TargetLowering.cpp revision f423a69839c4810b890f8a8b09fb8cfbd6bf0139
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245  Names[RTLIB::OEQ_F32] = "__eqsf2";
246  Names[RTLIB::OEQ_F64] = "__eqdf2";
247  Names[RTLIB::UNE_F32] = "__nesf2";
248  Names[RTLIB::UNE_F64] = "__nedf2";
249  Names[RTLIB::OGE_F32] = "__gesf2";
250  Names[RTLIB::OGE_F64] = "__gedf2";
251  Names[RTLIB::OLT_F32] = "__ltsf2";
252  Names[RTLIB::OLT_F64] = "__ltdf2";
253  Names[RTLIB::OLE_F32] = "__lesf2";
254  Names[RTLIB::OLE_F64] = "__ledf2";
255  Names[RTLIB::OGT_F32] = "__gtsf2";
256  Names[RTLIB::OGT_F64] = "__gtdf2";
257  Names[RTLIB::UO_F32] = "__unordsf2";
258  Names[RTLIB::UO_F64] = "__unorddf2";
259  Names[RTLIB::O_F32] = "__unordsf2";
260  Names[RTLIB::O_F64] = "__unorddf2";
261  Names[RTLIB::MEMCPY] = "memcpy";
262  Names[RTLIB::MEMMOVE] = "memmove";
263  Names[RTLIB::MEMSET] = "memset";
264  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
281  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
282  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
283  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
284  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
285  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
286  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
287  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
288  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
297}
298
299/// InitLibcallCallingConvs - Set default libcall CallingConvs.
300///
301static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
302  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
303    CCs[i] = CallingConv::C;
304  }
305}
306
307/// getFPEXT - Return the FPEXT_*_* value for the given types, or
308/// UNKNOWN_LIBCALL if there is none.
309RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
310  if (OpVT == MVT::f32) {
311    if (RetVT == MVT::f64)
312      return FPEXT_F32_F64;
313  }
314
315  return UNKNOWN_LIBCALL;
316}
317
318/// getFPROUND - Return the FPROUND_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
320RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321  if (RetVT == MVT::f32) {
322    if (OpVT == MVT::f64)
323      return FPROUND_F64_F32;
324    if (OpVT == MVT::f80)
325      return FPROUND_F80_F32;
326    if (OpVT == MVT::ppcf128)
327      return FPROUND_PPCF128_F32;
328  } else if (RetVT == MVT::f64) {
329    if (OpVT == MVT::f80)
330      return FPROUND_F80_F64;
331    if (OpVT == MVT::ppcf128)
332      return FPROUND_PPCF128_F64;
333  }
334
335  return UNKNOWN_LIBCALL;
336}
337
338/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339/// UNKNOWN_LIBCALL if there is none.
340RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
341  if (OpVT == MVT::f32) {
342    if (RetVT == MVT::i8)
343      return FPTOSINT_F32_I8;
344    if (RetVT == MVT::i16)
345      return FPTOSINT_F32_I16;
346    if (RetVT == MVT::i32)
347      return FPTOSINT_F32_I32;
348    if (RetVT == MVT::i64)
349      return FPTOSINT_F32_I64;
350    if (RetVT == MVT::i128)
351      return FPTOSINT_F32_I128;
352  } else if (OpVT == MVT::f64) {
353    if (RetVT == MVT::i8)
354      return FPTOSINT_F64_I8;
355    if (RetVT == MVT::i16)
356      return FPTOSINT_F64_I16;
357    if (RetVT == MVT::i32)
358      return FPTOSINT_F64_I32;
359    if (RetVT == MVT::i64)
360      return FPTOSINT_F64_I64;
361    if (RetVT == MVT::i128)
362      return FPTOSINT_F64_I128;
363  } else if (OpVT == MVT::f80) {
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F80_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F80_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F80_I128;
370  } else if (OpVT == MVT::ppcf128) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_PPCF128_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_PPCF128_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_PPCF128_I128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382/// UNKNOWN_LIBCALL if there is none.
383RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
384  if (OpVT == MVT::f32) {
385    if (RetVT == MVT::i8)
386      return FPTOUINT_F32_I8;
387    if (RetVT == MVT::i16)
388      return FPTOUINT_F32_I16;
389    if (RetVT == MVT::i32)
390      return FPTOUINT_F32_I32;
391    if (RetVT == MVT::i64)
392      return FPTOUINT_F32_I64;
393    if (RetVT == MVT::i128)
394      return FPTOUINT_F32_I128;
395  } else if (OpVT == MVT::f64) {
396    if (RetVT == MVT::i8)
397      return FPTOUINT_F64_I8;
398    if (RetVT == MVT::i16)
399      return FPTOUINT_F64_I16;
400    if (RetVT == MVT::i32)
401      return FPTOUINT_F64_I32;
402    if (RetVT == MVT::i64)
403      return FPTOUINT_F64_I64;
404    if (RetVT == MVT::i128)
405      return FPTOUINT_F64_I128;
406  } else if (OpVT == MVT::f80) {
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F80_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F80_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F80_I128;
413  } else if (OpVT == MVT::ppcf128) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_PPCF128_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_PPCF128_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_PPCF128_I128;
420  }
421  return UNKNOWN_LIBCALL;
422}
423
424/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425/// UNKNOWN_LIBCALL if there is none.
426RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
427  if (OpVT == MVT::i32) {
428    if (RetVT == MVT::f32)
429      return SINTTOFP_I32_F32;
430    else if (RetVT == MVT::f64)
431      return SINTTOFP_I32_F64;
432    else if (RetVT == MVT::f80)
433      return SINTTOFP_I32_F80;
434    else if (RetVT == MVT::ppcf128)
435      return SINTTOFP_I32_PPCF128;
436  } else if (OpVT == MVT::i64) {
437    if (RetVT == MVT::f32)
438      return SINTTOFP_I64_F32;
439    else if (RetVT == MVT::f64)
440      return SINTTOFP_I64_F64;
441    else if (RetVT == MVT::f80)
442      return SINTTOFP_I64_F80;
443    else if (RetVT == MVT::ppcf128)
444      return SINTTOFP_I64_PPCF128;
445  } else if (OpVT == MVT::i128) {
446    if (RetVT == MVT::f32)
447      return SINTTOFP_I128_F32;
448    else if (RetVT == MVT::f64)
449      return SINTTOFP_I128_F64;
450    else if (RetVT == MVT::f80)
451      return SINTTOFP_I128_F80;
452    else if (RetVT == MVT::ppcf128)
453      return SINTTOFP_I128_PPCF128;
454  }
455  return UNKNOWN_LIBCALL;
456}
457
458/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459/// UNKNOWN_LIBCALL if there is none.
460RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
461  if (OpVT == MVT::i32) {
462    if (RetVT == MVT::f32)
463      return UINTTOFP_I32_F32;
464    else if (RetVT == MVT::f64)
465      return UINTTOFP_I32_F64;
466    else if (RetVT == MVT::f80)
467      return UINTTOFP_I32_F80;
468    else if (RetVT == MVT::ppcf128)
469      return UINTTOFP_I32_PPCF128;
470  } else if (OpVT == MVT::i64) {
471    if (RetVT == MVT::f32)
472      return UINTTOFP_I64_F32;
473    else if (RetVT == MVT::f64)
474      return UINTTOFP_I64_F64;
475    else if (RetVT == MVT::f80)
476      return UINTTOFP_I64_F80;
477    else if (RetVT == MVT::ppcf128)
478      return UINTTOFP_I64_PPCF128;
479  } else if (OpVT == MVT::i128) {
480    if (RetVT == MVT::f32)
481      return UINTTOFP_I128_F32;
482    else if (RetVT == MVT::f64)
483      return UINTTOFP_I128_F64;
484    else if (RetVT == MVT::f80)
485      return UINTTOFP_I128_F80;
486    else if (RetVT == MVT::ppcf128)
487      return UINTTOFP_I128_PPCF128;
488  }
489  return UNKNOWN_LIBCALL;
490}
491
492/// InitCmpLibcallCCs - Set default comparison libcall CC.
493///
494static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
495  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
496  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
497  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
498  CCs[RTLIB::UNE_F32] = ISD::SETNE;
499  CCs[RTLIB::UNE_F64] = ISD::SETNE;
500  CCs[RTLIB::OGE_F32] = ISD::SETGE;
501  CCs[RTLIB::OGE_F64] = ISD::SETGE;
502  CCs[RTLIB::OLT_F32] = ISD::SETLT;
503  CCs[RTLIB::OLT_F64] = ISD::SETLT;
504  CCs[RTLIB::OLE_F32] = ISD::SETLE;
505  CCs[RTLIB::OLE_F64] = ISD::SETLE;
506  CCs[RTLIB::OGT_F32] = ISD::SETGT;
507  CCs[RTLIB::OGT_F64] = ISD::SETGT;
508  CCs[RTLIB::UO_F32] = ISD::SETNE;
509  CCs[RTLIB::UO_F64] = ISD::SETNE;
510  CCs[RTLIB::O_F32] = ISD::SETEQ;
511  CCs[RTLIB::O_F64] = ISD::SETEQ;
512}
513
514/// NOTE: The constructor takes ownership of TLOF.
515TargetLowering::TargetLowering(const TargetMachine &tm,
516                               const TargetLoweringObjectFile *tlof)
517  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
518  // All operations default to being supported.
519  memset(OpActions, 0, sizeof(OpActions));
520  memset(LoadExtActions, 0, sizeof(LoadExtActions));
521  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
522  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
523  memset(CondCodeActions, 0, sizeof(CondCodeActions));
524
525  // Set default actions for various operations.
526  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
527    // Default all indexed load / store to expand.
528    for (unsigned IM = (unsigned)ISD::PRE_INC;
529         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
530      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
531      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
532    }
533
534    // These operations default to expand.
535    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
537  }
538
539  // Most targets ignore the @llvm.prefetch intrinsic.
540  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
541
542  // ConstantFP nodes default to expand.  Targets can either change this to
543  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544  // to optimize expansions for certain constants.
545  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
548
549  // These library functions default to expand.
