      return FPTOSINT_PPCF128_I32;
270    if (RetVT == MVT::i64)
271      return FPTOSINT_PPCF128_I64;
272    if (RetVT == MVT::i128)
273      return FPTOSINT_PPCF128_I128;
274  }
275  return UNKNOWN_LIBCALL;
276}
277
278/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
279/// UNKNOWN_LIBCALL if there is none.
280RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
281  if (OpVT == MVT::f32) {
282    if (RetVT == MVT::i32)
283      return FPTOUINT_F32_I32;
284    if (RetVT == MVT::i64)
285      return FPTOUINT_F32_I64;
286    if (RetVT == MVT::i128)
287      return FPTOUINT_F32_I128;
288  } else if (OpVT == MVT::f64) {
289    if (RetVT == MVT::i32)
290      return FPTOUINT_F64_I32;
291    if (RetVT == MVT::i64)
292      return FPTOUINT_F64_I64;
293    if (RetVT == MVT::i128)
294      return FPTOUINT_F64_I128;
295  } else if (OpVT == MVT::f80) {
296    if (RetVT == MVT::i32)
297      return FPTOUINT_F80_I32;
298    if (RetVT == MVT::i64)
299      return FPTOUINT_F80_I64;
300    if (RetVT == MVT::i128)
301      return FPTOUINT_F80_I128;
302  } else if (OpVT == MVT::ppcf128) {
303    if (RetVT == MVT::i32)
304      return FPTOUINT_PPCF128_I32;
305    if (RetVT == MVT::i64)
306      return FPTOUINT_PPCF128_I64;
307    if (RetVT == MVT::i128)
308      return FPTOUINT_PPCF128_I128;
309  }
310  return UNKNOWN_LIBCALL;
311}
312
313/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
314/// UNKNOWN_LIBCALL if there is none.
315RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
316  if (OpVT == MVT::i32) {
317    if (RetVT == MVT::f32)
318      return SINTTOFP_I32_F32;
319    else if (RetVT == MVT::f64)
320      return SINTTOFP_I32_F64;
321    else if (RetVT == MVT::f80)
322      return SINTTOFP_I32_F80;
323    else if (RetVT == MVT::ppcf128)
324      return SINTTOFP_I32_PPCF128;
325  } else if (OpVT == MVT::i64) {
326    if (RetVT == MVT::f32)
327      return SINTTOFP_I64_F32;
328    else if (RetVT == MVT::f64)
329      return SINTTOFP_I64_F64;
330    else if (RetVT == MVT::f80)
331      return SINTTOFP_I64_F80;
332    else if (RetVT == MVT::ppcf128)
333      return SINTTOFP_I64_PPCF128;
334  } else if (OpVT == MVT::i128) {
335    if (RetVT == MVT::f32)
336      return SINTTOFP_I128_F32;
337    else if (RetVT == MVT::f64)
338      return SINTTOFP_I128_F64;
339    else if (RetVT == MVT::f80)
340      return SINTTOFP_I128_F80;
341    else if (RetVT == MVT::ppcf128)
342      return SINTTOFP_I128_PPCF128;
343  }
344  return UNKNOWN_LIBCALL;
345}
346
347/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
348/// UNKNOWN_LIBCALL if there is none.
349RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
350  if (OpVT == MVT::i32) {
351    if (RetVT == MVT::f32)
352      return UINTTOFP_I32_F32;
353    else if (RetVT == MVT::f64)
354      return UINTTOFP_I32_F64;
355    else if (RetVT == MVT::f80)
356      return UINTTOFP_I32_F80;
357    else if (RetVT == MVT::ppcf128)
358      return UINTTOFP_I32_PPCF128;
359  } else if (OpVT == MVT::i64) {
360    if (RetVT == MVT::f32)
361      return UINTTOFP_I64_F32;
362    else if (RetVT == MVT::f64)
363      return UINTTOFP_I64_F64;
364    else if (RetVT == MVT::f80)
365      return UINTTOFP_I64_F80;
366    else if (RetVT == MVT::ppcf128)
367      return UINTTOFP_I64_PPCF128;
368  } else if (OpVT == MVT::i128) {
369    if (RetVT == MVT::f32)
370      return UINTTOFP_I128_F32;
371    else if (RetVT == MVT::f64)
372      return UINTTOFP_I128_F64;
373    else if (RetVT == MVT::f80)
374      return UINTTOFP_I128_F80;
375    else if (RetVT == MVT::ppcf128)
376      return UINTTOFP_I128_PPCF128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// InitCmpLibcallCCs - Set default comparison libcall CC.
382///
383static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
384  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
385  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
386  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
387  CCs[RTLIB::UNE_F32] = ISD::SETNE;
388  CCs[RTLIB::UNE_F64] = ISD::SETNE;
389  CCs[RTLIB::OGE_F32] = ISD::SETGE;
390  CCs[RTLIB::OGE_F64] = ISD::SETGE;
391  CCs[RTLIB::OLT_F32] = ISD::SETLT;
392  CCs[RTLIB::OLT_F64] = ISD::SETLT;
393  CCs[RTLIB::OLE_F32] = ISD::SETLE;
394  CCs[RTLIB::OLE_F64] = ISD::SETLE;
395  CCs[RTLIB::OGT_F32] = ISD::SETGT;
396  CCs[RTLIB::OGT_F64] = ISD::SETGT;
397  CCs[RTLIB::UO_F32] = ISD::SETNE;
398  CCs[RTLIB::UO_F64] = ISD::SETNE;
399  CCs[RTLIB::O_F32] = ISD::SETEQ;
400  CCs[RTLIB::O_F64] = ISD::SETEQ;
401}
402
403TargetLowering::TargetLowering(TargetMachine &tm)
404  : TM(tm), TD(TM.getTargetData()) {
405  // All operations default to being supported.
406  memset(OpActions, 0, sizeof(OpActions));
407  memset(LoadExtActions, 0, sizeof(LoadExtActions));
408  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
409  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
410  memset(ConvertActions, 0, sizeof(ConvertActions));
411  memset(CondCodeActions, 0, sizeof(CondCodeActions));
412
413  // Set default actions for various operations.
414  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
415    // Default all indexed load / store to expand.
416    for (unsigned IM = (unsigned)ISD::PRE_INC;
417         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
418      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
419      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
420    }
421
422    // These operations default to expand.
423    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
424  }
425
426  // Most targets ignore the @llvm.prefetch intrinsic.
427  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
428
429  // ConstantFP nodes default to expand.  Targets can either change this to
430  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
431  // to optimize expansions for certain constants.
432  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
433  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
434  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
435
436  // These library functions default to expand.
437  setOperationAction(ISD::FLOG , MVT::f64, Expand);
438  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
440  setOperationAction(ISD::FEXP , MVT::f64, Expand);
441  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
442  setOperationAction(ISD::FLOG , MVT::f32, Expand);
443  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
444  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
445  setOperationAction(ISD::FEXP , MVT::f32, Expand);
446  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
447
448  // Default ISD::TRAP to expand (which turns it into abort).
449  setOperationAction(ISD::TRAP, MVT::Other, Expand);
450
451  IsLittleEndian = TD->isLittleEndian();
452  UsesGlobalOffsetTable = false;
453  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
454  ShiftAmtHandling = Undefined;
455  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
456  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
457  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
458  allowUnalignedMemoryAccesses = false;
459  UseUnderscoreSetJmp = false;
460  UseUnderscoreLongJmp = false;
461  SelectIsExpensive = false;
462  IntDivIsCheap = false;
463  Pow2DivIsCheap = false;
464  StackPointerRegisterToSaveRestore = 0;
465  ExceptionPointerRegister = 0;
466  ExceptionSelectorRegister = 0;
467  BooleanContents = UndefinedBooleanContent;
468  SchedPreferenceInfo = SchedulingForLatency;
469  JumpBufSize = 0;
470  JumpBufAlignment = 0;
471  IfCvtBlockSizeLimit = 2;
472  IfCvtDupBlockSizeLimit = 0;
473  PrefLoopAlignment = 0;
474
475  InitLibcallNames(LibcallRoutineNames);
476  InitCmpLibcallCCs(CmpLibcallCCs);
477
478  // Tell Legalize whether the assembler supports DEBUG_LOC.
479  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
480  if (!TASM || !TASM->hasDotLocAndDotFile())
481    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
482}
483
484TargetLowering::~TargetLowering() {}
485
486/// computeRegisterProperties - Once all of the register classes are added,
487/// this allows us to compute derived properties we expose.
488void TargetLowering::computeRegisterProperties() {
489  assert(MVT::LAST_VALUETYPE <= 32 &&
490         "Too many value types for ValueTypeActions to hold!");
491
492  // Everything defaults to needing one register.
493  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
494    NumRegistersForVT[i] = 1;
495    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
496  }
497  // ...except isVoid, which doesn't need any registers.
498  NumRegistersForVT[MVT::isVoid] = 0;
499
500  // Find the largest integer register class.
501  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
502  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
503    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
504
505  // Every integer value type larger than this largest register takes twice as
506  // many registers to represent as the previous ValueType.
