TargetLowering.cpp revision f451cb870efcf9e0302d25ed05f4cac6bb494e42
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtarget.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
178  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
179  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
180  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
181  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
182  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
183  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
184  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
185  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
186  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
187  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
188  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
189  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
190  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
191  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
192  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
193  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
194  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
195  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
196  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
197  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
198  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
199  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
200  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
201  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
202  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
203  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
204  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
205  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
206  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
207  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
208  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
209  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
210  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
211  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
212  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
213  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
214  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
215  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
216  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
217  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
218  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
219  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
220  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
221  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
222  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
223  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
224  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
225  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
226  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
227  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
228  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
229  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
230  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
231  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
232  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
233  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
234  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
235  Names[RTLIB::OEQ_F32] = "__eqsf2";
236  Names[RTLIB::OEQ_F64] = "__eqdf2";
237  Names[RTLIB::UNE_F32] = "__nesf2";
238  Names[RTLIB::UNE_F64] = "__nedf2";
239  Names[RTLIB::OGE_F32] = "__gesf2";
240  Names[RTLIB::OGE_F64] = "__gedf2";
241  Names[RTLIB::OLT_F32] = "__ltsf2";
242  Names[RTLIB::OLT_F64] = "__ltdf2";
243  Names[RTLIB::OLE_F32] = "__lesf2";
244  Names[RTLIB::OLE_F64] = "__ledf2";
245  Names[RTLIB::OGT_F32] = "__gtsf2";
246  Names[RTLIB::OGT_F64] = "__gtdf2";
247  Names[RTLIB::UO_F32] = "__unordsf2";
248  Names[RTLIB::UO_F64] = "__unorddf2";
249  Names[RTLIB::O_F32] = "__unordsf2";
250  Names[RTLIB::O_F64] = "__unorddf2";
251  Names[RTLIB::MEMCPY] = "memcpy";
252  Names[RTLIB::MEMMOVE] = "memmove";
253  Names[RTLIB::MEMSET] = "memset";
254  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
255}
256
257/// InitLibcallCallingConvs - Set default libcall CallingConvs.
258///
259static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
260  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
261    CCs[i] = CallingConv::C;
262  }
263}
264
265/// getFPEXT - Return the FPEXT_*_* value for the given types, or
266/// UNKNOWN_LIBCALL if there is none.
267RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
268  if (OpVT == MVT::f32) {
269    if (RetVT == MVT::f64)
270      return FPEXT_F32_F64;
271  }
272  return UNKNOWN_LIBCALL;
273}
274
275/// getFPROUND - Return the FPROUND_*_* value for the given types, or
276/// UNKNOWN_LIBCALL if there is none.
277RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278  if (RetVT == MVT::f32) {
279    if (OpVT == MVT::f64)
280      return FPROUND_F64_F32;
281    if (OpVT == MVT::f80)
282      return FPROUND_F80_F32;
283    if (OpVT == MVT::ppcf128)
284      return FPROUND_PPCF128_F32;
285  } else if (RetVT == MVT::f64) {
286    if (OpVT == MVT::f80)
287      return FPROUND_F80_F64;
288    if (OpVT == MVT::ppcf128)
289      return FPROUND_PPCF128_F64;
290  }
291  return UNKNOWN_LIBCALL;
292}
293
294/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
295/// UNKNOWN_LIBCALL if there is none.
296RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
297  if (OpVT == MVT::f32) {
298    if (RetVT == MVT::i8)
299      return FPTOSINT_F32_I8;
300    if (RetVT == MVT::i16)
301      return FPTOSINT_F32_I16;
302    if (RetVT == MVT::i32)
303      return FPTOSINT_F32_I32;
304    if (RetVT == MVT::i64)
305      return FPTOSINT_F32_I64;
306    if (RetVT == MVT::i128)
307      return FPTOSINT_F32_I128;
308  } else if (OpVT == MVT::f64) {
309    if (RetVT == MVT::i32)
310      return FPTOSINT_F64_I32;
311    if (RetVT == MVT::i64)
312      return FPTOSINT_F64_I64;
313    if (RetVT == MVT::i128)
314      return FPTOSINT_F64_I128;
315  } else if (OpVT == MVT::f80) {
316    if (RetVT == MVT::i32)
317      return FPTOSINT_F80_I32;
318    if (RetVT == MVT::i64)
319      return FPTOSINT_F80_I64;
320    if (RetVT == MVT::i128)
321      return FPTOSINT_F80_I128;
322  } else if (OpVT == MVT::ppcf128) {
323    if (RetVT == MVT::i32)
324      return FPTOSINT_PPCF128_I32;
325    if (RetVT == MVT::i64)
326      return FPTOSINT_PPCF128_I64;
327    if (RetVT == MVT::i128)
328      return FPTOSINT_PPCF128_I128;
329  }
330  return UNKNOWN_LIBCALL;
331}
332
333/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
334/// UNKNOWN_LIBCALL if there is none.
335RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
336  if (OpVT == MVT::f32) {
337    if (RetVT == MVT::i8)
338      return FPTOUINT_F32_I8;
339    if (RetVT == MVT::i16)
340      return FPTOUINT_F32_I16;
341    if (RetVT == MVT::i32)
342      return FPTOUINT_F32_I32;
343    if (RetVT == MVT::i64)
344      return FPTOUINT_F32_I64;
345    if (RetVT == MVT::i128)
346      return FPTOUINT_F32_I128;
347  } else if (OpVT == MVT::f64) {
348    if (RetVT == MVT::i32)
349      return FPTOUINT_F64_I32;
350    if (RetVT == MVT::i64)
351      return FPTOUINT_F64_I64;
352    if (RetVT == MVT::i128)
353      return FPTOUINT_F64_I128;
354  } else if (OpVT == MVT::f80) {
355    if (RetVT == MVT::i32)
356      return FPTOUINT_F80_I32;
357    if (RetVT == MVT::i64)
358      return FPTOUINT_F80_I64;
359    if (RetVT == MVT::i128)
360      return FPTOUINT_F80_I128;
361  } else if (OpVT == MVT::ppcf128) {
362    if (RetVT == MVT::i32)
363      return FPTOUINT_PPCF128_I32;
364    if (RetVT == MVT::i64)
365      return FPTOUINT_PPCF128_I64;
366    if (RetVT == MVT::i128)
367      return FPTOUINT_PPCF128_I128;
368  }
369  return UNKNOWN_LIBCALL;
370}
371
372/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
373/// UNKNOWN_LIBCALL if there is none.
374RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
375  if (OpVT == MVT::i32) {
376    if (RetVT == MVT::f32)
377      return SINTTOFP_I32_F32;
378    else if (RetVT == MVT::f64)
379      return SINTTOFP_I32_F64;
380    else if (RetVT == MVT::f80)
381      return SINTTOFP_I32_F80;
382    else if (RetVT == MVT::ppcf128)
383      return SINTTOFP_I32_PPCF128;
384  } else if (OpVT == MVT::i64) {
385    if (RetVT == MVT::f32)
386      return SINTTOFP_I64_F32;
387    else if (RetVT == MVT::f64)
388      return SINTTOFP_I64_F64;
389    else if (RetVT == MVT::f80)
390      return SINTTOFP_I64_F80;
391    else if (RetVT == MVT::ppcf128)
392      return SINTTOFP_I64_PPCF128;
393  } else if (OpVT == MVT::i128) {
394    if (RetVT == MVT::f32)
395      return SINTTOFP_I128_F32;
396    else if (RetVT == MVT::f64)
397      return SINTTOFP_I128_F64;
398    else if (RetVT == MVT::f80)
399      return SINTTOFP_I128_F80;
400    else if (RetVT == MVT::ppcf128)
401      return SINTTOFP_I128_PPCF128;
402  }
403  return UNKNOWN_LIBCALL;
404}
405
406/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
407/// UNKNOWN_LIBCALL if there is none.
408RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
409  if (OpVT == MVT::i32) {
410    if (RetVT == MVT::f32)
411      return UINTTOFP_I32_F32;
412    else if (RetVT == MVT::f64)
413      return UINTTOFP_I32_F64;
414    else if (RetVT == MVT::f80)
415      return UINTTOFP_I32_F80;
416    else if (RetVT == MVT::ppcf128)
417      return UINTTOFP_I32_PPCF128;
418  } else if (OpVT == MVT::i64) {
419    if (RetVT == MVT::f32)
420      return UINTTOFP_I64_F32;
421    else if (RetVT == MVT::f64)
422      return UINTTOFP_I64_F64;
423    else if (RetVT == MVT::f80)
424      return UINTTOFP_I64_F80;
425    else if (RetVT == MVT::ppcf128)
426      return UINTTOFP_I64_PPCF128;
427  } else if (OpVT == MVT::i128) {
428    if (RetVT == MVT::f32)
429      return UINTTOFP_I128_F32;
430    else if (RetVT == MVT::f64)
431      return UINTTOFP_I128_F64;
432    else if (RetVT == MVT::f80)
433      return UINTTOFP_I128_F80;
434    else if (RetVT == MVT::ppcf128)
435      return UINTTOFP_I128_PPCF128;
436  }
437  return UNKNOWN_LIBCALL;
438}
439
440/// InitCmpLibcallCCs - Set default comparison libcall CC.
441///
442static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
443  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
444  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
445  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
446  CCs[RTLIB::UNE_F32] = ISD::SETNE;
447  CCs[RTLIB::UNE_F64] = ISD::SETNE;
448  CCs[RTLIB::OGE_F32] = ISD::SETGE;
449  CCs[RTLIB::OGE_F64] = ISD::SETGE;
450  CCs[RTLIB::OLT_F32] = ISD::SETLT;
451  CCs[RTLIB::OLT_F64] = ISD::SETLT;
452  CCs[RTLIB::OLE_F32] = ISD::SETLE;
453  CCs[RTLIB::OLE_F64] = ISD::SETLE;
454  CCs[RTLIB::OGT_F32] = ISD::SETGT;
455  CCs[RTLIB::OGT_F64] = ISD::SETGT;
456  CCs[RTLIB::UO_F32] = ISD::SETNE;
457  CCs[RTLIB::UO_F64] = ISD::SETNE;
458  CCs[RTLIB::O_F32] = ISD::SETEQ;
459  CCs[RTLIB::O_F64] = ISD::SETEQ;
460}
461
462/// NOTE: The constructor takes ownership of TLOF.
463TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
464  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
465  // All operations default to being supported.
466  memset(OpActions, 0, sizeof(OpActions));
467  memset(LoadExtActions, 0, sizeof(LoadExtActions));
468  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
469  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
470  memset(ConvertActions, 0, sizeof(ConvertActions));
471  memset(CondCodeActions, 0, sizeof(CondCodeActions));
472
473  // Set default actions for various operations.
474  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
475    // Default all indexed load / store to expand.
476    for (unsigned IM = (unsigned)ISD::PRE_INC;
477         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
478      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
479      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
480    }
481
482    // These operations default to expand.
483    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
484    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
485  }
486
487  // Most targets ignore the @llvm.prefetch intrinsic.
488  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
489
490  // ConstantFP nodes default to expand.  Targets can either change this to
491  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
492  // to optimize expansions for certain constants.
493  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
494  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
495  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
496
497  // These library functions default to expand.
498  setOperationAction(ISD::FLOG , MVT::f64, Expand);
499  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
500  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
501  setOperationAction(ISD::FEXP , MVT::f64, Expand);
502  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
503  setOperationAction(ISD::FLOG , MVT::f32, Expand);
504  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
505  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
506  setOperationAction(ISD::FEXP , MVT::f32, Expand);
507  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
508
509  // Default ISD::TRAP to expand (which turns it into abort).
510  setOperationAction(ISD::TRAP, MVT::Other, Expand);
511
512  IsLittleEndian = TD->isLittleEndian();
513  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
514  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
515  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
516  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
517  benefitFromCodePlacementOpt = false;
518  UseUnderscoreSetJmp = false;
519  UseUnderscoreLongJmp = false;
520  SelectIsExpensive = false;
521  IntDivIsCheap = false;
522  Pow2DivIsCheap = false;
523  StackPointerRegisterToSaveRestore = 0;
524  ExceptionPointerRegister = 0;
525  ExceptionSelectorRegister = 0;
526  BooleanContents = UndefinedBooleanContent;
527  SchedPreferenceInfo = SchedulingForLatency;
528  JumpBufSize = 0;
529  JumpBufAlignment = 0;
530  IfCvtBlockSizeLimit = 2;
531  IfCvtDupBlockSizeLimit = 0;
532  PrefLoopAlignment = 0;
533
534  InitLibcallNames(LibcallRoutineNames);
535  InitCmpLibcallCCs(CmpLibcallCCs);
536  InitLibcallCallingConvs(LibcallCallingConvs);
537}
538
539TargetLowering::~TargetLowering() {
540  delete &TLOF;
541}
542
543static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
544                                       unsigned &NumIntermediates,
545                                       EVT &RegisterVT,
546                                       TargetLowering* TLI) {
547  // Figure out the right, legal destination reg to copy into.
548  unsigned NumElts = VT.getVectorNumElements();
549  MVT EltTy = VT.getVectorElementType();
550
551  unsigned NumVectorRegs = 1;
552
553  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
554  // could break down into LHS/RHS like LegalizeDAG does.
555  if (!isPowerOf2_32(NumElts)) {
556    NumVectorRegs = NumElts;
557    NumElts = 1;
558  }
559
560  // Divide the input until we get to a supported size.  This will always
561  // end with a scalar if the target doesn't support vectors.
562  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
563    NumElts >>= 1;
564    NumVectorRegs <<= 1;
565  }
566
567  NumIntermediates = NumVectorRegs;
568
569  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
570  if (!TLI->isTypeLegal(NewVT))
571    NewVT = EltTy;
572  IntermediateVT = NewVT;
573
574  EVT DestVT = TLI->getRegisterType(NewVT);
575  RegisterVT = DestVT;
576  if (EVT(DestVT).bitsLT(NewVT)) {
577    // Value is expanded, e.g. i64 -> i16.
578    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
579  } else {
580    // Otherwise, promotion or legal types use the same number of registers as
581    // the vector decimated to the appropriate level.
582    return NumVectorRegs;
583  }
584
585  return 1;
586}
587
588/// computeRegisterProperties - Once all of the register classes are added,
589/// this allows us to compute derived properties we expose.
590void TargetLowering::computeRegisterProperties() {
591  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
592         "Too many value types for ValueTypeActions to hold!");
593
594  // Everything defaults to needing one register.
595  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
596    NumRegistersForVT[i] = 1;
597    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
598  }
599  // ...except isVoid, which doesn't need any registers.
600  NumRegistersForVT[MVT::isVoid] = 0;
601
602  // Find the largest integer register class.
603  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
604  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
605    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
606
607  // Every integer value type larger than this largest register takes twice as
608  // many registers to represent as the previous ValueType.