550  setOperationAction(ISD::FLOG , MVT::f64, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
552  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
553  setOperationAction(ISD::FEXP , MVT::f64, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
555  setOperationAction(ISD::FLOG , MVT::f32, Expand);
556  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
557  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
558  setOperationAction(ISD::FEXP , MVT::f32, Expand);
559  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
560
561  // Default ISD::TRAP to expand (which turns it into abort).
562  setOperationAction(ISD::TRAP, MVT::Other, Expand);
563
564  IsLittleEndian = TD->isLittleEndian();
565  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
566  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
567  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
568  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
569  benefitFromCodePlacementOpt = false;
570  UseUnderscoreSetJmp = false;
571  UseUnderscoreLongJmp = false;
572  SelectIsExpensive = false;
573  IntDivIsCheap = false;
574  Pow2DivIsCheap = false;
575  StackPointerRegisterToSaveRestore = 0;
576  ExceptionPointerRegister = 0;
577  ExceptionSelectorRegister = 0;
578  BooleanContents = UndefinedBooleanContent;
579  SchedPreferenceInfo = Sched::Latency;
580  JumpBufSize = 0;
581  JumpBufAlignment = 0;
582  PrefLoopAlignment = 0;
583  ShouldFoldAtomicFences = false;
584
585  InitLibcallNames(LibcallRoutineNames);
586  InitCmpLibcallCCs(CmpLibcallCCs);
587  InitLibcallCallingConvs(LibcallCallingConvs);
588}
589
590TargetLowering::~TargetLowering() {
591  delete &TLOF;
592}
593
594/// canOpTrap - Returns true if the operation can trap for the value type.
595/// VT must be a legal type.
596bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
597  assert(isTypeLegal(VT));
598  switch (Op) {
599  default:
600    return false;
601  case ISD::FDIV:
602  case ISD::FREM:
603  case ISD::SDIV:
604  case ISD::UDIV:
605  case ISD::SREM:
606  case ISD::UREM:
607    return true;
608  }
609}
610
611
612static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
613                                          unsigned &NumIntermediates,
614                                          EVT &RegisterVT,
615                                          TargetLowering *TLI) {
616  // Figure out the right, legal destination reg to copy into.
617  unsigned NumElts = VT.getVectorNumElements();
618  MVT EltTy = VT.getVectorElementType();
619
620  unsigned NumVectorRegs = 1;
621
622  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
623  // could break down into LHS/RHS like LegalizeDAG does.
624  if (!isPowerOf2_32(NumElts)) {
625    NumVectorRegs = NumElts;
626    NumElts = 1;
627  }
628
629  // Divide the input until we get to a supported size.  This will always
630  // end with a scalar if the target doesn't support vectors.
631  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
632    NumElts >>= 1;
633    NumVectorRegs <<= 1;
634  }
635
636  NumIntermediates = NumVectorRegs;
637
638  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
639  if (!TLI->isTypeLegal(NewVT))
640    NewVT = EltTy;
641  IntermediateVT = NewVT;
642
643  EVT DestVT = TLI->getRegisterType(NewVT);
644  RegisterVT = DestVT;
645  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
646    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
647
648  // Otherwise, promotion or legal types use the same number of registers as
649  // the vector decimated to the appropriate level.
650  return NumVectorRegs;
651}
652
653/// computeRegisterProperties - Once all of the register classes are added,
654/// this allows us to compute derived properties we expose.
655void TargetLowering::computeRegisterProperties() {
656  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
657         "Too many value types for ValueTypeActions to hold!");
658
659  // Everything defaults to needing one register.
660  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
661    NumRegistersForVT[i] = 1;
662    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
663  }
664  // ...except isVoid, which doesn't need any registers.
665  NumRegistersForVT[MVT::isVoid] = 0;
666
667  // Find the largest integer register class.
668  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
669  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
670    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
671
672  // Every integer value type larger than this largest register takes twice as
673  // many registers to represent as the previous ValueType.
674  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
675    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
676    if (!ExpandedVT.isInteger())
677      break;
678    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
679    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
680    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
681    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
682  }
683
684  // Inspect all of the ValueType's smaller than the largest integer
685  // register to see which ones need promotion.
686  unsigned LegalIntReg = LargestIntReg;
687  for (unsigned IntReg = LargestIntReg - 1;
688       IntReg >= (unsigned)MVT::i1; --IntReg) {
689    EVT IVT = (MVT::SimpleValueType)IntReg;
690    if (isTypeLegal(IVT)) {
691      LegalIntReg = IntReg;
692    } else {
693      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
694        (MVT::SimpleValueType)LegalIntReg;
695      ValueTypeActions.setTypeAction(IVT, Promote);
696    }
697  }
698
699  // ppcf128 type is really two f64's.
700  if (!isTypeLegal(MVT::ppcf128)) {
701    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
702    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
703    TransformToType[MVT::ppcf128] = MVT::f64;
704    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
705  }
706
707  // Decide how to handle f64. If the target does not have native f64 support,
708  // expand it to i64 and we will be generating soft float library calls.
709  if (!isTypeLegal(MVT::f64)) {
710    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
711    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
712    TransformToType[MVT::f64] = MVT::i64;
713    ValueTypeActions.setTypeAction(MVT::f64, Expand);
714  }
715
716  // Decide how to handle f32. If the target does not have native support for
717  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
718  if (!isTypeLegal(MVT::f32)) {
719    if (isTypeLegal(MVT::f64)) {
720      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
721      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
722      TransformToType[MVT::f32] = MVT::f64;
723      ValueTypeActions.setTypeAction(MVT::f32, Promote);
724    } else {
725      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
726      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
727      TransformToType[MVT::f32] = MVT::i32;
728      ValueTypeActions.setTypeAction(MVT::f32, Expand);
729    }
730  }
731
732  // Loop over all of the vector value types to see which need transformations.
733  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
734       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
735    MVT VT = (MVT::SimpleValueType)i;
736    if (isTypeLegal(VT)) continue;
737
738    MVT IntermediateVT;
739    EVT RegisterVT;
740    unsigned NumIntermediates;
741    NumRegistersForVT[i] =
742      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
743                                RegisterVT, this);
744    RegisterTypeForVT[i] = RegisterVT;
745
746    // Determine if there is a legal wider type.
747    bool IsLegalWiderType = false;
748    EVT EltVT = VT.getVectorElementType();
749    unsigned NElts = VT.getVectorNumElements();
750    for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
751      EVT SVT = (MVT::SimpleValueType)nVT;
752      if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
753          SVT.getVectorNumElements() > NElts && NElts != 1) {
754        TransformToType[i] = SVT;
755        ValueTypeActions.setTypeAction(VT, Promote);
756        IsLegalWiderType = true;
757        break;
758      }
759    }
760    if (!IsLegalWiderType) {
761      EVT NVT = VT.getPow2VectorType();
762      if (NVT == VT) {
763        // Type is already a power of 2.  The default action is to split.
764        TransformToType[i] = MVT::Other;
765        ValueTypeActions.setTypeAction(VT, Expand);
766      } else {
767        TransformToType[i] = NVT;
768        ValueTypeActions.setTypeAction(VT, Promote);
769      }
770    }
771  }
772}
773
774const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
775  return NULL;
776}
777
778
779MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
780  return PointerTy.SimpleTy;
781}
782
783MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
784  return MVT::i32; // return the default value
785}
786
787/// getVectorTypeBreakdown - Vector types are broken down into some number of
788/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
789/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
790/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
791///
792/// This method returns the number of registers needed, and the VT for each
793/// register.  It also returns the VT and quantity of the intermediate values
794/// before they are promoted/expanded.
795///
796unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
797                                                EVT &IntermediateVT,
798                                                unsigned &NumIntermediates,
799                                                EVT &RegisterVT) const {
800  // Figure out the right, legal destination reg to copy into.
801  unsigned NumElts = VT.getVectorNumElements();
802  EVT EltTy = VT.getVectorElementType();
803
804  unsigned NumVectorRegs = 1;
805
806  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
807  // could break down into LHS/RHS like LegalizeDAG does.
808  if (!isPowerOf2_32(NumElts)) {
809    NumVectorRegs = NumElts;
810    NumElts = 1;
811  }
812
813  // Divide the input until we get to a supported size.  This will always
814  // end with a scalar if the target doesn't support vectors.
815  while (NumElts > 1 && !isTypeLegal(
816                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
817    NumElts >>= 1;
818    NumVectorRegs <<= 1;
819  }
820
821  NumIntermediates = NumVectorRegs;
822
823  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
824  if (!isTypeLegal(NewVT))
825    NewVT = EltTy;
826  IntermediateVT = NewVT;
827
828  EVT DestVT = getRegisterType(Context, NewVT);
829  RegisterVT = DestVT;
830  if (DestVT.bitsLT(NewVT)) {
831    // Value is expanded, e.g. i64 -> i16.
832    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
833  } else {
834    // Otherwise, promotion or legal types use the same number of registers as
835    // the vector decimated to the appropriate level.
836    return NumVectorRegs;
837  }
838
839  return 1;
840}
841
842/// Get the EVTs and ArgFlags collections that represent the legalized return
843/// type of the given function.  This does not require a DAG or a return value,
844/// and is suitable for use before any DAGs for the function are constructed.
845/// TODO: Move this out of TargetLowering.cpp.
846void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
847                         SmallVectorImpl<ISD::OutputArg> &Outs,
848                         const TargetLowering &TLI,
849                         SmallVectorImpl<uint64_t> *Offsets) {
850  SmallVector<EVT, 4> ValueVTs;
851  ComputeValueVTs(TLI, ReturnType, ValueVTs);
852  unsigned NumValues = ValueVTs.size();
853  if (NumValues == 0) return;
854  unsigned Offset = 0;
855
856  for (unsigned j = 0, f = NumValues; j != f; ++j) {
857    EVT VT = ValueVTs[j];
858    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
859
860    if (attr & Attribute::SExt)
861      ExtendKind = ISD::SIGN_EXTEND;
862    else if (attr & Attribute::ZExt)
863      ExtendKind = ISD::ZERO_EXTEND;
864
865    // FIXME: C calling convention requires the return type to be promoted to
866    // at least 32-bit. But this is not necessary for non-C calling
867    // conventions. The frontend should mark functions whose return values
868    // require promoting with signext or zeroext attributes.