507  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
508    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
509    if (!EVT.isInteger())
510      break;
511    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
512    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
513    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
514    ValueTypeActions.setTypeAction(EVT, Expand);
515  }
516
517  // Inspect all of the ValueType's smaller than the largest integer
518  // register to see which ones need promotion.
519  unsigned LegalIntReg = LargestIntReg;
520  for (unsigned IntReg = LargestIntReg - 1;
521       IntReg >= (unsigned)MVT::i1; --IntReg) {
522    MVT IVT = (MVT::SimpleValueType)IntReg;
523    if (isTypeLegal(IVT)) {
524      LegalIntReg = IntReg;
525    } else {
526      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
527        (MVT::SimpleValueType)LegalIntReg;
528      ValueTypeActions.setTypeAction(IVT, Promote);
529    }
530  }
531
532  // ppcf128 type is really two f64's.
533  if (!isTypeLegal(MVT::ppcf128)) {
534    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
535    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
536    TransformToType[MVT::ppcf128] = MVT::f64;
537    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
538  }
539
540  // Decide how to handle f64. If the target does not have native f64 support,
541  // expand it to i64 and we will be generating soft float library calls.
542  if (!isTypeLegal(MVT::f64)) {
543    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
544    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
545    TransformToType[MVT::f64] = MVT::i64;
546    ValueTypeActions.setTypeAction(MVT::f64, Expand);
547  }
548
549  // Decide how to handle f32. If the target does not have native support for
550  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
551  if (!isTypeLegal(MVT::f32)) {
552    if (isTypeLegal(MVT::f64)) {
553      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
554      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
555      TransformToType[MVT::f32] = MVT::f64;
556      ValueTypeActions.setTypeAction(MVT::f32, Promote);
557    } else {
558      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
559      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
560      TransformToType[MVT::f32] = MVT::i32;
561      ValueTypeActions.setTypeAction(MVT::f32, Expand);
562    }
563  }
564
565  // Loop over all of the vector value types to see which need transformations.
566  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
567       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
568    MVT VT = (MVT::SimpleValueType)i;
569    if (!isTypeLegal(VT)) {
570      MVT IntermediateVT, RegisterVT;
571      unsigned NumIntermediates;
572      NumRegistersForVT[i] =
573        getVectorTypeBreakdown(VT,
574                               IntermediateVT, NumIntermediates,
575                               RegisterVT);
576      RegisterTypeForVT[i] = RegisterVT;
577
578      // Determine if there is a legal wider type.
579      bool IsLegalWiderType = false;
580      MVT EltVT = VT.getVectorElementType();
581      unsigned NElts = VT.getVectorNumElements();
582      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
583        MVT SVT = (MVT::SimpleValueType)nVT;
584        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
585            SVT.getVectorNumElements() > NElts) {
586          TransformToType[i] = SVT;
587          ValueTypeActions.setTypeAction(VT, Promote);
588          IsLegalWiderType = true;
589          break;
590        }
591      }
592      if (!IsLegalWiderType) {
593        MVT NVT = VT.getPow2VectorType();
594        if (NVT == VT) {
595          // Type is already a power of 2.  The default action is to split.
596          TransformToType[i] = MVT::Other;
597          ValueTypeActions.setTypeAction(VT, Expand);
598        } else {
599          TransformToType[i] = NVT;
600          ValueTypeActions.setTypeAction(VT, Promote);
601        }
602      }
603    }
604  }
605}
606
607const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
608  return NULL;
609}
610
611
612MVT TargetLowering::getSetCCResultType(MVT VT) const {
613  return getValueType(TD->getIntPtrType());
614}
615
616
617/// getVectorTypeBreakdown - Vector types are broken down into some number of
618/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
619/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
620/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
621///
622/// This method returns the number of registers needed, and the VT for each
623/// register.  It also returns the VT and quantity of the intermediate values
624/// before they are promoted/expanded.
625///
626unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
627                                                MVT &IntermediateVT,
628                                                unsigned &NumIntermediates,
629                                      MVT &RegisterVT) const {
630  // Figure out the right, legal destination reg to copy into.
631  unsigned NumElts = VT.getVectorNumElements();
632  MVT EltTy = VT.getVectorElementType();
633
634  unsigned NumVectorRegs = 1;
635
636  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
637  // could break down into LHS/RHS like LegalizeDAG does.
638  if (!isPowerOf2_32(NumElts)) {
639    NumVectorRegs = NumElts;
640    NumElts = 1;
641  }
642
643  // Divide the input until we get to a supported size.  This will always
644  // end with a scalar if the target doesn't support vectors.
645  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
646    NumElts >>= 1;
647    NumVectorRegs <<= 1;
648  }
649
650  NumIntermediates = NumVectorRegs;
651
652  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
653  if (!isTypeLegal(NewVT))
654    NewVT = EltTy;
655  IntermediateVT = NewVT;
656
657  MVT DestVT = getTypeToTransformTo(NewVT);
658  RegisterVT = DestVT;
659  if (DestVT.bitsLT(NewVT)) {
660    // Value is expanded, e.g. i64 -> i16.
661    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
662  } else {
663    // Otherwise, promotion or legal types use the same number of registers as
664    // the vector decimated to the appropriate level.
665    return NumVectorRegs;
666  }
667
668  return 1;
669}
670
671/// getWidenVectorType: given a vector type, returns the type to widen to
672/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
673/// If there is no vector type that we want to widen to, returns MVT::Other
674/// When and where to widen is target dependent based on the cost of
675/// scalarizing vs using the wider vector type.
676MVT TargetLowering::getWidenVectorType(MVT VT) const {
677  assert(VT.isVector());
678  if (isTypeLegal(VT))
679    return VT;
680
681  // Default is not to widen until moved to LegalizeTypes
682  return MVT::Other;
683}
684
685/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
686/// function arguments in the caller parameter area.  This is the actual
687/// alignment, not its logarithm.
688unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
689  return TD->getCallFrameTypeAlignment(Ty);
690}
691
692SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
693                                                 SelectionDAG &DAG) const {
694  if (usesGlobalOffsetTable())
695    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
696  return Table;
697}
698
699bool
700TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
701  // Assume that everything is safe in static mode.
702  if (getTargetMachine().getRelocationModel() == Reloc::Static)
703    return true;
704
705  // In dynamic-no-pic mode, assume that known defined values are safe.
706  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
707      GA &&
708      !GA->getGlobal()->isDeclaration() &&
709      !GA->getGlobal()->mayBeOverridden())
710    return true;
711
712  // Otherwise assume nothing is safe.
713  return false;
714}
715
716//===----------------------------------------------------------------------===//
717//  Optimization Methods
718//===----------------------------------------------------------------------===//
719
720/// ShrinkDemandedConstant - Check to see if the specified operand of the
721/// specified instruction is a constant integer.  If so, check to see if there
722/// are any bits set in the constant that are not demanded.  If so, shrink the
723/// constant and return true.
724bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
725                                                        const APInt &Demanded) {
726  DebugLoc dl = Op.getDebugLoc();
727  // FIXME: ISD::SELECT, ISD::SELECT_CC
728  switch (Op.getOpcode()) {
729  default: break;
730  case ISD::AND:
731  case ISD::OR:
732  case ISD::XOR:
733    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
734      if (C->getAPIntValue().intersects(~Demanded)) {
735        MVT VT = Op.getValueType();
736        SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
737                                    DAG.getConstant(Demanded &
738                                                      C->getAPIntValue(),
739                                                    VT));
740        return CombineTo(Op, New);
741      }
742    break;
743  }
744  return false;
745}
746
747/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
748/// DemandedMask bits of the result of Op are ever used downstream.  If we can
749/// use this information to simplify Op, create a new simplified DAG node and
750/// return true, returning the original and new nodes in Old and New. Otherwise,
751/// analyze the expression and return a mask of KnownOne and KnownZero bits for
752/// the expression (used to simplify the caller).  The KnownZero/One bits may
753/// only be accurate for those bits in the DemandedMask.
754bool TargetLowering::SimplifyDemandedBits(SDValue Op,
755                                          const APInt &DemandedMask,
756                                          APInt &KnownZero,
757                                          APInt &KnownOne,
758                                          TargetLoweringOpt &TLO,
759                                          unsigned Depth) const {
760  unsigned BitWidth = DemandedMask.getBitWidth();
761  assert(Op.getValueSizeInBits() == BitWidth &&
762         "Mask size mismatches value type size!");
763  APInt NewMask = DemandedMask;
764  DebugLoc dl = Op.getDebugLoc();
765
766  // Don't know anything.
767  KnownZero = KnownOne = APInt(BitWidth, 0);
768
769  // Other users may use these bits.
770  if (!Op.getNode()->hasOneUse()) {
771    if (Depth != 0) {
772      // If not at the root, Just compute the KnownZero/KnownOne bits to
773      // simplify things downstream.
774      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
775      return false;
776    }
777    // If this is the root being simplified, allow it to have multiple uses,
778    // just set the NewMask to all bits.
779    NewMask = APInt::getAllOnesValue(BitWidth);
780  } else if (DemandedMask == 0) {
781    // Not demanding any bits from Op.
782    if (Op.getOpcode() != ISD::UNDEF)
783      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
784    return false;
785  } else if (Depth == 6) {        // Limit search depth.