609  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
610    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
611    if (!ExpandedVT.isInteger())
612      break;
613    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
614    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
615    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
616    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
617  }
618
619  // Inspect all of the ValueType's smaller than the largest integer
620  // register to see which ones need promotion.
621  unsigned LegalIntReg = LargestIntReg;
622  for (unsigned IntReg = LargestIntReg - 1;
623       IntReg >= (unsigned)MVT::i1; --IntReg) {
624    EVT IVT = (MVT::SimpleValueType)IntReg;
625    if (isTypeLegal(IVT)) {
626      LegalIntReg = IntReg;
627    } else {
628      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
629        (MVT::SimpleValueType)LegalIntReg;
630      ValueTypeActions.setTypeAction(IVT, Promote);
631    }
632  }
633
634  // ppcf128 type is really two f64's.
635  if (!isTypeLegal(MVT::ppcf128)) {
636    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
637    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
638    TransformToType[MVT::ppcf128] = MVT::f64;
639    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
640  }
641
642  // Decide how to handle f64. If the target does not have native f64 support,
643  // expand it to i64 and we will be generating soft float library calls.
644  if (!isTypeLegal(MVT::f64)) {
645    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
646    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
647    TransformToType[MVT::f64] = MVT::i64;
648    ValueTypeActions.setTypeAction(MVT::f64, Expand);
649  }
650
651  // Decide how to handle f32. If the target does not have native support for
652  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
653  if (!isTypeLegal(MVT::f32)) {
654    if (isTypeLegal(MVT::f64)) {
655      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
656      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
657      TransformToType[MVT::f32] = MVT::f64;
658      ValueTypeActions.setTypeAction(MVT::f32, Promote);
659    } else {
660      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
661      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
662      TransformToType[MVT::f32] = MVT::i32;
663      ValueTypeActions.setTypeAction(MVT::f32, Expand);
664    }
665  }
666
667  // Loop over all of the vector value types to see which need transformations.
668  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
669       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
670    MVT VT = (MVT::SimpleValueType)i;
671    if (!isTypeLegal(VT)) {
672      MVT IntermediateVT;
673      EVT RegisterVT;
674      unsigned NumIntermediates;
675      NumRegistersForVT[i] =
676        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
677                                  RegisterVT, this);
678      RegisterTypeForVT[i] = RegisterVT;
679
680      // Determine if there is a legal wider type.
681      bool IsLegalWiderType = false;
682      EVT EltVT = VT.getVectorElementType();
683      unsigned NElts = VT.getVectorNumElements();
684      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
685        EVT SVT = (MVT::SimpleValueType)nVT;
686        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
687            SVT.getVectorNumElements() > NElts && NElts != 1) {
688          TransformToType[i] = SVT;
689          ValueTypeActions.setTypeAction(VT, Promote);
690          IsLegalWiderType = true;
691          break;
692        }
693      }
694      if (!IsLegalWiderType) {
695        EVT NVT = VT.getPow2VectorType();
696        if (NVT == VT) {
697          // Type is already a power of 2.  The default action is to split.
698          TransformToType[i] = MVT::Other;
699          ValueTypeActions.setTypeAction(VT, Expand);
700        } else {
701          TransformToType[i] = NVT;
702          ValueTypeActions.setTypeAction(VT, Promote);
703        }
704      }
705    }
706  }
707}
708
709const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
710  return NULL;
711}
712
713
714MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
715  return PointerTy.SimpleTy;
716}
717
718MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
719  return MVT::i32; // return the default value
720}
721
722/// getVectorTypeBreakdown - Vector types are broken down into some number of
723/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
724/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
725/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
726///
727/// This method returns the number of registers needed, and the VT for each
728/// register.  It also returns the VT and quantity of the intermediate values
729/// before they are promoted/expanded.
730///
731unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
732                                                EVT &IntermediateVT,
733                                                unsigned &NumIntermediates,
734                                                EVT &RegisterVT) const {
735  // Figure out the right, legal destination reg to copy into.
736  unsigned NumElts = VT.getVectorNumElements();
737  EVT EltTy = VT.getVectorElementType();
738
739  unsigned NumVectorRegs = 1;
740
741  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
742  // could break down into LHS/RHS like LegalizeDAG does.
743  if (!isPowerOf2_32(NumElts)) {
744    NumVectorRegs = NumElts;
745    NumElts = 1;
746  }
747
748  // Divide the input until we get to a supported size.  This will always
749  // end with a scalar if the target doesn't support vectors.
750  while (NumElts > 1 && !isTypeLegal(
751                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
752    NumElts >>= 1;
753    NumVectorRegs <<= 1;
754  }
755
756  NumIntermediates = NumVectorRegs;
757
758  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
759  if (!isTypeLegal(NewVT))
760    NewVT = EltTy;
761  IntermediateVT = NewVT;
762
763  EVT DestVT = getRegisterType(Context, NewVT);
764  RegisterVT = DestVT;
765  if (DestVT.bitsLT(NewVT)) {
766    // Value is expanded, e.g. i64 -> i16.
767    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
768  } else {
769    // Otherwise, promotion or legal types use the same number of registers as
770    // the vector decimated to the appropriate level.
771    return NumVectorRegs;
772  }
773
774  return 1;
775}
776
777/// getWidenVectorType: given a vector type, returns the type to widen to
778/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
779/// If there is no vector type that we want to widen to, returns MVT::Other
780/// When and where to widen is target dependent based on the cost of
781/// scalarizing vs using the wider vector type.
782EVT TargetLowering::getWidenVectorType(EVT VT) const {
783  assert(VT.isVector());
784  if (isTypeLegal(VT))
785    return VT;
786
787  // Default is not to widen until moved to LegalizeTypes
788  return MVT::Other;
789}
790
791/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
792/// function arguments in the caller parameter area.  This is the actual
793/// alignment, not its logarithm.
794unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
795  return TD->getCallFrameTypeAlignment(Ty);
796}
797
798/// getJumpTableEncoding - Return the entry encoding for a jump table in the
799/// current function.  The returned value is a member of the
800/// MachineJumpTableInfo::JTEntryKind enum.
801unsigned TargetLowering::getJumpTableEncoding() const {
802  // In non-pic modes, just use the address of a block.
803  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
804    return MachineJumpTableInfo::EK_BlockAddress;
805
806  // In PIC mode, if the target supports a GPRel32 directive, use it.
807  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
808    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
809
810  // Otherwise, use a label difference.
811  return MachineJumpTableInfo::EK_LabelDifference32;
812}
813
814SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
815                                                 SelectionDAG &DAG) const {
816  // If our PIC model is GP relative, use the global offset table as the base.
817  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
818    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
819  return Table;
820}
821
822/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
823/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
824/// MCExpr.
825const MCExpr *
826TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
827                                             unsigned JTI,MCContext &Ctx) const{
828  // The normal PIC reloc base is the label at the start of the jump table.
829  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
830}
831
832bool
833TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
834  // Assume that everything is safe in static mode.
835  if (getTargetMachine().getRelocationModel() == Reloc::Static)
836    return true;
837
838  // In dynamic-no-pic mode, assume that known defined values are safe.
839  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
840      GA &&
841      !GA->getGlobal()->isDeclaration() &&
842      !GA->getGlobal()->isWeakForLinker())
843    return true;
844
845  // Otherwise assume nothing is safe.
846  return false;
847}
848
849//===----------------------------------------------------------------------===//
850//  Optimization Methods
851//===----------------------------------------------------------------------===//
852
853/// ShrinkDemandedConstant - Check to see if the specified operand of the
854/// specified instruction is a constant integer.  If so, check to see if there
855/// are any bits set in the constant that are not demanded.  If so, shrink the
856/// constant and return true.
857bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
858                                                        const APInt &Demanded) {
859  DebugLoc dl = Op.getDebugLoc();
860
861  // FIXME: ISD::SELECT, ISD::SELECT_CC
862  switch (Op.getOpcode()) {
863  default: break;
864  case ISD::XOR:
865  case ISD::AND:
866  case ISD::OR: {
867    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
868    if (!C) return false;
869
870    if (Op.getOpcode() == ISD::XOR &&
871        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
872      return false;
873
874    // if we can expand it to have all bits set, do it
875    if (C->getAPIntValue().intersects(~Demanded)) {
876      EVT VT = Op.getValueType();
877      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
878                                DAG.getConstant(Demanded &
879                                                C->getAPIntValue(),
880                                                VT));
881      return CombineTo(Op, New);
882    }
883
884    break;
885  }
886  }
887
888  return false;
889}
890
891/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
892/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
893/// cast, but it could be generalized for targets with other types of
894/// implicit widening casts.
895bool
896TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
897                                                    unsigned BitWidth,
898                                                    const APInt &Demanded,
899                                                    DebugLoc dl) {
900  assert(Op.getNumOperands() == 2 &&
901         "ShrinkDemandedOp only supports binary operators!");
902  assert(Op.getNode()->getNumValues() == 1 &&
903         "ShrinkDemandedOp only supports nodes with one result!");
904
905  // Don't do this if the node has another user, which may require the
906  // full value.
907  if (!Op.getNode()->hasOneUse())
908    return false;
909
910  // Search for the smallest integer type with free casts to and from
911  // Op's type. For expedience, just check power-of-2 integer types.
912  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
913  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
914  if (!isPowerOf2_32(SmallVTBits))
915    SmallVTBits = NextPowerOf2(SmallVTBits);
916  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
917    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
918    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
919        TLI.isZExtFree(SmallVT, Op.getValueType())) {
920      // We found a type with free casts.
921      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
922                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
923                                          Op.getNode()->getOperand(0)),
924                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
925                                          Op.getNode()->getOperand(1)));
926      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
927      return CombineTo(Op, Z);
928    }
929  }
930  return false;
931}
932
933/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
934/// DemandedMask bits of the result of Op are ever used downstream.  If we can
935/// use this information to simplify Op, create a new simplified DAG node and
936/// return true, returning the original and new nodes in Old and New. Otherwise,
937/// analyze the expression and return a mask of KnownOne and KnownZero bits for
938/// the expression (used to simplify the caller).  The KnownZero/One bits may
939/// only be accurate for those bits in the DemandedMask.
940bool TargetLowering::SimplifyDemandedBits(SDValue Op,
941                                          const APInt &DemandedMask,
942                                          APInt &KnownZero,
943                                          APInt &KnownOne,
944                                          TargetLoweringOpt &TLO,
945                                          unsigned Depth) const {
946  unsigned BitWidth = DemandedMask.getBitWidth();
947  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
948         "Mask size mismatches value type size!");
949  APInt NewMask = DemandedMask;
950  DebugLoc dl = Op.getDebugLoc();
951
952  // Don't know anything.
953  KnownZero = KnownOne = APInt(BitWidth, 0);
954
955  // Other users may use these bits.
956  if (!Op.getNode()->hasOneUse()) {
957    if (Depth != 0) {
958      // If not at the root, Just compute the KnownZero/KnownOne bits to
959      // simplify things downstream.
960      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
961      return false;
962    }
963    // If this is the root being simplified, allow it to have multiple uses,
964    // just set the NewMask to all bits.
965    NewMask = APInt::getAllOnesValue(BitWidth);
966  } else if (DemandedMask == 0) {
967    // Not demanding any bits from Op.
968    if (Op.getOpcode() != ISD::UNDEF)
969      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
970    return false;
971  } else if (Depth == 6) {        // Limit search depth.
972    return false;
973  }
974
975  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
976  switch (Op.getOpcode()) {
977  case ISD::Constant:
978    // We know all of the bits for a constant!
979    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
980    KnownZero = ~KnownOne & NewMask;
981    return false;   // Don't fall through, will infinitely loop.
982  case ISD::AND:
983    // If the RHS is a constant, check to see if the LHS would be zero without
984    // using the bits from the RHS.  Below, we use knowledge about the RHS to
985    // simplify the LHS, here we're using information from the LHS to simplify
986    // the RHS.
987    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
988      APInt LHSZero, LHSOne;
989      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
990                                LHSZero, LHSOne, Depth+1);
991      // If the LHS already has zeros where RHSC does, this and is dead.
992      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
993        return TLO.CombineTo(Op, Op.getOperand(0));
994      // If any of the set bits in the RHS are known zero on the LHS, shrink
995      // the constant.
996      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
997        return true;
998    }
999
1000    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1001                             KnownOne, TLO, Depth+1))
1002      return true;
1003    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1004    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1005                             KnownZero2, KnownOne2, TLO, Depth+1))
1006      return true;
1007    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1008
1009    // If all of the demanded bits are known one on one side, return the other.
1010    // These bits cannot contribute to the result of the 'and'.
1011    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1012      return TLO.CombineTo(Op, Op.getOperand(0));
1013    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1014      return TLO.CombineTo(Op, Op.getOperand(1));
1015    // If all of the demanded bits in the inputs are known zeros, return zero.
1016    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1017      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1018    // If the RHS is a constant, see if we can simplify it.
1019    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1020      return true;
1021    // If the operation can be done in a smaller type, do so.
1022    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1023      return true;
1024
1025    // Output known-1 bits are only known if set in both the LHS & RHS.
1026    KnownOne &= KnownOne2;
1027    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1028    KnownZero |= KnownZero2;
1029    break;
1030  case ISD::OR:
1031    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1032                             KnownOne, TLO, Depth+1))
1033      return true;
1034    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1035    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1036                             KnownZero2, KnownOne2, TLO, Depth+1))
1037      return true;
1038    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1039
1040    // If all of the demanded bits are known zero on one side, return the other.
1041    // These bits cannot contribute to the result of the 'or'.
1042    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1043      return TLO.CombineTo(Op, Op.getOperand(0));
1044    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1045      return TLO.CombineTo(Op, Op.getOperand(1));
1046    // If all of the potentially set bits on one side are known to be set on
1047    // the other side, just use the 'other' side.
1048    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1049      return TLO.CombineTo(Op, Op.getOperand(0));
1050    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1051      return TLO.CombineTo(Op, Op.getOperand(1));
1052    // If the RHS is a constant, see if we can simplify it.
1053    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1054      return true;
1055    // If the operation can be done in a smaller type, do so.
1056    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1057      return true;
1058
1059    // Output known-0 bits are only known if clear in both the LHS & RHS.
1060    KnownZero &= KnownZero2;
1061    // Output known-1 are known to be set if set in either the LHS | RHS.
1062    KnownOne |= KnownOne2;
1063    break;
1064  case ISD::XOR:
1065    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1066                             KnownOne, TLO, Depth+1))
1067      return true;
1068    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1069    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1070                             KnownOne2, TLO, Depth+1))
1071      return true;
1072    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1073
1074    // If all of the demanded bits are known zero on one side, return the other.
1075    // These bits cannot contribute to the result of the 'xor'.
1076    if ((KnownZero & NewMask) == NewMask)
1077      return TLO.CombineTo(Op, Op.getOperand(0));
1078    if ((KnownZero2 & NewMask) == NewMask)
1079      return TLO.CombineTo(Op, Op.getOperand(1));
1080    // If the operation can be done in a smaller type, do so.