869    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
870      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
871      if (VT.bitsLT(MinVT))
872        VT = MinVT;
873    }
874
875    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
876    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
877    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
878                        PartVT.getTypeForEVT(ReturnType->getContext()));
879
880    // 'inreg' on function refers to return value
881    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
882    if (attr & Attribute::InReg)
883      Flags.setInReg();
884
885    // Propagate extension type if any
886    if (attr & Attribute::SExt)
887      Flags.setSExt();
888    else if (attr & Attribute::ZExt)
889      Flags.setZExt();
890
891    for (unsigned i = 0; i < NumParts; ++i) {
892      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
893      if (Offsets) {
894        Offsets->push_back(Offset);
895        Offset += PartSize;
896      }
897    }
898  }
899}
900
901/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
902/// function arguments in the caller parameter area.  This is the actual
903/// alignment, not its logarithm.
904unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
905  return TD->getCallFrameTypeAlignment(Ty);
906}
907
908/// getJumpTableEncoding - Return the entry encoding for a jump table in the
909/// current function.  The returned value is a member of the
910/// MachineJumpTableInfo::JTEntryKind enum.
911unsigned TargetLowering::getJumpTableEncoding() const {
912  // In non-pic modes, just use the address of a block.
913  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
914    return MachineJumpTableInfo::EK_BlockAddress;
915
916  // In PIC mode, if the target supports a GPRel32 directive, use it.
917  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
918    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
919
920  // Otherwise, use a label difference.
921  return MachineJumpTableInfo::EK_LabelDifference32;
922}
923
924SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
925                                                 SelectionDAG &DAG) const {
926  // If our PIC model is GP relative, use the global offset table as the base.
927  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
928    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
929  return Table;
930}
931
932/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
933/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
934/// MCExpr.
935const MCExpr *
936TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
937                                             unsigned JTI,MCContext &Ctx) const{
938  // The normal PIC reloc base is the label at the start of the jump table.
939  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
940}
941
942bool
943TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
944  // Assume that everything is safe in static mode.
945  if (getTargetMachine().getRelocationModel() == Reloc::Static)
946    return true;
947
948  // In dynamic-no-pic mode, assume that known defined values are safe.
949  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
950      GA &&
951      !GA->getGlobal()->isDeclaration() &&
952      !GA->getGlobal()->isWeakForLinker())
953    return true;
954
955  // Otherwise assume nothing is safe.
956  return false;
957}
958
959//===----------------------------------------------------------------------===//
960//  Optimization Methods
961//===----------------------------------------------------------------------===//
962
963/// ShrinkDemandedConstant - Check to see if the specified operand of the
964/// specified instruction is a constant integer.  If so, check to see if there
965/// are any bits set in the constant that are not demanded.  If so, shrink the
966/// constant and return true.
967bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
968                                                        const APInt &Demanded) {
969  DebugLoc dl = Op.getDebugLoc();
970
971  // FIXME: ISD::SELECT, ISD::SELECT_CC
972  switch (Op.getOpcode()) {
973  default: break;
974  case ISD::XOR:
975  case ISD::AND:
976  case ISD::OR: {
977    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
978    if (!C) return false;
979
980    if (Op.getOpcode() == ISD::XOR &&
981        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
982      return false;
983
984    // if we can expand it to have all bits set, do it
985    if (C->getAPIntValue().intersects(~Demanded)) {
986      EVT VT = Op.getValueType();
987      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
988                                DAG.getConstant(Demanded &
989                                                C->getAPIntValue(),
990                                                VT));
991      return CombineTo(Op, New);
992    }
993
994    break;
995  }
996  }
997
998  return false;
999}
1000
1001/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1002/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1003/// cast, but it could be generalized for targets with other types of
1004/// implicit widening casts.
1005bool
1006TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1007                                                    unsigned BitWidth,
1008                                                    const APInt &Demanded,
1009                                                    DebugLoc dl) {
1010  assert(Op.getNumOperands() == 2 &&
1011         "ShrinkDemandedOp only supports binary operators!");
1012  assert(Op.getNode()->getNumValues() == 1 &&
1013         "ShrinkDemandedOp only supports nodes with one result!");
1014
1015  // Don't do this if the node has another user, which may require the
1016  // full value.
1017  if (!Op.getNode()->hasOneUse())
1018    return false;
1019
1020  // Search for the smallest integer type with free casts to and from
1021  // Op's type. For expedience, just check power-of-2 integer types.
1022  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1023  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1024  if (!isPowerOf2_32(SmallVTBits))
1025    SmallVTBits = NextPowerOf2(SmallVTBits);
1026  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1027    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1028    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1029        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1030      // We found a type with free casts.
1031      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1032                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1033                                          Op.getNode()->getOperand(0)),
1034                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1035                                          Op.getNode()->getOperand(1)));
1036      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1037      return CombineTo(Op, Z);
1038    }
1039  }
1040  return false;
1041}
1042
1043/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1044/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1045/// use this information to simplify Op, create a new simplified DAG node and
1046/// return true, returning the original and new nodes in Old and New. Otherwise,
1047/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1048/// the expression (used to simplify the caller).  The KnownZero/One bits may
1049/// only be accurate for those bits in the DemandedMask.
1050bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1051                                          const APInt &DemandedMask,
1052                                          APInt &KnownZero,
1053                                          APInt &KnownOne,
1054                                          TargetLoweringOpt &TLO,
1055                                          unsigned Depth) const {
1056  unsigned BitWidth = DemandedMask.getBitWidth();
1057  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1058         "Mask size mismatches value type size!");
1059  APInt NewMask = DemandedMask;
1060  DebugLoc dl = Op.getDebugLoc();
1061
1062  // Don't know anything.
1063  KnownZero = KnownOne = APInt(BitWidth, 0);
1064
1065  // Other users may use these bits.
1066  if (!Op.getNode()->hasOneUse()) {
1067    if (Depth != 0) {
1068      // If not at the root, Just compute the KnownZero/KnownOne bits to
1069      // simplify things downstream.
1070      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1071      return false;
1072    }
1073    // If this is the root being simplified, allow it to have multiple uses,
1074    // just set the NewMask to all bits.
1075    NewMask = APInt::getAllOnesValue(BitWidth);
1076  } else if (DemandedMask == 0) {
1077    // Not demanding any bits from Op.
1078    if (Op.getOpcode() != ISD::UNDEF)
1079      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1080    return false;
1081  } else if (Depth == 6) {        // Limit search depth.
1082    return false;
1083  }
1084
1085  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1086  switch (Op.getOpcode()) {
1087  case ISD::Constant:
1088    // We know all of the bits for a constant!
1089    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1090    KnownZero = ~KnownOne & NewMask;
1091    return false;   // Don't fall through, will infinitely loop.
1092  case ISD::AND:
1093    // If the RHS is a constant, check to see if the LHS would be zero without
1094    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1095    // simplify the LHS, here we're using information from the LHS to simplify
1096    // the RHS.
1097    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1098      APInt LHSZero, LHSOne;
1099      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1100                                LHSZero, LHSOne, Depth+1);
1101      // If the LHS already has zeros where RHSC does, this and is dead.
1102      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1103        return TLO.CombineTo(Op, Op.getOperand(0));
1104      // If any of the set bits in the RHS are known zero on the LHS, shrink
1105      // the constant.
1106      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1107        return true;
1108    }
1109
1110    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1111                             KnownOne, TLO, Depth+1))
1112      return true;
1113    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1114    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1115                             KnownZero2, KnownOne2, TLO, Depth+1))
1116      return true;
1117    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1118
1119    // If all of the demanded bits are known one on one side, return the other.
1120    // These bits cannot contribute to the result of the 'and'.
1121    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1122      return TLO.CombineTo(Op, Op.getOperand(0));
1123    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1124      return TLO.CombineTo(Op, Op.getOperand(1));
1125    // If all of the demanded bits in the inputs are known zeros, return zero.
1126    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1127      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1128    // If the RHS is a constant, see if we can simplify it.
1129    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1130      return true;
1131    // If the operation can be done in a smaller type, do so.
1132    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1133      return true;
1134
1135    // Output known-1 bits are only known if set in both the LHS & RHS.
1136    KnownOne &= KnownOne2;
1137    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1138    KnownZero |= KnownZero2;
1139    break;
1140  case ISD::OR:
1141    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1142                             KnownOne, TLO, Depth+1))
1143      return true;
1144    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1146                             KnownZero2, KnownOne2, TLO, Depth+1))
1147      return true;
1148    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1149
1150    // If all of the demanded bits are known zero on one side, return the other.
1151    // These bits cannot contribute to the result of the 'or'.
1152    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1153      return TLO.CombineTo(Op, Op.getOperand(0));
1154    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1155      return TLO.CombineTo(Op, Op.getOperand(1));
1156    // If all of the potentially set bits on one side are known to be set on
1157    // the other side, just use the 'other' side.
1158    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1159      return TLO.CombineTo(Op, Op.getOperand(0));
1160    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1161      return TLO.CombineTo(Op, Op.getOperand(1));
1162    // If the RHS is a constant, see if we can simplify it.
1163    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1164      return true;
1165    // If the operation can be done in a smaller type, do so.
1166    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1167      return true;
1168
1169    // Output known-0 bits are only known if clear in both the LHS & RHS.
1170    KnownZero &= KnownZero2;
1171    // Output known-1 are known to be set if set in either the LHS | RHS.
1172    KnownOne |= KnownOne2;
1173    break;
1174  case ISD::XOR:
1175    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1176                             KnownOne, TLO, Depth+1))
1177      return true;
1178    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1179    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1180                             KnownOne2, TLO, Depth+1))
1181      return true;
1182    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1183
1184    // If all of the demanded bits are known zero on one side, return the other.
1185    // These bits cannot contribute to the result of the 'xor'.
1186    if ((KnownZero & NewMask) == NewMask)
1187      return TLO.CombineTo(Op, Op.getOperand(0));
1188    if ((KnownZero2 & NewMask) == NewMask)
1189      return TLO.CombineTo(Op, Op.getOperand(1));
1190    // If the operation can be done in a smaller type, do so.
1191    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1192      return true;
1193
1194    // If all of the unknown bits are known to be zero on one side or the other
1195    // (but not both) turn this into an *inclusive* or.
1196    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1197    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1198      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1199                                               Op.getOperand(0),
1200                                               Op.getOperand(1)));
1201
1202    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1203    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1204    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1205    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1206
1207    // If all of the demanded bits on one side are known, and all of the set
1208    // bits on that side are also known to be set on the other side, turn this
1209    // into an AND, as we know the bits will be cleared.