786    return false;
787  }
788
789  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
790  switch (Op.getOpcode()) {
791  case ISD::Constant:
792    // We know all of the bits for a constant!
793    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
794    KnownZero = ~KnownOne & NewMask;
795    return false;   // Don't fall through, will infinitely loop.
796  case ISD::AND:
797    // If the RHS is a constant, check to see if the LHS would be zero without
798    // using the bits from the RHS.  Below, we use knowledge about the RHS to
799    // simplify the LHS, here we're using information from the LHS to simplify
800    // the RHS.
801    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
802      APInt LHSZero, LHSOne;
803      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
804                                LHSZero, LHSOne, Depth+1);
805      // If the LHS already has zeros where RHSC does, this and is dead.
806      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
807        return TLO.CombineTo(Op, Op.getOperand(0));
808      // If any of the set bits in the RHS are known zero on the LHS, shrink
809      // the constant.
810      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
811        return true;
812    }
813
814    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
815                             KnownOne, TLO, Depth+1))
816      return true;
817    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
818    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
819                             KnownZero2, KnownOne2, TLO, Depth+1))
820      return true;
821    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
822
823    // If all of the demanded bits are known one on one side, return the other.
824    // These bits cannot contribute to the result of the 'and'.
825    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
826      return TLO.CombineTo(Op, Op.getOperand(0));
827    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
828      return TLO.CombineTo(Op, Op.getOperand(1));
829    // If all of the demanded bits in the inputs are known zeros, return zero.
830    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
831      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
832    // If the RHS is a constant, see if we can simplify it.
833    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
834      return true;
835
836    // Output known-1 bits are only known if set in both the LHS & RHS.
837    KnownOne &= KnownOne2;
838    // Output known-0 are known to be clear if zero in either the LHS | RHS.
839    KnownZero |= KnownZero2;
840    break;
841  case ISD::OR:
842    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
843                             KnownOne, TLO, Depth+1))
844      return true;
845    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
847                             KnownZero2, KnownOne2, TLO, Depth+1))
848      return true;
849    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
850
851    // If all of the demanded bits are known zero on one side, return the other.
852    // These bits cannot contribute to the result of the 'or'.
853    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
854      return TLO.CombineTo(Op, Op.getOperand(0));
855    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
856      return TLO.CombineTo(Op, Op.getOperand(1));
857    // If all of the potentially set bits on one side are known to be set on
858    // the other side, just use the 'other' side.
859    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
860      return TLO.CombineTo(Op, Op.getOperand(0));
861    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
862      return TLO.CombineTo(Op, Op.getOperand(1));
863    // If the RHS is a constant, see if we can simplify it.
864    if (TLO.ShrinkDemandedConstant(Op, NewMask))
865      return true;
866
867    // Output known-0 bits are only known if clear in both the LHS & RHS.
868    KnownZero &= KnownZero2;
869    // Output known-1 are known to be set if set in either the LHS | RHS.
870    KnownOne |= KnownOne2;
871    break;
872  case ISD::XOR:
873    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
874                             KnownOne, TLO, Depth+1))
875      return true;
876    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
877    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
878                             KnownOne2, TLO, Depth+1))
879      return true;
880    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
881
882    // If all of the demanded bits are known zero on one side, return the other.
883    // These bits cannot contribute to the result of the 'xor'.
884    if ((KnownZero & NewMask) == NewMask)
885      return TLO.CombineTo(Op, Op.getOperand(0));
886    if ((KnownZero2 & NewMask) == NewMask)
887      return TLO.CombineTo(Op, Op.getOperand(1));
888
889    // If all of the unknown bits are known to be zero on one side or the other
890    // (but not both) turn this into an *inclusive* or.
891    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
892    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
893      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
894                                               Op.getOperand(0),
895                                               Op.getOperand(1)));
896
897    // Output known-0 bits are known if clear or set in both the LHS & RHS.
898    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
899    // Output known-1 are known to be set if set in only one of the LHS, RHS.
900    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
901
902    // If all of the demanded bits on one side are known, and all of the set
903    // bits on that side are also known to be set on the other side, turn this
904    // into an AND, as we know the bits will be cleared.
905    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
906    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
907      if ((KnownOne & KnownOne2) == KnownOne) {
908        MVT VT = Op.getValueType();
909        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
910        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
911                                                 Op.getOperand(0), ANDC));
912      }
913    }
914
915    // If the RHS is a constant, see if we can simplify it.
916    // for XOR, we prefer to force bits to 1 if they will make a -1.
917    // if we can't force bits, try to shrink constant
918    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
919      APInt Expanded = C->getAPIntValue() | (~NewMask);
920      // if we can expand it to have all bits set, do it
921      if (Expanded.isAllOnesValue()) {
922        if (Expanded != C->getAPIntValue()) {
923          MVT VT = Op.getValueType();
924          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
925                                          TLO.DAG.getConstant(Expanded, VT));
926          return TLO.CombineTo(Op, New);
927        }
928        // if it already has all the bits set, nothing to change
929        // but don't shrink either!
930      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
931        return true;
932      }
933    }
934
935    KnownZero = KnownZeroOut;
936    KnownOne  = KnownOneOut;
937    break;
938  case ISD::SELECT:
939    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
940                             KnownOne, TLO, Depth+1))
941      return true;
942    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
943                             KnownOne2, TLO, Depth+1))
944      return true;
945    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
946    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
947
948    // If the operands are constants, see if we can simplify them.
949    if (TLO.ShrinkDemandedConstant(Op, NewMask))
950      return true;
951
952    // Only known if known in both the LHS and RHS.
953    KnownOne &= KnownOne2;
954    KnownZero &= KnownZero2;
955    break;
956  case ISD::SELECT_CC:
957    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
958                             KnownOne, TLO, Depth+1))
959      return true;
960    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
961                             KnownOne2, TLO, Depth+1))
962      return true;
963    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
964    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
965
966    // If the operands are constants, see if we can simplify them.
967    if (TLO.ShrinkDemandedConstant(Op, NewMask))
968      return true;
969
970    // Only known if known in both the LHS and RHS.
971    KnownOne &= KnownOne2;
972    KnownZero &= KnownZero2;
973    break;
974  case ISD::SHL:
975    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
976      unsigned ShAmt = SA->getZExtValue();
977      SDValue InOp = Op.getOperand(0);
978
979      // If the shift count is an invalid immediate, don't do anything.
980      if (ShAmt >= BitWidth)
981        break;
982
983      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
984      // single shift.  We can do this if the bottom bits (which are shifted
985      // out) are never demanded.
986      if (InOp.getOpcode() == ISD::SRL &&
987          isa<ConstantSDNode>(InOp.getOperand(1))) {
988        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
989          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
990          unsigned Opc = ISD::SHL;
991          int Diff = ShAmt-C1;
992          if (Diff < 0) {
993            Diff = -Diff;
994            Opc = ISD::SRL;
995          }
996
997          SDValue NewSA =
998            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
999          MVT VT = Op.getValueType();
1000          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1001                                                   InOp.getOperand(0), NewSA));
1002        }
1003      }
1004
1005      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1006                               KnownZero, KnownOne, TLO, Depth+1))
1007        return true;
1008      KnownZero <<= SA->getZExtValue();
1009      KnownOne  <<= SA->getZExtValue();
1010      // low bits known zero.
1011      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1012    }
1013    break;
1014  case ISD::SRL:
1015    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1016      MVT VT = Op.getValueType();
1017      unsigned ShAmt = SA->getZExtValue();
1018      unsigned VTSize = VT.getSizeInBits();
1019      SDValue InOp = Op.getOperand(0);
1020
1021      // If the shift count is an invalid immediate, don't do anything.
1022      if (ShAmt >= BitWidth)
1023        break;
1024
1025      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1026      // single shift.  We can do this if the top bits (which are shifted out)
1027      // are never demanded.
1028      if (InOp.getOpcode() == ISD::SHL &&
1029          isa<ConstantSDNode>(InOp.getOperand(1))) {
1030        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1031          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1032          unsigned Opc = ISD::SRL;
1033          int Diff = ShAmt-C1;
1034          if (Diff < 0) {
1035            Diff = -Diff;
1036            Opc = ISD::SHL;
1037          }
1038
1039          SDValue NewSA =
1040            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1041          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1042                                                   InOp.getOperand(0), NewSA));
1043        }
1044      }
1045
1046      // Compute the new bits that are at the top now.
1047      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1048                               KnownZero, KnownOne, TLO, Depth+1))
1049        return true;
1050      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1051      KnownZero = KnownZero.lshr(ShAmt);
1052      KnownOne  = KnownOne.lshr(ShAmt);
1053
1054      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1055      KnownZero |= HighBits;  // High bits known zero.
1056    }
1057    break;
1058  case ISD::SRA:
1059    // If this is an arithmetic shift right and only the low-bit is set, we can
1060    // always convert this into a logical shr, even if the shift amount is
1061    // variable.  The low bit of the shift cannot be an input sign bit unless
1062    // the shift amount is >= the size of the datatype, which is undefined.
1063    if (DemandedMask == 1)
1064      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1065                                               Op.getOperand(0), Op.getOperand(1)));
1066
1067    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1068      MVT VT = Op.getValueType();
1069      unsigned ShAmt = SA->getZExtValue();
1070
1071      // If the shift count is an invalid immediate, don't do anything.