1081    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1082      return true;
1083
1084    // If all of the unknown bits are known to be zero on one side or the other
1085    // (but not both) turn this into an *inclusive* or.
1086    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1087    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1088      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1089                                               Op.getOperand(0),
1090                                               Op.getOperand(1)));
1091
1092    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1093    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1094    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1095    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1096
1097    // If all of the demanded bits on one side are known, and all of the set
1098    // bits on that side are also known to be set on the other side, turn this
1099    // into an AND, as we know the bits will be cleared.
1100    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1101    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1102      if ((KnownOne & KnownOne2) == KnownOne) {
1103        EVT VT = Op.getValueType();
1104        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1105        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1106                                                 Op.getOperand(0), ANDC));
1107      }
1108    }
1109
1110    // If the RHS is a constant, see if we can simplify it.
1111    // for XOR, we prefer to force bits to 1 if they will make a -1.
1112    // if we can't force bits, try to shrink constant
1113    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1114      APInt Expanded = C->getAPIntValue() | (~NewMask);
1115      // if we can expand it to have all bits set, do it
1116      if (Expanded.isAllOnesValue()) {
1117        if (Expanded != C->getAPIntValue()) {
1118          EVT VT = Op.getValueType();
1119          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1120                                          TLO.DAG.getConstant(Expanded, VT));
1121          return TLO.CombineTo(Op, New);
1122        }
1123        // if it already has all the bits set, nothing to change
1124        // but don't shrink either!
1125      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1126        return true;
1127      }
1128    }
1129
1130    KnownZero = KnownZeroOut;
1131    KnownOne  = KnownOneOut;
1132    break;
1133  case ISD::SELECT:
1134    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1135                             KnownOne, TLO, Depth+1))
1136      return true;
1137    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1138                             KnownOne2, TLO, Depth+1))
1139      return true;
1140    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1141    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1142
1143    // If the operands are constants, see if we can simplify them.
1144    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1145      return true;
1146
1147    // Only known if known in both the LHS and RHS.
1148    KnownOne &= KnownOne2;
1149    KnownZero &= KnownZero2;
1150    break;
1151  case ISD::SELECT_CC:
1152    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1153                             KnownOne, TLO, Depth+1))
1154      return true;
1155    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1156                             KnownOne2, TLO, Depth+1))
1157      return true;
1158    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1159    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1160
1161    // If the operands are constants, see if we can simplify them.
1162    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1163      return true;
1164
1165    // Only known if known in both the LHS and RHS.
1166    KnownOne &= KnownOne2;
1167    KnownZero &= KnownZero2;
1168    break;
1169  case ISD::SHL:
1170    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1171      unsigned ShAmt = SA->getZExtValue();
1172      SDValue InOp = Op.getOperand(0);
1173
1174      // If the shift count is an invalid immediate, don't do anything.
1175      if (ShAmt >= BitWidth)
1176        break;
1177
1178      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1179      // single shift.  We can do this if the bottom bits (which are shifted
1180      // out) are never demanded.
1181      if (InOp.getOpcode() == ISD::SRL &&
1182          isa<ConstantSDNode>(InOp.getOperand(1))) {
1183        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1184          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1185          unsigned Opc = ISD::SHL;
1186          int Diff = ShAmt-C1;
1187          if (Diff < 0) {
1188            Diff = -Diff;
1189            Opc = ISD::SRL;
1190          }
1191
1192          SDValue NewSA =
1193            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1194          EVT VT = Op.getValueType();
1195          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1196                                                   InOp.getOperand(0), NewSA));
1197        }
1198      }
1199
1200      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1201                               KnownZero, KnownOne, TLO, Depth+1))
1202        return true;
1203      KnownZero <<= SA->getZExtValue();
1204      KnownOne  <<= SA->getZExtValue();
1205      // low bits known zero.
1206      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1207    }
1208    break;
1209  case ISD::SRL:
1210    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1211      EVT VT = Op.getValueType();
1212      unsigned ShAmt = SA->getZExtValue();
1213      unsigned VTSize = VT.getSizeInBits();
1214      SDValue InOp = Op.getOperand(0);
1215
1216      // If the shift count is an invalid immediate, don't do anything.
1217      if (ShAmt >= BitWidth)
1218        break;
1219
1220      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1221      // single shift.  We can do this if the top bits (which are shifted out)
1222      // are never demanded.
1223      if (InOp.getOpcode() == ISD::SHL &&
1224          isa<ConstantSDNode>(InOp.getOperand(1))) {
1225        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1226          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1227          unsigned Opc = ISD::SRL;
1228          int Diff = ShAmt-C1;
1229          if (Diff < 0) {
1230            Diff = -Diff;
1231            Opc = ISD::SHL;
1232          }
1233
1234          SDValue NewSA =
1235            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1236          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1237                                                   InOp.getOperand(0), NewSA));
1238        }
1239      }
1240
1241      // Compute the new bits that are at the top now.
1242      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1243                               KnownZero, KnownOne, TLO, Depth+1))
1244        return true;
1245      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1246      KnownZero = KnownZero.lshr(ShAmt);
1247      KnownOne  = KnownOne.lshr(ShAmt);
1248
1249      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1250      KnownZero |= HighBits;  // High bits known zero.
1251    }
1252    break;
1253  case ISD::SRA:
1254    // If this is an arithmetic shift right and only the low-bit is set, we can
1255    // always convert this into a logical shr, even if the shift amount is
1256    // variable.  The low bit of the shift cannot be an input sign bit unless
1257    // the shift amount is >= the size of the datatype, which is undefined.
1258    if (DemandedMask == 1)
1259      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1260                                               Op.getOperand(0), Op.getOperand(1)));
1261
1262    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263      EVT VT = Op.getValueType();
1264      unsigned ShAmt = SA->getZExtValue();
1265
1266      // If the shift count is an invalid immediate, don't do anything.
1267      if (ShAmt >= BitWidth)
1268        break;
1269
1270      APInt InDemandedMask = (NewMask << ShAmt);
1271
1272      // If any of the demanded bits are produced by the sign extension, we also
1273      // demand the input sign bit.
1274      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1275      if (HighBits.intersects(NewMask))
1276        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1277
1278      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1279                               KnownZero, KnownOne, TLO, Depth+1))
1280        return true;
1281      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282      KnownZero = KnownZero.lshr(ShAmt);
1283      KnownOne  = KnownOne.lshr(ShAmt);
1284
1285      // Handle the sign bit, adjusted to where it is now in the mask.
1286      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1287
1288      // If the input sign bit is known to be zero, or if none of the top bits
1289      // are demanded, turn this into an unsigned shift right.
1290      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1291        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1292                                                 Op.getOperand(0),
1293                                                 Op.getOperand(1)));
1294      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1295        KnownOne |= HighBits;
1296      }
1297    }
1298    break;
1299  case ISD::SIGN_EXTEND_INREG: {
1300    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1301
1302    // Sign extension.  Compute the demanded bits in the result that are not
1303    // present in the input.
1304    APInt NewBits =
1305      APInt::getHighBitsSet(BitWidth,
1306                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1307      NewMask;
1308
1309    // If none of the extended bits are demanded, eliminate the sextinreg.
1310    if (NewBits == 0)
1311      return TLO.CombineTo(Op, Op.getOperand(0));
1312
1313    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1314    InSignBit.zext(BitWidth);
1315    APInt InputDemandedBits =
1316      APInt::getLowBitsSet(BitWidth,
1317                           EVT.getScalarType().getSizeInBits()) &
1318      NewMask;
1319
1320    // Since the sign extended bits are demanded, we know that the sign
1321    // bit is demanded.