1210    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1211    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1212      if ((KnownOne & KnownOne2) == KnownOne) {
1213        EVT VT = Op.getValueType();
1214        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1215        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1216                                                 Op.getOperand(0), ANDC));
1217      }
1218    }
1219
1220    // If the RHS is a constant, see if we can simplify it.
1221    // for XOR, we prefer to force bits to 1 if they will make a -1.
1222    // if we can't force bits, try to shrink constant
1223    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1224      APInt Expanded = C->getAPIntValue() | (~NewMask);
1225      // if we can expand it to have all bits set, do it
1226      if (Expanded.isAllOnesValue()) {
1227        if (Expanded != C->getAPIntValue()) {
1228          EVT VT = Op.getValueType();
1229          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1230                                          TLO.DAG.getConstant(Expanded, VT));
1231          return TLO.CombineTo(Op, New);
1232        }
1233        // if it already has all the bits set, nothing to change
1234        // but don't shrink either!
1235      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1236        return true;
1237      }
1238    }
1239
1240    KnownZero = KnownZeroOut;
1241    KnownOne  = KnownOneOut;
1242    break;
1243  case ISD::SELECT:
1244    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1245                             KnownOne, TLO, Depth+1))
1246      return true;
1247    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1248                             KnownOne2, TLO, Depth+1))
1249      return true;
1250    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1251    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1252
1253    // If the operands are constants, see if we can simplify them.
1254    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1255      return true;
1256
1257    // Only known if known in both the LHS and RHS.
1258    KnownOne &= KnownOne2;
1259    KnownZero &= KnownZero2;
1260    break;
1261  case ISD::SELECT_CC:
1262    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1263                             KnownOne, TLO, Depth+1))
1264      return true;
1265    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1266                             KnownOne2, TLO, Depth+1))
1267      return true;
1268    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1269    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1270
1271    // If the operands are constants, see if we can simplify them.
1272    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1273      return true;
1274
1275    // Only known if known in both the LHS and RHS.
1276    KnownOne &= KnownOne2;
1277    KnownZero &= KnownZero2;
1278    break;
1279  case ISD::SHL:
1280    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1281      unsigned ShAmt = SA->getZExtValue();
1282      SDValue InOp = Op.getOperand(0);
1283
1284      // If the shift count is an invalid immediate, don't do anything.
1285      if (ShAmt >= BitWidth)
1286        break;
1287
1288      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1289      // single shift.  We can do this if the bottom bits (which are shifted
1290      // out) are never demanded.
1291      if (InOp.getOpcode() == ISD::SRL &&
1292          isa<ConstantSDNode>(InOp.getOperand(1))) {
1293        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1294          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1295          unsigned Opc = ISD::SHL;
1296          int Diff = ShAmt-C1;
1297          if (Diff < 0) {
1298            Diff = -Diff;
1299            Opc = ISD::SRL;
1300          }
1301
1302          SDValue NewSA =
1303            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1304          EVT VT = Op.getValueType();
1305          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1306                                                   InOp.getOperand(0), NewSA));
1307        }
1308      }
1309
1310      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1311                               KnownZero, KnownOne, TLO, Depth+1))
1312        return true;
1313      KnownZero <<= SA->getZExtValue();
1314      KnownOne  <<= SA->getZExtValue();
1315      // low bits known zero.
1316      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1317    }
1318    break;
1319  case ISD::SRL:
1320    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1321      EVT VT = Op.getValueType();
1322      unsigned ShAmt = SA->getZExtValue();
1323      unsigned VTSize = VT.getSizeInBits();
1324      SDValue InOp = Op.getOperand(0);
1325
1326      // If the shift count is an invalid immediate, don't do anything.
1327      if (ShAmt >= BitWidth)
1328        break;
1329
1330      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1331      // single shift.  We can do this if the top bits (which are shifted out)
1332      // are never demanded.
1333      if (InOp.getOpcode() == ISD::SHL &&
1334          isa<ConstantSDNode>(InOp.getOperand(1))) {
1335        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1336          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1337          unsigned Opc = ISD::SRL;
1338          int Diff = ShAmt-C1;
1339          if (Diff < 0) {
1340            Diff = -Diff;
1341            Opc = ISD::SHL;
1342          }
1343
1344          SDValue NewSA =
1345            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1346          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1347                                                   InOp.getOperand(0), NewSA));
1348        }
1349      }
1350
1351      // Compute the new bits that are at the top now.
1352      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1353                               KnownZero, KnownOne, TLO, Depth+1))
1354        return true;
1355      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1356      KnownZero = KnownZero.lshr(ShAmt);
1357      KnownOne  = KnownOne.lshr(ShAmt);
1358
1359      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1360      KnownZero |= HighBits;  // High bits known zero.
1361    }
1362    break;
1363  case ISD::SRA:
1364    // If this is an arithmetic shift right and only the low-bit is set, we can
1365    // always convert this into a logical shr, even if the shift amount is
1366    // variable.  The low bit of the shift cannot be an input sign bit unless
1367    // the shift amount is >= the size of the datatype, which is undefined.
1368    if (DemandedMask == 1)
1369      return TLO.CombineTo(Op,
1370                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1371                                           Op.getOperand(0), Op.getOperand(1)));
1372
1373    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1374      EVT VT = Op.getValueType();
1375      unsigned ShAmt = SA->getZExtValue();
1376
1377      // If the shift count is an invalid immediate, don't do anything.
1378      if (ShAmt >= BitWidth)
1379        break;
1380
1381      APInt InDemandedMask = (NewMask << ShAmt);
1382
1383      // If any of the demanded bits are produced by the sign extension, we also
1384      // demand the input sign bit.
1385      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1386      if (HighBits.intersects(NewMask))
1387        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1388
1389      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1390                               KnownZero, KnownOne, TLO, Depth+1))
1391        return true;
1392      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393      KnownZero = KnownZero.lshr(ShAmt);
1394      KnownOne  = KnownOne.lshr(ShAmt);
1395
1396      // Handle the sign bit, adjusted to where it is now in the mask.
1397      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1398
1399      // If the input sign bit is known to be zero, or if none of the top bits
1400      // are demanded, turn this into an unsigned shift right.
1401      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1402        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1403                                                 Op.getOperand(0),
1404                                                 Op.getOperand(1)));
1405      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1406        KnownOne |= HighBits;
1407      }
1408    }
1409    break;
1410  case ISD::SIGN_EXTEND_INREG: {
1411    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1412
1413    // Sign extension.  Compute the demanded bits in the result that are not
1414    // present in the input.
1415    APInt NewBits =
1416      APInt::getHighBitsSet(BitWidth,
1417                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1418      NewMask;
1419
1420    // If none of the extended bits are demanded, eliminate the sextinreg.
1421    if (NewBits == 0)
1422      return TLO.CombineTo(Op, Op.getOperand(0));
1423
1424    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1425    InSignBit.zext(BitWidth);
1426    APInt InputDemandedBits =
1427      APInt::getLowBitsSet(BitWidth,
1428                           EVT.getScalarType().getSizeInBits()) &
1429      NewMask;
1430
1431    // Since the sign extended bits are demanded, we know that the sign
1432    // bit is demanded.
1433    InputDemandedBits |= InSignBit;
1434
1435    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1436                             KnownZero, KnownOne, TLO, Depth+1))
1437      return true;
1438    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1439
1440    // If the sign bit of the input is known set or clear, then we know the
1441    // top bits of the result.
1442
1443    // If the input sign bit is known zero, convert this into a zero extension.
1444    if (KnownZero.intersects(InSignBit))
1445      return TLO.CombineTo(Op,
1446                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1447
1448    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1449      KnownOne |= NewBits;
1450      KnownZero &= ~NewBits;
1451    } else {                       // Input sign bit unknown
1452      KnownZero &= ~NewBits;
1453      KnownOne &= ~NewBits;
1454    }
1455    break;
1456  }
1457  case ISD::ZERO_EXTEND: {
1458    unsigned OperandBitWidth =
1459      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1460    APInt InMask = NewMask;
1461    InMask.trunc(OperandBitWidth);
1462
1463    // If none of the top bits are demanded, convert this into an any_extend.
1464    APInt NewBits =
1465      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1466    if (!NewBits.intersects(NewMask))
1467      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1468                                               Op.getValueType(),
1469                                               Op.getOperand(0)));
1470
1471    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1472                             KnownZero, KnownOne, TLO, Depth+1))
1473      return true;
1474    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1475    KnownZero.zext(BitWidth);
1476    KnownOne.zext(BitWidth);
1477    KnownZero |= NewBits;
1478    break;
1479  }
1480  case ISD::SIGN_EXTEND: {
1481    EVT InVT = Op.getOperand(0).getValueType();
1482    unsigned InBits = InVT.getScalarType().getSizeInBits();
1483    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1484    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1485    APInt NewBits   = ~InMask & NewMask;
1486
1487    // If none of the top bits are demanded, convert this into an any_extend.
1488    if (NewBits == 0)
1489      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1490                                              Op.getValueType(),
1491                                              Op.getOperand(0)));
1492
1493    // Since some of the sign extended bits are demanded, we know that the sign
1494    // bit is demanded.
1495    APInt InDemandedBits = InMask & NewMask;
1496    InDemandedBits |= InSignBit;
1497    InDemandedBits.trunc(InBits);
1498
1499    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1500                             KnownOne, TLO, Depth+1))
1501      return true;
1502    KnownZero.zext(BitWidth);
1503    KnownOne.zext(BitWidth);
1504
1505    // If the sign bit is known zero, convert this to a zero extend.
1506    if (KnownZero.intersects(InSignBit))
1507      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1508                                               Op.getValueType(),
1509                                               Op.getOperand(0)));
1510
1511    // If the sign bit is known one, the top bits match.
1512    if (KnownOne.intersects(InSignBit)) {
1513      KnownOne  |= NewBits;
1514      KnownZero &= ~NewBits;
1515    } else {   // Otherwise, top bits aren't known.