1072      if (ShAmt >= BitWidth)
1073        break;
1074
1075      APInt InDemandedMask = (NewMask << ShAmt);
1076
1077      // If any of the demanded bits are produced by the sign extension, we also
1078      // demand the input sign bit.
1079      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1080      if (HighBits.intersects(NewMask))
1081        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1082
1083      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1084                               KnownZero, KnownOne, TLO, Depth+1))
1085        return true;
1086      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087      KnownZero = KnownZero.lshr(ShAmt);
1088      KnownOne  = KnownOne.lshr(ShAmt);
1089
1090      // Handle the sign bit, adjusted to where it is now in the mask.
1091      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1092
1093      // If the input sign bit is known to be zero, or if none of the top bits
1094      // are demanded, turn this into an unsigned shift right.
1095      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1096        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1097                                                 Op.getOperand(0),
1098                                                 Op.getOperand(1)));
1099      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1100        KnownOne |= HighBits;
1101      }
1102    }
1103    break;
1104  case ISD::SIGN_EXTEND_INREG: {
1105    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1106
1107    // Sign extension.  Compute the demanded bits in the result that are not
1108    // present in the input.
1109    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1110                                          BitWidth - EVT.getSizeInBits()) &
1111                    NewMask;
1112
1113    // If none of the extended bits are demanded, eliminate the sextinreg.
1114    if (NewBits == 0)
1115      return TLO.CombineTo(Op, Op.getOperand(0));
1116
1117    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1118    InSignBit.zext(BitWidth);
1119    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1120                                                   EVT.getSizeInBits()) &
1121                              NewMask;
1122
1123    // Since the sign extended bits are demanded, we know that the sign
1124    // bit is demanded.
1125    InputDemandedBits |= InSignBit;
1126
1127    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1128                             KnownZero, KnownOne, TLO, Depth+1))
1129      return true;
1130    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1131
1132    // If the sign bit of the input is known set or clear, then we know the
1133    // top bits of the result.
1134
1135    // If the input sign bit is known zero, convert this into a zero extension.
1136    if (KnownZero.intersects(InSignBit))
1137      return TLO.CombineTo(Op,
1138                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1139
1140    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1141      KnownOne |= NewBits;
1142      KnownZero &= ~NewBits;
1143    } else {                       // Input sign bit unknown
1144      KnownZero &= ~NewBits;
1145      KnownOne &= ~NewBits;
1146    }
1147    break;
1148  }
1149  case ISD::ZERO_EXTEND: {
1150    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1151    APInt InMask = NewMask;
1152    InMask.trunc(OperandBitWidth);
1153
1154    // If none of the top bits are demanded, convert this into an any_extend.
1155    APInt NewBits =
1156      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1157    if (!NewBits.intersects(NewMask))
1158      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1159                                               Op.getValueType(),
1160                                               Op.getOperand(0)));
1161
1162    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1163                             KnownZero, KnownOne, TLO, Depth+1))
1164      return true;
1165    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1166    KnownZero.zext(BitWidth);
1167    KnownOne.zext(BitWidth);
1168    KnownZero |= NewBits;
1169    break;
1170  }
1171  case ISD::SIGN_EXTEND: {
1172    MVT InVT = Op.getOperand(0).getValueType();
1173    unsigned InBits = InVT.getSizeInBits();
1174    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1175    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1176    APInt NewBits   = ~InMask & NewMask;
1177
1178    // If none of the top bits are demanded, convert this into an any_extend.
1179    if (NewBits == 0)
1180      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1181                                              Op.getValueType(),
1182                                              Op.getOperand(0)));
1183
1184    // Since some of the sign extended bits are demanded, we know that the sign
1185    // bit is demanded.
1186    APInt InDemandedBits = InMask & NewMask;
1187    InDemandedBits |= InSignBit;
1188    InDemandedBits.trunc(InBits);
1189
1190    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1191                             KnownOne, TLO, Depth+1))
1192      return true;
1193    KnownZero.zext(BitWidth);
1194    KnownOne.zext(BitWidth);
1195
1196    // If the sign bit is known zero, convert this to a zero extend.
1197    if (KnownZero.intersects(InSignBit))
1198      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1199                                               Op.getValueType(),
1200                                               Op.getOperand(0)));
1201
1202    // If the sign bit is known one, the top bits match.
1203    if (KnownOne.intersects(InSignBit)) {
1204      KnownOne  |= NewBits;
1205      KnownZero &= ~NewBits;
1206    } else {   // Otherwise, top bits aren't known.
1207      KnownOne  &= ~NewBits;
1208      KnownZero &= ~NewBits;
1209    }
1210    break;
1211  }
1212  case ISD::ANY_EXTEND: {
1213    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1214    APInt InMask = NewMask;
1215    InMask.trunc(OperandBitWidth);
1216    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1217                             KnownZero, KnownOne, TLO, Depth+1))
1218      return true;
1219    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1220    KnownZero.zext(BitWidth);
1221    KnownOne.zext(BitWidth);
1222    break;
1223  }
1224  case ISD::TRUNCATE: {
1225    // Simplify the input, using demanded bit information, and compute the known
1226    // zero/one bits live out.
1227    APInt TruncMask = NewMask;
1228    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1229    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1230                             KnownZero, KnownOne, TLO, Depth+1))
1231      return true;
1232    KnownZero.trunc(BitWidth);
1233    KnownOne.trunc(BitWidth);
1234
1235    // If the input is only used by this truncate, see if we can shrink it based
1236    // on the known demanded bits.
1237    if (Op.getOperand(0).getNode()->hasOneUse()) {
1238      SDValue In = Op.getOperand(0);
1239      unsigned InBitWidth = In.getValueSizeInBits();
1240      switch (In.getOpcode()) {
1241      default: break;
1242      case ISD::SRL:
1243        // Shrink SRL by a constant if none of the high bits shifted in are
1244        // demanded.
1245        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1246          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1247                                                 InBitWidth - BitWidth);
1248          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1249          HighBits.trunc(BitWidth);
1250
1251          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1252            // None of the shifted in bits are needed.  Add a truncate of the
1253            // shift input, then shift it.
1254            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1255                                                 Op.getValueType(),
1256                                                 In.getOperand(0));
1257            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1258                                                     Op.getValueType(),
1259                                                     NewTrunc,
1260                                                     In.getOperand(1)));
1261          }
1262        }
1263        break;
1264      }
1265    }
1266
1267    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1268    break;
1269  }
1270  case ISD::AssertZext: {
1271    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1272    APInt InMask = APInt::getLowBitsSet(BitWidth,
1273                                        VT.getSizeInBits());
1274    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1275                             KnownZero, KnownOne, TLO, Depth+1))
1276      return true;
1277    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1278    KnownZero |= ~InMask & NewMask;
1279    break;
1280  }
1281  case ISD::BIT_CONVERT:
1282#if 0
1283    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1284    // is demanded, turn this into a FGETSIGN.
1285    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1286        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1287        !MVT::isVector(Op.getOperand(0).getValueType())) {
1288      // Only do this xform if FGETSIGN is valid or if before legalize.
1289      if (!TLO.AfterLegalize ||
1290          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1291        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1292        // place.  We expect the SHL to be eliminated by other optimizations.
1293        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1294                                         Op.getOperand(0));
1295        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1296        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1297        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1298                                                 Sign, ShAmt));
1299      }
1300    }
1301#endif
1302    break;
1303  default:
1304    // Just use ComputeMaskedBits to compute output bits.
1305    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1306    break;
1307  }
1308
1309  // If we know the value of all of the demanded bits, return this as a
1310  // constant.
1311  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1312    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1313
1314  return false;
1315}
1316
1317/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1318/// in Mask are known to be either zero or one and return them in the
1319/// KnownZero/KnownOne bitsets.
1320void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1321                                                    const APInt &Mask,
1322                                                    APInt &KnownZero,
1323                                                    APInt &KnownOne,
1324                                                    const SelectionDAG &DAG,
1325                                                    unsigned Depth) const {
1326  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1327          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1328          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1329          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1330         "Should use MaskedValueIsZero if you don't know whether Op"
1331         " is a target node!");
1332  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1333}
1334
1335/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1336/// targets that want to expose additional information about sign bits to the
1337/// DAG Combiner.
1338unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1339                                                         unsigned Depth) const {
1340  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1341          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1342          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1343          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1344         "Should use ComputeNumSignBits if you don't know whether Op"
1345         " is a target node!");
1346  return 1;
1347}
1348
1349static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1350  // Logical shift right or left won't ever introduce new set bits.
1351  // We check for this case because we don't care which bits are
1352  // set, but ComputeMaskedBits won't know anything unless it can
1353  // determine which specific bits may be set.
1354  if (Val.getOpcode() == ISD::SHL || Val.getOpcode() == ISD::SRL)
1355    return ValueHasExactlyOneBitSet(Val.getOperand(0), DAG);
1356
1357  MVT OpVT = Val.getValueType();
1358  unsigned BitWidth = OpVT.getSizeInBits();
1359  APInt Mask = APInt::getAllOnesValue(BitWidth);
1360  APInt KnownZero, KnownOne;
1361  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1362  return (KnownZero.countPopulation() == BitWidth - 1) &&
1363         (KnownOne.countPopulation() == 1);
1364}
1365
1366/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1367/// and cc. If it is unable to simplify it, return a null SDValue.