1322    InputDemandedBits |= InSignBit;
1323
1324    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1325                             KnownZero, KnownOne, TLO, Depth+1))
1326      return true;
1327    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1328
1329    // If the sign bit of the input is known set or clear, then we know the
1330    // top bits of the result.
1331
1332    // If the input sign bit is known zero, convert this into a zero extension.
1333    if (KnownZero.intersects(InSignBit))
1334      return TLO.CombineTo(Op,
1335                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1336
1337    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1338      KnownOne |= NewBits;
1339      KnownZero &= ~NewBits;
1340    } else {                       // Input sign bit unknown
1341      KnownZero &= ~NewBits;
1342      KnownOne &= ~NewBits;
1343    }
1344    break;
1345  }
1346  case ISD::ZERO_EXTEND: {
1347    unsigned OperandBitWidth =
1348      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1349    APInt InMask = NewMask;
1350    InMask.trunc(OperandBitWidth);
1351
1352    // If none of the top bits are demanded, convert this into an any_extend.
1353    APInt NewBits =
1354      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1355    if (!NewBits.intersects(NewMask))
1356      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1357                                               Op.getValueType(),
1358                                               Op.getOperand(0)));
1359
1360    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1361                             KnownZero, KnownOne, TLO, Depth+1))
1362      return true;
1363    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1364    KnownZero.zext(BitWidth);
1365    KnownOne.zext(BitWidth);
1366    KnownZero |= NewBits;
1367    break;
1368  }
1369  case ISD::SIGN_EXTEND: {
1370    EVT InVT = Op.getOperand(0).getValueType();
1371    unsigned InBits = InVT.getScalarType().getSizeInBits();
1372    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1373    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1374    APInt NewBits   = ~InMask & NewMask;
1375
1376    // If none of the top bits are demanded, convert this into an any_extend.
1377    if (NewBits == 0)
1378      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1379                                              Op.getValueType(),
1380                                              Op.getOperand(0)));
1381
1382    // Since some of the sign extended bits are demanded, we know that the sign
1383    // bit is demanded.
1384    APInt InDemandedBits = InMask & NewMask;
1385    InDemandedBits |= InSignBit;
1386    InDemandedBits.trunc(InBits);
1387
1388    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1389                             KnownOne, TLO, Depth+1))
1390      return true;
1391    KnownZero.zext(BitWidth);
1392    KnownOne.zext(BitWidth);
1393
1394    // If the sign bit is known zero, convert this to a zero extend.
1395    if (KnownZero.intersects(InSignBit))
1396      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1397                                               Op.getValueType(),
1398                                               Op.getOperand(0)));
1399
1400    // If the sign bit is known one, the top bits match.
1401    if (KnownOne.intersects(InSignBit)) {
1402      KnownOne  |= NewBits;
1403      KnownZero &= ~NewBits;
1404    } else {   // Otherwise, top bits aren't known.
1405      KnownOne  &= ~NewBits;
1406      KnownZero &= ~NewBits;
1407    }
1408    break;
1409  }
1410  case ISD::ANY_EXTEND: {
1411    unsigned OperandBitWidth =
1412      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1413    APInt InMask = NewMask;
1414    InMask.trunc(OperandBitWidth);
1415    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1416                             KnownZero, KnownOne, TLO, Depth+1))
1417      return true;
1418    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419    KnownZero.zext(BitWidth);
1420    KnownOne.zext(BitWidth);
1421    break;
1422  }
1423  case ISD::TRUNCATE: {
1424    // Simplify the input, using demanded bit information, and compute the known
1425    // zero/one bits live out.
1426    APInt TruncMask = NewMask;
1427    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1428    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1429                             KnownZero, KnownOne, TLO, Depth+1))
1430      return true;
1431    KnownZero.trunc(BitWidth);
1432    KnownOne.trunc(BitWidth);
1433
1434    // If the input is only used by this truncate, see if we can shrink it based
1435    // on the known demanded bits.
1436    if (Op.getOperand(0).getNode()->hasOneUse()) {
1437      SDValue In = Op.getOperand(0);
1438      unsigned InBitWidth = In.getValueSizeInBits();
1439      switch (In.getOpcode()) {
1440      default: break;
1441      case ISD::SRL:
1442        // Shrink SRL by a constant if none of the high bits shifted in are
1443        // demanded.
1444        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1445          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1446                                                 InBitWidth - BitWidth);
1447          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1448          HighBits.trunc(BitWidth);
1449
1450          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1451            // None of the shifted in bits are needed.  Add a truncate of the
1452            // shift input, then shift it.
1453            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1454                                                 Op.getValueType(),
1455                                                 In.getOperand(0));
1456            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1457                                                     Op.getValueType(),
1458                                                     NewTrunc,
1459                                                     In.getOperand(1)));
1460          }
1461        }
1462        break;
1463      }
1464    }
1465
1466    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1467    break;
1468  }
1469  case ISD::AssertZext: {
1470    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1471    APInt InMask = APInt::getLowBitsSet(BitWidth,
1472                                        VT.getSizeInBits());
1473    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1474                             KnownZero, KnownOne, TLO, Depth+1))
1475      return true;
1476    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477    KnownZero |= ~InMask & NewMask;
1478    break;
1479  }
1480  case ISD::BIT_CONVERT:
1481#if 0
1482    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1483    // is demanded, turn this into a FGETSIGN.
1484    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1485        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1486        !MVT::isVector(Op.getOperand(0).getValueType())) {
1487      // Only do this xform if FGETSIGN is valid or if before legalize.
1488      if (!TLO.AfterLegalize ||
1489          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1490        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1491        // place.  We expect the SHL to be eliminated by other optimizations.
1492        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1493                                         Op.getOperand(0));
1494        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1495        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1496        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1497                                                 Sign, ShAmt));
1498      }
1499    }
1500#endif
1501    break;
1502  case ISD::ADD:
1503  case ISD::MUL:
1504  case ISD::SUB: {
1505    // Add, Sub, and Mul don't demand any bits in positions beyond that
1506    // of the highest bit demanded of them.
1507    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1508                                        BitWidth - NewMask.countLeadingZeros());
1509    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1510                             KnownOne2, TLO, Depth+1))
1511      return true;
1512    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1513                             KnownOne2, TLO, Depth+1))
1514      return true;
1515    // See if the operation should be performed at a smaller bit width.
1516    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1517      return true;
1518  }
1519  // FALL THROUGH
1520  default:
1521    // Just use ComputeMaskedBits to compute output bits.
1522    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1523    break;
1524  }
1525
1526  // If we know the value of all of the demanded bits, return this as a
1527  // constant.
1528  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1529    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1530
1531  return false;
1532}
1533
1534/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1535/// in Mask are known to be either zero or one and return them in the
1536/// KnownZero/KnownOne bitsets.
1537void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1538                                                    const APInt &Mask,
1539                                                    APInt &KnownZero,
1540                                                    APInt &KnownOne,
1541                                                    const SelectionDAG &DAG,
1542                                                    unsigned Depth) const {
1543  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1544          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1545          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1546          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1547         "Should use MaskedValueIsZero if you don't know whether Op"
1548         " is a target node!");
1549  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1550}
1551
1552/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1553/// targets that want to expose additional information about sign bits to the
1554/// DAG Combiner.
1555unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1556                                                         unsigned Depth) const {
1557  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1558          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1559          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1560          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1561         "Should use ComputeNumSignBits if you don't know whether Op"
1562         " is a target node!");
1563  return 1;
1564}
1565
1566/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1567/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1568/// determine which bit is set.