1516      KnownOne  &= ~NewBits;
1517      KnownZero &= ~NewBits;
1518    }
1519    break;
1520  }
1521  case ISD::ANY_EXTEND: {
1522    unsigned OperandBitWidth =
1523      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1524    APInt InMask = NewMask;
1525    InMask.trunc(OperandBitWidth);
1526    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1527                             KnownZero, KnownOne, TLO, Depth+1))
1528      return true;
1529    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1530    KnownZero.zext(BitWidth);
1531    KnownOne.zext(BitWidth);
1532    break;
1533  }
1534  case ISD::TRUNCATE: {
1535    // Simplify the input, using demanded bit information, and compute the known
1536    // zero/one bits live out.
1537    unsigned OperandBitWidth =
1538      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1539    APInt TruncMask = NewMask;
1540    TruncMask.zext(OperandBitWidth);
1541    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1542                             KnownZero, KnownOne, TLO, Depth+1))
1543      return true;
1544    KnownZero.trunc(BitWidth);
1545    KnownOne.trunc(BitWidth);
1546
1547    // If the input is only used by this truncate, see if we can shrink it based
1548    // on the known demanded bits.
1549    if (Op.getOperand(0).getNode()->hasOneUse()) {
1550      SDValue In = Op.getOperand(0);
1551      switch (In.getOpcode()) {
1552      default: break;
1553      case ISD::SRL:
1554        // Shrink SRL by a constant if none of the high bits shifted in are
1555        // demanded.
1556        if (TLO.LegalTypes() &&
1557            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1558          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1559          // undesirable.
1560          break;
1561        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1562        if (!ShAmt)
1563          break;
1564        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1565                                               OperandBitWidth - BitWidth);
1566        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1567        HighBits.trunc(BitWidth);
1568
1569        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1570          // None of the shifted in bits are needed.  Add a truncate of the
1571          // shift input, then shift it.
1572          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1573                                             Op.getValueType(),
1574                                             In.getOperand(0));
1575          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1576                                                   Op.getValueType(),
1577                                                   NewTrunc,
1578                                                   In.getOperand(1)));
1579        }
1580        break;
1581      }
1582    }
1583
1584    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585    break;
1586  }
1587  case ISD::AssertZext: {
1588    // Demand all the bits of the input that are demanded in the output.
1589    // The low bits are obvious; the high bits are demanded because we're
1590    // asserting that they're zero here.
1591    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1592                             KnownZero, KnownOne, TLO, Depth+1))
1593      return true;
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595
1596    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1597    APInt InMask = APInt::getLowBitsSet(BitWidth,
1598                                        VT.getSizeInBits());
1599    KnownZero |= ~InMask & NewMask;
1600    break;
1601  }
1602  case ISD::BIT_CONVERT:
1603#if 0
1604    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1605    // is demanded, turn this into a FGETSIGN.
1606    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1607        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1608        !MVT::isVector(Op.getOperand(0).getValueType())) {
1609      // Only do this xform if FGETSIGN is valid or if before legalize.
1610      if (!TLO.AfterLegalize ||
1611          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1612        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1613        // place.  We expect the SHL to be eliminated by other optimizations.
1614        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1615                                         Op.getOperand(0));
1616        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1617        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1618        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1619                                                 Sign, ShAmt));
1620      }
1621    }
1622#endif
1623    break;
1624  case ISD::ADD:
1625  case ISD::MUL:
1626  case ISD::SUB: {
1627    // Add, Sub, and Mul don't demand any bits in positions beyond that
1628    // of the highest bit demanded of them.
1629    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1630                                        BitWidth - NewMask.countLeadingZeros());
1631    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1632                             KnownOne2, TLO, Depth+1))
1633      return true;
1634    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1635                             KnownOne2, TLO, Depth+1))
1636      return true;
1637    // See if the operation should be performed at a smaller bit width.
1638    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1639      return true;
1640  }
1641  // FALL THROUGH
1642  default:
1643    // Just use ComputeMaskedBits to compute output bits.
1644    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1645    break;
1646  }
1647
1648  // If we know the value of all of the demanded bits, return this as a
1649  // constant.
1650  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1651    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1652
1653  return false;
1654}
1655
1656/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1657/// in Mask are known to be either zero or one and return them in the
1658/// KnownZero/KnownOne bitsets.
1659void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1660                                                    const APInt &Mask,
1661                                                    APInt &KnownZero,
1662                                                    APInt &KnownOne,
1663                                                    const SelectionDAG &DAG,
1664                                                    unsigned Depth) const {
1665  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1666          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1667          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1668          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1669         "Should use MaskedValueIsZero if you don't know whether Op"
1670         " is a target node!");
1671  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1672}
1673
1674/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1675/// targets that want to expose additional information about sign bits to the
1676/// DAG Combiner.
1677unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1678                                                         unsigned Depth) const {
1679  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1680          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1681          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1682          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1683         "Should use ComputeNumSignBits if you don't know whether Op"
1684         " is a target node!");
1685  return 1;
1686}
1687
1688/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1689/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1690/// determine which bit is set.
1691///
1692static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1693  // A left-shift of a constant one will have exactly one bit set, because
1694  // shifting the bit off the end is undefined.
1695  if (Val.getOpcode() == ISD::SHL)
1696    if (ConstantSDNode *C =
1697         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1698      if (C->getAPIntValue() == 1)
1699        return true;
1700
1701  // Similarly, a right-shift of a constant sign-bit will have exactly
1702  // one bit set.
1703  if (Val.getOpcode() == ISD::SRL)
1704    if (ConstantSDNode *C =
1705         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1706      if (C->getAPIntValue().isSignBit())
1707        return true;
1708
1709  // More could be done here, though the above checks are enough
1710  // to handle some common cases.
1711
1712  // Fall back to ComputeMaskedBits to catch other known cases.
1713  EVT OpVT = Val.getValueType();
1714  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1715  APInt Mask = APInt::getAllOnesValue(BitWidth);
1716  APInt KnownZero, KnownOne;
1717  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1718  return (KnownZero.countPopulation() == BitWidth - 1) &&
1719         (KnownOne.countPopulation() == 1);
1720}
1721
1722/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1723/// and cc. If it is unable to simplify it, return a null SDValue.
1724SDValue
1725TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1726                              ISD::CondCode Cond, bool foldBooleans,
1727                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1728  SelectionDAG &DAG = DCI.DAG;
1729  LLVMContext &Context = *DAG.getContext();
1730
1731  // These setcc operations always fold.
1732  switch (Cond) {
1733  default: break;
1734  case ISD::SETFALSE:
1735  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1736  case ISD::SETTRUE:
1737  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1738  }
1739
1740  if (isa<ConstantSDNode>(N0.getNode())) {
1741    // Ensure that the constant occurs on the RHS, and fold constant
1742    // comparisons.
1743    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1744  }
1745
1746  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1747    const APInt &C1 = N1C->getAPIntValue();
1748
1749    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1750    // equality comparison, then we're just comparing whether X itself is
1751    // zero.
1752    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1753        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1754        N0.getOperand(1).getOpcode() == ISD::Constant) {
1755      const APInt &ShAmt
1756        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1757      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1758          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1759        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1760          // (srl (ctlz x), 5) == 0  -> X != 0
1761          // (srl (ctlz x), 5) != 1  -> X != 0
1762          Cond = ISD::SETNE;
1763        } else {
1764          // (srl (ctlz x), 5) != 0  -> X == 0
1765          // (srl (ctlz x), 5) == 1  -> X == 0
1766          Cond = ISD::SETEQ;
1767        }
1768        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1769        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1770                            Zero, Cond);
1771      }
1772    }
1773
1774    // If the LHS is '(and load, const)', the RHS is 0,
1775    // the test is for equality or unsigned, and all 1 bits of the const are
1776    // in the same partial word, see if we can shorten the load.
1777    if (DCI.isBeforeLegalize() &&
1778        N0.getOpcode() == ISD::AND && C1 == 0 &&
1779        N0.getNode()->hasOneUse() &&
1780        isa<LoadSDNode>(N0.getOperand(0)) &&
1781        N0.getOperand(0).getNode()->hasOneUse() &&
1782        isa<ConstantSDNode>(N0.getOperand(1))) {
1783      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1784      APInt bestMask;
1785      unsigned bestWidth = 0, bestOffset = 0;
1786      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1787        unsigned origWidth = N0.getValueType().getSizeInBits();
1788        unsigned maskWidth = origWidth;
1789        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1790        // 8 bits, but have to be careful...
1791        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1792          origWidth = Lod->getMemoryVT().getSizeInBits();
1793        const APInt &Mask =
1794          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1795        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1796          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1797          for (unsigned offset=0; offset<origWidth/width; offset++) {
1798            if ((newMask & Mask) == Mask) {
1799              if (!TD->isLittleEndian())
1800                bestOffset = (origWidth/width - offset - 1) * (width/8);
1801              else
1802                bestOffset = (uint64_t)offset * (width/8);
1803              bestMask = Mask.lshr(offset * (width/8) * 8);
1804              bestWidth = width;
1805              break;
1806            }
1807            newMask = newMask << width;
1808          }
1809        }
1810      }
1811      if (bestWidth) {
1812        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1813        if (newVT.isRound()) {
1814          EVT PtrType = Lod->getOperand(1).getValueType();
1815          SDValue Ptr = Lod->getBasePtr();
1816          if (bestOffset != 0)
1817            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1818                              DAG.getConstant(bestOffset, PtrType));
1819          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1820          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1821                                        Lod->getSrcValue(),
1822                                        Lod->getSrcValueOffset() + bestOffset,
1823                                        false, false, NewAlign);
1824          return DAG.getSetCC(dl, VT,
1825                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1826                                      DAG.getConstant(bestMask.trunc(bestWidth),
1827                                                      newVT)),
1828                              DAG.getConstant(0LL, newVT), Cond);
1829        }
1830      }
1831    }
1832
1833    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1834    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1835      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1836
1837      // If the comparison constant has bits in the upper part, the
1838      // zero-extended value could never match.
1839      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1840                                              C1.getBitWidth() - InSize))) {
1841        switch (Cond) {
1842        case ISD::SETUGT:
1843        case ISD::SETUGE:
1844        case ISD::SETEQ: return DAG.getConstant(0, VT);
1845        case ISD::SETULT:
1846        case ISD::SETULE:
1847        case ISD::SETNE: return DAG.getConstant(1, VT);
1848        case ISD::SETGT:
1849        case ISD::SETGE:
1850          // True if the sign bit of C1 is set.