1368SDValue
1369TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1370                              ISD::CondCode Cond, bool foldBooleans,
1371                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1372  SelectionDAG &DAG = DCI.DAG;
1373
1374  // These setcc operations always fold.
1375  switch (Cond) {
1376  default: break;
1377  case ISD::SETFALSE:
1378  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1379  case ISD::SETTRUE:
1380  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1381  }
1382
1383  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1384    const APInt &C1 = N1C->getAPIntValue();
1385    if (isa<ConstantSDNode>(N0.getNode())) {
1386      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1387    } else {
1388      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1389      // equality comparison, then we're just comparing whether X itself is
1390      // zero.
1391      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1392          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1393          N0.getOperand(1).getOpcode() == ISD::Constant) {
1394        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1395        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1396            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1397          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1398            // (srl (ctlz x), 5) == 0  -> X != 0
1399            // (srl (ctlz x), 5) != 1  -> X != 0
1400            Cond = ISD::SETNE;
1401          } else {
1402            // (srl (ctlz x), 5) != 0  -> X == 0
1403            // (srl (ctlz x), 5) == 1  -> X == 0
1404            Cond = ISD::SETEQ;
1405          }
1406          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1407          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1408                              Zero, Cond);
1409        }
1410      }
1411
1412      // If the LHS is '(and load, const)', the RHS is 0,
1413      // the test is for equality or unsigned, and all 1 bits of the const are
1414      // in the same partial word, see if we can shorten the load.
1415      if (DCI.isBeforeLegalize() &&
1416          N0.getOpcode() == ISD::AND && C1 == 0 &&
1417          isa<LoadSDNode>(N0.getOperand(0)) &&
1418          N0.getOperand(0).getNode()->hasOneUse() &&
1419          isa<ConstantSDNode>(N0.getOperand(1))) {
1420        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1421        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1422        uint64_t bestMask = 0;
1423        unsigned bestWidth = 0, bestOffset = 0;
1424        if (!Lod->isVolatile() && Lod->isUnindexed()) {
1425          unsigned origWidth = N0.getValueType().getSizeInBits();
1426          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1427          // 8 bits, but have to be careful...
1428          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1429            origWidth = Lod->getMemoryVT().getSizeInBits();
1430          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1431            uint64_t newMask = (1ULL << width) - 1;
1432            for (unsigned offset=0; offset<origWidth/width; offset++) {
1433              if ((newMask & Mask)==Mask) {
1434                if (!TD->isLittleEndian())
1435                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1436                else
1437                  bestOffset = (uint64_t)offset * (width/8);
1438                bestMask = Mask >> (offset * (width/8) * 8);
1439                bestWidth = width;
1440                break;
1441              }
1442              newMask = newMask << width;
1443            }
1444          }
1445        }
1446        if (bestWidth) {
1447          MVT newVT = MVT::getIntegerVT(bestWidth);
1448          if (newVT.isRound()) {
1449            MVT PtrType = Lod->getOperand(1).getValueType();
1450            SDValue Ptr = Lod->getBasePtr();
1451            if (bestOffset != 0)
1452              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1453                                DAG.getConstant(bestOffset, PtrType));
1454            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1455            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1456                                          Lod->getSrcValue(),
1457                                          Lod->getSrcValueOffset() + bestOffset,
1458                                          false, NewAlign);
1459            return DAG.getSetCC(dl, VT,
1460                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1461                                            DAG.getConstant(bestMask, newVT)),
1462                                DAG.getConstant(0LL, newVT), Cond);
1463          }
1464        }
1465      }
1466
1467      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1468      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1469        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1470
1471        // If the comparison constant has bits in the upper part, the
1472        // zero-extended value could never match.
1473        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1474                                                C1.getBitWidth() - InSize))) {
1475          switch (Cond) {
1476          case ISD::SETUGT:
1477          case ISD::SETUGE:
1478          case ISD::SETEQ: return DAG.getConstant(0, VT);
1479          case ISD::SETULT:
1480          case ISD::SETULE:
1481          case ISD::SETNE: return DAG.getConstant(1, VT);
1482          case ISD::SETGT:
1483          case ISD::SETGE:
1484            // True if the sign bit of C1 is set.
1485            return DAG.getConstant(C1.isNegative(), VT);
1486          case ISD::SETLT:
1487          case ISD::SETLE:
1488            // True if the sign bit of C1 isn't set.
1489            return DAG.getConstant(C1.isNonNegative(), VT);
1490          default:
1491            break;
1492          }
1493        }
1494
1495        // Otherwise, we can perform the comparison with the low bits.
1496        switch (Cond) {
1497        case ISD::SETEQ:
1498        case ISD::SETNE:
1499        case ISD::SETUGT:
1500        case ISD::SETUGE:
1501        case ISD::SETULT:
1502        case ISD::SETULE:
1503          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1504                          DAG.getConstant(APInt(C1).trunc(InSize),
1505                                          N0.getOperand(0).getValueType()),
1506                          Cond);
1507        default:
1508          break;   // todo, be more careful with signed comparisons
1509        }
1510      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1511                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1512        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1513        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1514        MVT ExtDstTy = N0.getValueType();
1515        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1516
1517        // If the extended part has any inconsistent bits, it cannot ever
1518        // compare equal.  In other words, they have to be all ones or all
1519        // zeros.
1520        APInt ExtBits =
1521          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1522        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1523          return DAG.getConstant(Cond == ISD::SETNE, VT);
1524
1525        SDValue ZextOp;
1526        MVT Op0Ty = N0.getOperand(0).getValueType();
1527        if (Op0Ty == ExtSrcTy) {
1528          ZextOp = N0.getOperand(0);
1529        } else {
1530          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1531          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1532                               DAG.getConstant(Imm, Op0Ty));
1533        }
1534        if (!DCI.isCalledByLegalizer())
1535          DCI.AddToWorklist(ZextOp.getNode());
1536        // Otherwise, make this a use of a zext.
1537        return DAG.getSetCC(dl, VT, ZextOp,
1538                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1539                                                               ExtDstTyBits,
1540                                                               ExtSrcTyBits),
1541                                            ExtDstTy),
1542                            Cond);
1543      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1544                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1545
1546        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1547        if (N0.getOpcode() == ISD::SETCC) {
1548          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1549          if (TrueWhenTrue)
1550            return N0;
1551
1552          // Invert the condition.
1553          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1554          CC = ISD::getSetCCInverse(CC,
1555                                   N0.getOperand(0).getValueType().isInteger());
1556          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1557        }
1558
1559        if ((N0.getOpcode() == ISD::XOR ||
1560             (N0.getOpcode() == ISD::AND &&
1561              N0.getOperand(0).getOpcode() == ISD::XOR &&
1562              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1563            isa<ConstantSDNode>(N0.getOperand(1)) &&
1564            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1565          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1566          // can only do this if the top bits are known zero.
1567          unsigned BitWidth = N0.getValueSizeInBits();
1568          if (DAG.MaskedValueIsZero(N0,
1569                                    APInt::getHighBitsSet(BitWidth,
1570                                                          BitWidth-1))) {
1571            // Okay, get the un-inverted input value.
1572            SDValue Val;
1573            if (N0.getOpcode() == ISD::XOR)
1574              Val = N0.getOperand(0);
1575            else {
1576              assert(N0.getOpcode() == ISD::AND &&
1577                     N0.getOperand(0).getOpcode() == ISD::XOR);
1578              // ((X^1)&1)^1 -> X & 1
1579              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1580                                N0.getOperand(0).getOperand(0),
1581                                N0.getOperand(1));
1582            }
1583            return DAG.getSetCC(dl, VT, Val, N1,
1584                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1585          }
1586        }
1587      }
1588
1589      APInt MinVal, MaxVal;
1590      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1591      if (ISD::isSignedIntSetCC(Cond)) {
1592        MinVal = APInt::getSignedMinValue(OperandBitSize);
1593        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1594      } else {
1595        MinVal = APInt::getMinValue(OperandBitSize);
1596        MaxVal = APInt::getMaxValue(OperandBitSize);
1597      }
1598
1599      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1600      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1601        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1602        // X >= C0 --> X > (C0-1)
1603        return DAG.getSetCC(dl, VT, N0,
1604                            DAG.getConstant(C1-1, N1.getValueType()),
1605                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1606      }
1607
1608      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1609        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1610        // X <= C0 --> X < (C0+1)
1611        return DAG.getSetCC(dl, VT, N0,
1612                            DAG.getConstant(C1+1, N1.getValueType()),
1613                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1614      }
1615
1616      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1617        return DAG.getConstant(0, VT);      // X < MIN --> false
1618      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1619        return DAG.getConstant(1, VT);      // X >= MIN --> true
1620      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1621        return DAG.getConstant(0, VT);      // X > MAX --> false
1622      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1623        return DAG.getConstant(1, VT);      // X <= MAX --> true
1624
1625      // Canonicalize setgt X, Min --> setne X, Min
1626      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1627        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1628      // Canonicalize setlt X, Max --> setne X, Max
1629      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1630        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1631
1632      // If we have setult X, 1, turn it into seteq X, 0
1633      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1634        return DAG.getSetCC(dl, VT, N0,
1635                            DAG.getConstant(MinVal, N0.getValueType()),
1636                            ISD::SETEQ);
1637      // If we have setugt X, Max-1, turn it into seteq X, Max
1638      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1639        return DAG.getSetCC(dl, VT, N0,
1640                            DAG.getConstant(MaxVal, N0.getValueType()),
1641                            ISD::SETEQ);
1642
1643      // If we have "setcc X, C0", check to see if we can shrink the immediate
1644      // by changing cc.