1569///
1570static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1571  // A left-shift of a constant one will have exactly one bit set, because
1572  // shifting the bit off the end is undefined.
1573  if (Val.getOpcode() == ISD::SHL)
1574    if (ConstantSDNode *C =
1575         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1576      if (C->getAPIntValue() == 1)
1577        return true;
1578
1579  // Similarly, a right-shift of a constant sign-bit will have exactly
1580  // one bit set.
1581  if (Val.getOpcode() == ISD::SRL)
1582    if (ConstantSDNode *C =
1583         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1584      if (C->getAPIntValue().isSignBit())
1585        return true;
1586
1587  // More could be done here, though the above checks are enough
1588  // to handle some common cases.
1589
1590  // Fall back to ComputeMaskedBits to catch other known cases.
1591  EVT OpVT = Val.getValueType();
1592  unsigned BitWidth = OpVT.getSizeInBits();
1593  APInt Mask = APInt::getAllOnesValue(BitWidth);
1594  APInt KnownZero, KnownOne;
1595  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1596  return (KnownZero.countPopulation() == BitWidth - 1) &&
1597         (KnownOne.countPopulation() == 1);
1598}
1599
1600/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1601/// and cc. If it is unable to simplify it, return a null SDValue.
1602SDValue
1603TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1604                              ISD::CondCode Cond, bool foldBooleans,
1605                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1606  SelectionDAG &DAG = DCI.DAG;
1607  LLVMContext &Context = *DAG.getContext();
1608
1609  // These setcc operations always fold.
1610  switch (Cond) {
1611  default: break;
1612  case ISD::SETFALSE:
1613  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1614  case ISD::SETTRUE:
1615  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1616  }
1617
1618  if (isa<ConstantSDNode>(N0.getNode())) {
1619    // Ensure that the constant occurs on the RHS, and fold constant
1620    // comparisons.
1621    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1622  }
1623
1624  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1625    const APInt &C1 = N1C->getAPIntValue();
1626
1627    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1628    // equality comparison, then we're just comparing whether X itself is
1629    // zero.
1630    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1631        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1632        N0.getOperand(1).getOpcode() == ISD::Constant) {
1633      const APInt &ShAmt
1634        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1635      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1636          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1637        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1638          // (srl (ctlz x), 5) == 0  -> X != 0
1639          // (srl (ctlz x), 5) != 1  -> X != 0
1640          Cond = ISD::SETNE;
1641        } else {
1642          // (srl (ctlz x), 5) != 0  -> X == 0
1643          // (srl (ctlz x), 5) == 1  -> X == 0
1644          Cond = ISD::SETEQ;
1645        }
1646        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1647        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1648                            Zero, Cond);
1649      }
1650    }
1651
1652    // If the LHS is '(and load, const)', the RHS is 0,
1653    // the test is for equality or unsigned, and all 1 bits of the const are
1654    // in the same partial word, see if we can shorten the load.
1655    if (DCI.isBeforeLegalize() &&
1656        N0.getOpcode() == ISD::AND && C1 == 0 &&
1657        N0.getNode()->hasOneUse() &&
1658        isa<LoadSDNode>(N0.getOperand(0)) &&
1659        N0.getOperand(0).getNode()->hasOneUse() &&
1660        isa<ConstantSDNode>(N0.getOperand(1))) {
1661      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1662      APInt bestMask;
1663      unsigned bestWidth = 0, bestOffset = 0;
1664      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1665        unsigned origWidth = N0.getValueType().getSizeInBits();
1666        unsigned maskWidth = origWidth;
1667        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1668        // 8 bits, but have to be careful...
1669        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1670          origWidth = Lod->getMemoryVT().getSizeInBits();
1671        const APInt &Mask =
1672          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1673        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1674          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1675          for (unsigned offset=0; offset<origWidth/width; offset++) {
1676            if ((newMask & Mask) == Mask) {
1677              if (!TD->isLittleEndian())
1678                bestOffset = (origWidth/width - offset - 1) * (width/8);
1679              else
1680                bestOffset = (uint64_t)offset * (width/8);
1681              bestMask = Mask.lshr(offset * (width/8) * 8);
1682              bestWidth = width;
1683              break;
1684            }
1685            newMask = newMask << width;
1686          }
1687        }
1688      }
1689      if (bestWidth) {
1690        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1691        if (newVT.isRound()) {
1692          EVT PtrType = Lod->getOperand(1).getValueType();
1693          SDValue Ptr = Lod->getBasePtr();
1694          if (bestOffset != 0)
1695            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1696                              DAG.getConstant(bestOffset, PtrType));
1697          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1698          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1699                                        Lod->getSrcValue(),
1700                                        Lod->getSrcValueOffset() + bestOffset,
1701                                        false, NewAlign);
1702          return DAG.getSetCC(dl, VT,
1703                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1704                                      DAG.getConstant(bestMask.trunc(bestWidth),
1705                                                      newVT)),
1706                              DAG.getConstant(0LL, newVT), Cond);
1707        }
1708      }
1709    }
1710
1711    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1712    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1713      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1714
1715      // If the comparison constant has bits in the upper part, the
1716      // zero-extended value could never match.
1717      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1718                                              C1.getBitWidth() - InSize))) {
1719        switch (Cond) {
1720        case ISD::SETUGT:
1721        case ISD::SETUGE:
1722        case ISD::SETEQ: return DAG.getConstant(0, VT);
1723        case ISD::SETULT:
1724        case ISD::SETULE:
1725        case ISD::SETNE: return DAG.getConstant(1, VT);
1726        case ISD::SETGT:
1727        case ISD::SETGE:
1728          // True if the sign bit of C1 is set.
1729          return DAG.getConstant(C1.isNegative(), VT);
1730        case ISD::SETLT:
1731        case ISD::SETLE:
1732          // True if the sign bit of C1 isn't set.
1733          return DAG.getConstant(C1.isNonNegative(), VT);
1734        default:
1735          break;
1736        }
1737      }
1738
1739      // Otherwise, we can perform the comparison with the low bits.
1740      switch (Cond) {
1741      case ISD::SETEQ:
1742      case ISD::SETNE:
1743      case ISD::SETUGT:
1744      case ISD::SETUGE:
1745      case ISD::SETULT:
1746      case ISD::SETULE: {
1747        EVT newVT = N0.getOperand(0).getValueType();
1748        if (DCI.isBeforeLegalizeOps() ||
1749            (isOperationLegal(ISD::SETCC, newVT) &&
1750              getCondCodeAction(Cond, newVT)==Legal))
1751          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1752                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1753                              Cond);
1754        break;
1755      }
1756      default:
1757        break;   // todo, be more careful with signed comparisons
1758      }
1759    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1760                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1761      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1762      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1763      EVT ExtDstTy = N0.getValueType();
1764      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1765
1766      // If the extended part has any inconsistent bits, it cannot ever
1767      // compare equal.  In other words, they have to be all ones or all
1768      // zeros.
1769      APInt ExtBits =
1770        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1771      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1772        return DAG.getConstant(Cond == ISD::SETNE, VT);
1773
1774      SDValue ZextOp;
1775      EVT Op0Ty = N0.getOperand(0).getValueType();
1776      if (Op0Ty == ExtSrcTy) {
1777        ZextOp = N0.getOperand(0);
1778      } else {
1779        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1780        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1781                              DAG.getConstant(Imm, Op0Ty));
1782      }
1783      if (!DCI.isCalledByLegalizer())
1784        DCI.AddToWorklist(ZextOp.getNode());
1785      // Otherwise, make this a use of a zext.