1851          return DAG.getConstant(C1.isNegative(), VT);
1852        case ISD::SETLT:
1853        case ISD::SETLE:
1854          // True if the sign bit of C1 isn't set.
1855          return DAG.getConstant(C1.isNonNegative(), VT);
1856        default:
1857          break;
1858        }
1859      }
1860
1861      // Otherwise, we can perform the comparison with the low bits.
1862      switch (Cond) {
1863      case ISD::SETEQ:
1864      case ISD::SETNE:
1865      case ISD::SETUGT:
1866      case ISD::SETUGE:
1867      case ISD::SETULT:
1868      case ISD::SETULE: {
1869        EVT newVT = N0.getOperand(0).getValueType();
1870        if (DCI.isBeforeLegalizeOps() ||
1871            (isOperationLegal(ISD::SETCC, newVT) &&
1872              getCondCodeAction(Cond, newVT)==Legal))
1873          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1874                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1875                              Cond);
1876        break;
1877      }
1878      default:
1879        break;   // todo, be more careful with signed comparisons
1880      }
1881    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1882               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1883      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1884      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1885      EVT ExtDstTy = N0.getValueType();
1886      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1887
1888      // If the extended part has any inconsistent bits, it cannot ever
1889      // compare equal.  In other words, they have to be all ones or all
1890      // zeros.
1891      APInt ExtBits =
1892        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1893      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1894        return DAG.getConstant(Cond == ISD::SETNE, VT);
1895
1896      SDValue ZextOp;
1897      EVT Op0Ty = N0.getOperand(0).getValueType();
1898      if (Op0Ty == ExtSrcTy) {
1899        ZextOp = N0.getOperand(0);
1900      } else {
1901        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1902        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1903                              DAG.getConstant(Imm, Op0Ty));
1904      }
1905      if (!DCI.isCalledByLegalizer())
1906        DCI.AddToWorklist(ZextOp.getNode());
1907      // Otherwise, make this a use of a zext.
1908      return DAG.getSetCC(dl, VT, ZextOp,
1909                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1910                                                              ExtDstTyBits,
1911                                                              ExtSrcTyBits),
1912                                          ExtDstTy),
1913                          Cond);
1914    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1915                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1916      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1917      if (N0.getOpcode() == ISD::SETCC &&
1918          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1919        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1920        if (TrueWhenTrue)
1921          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1922        // Invert the condition.
1923        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1924        CC = ISD::getSetCCInverse(CC,
1925                                  N0.getOperand(0).getValueType().isInteger());
1926        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1927      }
1928
1929      if ((N0.getOpcode() == ISD::XOR ||
1930           (N0.getOpcode() == ISD::AND &&
1931            N0.getOperand(0).getOpcode() == ISD::XOR &&
1932            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1933          isa<ConstantSDNode>(N0.getOperand(1)) &&
1934          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1935        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1936        // can only do this if the top bits are known zero.
1937        unsigned BitWidth = N0.getValueSizeInBits();
1938        if (DAG.MaskedValueIsZero(N0,
1939                                  APInt::getHighBitsSet(BitWidth,
1940                                                        BitWidth-1))) {
1941          // Okay, get the un-inverted input value.
1942          SDValue Val;
1943          if (N0.getOpcode() == ISD::XOR)
1944            Val = N0.getOperand(0);
1945          else {
1946            assert(N0.getOpcode() == ISD::AND &&
1947                    N0.getOperand(0).getOpcode() == ISD::XOR);
1948            // ((X^1)&1)^1 -> X & 1
1949            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1950                              N0.getOperand(0).getOperand(0),
1951                              N0.getOperand(1));
1952          }
1953
1954          return DAG.getSetCC(dl, VT, Val, N1,
1955                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1956        }
1957      } else if (N1C->getAPIntValue() == 1 &&
1958                 (VT == MVT::i1 ||
1959                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1960        SDValue Op0 = N0;
1961        if (Op0.getOpcode() == ISD::TRUNCATE)
1962          Op0 = Op0.getOperand(0);
1963
1964        if ((Op0.getOpcode() == ISD::XOR) &&
1965            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1966            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1967          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1968          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1969          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1970                              Cond);
1971        } else if (Op0.getOpcode() == ISD::AND &&
1972                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1973                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1974          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1975          if (Op0.getValueType().bitsGT(VT))
1976            Op0 = DAG.getNode(ISD::AND, dl, VT,
1977                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1978                          DAG.getConstant(1, VT));
1979          else if (Op0.getValueType().bitsLT(VT))
1980            Op0 = DAG.getNode(ISD::AND, dl, VT,
1981                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1982                        DAG.getConstant(1, VT));
1983
1984          return DAG.getSetCC(dl, VT, Op0,
1985                              DAG.getConstant(0, Op0.getValueType()),
1986                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1987        }
1988      }
1989    }
1990
1991    APInt MinVal, MaxVal;
1992    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1993    if (ISD::isSignedIntSetCC(Cond)) {
1994      MinVal = APInt::getSignedMinValue(OperandBitSize);
1995      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1996    } else {
1997      MinVal = APInt::getMinValue(OperandBitSize);
1998      MaxVal = APInt::getMaxValue(OperandBitSize);
1999    }
2000
2001    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2002    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2003      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2004      // X >= C0 --> X > (C0-1)
2005      return DAG.getSetCC(dl, VT, N0,
2006                          DAG.getConstant(C1-1, N1.getValueType()),
2007                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2008    }
2009
2010    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2011      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2012      // X <= C0 --> X < (C0+1)
2013      return DAG.getSetCC(dl, VT, N0,
2014                          DAG.getConstant(C1+1, N1.getValueType()),
2015                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2016    }
2017
2018    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2019      return DAG.getConstant(0, VT);      // X < MIN --> false
2020    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2021      return DAG.getConstant(1, VT);      // X >= MIN --> true
2022    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2023      return DAG.getConstant(0, VT);      // X > MAX --> false
2024    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2025      return DAG.getConstant(1, VT);      // X <= MAX --> true
2026
2027    // Canonicalize setgt X, Min --> setne X, Min
2028    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2029      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2030    // Canonicalize setlt X, Max --> setne X, Max
2031    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2032      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2033
2034    // If we have setult X, 1, turn it into seteq X, 0
2035    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2036      return DAG.getSetCC(dl, VT, N0,
2037                          DAG.getConstant(MinVal, N0.getValueType()),
2038                          ISD::SETEQ);
2039    // If we have setugt X, Max-1, turn it into seteq X, Max
2040    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2041      return DAG.getSetCC(dl, VT, N0,
2042                          DAG.getConstant(MaxVal, N0.getValueType()),
2043                          ISD::SETEQ);
2044
2045    // If we have "setcc X, C0", check to see if we can shrink the immediate
2046    // by changing cc.
2047
2048    // SETUGT X, SINTMAX  -> SETLT X, 0
2049    if (Cond == ISD::SETUGT &&
2050        C1 == APInt::getSignedMaxValue(OperandBitSize))
2051      return DAG.getSetCC(dl, VT, N0,
2052                          DAG.getConstant(0, N1.getValueType()),
2053                          ISD::SETLT);
2054
2055    // SETULT X, SINTMIN  -> SETGT X, -1
2056    if (Cond == ISD::SETULT &&
2057        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2058      SDValue ConstMinusOne =
2059          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2060                          N1.getValueType());
2061      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2062    }
2063
2064    // Fold bit comparisons when we can.
2065    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2066        (VT == N0.getValueType() ||
2067         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2068        N0.getOpcode() == ISD::AND)
2069      if (ConstantSDNode *AndRHS =
2070                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2071        EVT ShiftTy = DCI.isBeforeLegalize() ?
2072          getPointerTy() : getShiftAmountTy();
2073        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2074          // Perform the xform if the AND RHS is a single bit.
2075          if (AndRHS->getAPIntValue().isPowerOf2()) {
2076            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2077                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2078                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2079          }
2080        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2081          // (X & 8) == 8  -->  (X & 8) >> 3
2082          // Perform the xform if C1 is a single bit.
2083          if (C1.isPowerOf2()) {
2084            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2085                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2086                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2087          }
2088        }
2089      }
2090  }
2091
2092  if (isa<ConstantFPSDNode>(N0.getNode())) {
2093    // Constant fold or commute setcc.
2094    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2095    if (O.getNode()) return O;
2096  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2097    // If the RHS of an FP comparison is a constant, simplify it away in
2098    // some cases.
2099    if (CFP->getValueAPF().isNaN()) {
2100      // If an operand is known to be a nan, we can fold it.
2101      switch (ISD::getUnorderedFlavor(Cond)) {
2102      default: llvm_unreachable("Unknown flavor!");
2103      case 0:  // Known false.
2104        return DAG.getConstant(0, VT);
2105      case 1:  // Known true.
2106        return DAG.getConstant(1, VT);
2107      case 2:  // Undefined.
2108        return DAG.getUNDEF(VT);
2109      }
2110    }
2111
2112    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2113    // constant if knowing that the operand is non-nan is enough.  We prefer to
2114    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2115    // materialize 0.0.
2116    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2117      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2118
2119    // If the condition is not legal, see if we can find an equivalent one
2120    // which is legal.
2121    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2122      // If the comparison was an awkward floating-point == or != and one of
2123      // the comparison operands is infinity or negative infinity, convert the
2124      // condition to a less-awkward <= or >=.
2125      if (CFP->getValueAPF().isInfinity()) {
2126        if (CFP->getValueAPF().isNegative()) {
2127          if (Cond == ISD::SETOEQ &&
2128              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2129            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2130          if (Cond == ISD::SETUEQ &&
2131              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2132            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2133          if (Cond == ISD::SETUNE &&
2134              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2135            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2136          if (Cond == ISD::SETONE &&
2137              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2138            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2139        } else {
2140          if (Cond == ISD::SETOEQ &&
2141              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2142            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2143          if (Cond == ISD::SETUEQ &&
2144              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2145            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2146          if (Cond == ISD::SETUNE &&
2147              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2148            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2149          if (Cond == ISD::SETONE &&
2150              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2151            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2152        }
2153      }
2154    }
2155  }
2156
2157  if (N0 == N1) {
2158    // We can always fold X == X for integer setcc's.