1645
1646      // SETUGT X, SINTMAX  -> SETLT X, 0
1647      if (Cond == ISD::SETUGT &&
1648          C1 == APInt::getSignedMaxValue(OperandBitSize))
1649        return DAG.getSetCC(dl, VT, N0,
1650                            DAG.getConstant(0, N1.getValueType()),
1651                            ISD::SETLT);
1652
1653      // SETULT X, SINTMIN  -> SETGT X, -1
1654      if (Cond == ISD::SETULT &&
1655          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1656        SDValue ConstMinusOne =
1657            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1658                            N1.getValueType());
1659        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1660      }
1661
1662      // Fold bit comparisons when we can.
1663      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1664          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1665        if (ConstantSDNode *AndRHS =
1666                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1667          MVT ShiftTy = DCI.isBeforeLegalize() ?
1668            getPointerTy() : getShiftAmountTy();
1669          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1670            // Perform the xform if the AND RHS is a single bit.
1671            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1672              return DAG.getNode(ISD::SRL, dl, VT, N0,
1673                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1674                                                 ShiftTy));
1675            }
1676          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1677            // (X & 8) == 8  -->  (X & 8) >> 3
1678            // Perform the xform if C1 is a single bit.
1679            if (C1.isPowerOf2()) {
1680              return DAG.getNode(ISD::SRL, dl, VT, N0,
1681                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1682            }
1683          }
1684        }
1685    }
1686  } else if (isa<ConstantSDNode>(N0.getNode())) {
1687      // Ensure that the constant occurs on the RHS.
1688    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1689  }
1690
1691  if (isa<ConstantFPSDNode>(N0.getNode())) {
1692    // Constant fold or commute setcc.
1693    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1694    if (O.getNode()) return O;
1695  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1696    // If the RHS of an FP comparison is a constant, simplify it away in
1697    // some cases.
1698    if (CFP->getValueAPF().isNaN()) {
1699      // If an operand is known to be a nan, we can fold it.
1700      switch (ISD::getUnorderedFlavor(Cond)) {
1701      default: assert(0 && "Unknown flavor!");
1702      case 0:  // Known false.
1703        return DAG.getConstant(0, VT);
1704      case 1:  // Known true.
1705        return DAG.getConstant(1, VT);
1706      case 2:  // Undefined.
1707        return DAG.getUNDEF(VT);
1708      }
1709    }
1710
1711    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1712    // constant if knowing that the operand is non-nan is enough.  We prefer to
1713    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1714    // materialize 0.0.
1715    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1716      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1717  }
1718
1719  if (N0 == N1) {
1720    // We can always fold X == X for integer setcc's.
1721    if (N0.getValueType().isInteger())
1722      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1723    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1724    if (UOF == 2)   // FP operators that are undefined on NaNs.
1725      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1726    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1727      return DAG.getConstant(UOF, VT);
1728    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1729    // if it is not already.
1730    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1731    if (NewCond != Cond)
1732      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1733  }
1734
1735  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1736      N0.getValueType().isInteger()) {
1737    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1738        N0.getOpcode() == ISD::XOR) {
1739      // Simplify (X+Y) == (X+Z) -->  Y == Z
1740      if (N0.getOpcode() == N1.getOpcode()) {
1741        if (N0.getOperand(0) == N1.getOperand(0))
1742          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1743        if (N0.getOperand(1) == N1.getOperand(1))
1744          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1745        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1746          // If X op Y == Y op X, try other combinations.
1747          if (N0.getOperand(0) == N1.getOperand(1))
1748            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1749                                Cond);
1750          if (N0.getOperand(1) == N1.getOperand(0))
1751            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1752                                Cond);
1753        }
1754      }
1755
1756      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1757        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1758          // Turn (X+C1) == C2 --> X == C2-C1
1759          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1760            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1761                                DAG.getConstant(RHSC->getAPIntValue()-
1762                                                LHSR->getAPIntValue(),
1763                                N0.getValueType()), Cond);
1764          }
1765
1766          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1767          if (N0.getOpcode() == ISD::XOR)
1768            // If we know that all of the inverted bits are zero, don't bother
1769            // performing the inversion.
1770            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1771              return
1772                DAG.getSetCC(dl, VT, N0.getOperand(0),
1773                             DAG.getConstant(LHSR->getAPIntValue() ^
1774                                               RHSC->getAPIntValue(),
1775                                             N0.getValueType()),
1776                             Cond);
1777        }
1778
1779        // Turn (C1-X) == C2 --> X == C1-C2
1780        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1781          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1782            return
1783              DAG.getSetCC(dl, VT, N0.getOperand(1),
1784                           DAG.getConstant(SUBC->getAPIntValue() -
1785                                             RHSC->getAPIntValue(),
1786                                           N0.getValueType()),
1787                           Cond);
1788          }
1789        }
1790      }
1791
1792      // Simplify (X+Z) == X -->  Z == 0
1793      if (N0.getOperand(0) == N1)
1794        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1795                        DAG.getConstant(0, N0.getValueType()), Cond);
1796      if (N0.getOperand(1) == N1) {
1797        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1798          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1799                          DAG.getConstant(0, N0.getValueType()), Cond);
1800        else if (N0.getNode()->hasOneUse()) {
1801          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1802          // (Z-X) == X  --> Z == X<<1
1803          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1804                                     N1,
1805                                     DAG.getConstant(1, getShiftAmountTy()));
1806          if (!DCI.isCalledByLegalizer())
1807            DCI.AddToWorklist(SH.getNode());
1808          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1809        }
1810      }
1811    }
1812
1813    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1814        N1.getOpcode() == ISD::XOR) {
1815      // Simplify  X == (X+Z) -->  Z == 0
1816      if (N1.getOperand(0) == N0) {
1817        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1818                        DAG.getConstant(0, N1.getValueType()), Cond);
1819      } else if (N1.getOperand(1) == N0) {
1820        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1821          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1822                          DAG.getConstant(0, N1.getValueType()), Cond);
1823        } else if (N1.getNode()->hasOneUse()) {
1824          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1825          // X == (Z-X)  --> X<<1 == Z
1826          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1827                                     DAG.getConstant(1, getShiftAmountTy()));
1828          if (!DCI.isCalledByLegalizer())
1829            DCI.AddToWorklist(SH.getNode());
1830          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1831        }
1832      }
1833    }
1834
1835    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1836    // Note that where y is variable and is known to have at most
1837    // one bit set (for example, if it is z&1) we cannot do this;
1838    // the expressions are not equivalent when y==0.
1839    if (N0.getOpcode() == ISD::AND)
1840      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1841        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1842          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1843          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1844          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1845        }
1846      }
1847    if (N1.getOpcode() == ISD::AND)
1848      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1849        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1850          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1851          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1852          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1853        }
1854      }
1855  }
1856
1857  // Fold away ALL boolean setcc's.
1858  SDValue Temp;
1859  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1860    switch (Cond) {
1861    default: assert(0 && "Unknown integer setcc!");
1862    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1863      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1864      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1865      if (!DCI.isCalledByLegalizer())
1866        DCI.AddToWorklist(Temp.getNode());
1867      break;
1868    case ISD::SETNE:  // X != Y   -->  (X^Y)
1869      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1870      break;
1871    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1872    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1873      Temp = DAG.getNOT(dl, N0, MVT::i1);
1874      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1875      if (!DCI.isCalledByLegalizer())
1876        DCI.AddToWorklist(Temp.getNode());
1877      break;
1878    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1879    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1880      Temp = DAG.getNOT(dl, N1, MVT::i1);
1881      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1882      if (!DCI.isCalledByLegalizer())
1883        DCI.AddToWorklist(Temp.getNode());
1884      break;
1885    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1886    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1887      Temp = DAG.getNOT(dl, N0, MVT::i1);
1888      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1889      if (!DCI.isCalledByLegalizer())
1890        DCI.AddToWorklist(Temp.getNode());
1891      break;
1892    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1893    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1894      Temp = DAG.getNOT(dl, N1, MVT::i1);
1895      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1896      break;
1897    }
1898    if (VT != MVT::i1) {
1899      if (!DCI.isCalledByLegalizer())
1900        DCI.AddToWorklist(N0.getNode());
1901      // FIXME: If running after legalize, we probably can't do this.
1902      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1903    }
1904    return N0;
1905  }
1906
1907  // Could not fold it.
1908  return SDValue();
1909}
1910
1911/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1912/// node is a GlobalAddress + offset.