2159    if (N0.getValueType().isInteger())
2160      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2161    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2162    if (UOF == 2)   // FP operators that are undefined on NaNs.
2163      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2164    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2165      return DAG.getConstant(UOF, VT);
2166    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2167    // if it is not already.
2168    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2169    if (NewCond != Cond)
2170      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2171  }
2172
2173  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2174      N0.getValueType().isInteger()) {
2175    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2176        N0.getOpcode() == ISD::XOR) {
2177      // Simplify (X+Y) == (X+Z) -->  Y == Z
2178      if (N0.getOpcode() == N1.getOpcode()) {
2179        if (N0.getOperand(0) == N1.getOperand(0))
2180          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2181        if (N0.getOperand(1) == N1.getOperand(1))
2182          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2183        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2184          // If X op Y == Y op X, try other combinations.
2185          if (N0.getOperand(0) == N1.getOperand(1))
2186            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2187                                Cond);
2188          if (N0.getOperand(1) == N1.getOperand(0))
2189            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2190                                Cond);
2191        }
2192      }
2193
2194      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2195        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2196          // Turn (X+C1) == C2 --> X == C2-C1
2197          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2198            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2199                                DAG.getConstant(RHSC->getAPIntValue()-
2200                                                LHSR->getAPIntValue(),
2201                                N0.getValueType()), Cond);
2202          }
2203
2204          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2205          if (N0.getOpcode() == ISD::XOR)
2206            // If we know that all of the inverted bits are zero, don't bother
2207            // performing the inversion.
2208            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2209              return
2210                DAG.getSetCC(dl, VT, N0.getOperand(0),
2211                             DAG.getConstant(LHSR->getAPIntValue() ^
2212                                               RHSC->getAPIntValue(),
2213                                             N0.getValueType()),
2214                             Cond);
2215        }
2216
2217        // Turn (C1-X) == C2 --> X == C1-C2
2218        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2219          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2220            return
2221              DAG.getSetCC(dl, VT, N0.getOperand(1),
2222                           DAG.getConstant(SUBC->getAPIntValue() -
2223                                             RHSC->getAPIntValue(),
2224                                           N0.getValueType()),
2225                           Cond);
2226          }
2227        }
2228      }
2229
2230      // Simplify (X+Z) == X -->  Z == 0
2231      if (N0.getOperand(0) == N1)
2232        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2233                        DAG.getConstant(0, N0.getValueType()), Cond);
2234      if (N0.getOperand(1) == N1) {
2235        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2236          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2237                          DAG.getConstant(0, N0.getValueType()), Cond);
2238        else if (N0.getNode()->hasOneUse()) {
2239          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2240          // (Z-X) == X  --> Z == X<<1
2241          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2242                                     N1,
2243                                     DAG.getConstant(1, getShiftAmountTy()));
2244          if (!DCI.isCalledByLegalizer())
2245            DCI.AddToWorklist(SH.getNode());
2246          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2247        }
2248      }
2249    }
2250
2251    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2252        N1.getOpcode() == ISD::XOR) {
2253      // Simplify  X == (X+Z) -->  Z == 0
2254      if (N1.getOperand(0) == N0) {
2255        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2256                        DAG.getConstant(0, N1.getValueType()), Cond);
2257      } else if (N1.getOperand(1) == N0) {
2258        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2259          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2260                          DAG.getConstant(0, N1.getValueType()), Cond);
2261        } else if (N1.getNode()->hasOneUse()) {
2262          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2263          // X == (Z-X)  --> X<<1 == Z
2264          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2265                                     DAG.getConstant(1, getShiftAmountTy()));
2266          if (!DCI.isCalledByLegalizer())
2267            DCI.AddToWorklist(SH.getNode());
2268          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2269        }
2270      }
2271    }
2272
2273    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2274    // Note that where y is variable and is known to have at most
2275    // one bit set (for example, if it is z&1) we cannot do this;
2276    // the expressions are not equivalent when y==0.
2277    if (N0.getOpcode() == ISD::AND)
2278      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2279        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2280          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2281          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2282          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2283        }
2284      }
2285    if (N1.getOpcode() == ISD::AND)
2286      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2287        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2288          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2289          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2290          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2291        }
2292      }
2293  }
2294
2295  // Fold away ALL boolean setcc's.
2296  SDValue Temp;
2297  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2298    switch (Cond) {
2299    default: llvm_unreachable("Unknown integer setcc!");
2300    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2301      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2302      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2303      if (!DCI.isCalledByLegalizer())
2304        DCI.AddToWorklist(Temp.getNode());
2305      break;
2306    case ISD::SETNE:  // X != Y   -->  (X^Y)
2307      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2308      break;
2309    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2310    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2311      Temp = DAG.getNOT(dl, N0, MVT::i1);
2312      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2313      if (!DCI.isCalledByLegalizer())
2314        DCI.AddToWorklist(Temp.getNode());
2315      break;
2316    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2317    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2318      Temp = DAG.getNOT(dl, N1, MVT::i1);
2319      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2320      if (!DCI.isCalledByLegalizer())
2321        DCI.AddToWorklist(Temp.getNode());
2322      break;
2323    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2324    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2325      Temp = DAG.getNOT(dl, N0, MVT::i1);
2326      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2327      if (!DCI.isCalledByLegalizer())
2328        DCI.AddToWorklist(Temp.getNode());
2329      break;
2330    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2331    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2332      Temp = DAG.getNOT(dl, N1, MVT::i1);
2333      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2334      break;
2335    }
2336    if (VT != MVT::i1) {
2337      if (!DCI.isCalledByLegalizer())
2338        DCI.AddToWorklist(N0.getNode());
2339      // FIXME: If running after legalize, we probably can't do this.
2340      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2341    }
2342    return N0;
2343  }
2344
2345  // Could not fold it.
2346  return SDValue();
2347}
2348
2349/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2350/// node is a GlobalAddress + offset.
2351bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2352                                    int64_t &Offset) const {
2353  if (isa<GlobalAddressSDNode>(N)) {
2354    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2355    GA = GASD->getGlobal();
2356    Offset += GASD->getOffset();
2357    return true;
2358  }
2359
2360  if (N->getOpcode() == ISD::ADD) {
2361    SDValue N1 = N->getOperand(0);
2362    SDValue N2 = N->getOperand(1);
2363    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2364      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2365      if (V) {
2366        Offset += V->getSExtValue();
2367        return true;
2368      }
2369    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2370      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2371      if (V) {
2372        Offset += V->getSExtValue();
2373        return true;
2374      }
2375    }
2376  }
2377  return false;
2378}
2379
2380
2381SDValue TargetLowering::
2382PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2383  // Default implementation: no optimization.
2384  return SDValue();
2385}
2386
2387//===----------------------------------------------------------------------===//
2388//  Inline Assembler Implementation Methods
2389//===----------------------------------------------------------------------===//
2390
2391
2392TargetLowering::ConstraintType
2393TargetLowering::getConstraintType(const std::string &Constraint) const {
2394  // FIXME: lots more standard ones to handle.
2395  if (Constraint.size() == 1) {
2396    switch (Constraint[0]) {
2397    default: break;
2398    case 'r': return C_RegisterClass;
2399    case 'm':    // memory
2400    case 'o':    // offsetable
2401    case 'V':    // not offsetable
2402      return C_Memory;
2403    case 'i':    // Simple Integer or Relocatable Constant
2404    case 'n':    // Simple Integer
2405    case 's':    // Relocatable Constant
2406    case 'X':    // Allow ANY value.
2407    case 'I':    // Target registers.
2408    case 'J':
2409    case 'K':
2410    case 'L':
2411    case 'M':
2412    case 'N':
2413    case 'O':
2414    case 'P':
2415      return C_Other;
2416    }
2417  }
2418
2419  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2420      Constraint[Constraint.size()-1] == '}')
2421    return C_Register;
2422  return C_Unknown;
2423}
2424
2425/// LowerXConstraint - try to replace an X constraint, which matches anything,
2426/// with another that has more specific requirements based on the type of the
2427/// corresponding operand.
2428const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2429  if (ConstraintVT.isInteger())
2430    return "r";
2431  if (ConstraintVT.isFloatingPoint())
2432    return "f";      // works for many targets
2433  return 0;
2434}
2435
2436/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2437/// vector.  If it is invalid, don't add anything to Ops.
2438void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2439                                                  char ConstraintLetter,
2440                                                  std::vector<SDValue> &Ops,
2441                                                  SelectionDAG &DAG) const {
2442  switch (ConstraintLetter) {
2443  default: break;
2444  case 'X':     // Allows any operand; labels (basic block) use this.
2445    if (Op.getOpcode() == ISD::BasicBlock) {
2446      Ops.push_back(Op);
2447      return;
2448    }
2449    // fall through
2450  case 'i':    // Simple Integer or Relocatable Constant
2451  case 'n':    // Simple Integer
2452  case 's': {  // Relocatable Constant
2453    // These operands are interested in values of the form (GV+C), where C may
2454    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2455    // is possible and fine if either GV or C are missing.
2456    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2457    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2458
2459    // If we have "(add GV, C)", pull out GV/C
2460    if (Op.getOpcode() == ISD::ADD) {
2461      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2462      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2463      if (C == 0 || GA == 0) {
2464        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2465        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2466      }
2467      if (C == 0 || GA == 0)
2468        C = 0, GA = 0;
2469    }
2470
2471    // If we find a valid operand, map to the TargetXXX version so that the
2472    // value itself doesn't get selected.
2473    if (GA) {   // Either &GV   or   &GV+C
2474      if (ConstraintLetter != 'n') {
2475        int64_t Offs = GA->getOffset();
2476        if (C) Offs += C->getZExtValue();
2477        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2478                                                 C->getDebugLoc(),
2479                                                 Op.getValueType(), Offs));
2480        return;
2481      }
2482    }
2483    if (C) {   // just C, no GV.
2484      // Simple constants are not allowed for 's'.