1913bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1914                                    int64_t &Offset) const {
1915  if (isa<GlobalAddressSDNode>(N)) {
1916    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1917    GA = GASD->getGlobal();
1918    Offset += GASD->getOffset();
1919    return true;
1920  }
1921
1922  if (N->getOpcode() == ISD::ADD) {
1923    SDValue N1 = N->getOperand(0);
1924    SDValue N2 = N->getOperand(1);
1925    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1926      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1927      if (V) {
1928        Offset += V->getSExtValue();
1929        return true;
1930      }
1931    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1932      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1933      if (V) {
1934        Offset += V->getSExtValue();
1935        return true;
1936      }
1937    }
1938  }
1939  return false;
1940}
1941
1942
1943/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1944/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1945/// location that the 'Base' load is loading from.
1946bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1947                                       unsigned Bytes, int Dist,
1948                                       const MachineFrameInfo *MFI) const {
1949  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1950    return false;
1951  MVT VT = LD->getValueType(0);
1952  if (VT.getSizeInBits() / 8 != Bytes)
1953    return false;
1954
1955  SDValue Loc = LD->getOperand(1);
1956  SDValue BaseLoc = Base->getOperand(1);
1957  if (Loc.getOpcode() == ISD::FrameIndex) {
1958    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1959      return false;
1960    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1961    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1962    int FS  = MFI->getObjectSize(FI);
1963    int BFS = MFI->getObjectSize(BFI);
1964    if (FS != BFS || FS != (int)Bytes) return false;
1965    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1966  }
1967
1968  GlobalValue *GV1 = NULL;
1969  GlobalValue *GV2 = NULL;
1970  int64_t Offset1 = 0;
1971  int64_t Offset2 = 0;
1972  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1973  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1974  if (isGA1 && isGA2 && GV1 == GV2)
1975    return Offset1 == (Offset2 + Dist*Bytes);
1976  return false;
1977}
1978
1979
1980SDValue TargetLowering::
1981PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1982  // Default implementation: no optimization.
1983  return SDValue();
1984}
1985
1986//===----------------------------------------------------------------------===//
1987//  Inline Assembler Implementation Methods
1988//===----------------------------------------------------------------------===//
1989
1990
1991TargetLowering::ConstraintType
1992TargetLowering::getConstraintType(const std::string &Constraint) const {
1993  // FIXME: lots more standard ones to handle.
1994  if (Constraint.size() == 1) {
1995    switch (Constraint[0]) {
1996    default: break;
1997    case 'r': return C_RegisterClass;
1998    case 'm':    // memory
1999    case 'o':    // offsetable
2000    case 'V':    // not offsetable
2001      return C_Memory;
2002    case 'i':    // Simple Integer or Relocatable Constant
2003    case 'n':    // Simple Integer
2004    case 's':    // Relocatable Constant
2005    case 'X':    // Allow ANY value.
2006    case 'I':    // Target registers.
2007    case 'J':
2008    case 'K':
2009    case 'L':
2010    case 'M':
2011    case 'N':
2012    case 'O':
2013    case 'P':
2014      return C_Other;
2015    }
2016  }
2017
2018  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2019      Constraint[Constraint.size()-1] == '}')
2020    return C_Register;
2021  return C_Unknown;
2022}
2023
2024/// LowerXConstraint - try to replace an X constraint, which matches anything,
2025/// with another that has more specific requirements based on the type of the
2026/// corresponding operand.
2027const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2028  if (ConstraintVT.isInteger())
2029    return "r";
2030  if (ConstraintVT.isFloatingPoint())
2031    return "f";      // works for many targets
2032  return 0;
2033}
2034
2035/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2036/// vector.  If it is invalid, don't add anything to Ops.
2037void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2038                                                  char ConstraintLetter,
2039                                                  bool hasMemory,
2040                                                  std::vector<SDValue> &Ops,
2041                                                  SelectionDAG &DAG) const {
2042  switch (ConstraintLetter) {
2043  default: break;
2044  case 'X':     // Allows any operand; labels (basic block) use this.
2045    if (Op.getOpcode() == ISD::BasicBlock) {
2046      Ops.push_back(Op);
2047      return;
2048    }
2049    // fall through
2050  case 'i':    // Simple Integer or Relocatable Constant
2051  case 'n':    // Simple Integer
2052  case 's': {  // Relocatable Constant
2053    // These operands are interested in values of the form (GV+C), where C may
2054    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2055    // is possible and fine if either GV or C are missing.
2056    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2057    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2058
2059    // If we have "(add GV, C)", pull out GV/C
2060    if (Op.getOpcode() == ISD::ADD) {
2061      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2062      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2063      if (C == 0 || GA == 0) {
2064        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2065        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2066      }
2067      if (C == 0 || GA == 0)
2068        C = 0, GA = 0;
2069    }
2070
2071    // If we find a valid operand, map to the TargetXXX version so that the
2072    // value itself doesn't get selected.
2073    if (GA) {   // Either &GV   or   &GV+C
2074      if (ConstraintLetter != 'n') {
2075        int64_t Offs = GA->getOffset();
2076        if (C) Offs += C->getZExtValue();
2077        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2078                                                 Op.getValueType(), Offs));
2079        return;
2080      }
2081    }
2082    if (C) {   // just C, no GV.
2083      // Simple constants are not allowed for 's'.
2084      if (ConstraintLetter != 's') {
2085        // gcc prints these as sign extended.  Sign extend value to 64 bits
2086        // now; without this it would get ZExt'd later in
2087        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2088        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2089                                            MVT::i64));
2090        return;
2091      }
2092    }
2093    break;
2094  }
2095  }
2096}
2097
2098std::vector<unsigned> TargetLowering::
2099getRegClassForInlineAsmConstraint(const std::string &Constraint,
2100                                  MVT VT) const {
2101  return std::vector<unsigned>();
2102}
2103
2104
2105std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2106getRegForInlineAsmConstraint(const std::string &Constraint,
2107                             MVT VT) const {
2108  if (Constraint[0] != '{')
2109    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2110  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2111
2112  // Remove the braces from around the name.
2113  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2114
2115  // Figure out which register class contains this reg.
2116  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2117  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2118       E = RI->regclass_end(); RCI != E; ++RCI) {
2119    const TargetRegisterClass *RC = *RCI;
2120
2121    // If none of the the value types for this register class are valid, we
2122    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2123    bool isLegal = false;
2124    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2125         I != E; ++I) {
2126      if (isTypeLegal(*I)) {
2127        isLegal = true;
2128        break;
2129      }
2130    }
2131
2132    if (!isLegal) continue;
2133
2134    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2135         I != E; ++I) {
2136      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2137        return std::make_pair(*I, RC);
2138    }
2139  }
2140
2141  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2142}
2143
2144//===----------------------------------------------------------------------===//
2145// Constraint Selection.
2146
2147/// isMatchingInputConstraint - Return true of this is an input operand that is
2148/// a matching constraint like "4".
2149bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2150  assert(!ConstraintCode.empty() && "No known constraint!");
2151  return isdigit(ConstraintCode[0]);
2152}
2153
2154/// getMatchedOperand - If this is an input matching constraint, this method
2155/// returns the output operand it matches.
2156unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2157  assert(!ConstraintCode.empty() && "No known constraint!");
2158  return atoi(ConstraintCode.c_str());
2159}
2160
2161
2162/// getConstraintGenerality - Return an integer indicating how general CT
2163/// is.
2164static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2165  switch (CT) {
2166  default: assert(0 && "Unknown constraint type!");
2167  case TargetLowering::C_Other:
2168  case TargetLowering::C_Unknown:
2169    return 0;
2170  case TargetLowering::C_Register:
2171    return 1;
2172  case TargetLowering::C_RegisterClass:
2173    return 2;
2174  case TargetLowering::C_Memory:
2175    return 3;
2176  }
2177}
2178
2179/// ChooseConstraint - If there are multiple different constraints that we
2180/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2181/// This is somewhat tricky: constraints fall into four classes:
2182///    Other         -> immediates and magic values
2183///    Register      -> one specific register
2184///    RegisterClass -> a group of regs
2185///    Memory        -> memory
2186/// Ideally, we would pick the most specific constraint possible: if we have
2187/// something that fits into a register, we would pick it.  The problem here
2188/// is that if we have something that could either be in a register or in
2189/// memory that use of the register could cause selection of *other*
2190/// operands to fail: they might only succeed if we pick memory.  Because of
2191/// this the heuristic we use is:
2192///
2193///  1) If there is an 'other' constraint, and if the operand is valid for
2194///     that constraint, use it.  This makes us take advantage of 'i'
2195///     constraints when available.
2196///  2) Otherwise, pick the most general constraint present.  This prefers
2197///     'm' over 'r', for example.
2198///
2199static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2200                             bool hasMemory,  const TargetLowering &TLI,
2201                             SDValue Op, SelectionDAG *DAG) {
2202  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2203  unsigned BestIdx = 0;
2204  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2205  int BestGenerality = -1;
2206
2207  // Loop over the options, keeping track of the most general one.
2208  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2209    TargetLowering::ConstraintType CType =
2210      TLI.getConstraintType(OpInfo.Codes[i]);
2211
2212    // If this is an 'other' constraint, see if the operand is valid for it.
2213    // For example, on X86 we might have an 'rI' constraint.  If the operand
2214    // is an integer in the range [0..31] we want to use I (saving a load
2215    // of a register), otherwise we must use 'r'.
2216    if (CType == TargetLowering::C_Other && Op.getNode()) {
2217      assert(OpInfo.Codes[i].size() == 1 &&
2218             "Unhandled multi-letter 'other' constraint");
2219      std::vector<SDValue> ResultOps;
2220      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2221                                       ResultOps, *DAG);
2222      if (!ResultOps.empty()) {
2223        BestType = CType;
2224        BestIdx = i;
2225        break;
2226      }
2227    }
2228
2229    // This constraint letter is more general than the previous one, use it.
2230    int Generality = getConstraintGenerality(CType);
2231    if (Generality > BestGenerality) {
2232      BestType = CType;
2233      BestIdx = i;
2234      BestGenerality = Generality;
2235    }
2236  }
2237
2238  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2239  OpInfo.ConstraintType = BestType;
2240}
2241
2242/// ComputeConstraintToUse - Determines the constraint code and constraint
2243/// type to use for the specific AsmOperandInfo, setting
2244/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2245void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2246                                            SDValue Op,
2247                                            bool hasMemory,
2248                                            SelectionDAG *DAG) const {
2249  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2250
2251  // Single-letter constraints ('r') are very common.
2252  if (OpInfo.Codes.size() == 1) {
2253    OpInfo.ConstraintCode = OpInfo.Codes[0];
2254    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2255  } else {
2256    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2257  }
2258
2259  // 'X' matches anything.
2260  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2261    // Labels and constants are handled elsewhere ('X' is the only thing
2262    // that matches labels).
2263    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2264        isa<ConstantInt>(OpInfo.CallOperandVal))
2265      return;
2266
2267    // Otherwise, try to resolve it to something we know about by looking at
2268    // the actual operand type.
2269    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2270      OpInfo.ConstraintCode = Repl;
2271      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2272    }
2273  }
2274}
2275
2276//===----------------------------------------------------------------------===//
2277//  Loop Strength Reduction hooks
2278//===----------------------------------------------------------------------===//
2279
2280/// isLegalAddressingMode - Return true if the addressing mode represented
2281/// by AM is legal for this target, for a load/store of the specified type.
2282bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2283                                           const Type *Ty) const {
2284  // The default implementation of this implements a conservative RISCy, r+r and
2285  // r+i addr mode.
2286
2287  // Allows a sign-extended 16-bit immediate field.
2288  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2289    return false;
2290
2291  // No global is ever allowed as a base.
2292  if (AM.BaseGV)
2293    return false;
2294
2295  // Only support r+r,
2296  switch (AM.Scale) {
2297  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2298    break;
2299  case 1:
2300    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2301      return false;
2302    // Otherwise we have r+r or r+i.
2303    break;
2304  case 2:
2305    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2306      return false;
2307    // Allow 2*r as r+r.
2308    break;
2309  }
2310
2311  return true;
2312}
2313
2314struct mu {
2315  APInt m;     // magic number
2316  bool a;      // add indicator
2317  unsigned s;  // shift amount
2318};
2319
2320/// magicu - calculate the magic numbers required to codegen an integer udiv as
2321/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2322static mu magicu(const APInt& d) {
2323  unsigned p;
2324  APInt nc, delta, q1, r1, q2, r2;
2325  struct mu magu;
2326  magu.a = 0;               // initialize "add" indicator
2327  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2328  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2329  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2330
2331  nc = allOnes - (-d).urem(d);
2332  p = d.getBitWidth() - 1;  // initialize p
2333  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2334  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2335  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2336  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2337  do {
2338    p = p + 1;
2339    if (r1.uge(nc - r1)) {
2340      q1 = q1 + q1 + 1;  // update q1
2341      r1 = r1 + r1 - nc; // update r1
2342    }
2343    else {
2344      q1 = q1+q1; // update q1
2345      r1 = r1+r1; // update r1
2346    }
2347    if ((r2 + 1).uge(d - r2)) {
2348      if (q2.uge(signedMax)) magu.a = 1;
2349      q2 = q2+q2 + 1;     // update q2
2350      r2 = r2+r2 + 1 - d; // update r2
2351    }
2352    else {
2353      if (q2.uge(signedMin)) magu.a = 1;
2354      q2 = q2+q2;     // update q2
2355      r2 = r2+r2 + 1; // update r2
2356    }
2357    delta = d - 1 - r2;
2358  } while (p < d.getBitWidth()*2 &&
2359           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2360  magu.m = q2 + 1; // resulting magic number
2361  magu.s = p - d.getBitWidth();  // resulting shift
2362  return magu;
2363}
2364
2365// Magic for divide replacement
2366struct ms {
2367  APInt m;  // magic number
2368  unsigned s;  // shift amount
2369};
2370
2371/// magic - calculate the magic numbers required to codegen an integer sdiv as
2372/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2373/// or -1.
2374static ms magic(const APInt& d) {
2375  unsigned p;
2376  APInt ad, anc, delta, q1, r1, q2, r2, t;
2377  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2378  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2379  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2380  struct ms mag;
2381
2382  ad = d.abs();
2383  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2384  anc = t - 1 - t.urem(ad);   // absolute value of nc
2385  p = d.getBitWidth() - 1;    // initialize p
2386  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2387  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2388  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2389  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2390  do {
2391    p = p + 1;
2392    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2393    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2394    if (r1.uge(anc)) {  // must be unsigned comparison
2395      q1 = q1 + 1;
2396      r1 = r1 - anc;
2397    }
2398    q2 = q2<<1;          // update q2 = 2p/abs(d)
2399    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2400    if (r2.uge(ad)) {   // must be unsigned comparison
2401      q2 = q2 + 1;
2402      r2 = r2 - ad;
2403    }
2404    delta = ad - r2;
2405  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2406
2407  mag.m = q2 + 1;
2408  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2409  mag.s = p - d.getBitWidth();          // resulting shift
2410  return mag;
2411}
2412
2413/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2414/// return a DAG expression to select that will generate the same value by
2415/// multiplying by a magic number.  See:
2416/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2417SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2418                                  std::vector<SDNode*>* Created) const {
2419  MVT VT = N->getValueType(0);
2420  DebugLoc dl= N->getDebugLoc();
2421
2422  // Check to see if we can do this.
2423  // FIXME: We should be more aggressive here.
2424  if (!isTypeLegal(VT))
2425    return SDValue();
2426
2427  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2428  ms magics = magic(d);
2429
2430  // Multiply the numerator (operand 0) by the magic value
2431  // FIXME: We should support doing a MUL in a wider type
2432  SDValue Q;
2433  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2434    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2435                    DAG.getConstant(magics.m, VT));
2436  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2437    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2438                              N->getOperand(0),
2439                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2440  else
2441    return SDValue();       // No mulhs or equvialent
2442  // If d > 0 and m < 0, add the numerator
2443  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2444    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2445    if (Created)
2446      Created->push_back(Q.getNode());
2447  }
2448  // If d < 0 and m > 0, subtract the numerator.
2449  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2450    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2451    if (Created)
2452      Created->push_back(Q.getNode());
2453  }
2454  // Shift right algebraic if shift value is nonzero
2455  if (magics.s > 0) {
2456    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2457                    DAG.getConstant(magics.s, getShiftAmountTy()));
2458    if (Created)
2459      Created->push_back(Q.getNode());
2460  }
2461  // Extract the sign bit and add it to the quotient
2462  SDValue T =
2463    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2464                                                 getShiftAmountTy()));
2465  if (Created)
2466    Created->push_back(T.getNode());
2467  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2468}
2469
2470/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2471/// return a DAG expression to select that will generate the same value by
2472/// multiplying by a magic number.  See:
2473/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2474SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2475                                  std::vector<SDNode*>* Created) const {
2476  MVT VT = N->getValueType(0);
2477  DebugLoc dl = N->getDebugLoc();
2478
2479  // Check to see if we can do this.
2480  // FIXME: We should be more aggressive here.
2481  if (!isTypeLegal(VT))
2482    return SDValue();
2483
2484  // FIXME: We should use a narrower constant when the upper
2485  // bits are known to be zero.
2486  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2487  mu magics = magicu(N1C->getAPIntValue());
2488
2489  // Multiply the numerator (operand 0) by the magic value
2490  // FIXME: We should support doing a MUL in a wider type
2491  SDValue Q;
2492  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2493    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2494                    DAG.getConstant(magics.m, VT));
2495  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2496    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2497                              N->getOperand(0),
2498                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2499  else
2500    return SDValue();       // No mulhu or equvialent
2501  if (Created)
2502    Created->push_back(Q.getNode());
2503
2504  if (magics.a == 0) {
2505    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2506           "We shouldn't generate an undefined shift!");
2507    return DAG.getNode(ISD::SRL, dl, VT, Q,
2508                       DAG.getConstant(magics.s, getShiftAmountTy()));
2509  } else {
2510    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2511    if (Created)
2512      Created->push_back(NPQ.getNode());
2513    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2514                      DAG.getConstant(1, getShiftAmountTy()));
2515    if (Created)
2516      Created->push_back(NPQ.getNode());
2517    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2518    if (Created)
2519      Created->push_back(NPQ.getNode());
2520    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2521                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2522  }
2523}
2524