2485      if (ConstraintLetter != 's') {
2486        // gcc prints these as sign extended.  Sign extend value to 64 bits
2487        // now; without this it would get ZExt'd later in
2488        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2489        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2490                                            MVT::i64));
2491        return;
2492      }
2493    }
2494    break;
2495  }
2496  }
2497}
2498
2499std::vector<unsigned> TargetLowering::
2500getRegClassForInlineAsmConstraint(const std::string &Constraint,
2501                                  EVT VT) const {
2502  return std::vector<unsigned>();
2503}
2504
2505
2506std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2507getRegForInlineAsmConstraint(const std::string &Constraint,
2508                             EVT VT) const {
2509  if (Constraint[0] != '{')
2510    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2511  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2512
2513  // Remove the braces from around the name.
2514  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2515
2516  // Figure out which register class contains this reg.
2517  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2518  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2519       E = RI->regclass_end(); RCI != E; ++RCI) {
2520    const TargetRegisterClass *RC = *RCI;
2521
2522    // If none of the value types for this register class are valid, we
2523    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2524    bool isLegal = false;
2525    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2526         I != E; ++I) {
2527      if (isTypeLegal(*I)) {
2528        isLegal = true;
2529        break;
2530      }
2531    }
2532
2533    if (!isLegal) continue;
2534
2535    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2536         I != E; ++I) {
2537      if (RegName.equals_lower(RI->getName(*I)))
2538        return std::make_pair(*I, RC);
2539    }
2540  }
2541
2542  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2543}
2544
2545//===----------------------------------------------------------------------===//
2546// Constraint Selection.
2547
2548/// isMatchingInputConstraint - Return true of this is an input operand that is
2549/// a matching constraint like "4".
2550bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2551  assert(!ConstraintCode.empty() && "No known constraint!");
2552  return isdigit(ConstraintCode[0]);
2553}
2554
2555/// getMatchedOperand - If this is an input matching constraint, this method
2556/// returns the output operand it matches.
2557unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2558  assert(!ConstraintCode.empty() && "No known constraint!");
2559  return atoi(ConstraintCode.c_str());
2560}
2561
2562
2563/// getConstraintGenerality - Return an integer indicating how general CT
2564/// is.
2565static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2566  switch (CT) {
2567  default: llvm_unreachable("Unknown constraint type!");
2568  case TargetLowering::C_Other:
2569  case TargetLowering::C_Unknown:
2570    return 0;
2571  case TargetLowering::C_Register:
2572    return 1;
2573  case TargetLowering::C_RegisterClass:
2574    return 2;
2575  case TargetLowering::C_Memory:
2576    return 3;
2577  }
2578}
2579
2580/// ChooseConstraint - If there are multiple different constraints that we
2581/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2582/// This is somewhat tricky: constraints fall into four classes:
2583///    Other         -> immediates and magic values
2584///    Register      -> one specific register
2585///    RegisterClass -> a group of regs
2586///    Memory        -> memory
2587/// Ideally, we would pick the most specific constraint possible: if we have
2588/// something that fits into a register, we would pick it.  The problem here
2589/// is that if we have something that could either be in a register or in
2590/// memory that use of the register could cause selection of *other*
2591/// operands to fail: they might only succeed if we pick memory.  Because of
2592/// this the heuristic we use is:
2593///
2594///  1) If there is an 'other' constraint, and if the operand is valid for
2595///     that constraint, use it.  This makes us take advantage of 'i'
2596///     constraints when available.
2597///  2) Otherwise, pick the most general constraint present.  This prefers
2598///     'm' over 'r', for example.
2599///
2600static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2601                             const TargetLowering &TLI,
2602                             SDValue Op, SelectionDAG *DAG) {
2603  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2604  unsigned BestIdx = 0;
2605  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2606  int BestGenerality = -1;
2607
2608  // Loop over the options, keeping track of the most general one.
2609  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2610    TargetLowering::ConstraintType CType =
2611      TLI.getConstraintType(OpInfo.Codes[i]);
2612
2613    // If this is an 'other' constraint, see if the operand is valid for it.
2614    // For example, on X86 we might have an 'rI' constraint.  If the operand
2615    // is an integer in the range [0..31] we want to use I (saving a load
2616    // of a register), otherwise we must use 'r'.
2617    if (CType == TargetLowering::C_Other && Op.getNode()) {
2618      assert(OpInfo.Codes[i].size() == 1 &&
2619             "Unhandled multi-letter 'other' constraint");
2620      std::vector<SDValue> ResultOps;
2621      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2622                                       ResultOps, *DAG);
2623      if (!ResultOps.empty()) {
2624        BestType = CType;
2625        BestIdx = i;
2626        break;
2627      }
2628    }
2629
2630    // Things with matching constraints can only be registers, per gcc
2631    // documentation.  This mainly affects "g" constraints.
2632    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2633      continue;
2634
2635    // This constraint letter is more general than the previous one, use it.
2636    int Generality = getConstraintGenerality(CType);
2637    if (Generality > BestGenerality) {
2638      BestType = CType;
2639      BestIdx = i;
2640      BestGenerality = Generality;
2641    }
2642  }
2643
2644  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2645  OpInfo.ConstraintType = BestType;
2646}
2647
2648/// ComputeConstraintToUse - Determines the constraint code and constraint
2649/// type to use for the specific AsmOperandInfo, setting
2650/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2651void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2652                                            SDValue Op,
2653                                            SelectionDAG *DAG) const {
2654  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2655
2656  // Single-letter constraints ('r') are very common.
2657  if (OpInfo.Codes.size() == 1) {
2658    OpInfo.ConstraintCode = OpInfo.Codes[0];
2659    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2660  } else {
2661    ChooseConstraint(OpInfo, *this, Op, DAG);
2662  }
2663
2664  // 'X' matches anything.
2665  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2666    // Labels and constants are handled elsewhere ('X' is the only thing
2667    // that matches labels).  For Functions, the type here is the type of
2668    // the result, which is not what we want to look at; leave them alone.
2669    Value *v = OpInfo.CallOperandVal;
2670    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2671      OpInfo.CallOperandVal = v;
2672      return;
2673    }
2674
2675    // Otherwise, try to resolve it to something we know about by looking at
2676    // the actual operand type.
2677    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2678      OpInfo.ConstraintCode = Repl;
2679      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2680    }
2681  }
2682}
2683
2684//===----------------------------------------------------------------------===//
2685//  Loop Strength Reduction hooks
2686//===----------------------------------------------------------------------===//
2687
2688/// isLegalAddressingMode - Return true if the addressing mode represented
2689/// by AM is legal for this target, for a load/store of the specified type.
2690bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2691                                           const Type *Ty) const {
2692  // The default implementation of this implements a conservative RISCy, r+r and
2693  // r+i addr mode.
2694
2695  // Allows a sign-extended 16-bit immediate field.
2696  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2697    return false;
2698
2699  // No global is ever allowed as a base.
2700  if (AM.BaseGV)
2701    return false;
2702
2703  // Only support r+r,
2704  switch (AM.Scale) {
2705  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2706    break;
2707  case 1:
2708    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2709      return false;
2710    // Otherwise we have r+r or r+i.
2711    break;
2712  case 2:
2713    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2714      return false;
2715    // Allow 2*r as r+r.
2716    break;
2717  }
2718
2719  return true;
2720}
2721
2722/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2723/// return a DAG expression to select that will generate the same value by
2724/// multiplying by a magic number.  See:
2725/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2726SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2727                                  std::vector<SDNode*>* Created) const {
2728  EVT VT = N->getValueType(0);
2729  DebugLoc dl= N->getDebugLoc();
2730
2731  // Check to see if we can do this.
2732  // FIXME: We should be more aggressive here.
2733  if (!isTypeLegal(VT))
2734    return SDValue();
2735
2736  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2737  APInt::ms magics = d.magic();
2738
2739  // Multiply the numerator (operand 0) by the magic value
2740  // FIXME: We should support doing a MUL in a wider type
2741  SDValue Q;
2742  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2743    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2744                    DAG.getConstant(magics.m, VT));
2745  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2746    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2747                              N->getOperand(0),
2748                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2749  else
2750    return SDValue();       // No mulhs or equvialent
2751  // If d > 0 and m < 0, add the numerator
2752  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2753    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2754    if (Created)
2755      Created->push_back(Q.getNode());
2756  }
2757  // If d < 0 and m > 0, subtract the numerator.
2758  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2759    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2760    if (Created)
2761      Created->push_back(Q.getNode());
2762  }
2763  // Shift right algebraic if shift value is nonzero
2764  if (magics.s > 0) {
2765    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2766                    DAG.getConstant(magics.s, getShiftAmountTy()));
2767    if (Created)
2768      Created->push_back(Q.getNode());
2769  }
2770  // Extract the sign bit and add it to the quotient
2771  SDValue T =
2772    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2773                                                 getShiftAmountTy()));
2774  if (Created)
2775    Created->push_back(T.getNode());
2776  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2777}
2778
2779/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2780/// return a DAG expression to select that will generate the same value by
2781/// multiplying by a magic number.  See:
2782/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2783SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2784                                  std::vector<SDNode*>* Created) const {
2785  EVT VT = N->getValueType(0);
2786  DebugLoc dl = N->getDebugLoc();
2787
2788  // Check to see if we can do this.
2789  // FIXME: We should be more aggressive here.
2790  if (!isTypeLegal(VT))
2791    return SDValue();
2792
2793  // FIXME: We should use a narrower constant when the upper
2794  // bits are known to be zero.
2795  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2796  APInt::mu magics = N1C->getAPIntValue().magicu();
2797
2798  // Multiply the numerator (operand 0) by the magic value
2799  // FIXME: We should support doing a MUL in a wider type
2800  SDValue Q;
2801  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2802    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2803                    DAG.getConstant(magics.m, VT));
2804  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2805    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2806                              N->getOperand(0),
2807                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2808  else
2809    return SDValue();       // No mulhu or equvialent
2810  if (Created)
2811    Created->push_back(Q.getNode());
2812
2813  if (magics.a == 0) {
2814    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2815           "We shouldn't generate an undefined shift!");
2816    return DAG.getNode(ISD::SRL, dl, VT, Q,
2817                       DAG.getConstant(magics.s, getShiftAmountTy()));
2818  } else {
2819    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2820    if (Created)
2821      Created->push_back(NPQ.getNode());
2822    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2823                      DAG.getConstant(1, getShiftAmountTy()));
2824    if (Created)
2825      Created->push_back(NPQ.getNode());
2826    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2827    if (Created)
2828      Created->push_back(NPQ.getNode());
2829    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2830                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2831  }
2832}
2833