1786      return DAG.getSetCC(dl, VT, ZextOp,
1787                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1788                                                              ExtDstTyBits,
1789                                                              ExtSrcTyBits),
1790                                          ExtDstTy),
1791                          Cond);
1792    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1793                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1794
1795      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1796      if (N0.getOpcode() == ISD::SETCC) {
1797        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1798        if (TrueWhenTrue)
1799          return N0;
1800
1801        // Invert the condition.
1802        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1803        CC = ISD::getSetCCInverse(CC,
1804                                  N0.getOperand(0).getValueType().isInteger());
1805        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1806      }
1807
1808      if ((N0.getOpcode() == ISD::XOR ||
1809            (N0.getOpcode() == ISD::AND &&
1810            N0.getOperand(0).getOpcode() == ISD::XOR &&
1811            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1812          isa<ConstantSDNode>(N0.getOperand(1)) &&
1813          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1814        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1815        // can only do this if the top bits are known zero.
1816        unsigned BitWidth = N0.getValueSizeInBits();
1817        if (DAG.MaskedValueIsZero(N0,
1818                                  APInt::getHighBitsSet(BitWidth,
1819                                                        BitWidth-1))) {
1820          // Okay, get the un-inverted input value.
1821          SDValue Val;
1822          if (N0.getOpcode() == ISD::XOR)
1823            Val = N0.getOperand(0);
1824          else {
1825            assert(N0.getOpcode() == ISD::AND &&
1826                    N0.getOperand(0).getOpcode() == ISD::XOR);
1827            // ((X^1)&1)^1 -> X & 1
1828            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1829                              N0.getOperand(0).getOperand(0),
1830                              N0.getOperand(1));
1831          }
1832          return DAG.getSetCC(dl, VT, Val, N1,
1833                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1834        }
1835      }
1836    }
1837
1838    APInt MinVal, MaxVal;
1839    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1840    if (ISD::isSignedIntSetCC(Cond)) {
1841      MinVal = APInt::getSignedMinValue(OperandBitSize);
1842      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1843    } else {
1844      MinVal = APInt::getMinValue(OperandBitSize);
1845      MaxVal = APInt::getMaxValue(OperandBitSize);
1846    }
1847
1848    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1849    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1850      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1851      // X >= C0 --> X > (C0-1)
1852      return DAG.getSetCC(dl, VT, N0,
1853                          DAG.getConstant(C1-1, N1.getValueType()),
1854                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1855    }
1856
1857    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1858      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1859      // X <= C0 --> X < (C0+1)
1860      return DAG.getSetCC(dl, VT, N0,
1861                          DAG.getConstant(C1+1, N1.getValueType()),
1862                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1863    }
1864
1865    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1866      return DAG.getConstant(0, VT);      // X < MIN --> false
1867    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1868      return DAG.getConstant(1, VT);      // X >= MIN --> true
1869    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1870      return DAG.getConstant(0, VT);      // X > MAX --> false
1871    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1872      return DAG.getConstant(1, VT);      // X <= MAX --> true
1873
1874    // Canonicalize setgt X, Min --> setne X, Min
1875    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1876      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1877    // Canonicalize setlt X, Max --> setne X, Max
1878    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1879      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1880
1881    // If we have setult X, 1, turn it into seteq X, 0
1882    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1883      return DAG.getSetCC(dl, VT, N0,
1884                          DAG.getConstant(MinVal, N0.getValueType()),
1885                          ISD::SETEQ);
1886    // If we have setugt X, Max-1, turn it into seteq X, Max
1887    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1888      return DAG.getSetCC(dl, VT, N0,
1889                          DAG.getConstant(MaxVal, N0.getValueType()),
1890                          ISD::SETEQ);
1891
1892    // If we have "setcc X, C0", check to see if we can shrink the immediate
1893    // by changing cc.
1894
1895    // SETUGT X, SINTMAX  -> SETLT X, 0
1896    if (Cond == ISD::SETUGT &&
1897        C1 == APInt::getSignedMaxValue(OperandBitSize))
1898      return DAG.getSetCC(dl, VT, N0,
1899                          DAG.getConstant(0, N1.getValueType()),
1900                          ISD::SETLT);
1901
1902    // SETULT X, SINTMIN  -> SETGT X, -1
1903    if (Cond == ISD::SETULT &&
1904        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1905      SDValue ConstMinusOne =
1906          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1907                          N1.getValueType());
1908      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1909    }
1910
1911    // Fold bit comparisons when we can.
1912    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1913        (VT == N0.getValueType() ||
1914         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1915        N0.getOpcode() == ISD::AND)
1916      if (ConstantSDNode *AndRHS =
1917                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1918        EVT ShiftTy = DCI.isBeforeLegalize() ?
1919          getPointerTy() : getShiftAmountTy();
1920        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1921          // Perform the xform if the AND RHS is a single bit.
1922          if (AndRHS->getAPIntValue().isPowerOf2()) {
1923            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1924                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1925                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1926          }
1927        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1928          // (X & 8) == 8  -->  (X & 8) >> 3
1929          // Perform the xform if C1 is a single bit.
1930          if (C1.isPowerOf2()) {
1931            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1932                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1933                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1934          }
1935        }
1936      }
1937  }
1938
1939  if (isa<ConstantFPSDNode>(N0.getNode())) {
1940    // Constant fold or commute setcc.
1941    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1942    if (O.getNode()) return O;
1943  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1944    // If the RHS of an FP comparison is a constant, simplify it away in
1945    // some cases.
1946    if (CFP->getValueAPF().isNaN()) {
1947      // If an operand is known to be a nan, we can fold it.
1948      switch (ISD::getUnorderedFlavor(Cond)) {
1949      default: llvm_unreachable("Unknown flavor!");
1950      case 0:  // Known false.
1951        return DAG.getConstant(0, VT);
1952      case 1:  // Known true.
1953        return DAG.getConstant(1, VT);
1954      case 2:  // Undefined.
1955        return DAG.getUNDEF(VT);
1956      }
1957    }
1958
1959    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1960    // constant if knowing that the operand is non-nan is enough.  We prefer to
1961    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1962    // materialize 0.0.
1963    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1964      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1965
1966    // If the condition is not legal, see if we can find an equivalent one
1967    // which is legal.
1968    if (!isCondCodeLegal(Cond, N0.getValueType())) {
1969      // If the comparison was an awkward floating-point == or != and one of
1970      // the comparison operands is infinity or negative infinity, convert the
1971      // condition to a less-awkward <= or >=.
1972      if (CFP->getValueAPF().isInfinity()) {
1973        if (CFP->getValueAPF().isNegative()) {
1974          if (Cond == ISD::SETOEQ &&
1975              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1976            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1977          if (Cond == ISD::SETUEQ &&
1978              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1979            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1980          if (Cond == ISD::SETUNE &&
1981              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1982            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1983          if (Cond == ISD::SETONE &&
1984              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1985            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1986        } else {
1987          if (Cond == ISD::SETOEQ &&
1988              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1989            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1990          if (Cond == ISD::SETUEQ &&
1991              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1992            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1993          if (Cond == ISD::SETUNE &&
1994              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1995            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1996          if (Cond == ISD::SETONE &&
1997              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1998            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1999        }
2000      }
2001    }
2002  }
2003
2004  if (N0 == N1) {
2005    // We can always fold X == X for integer setcc's.
2006    if (N0.getValueType().isInteger())
2007      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2008    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2009    if (UOF == 2)   // FP operators that are undefined on NaNs.
2010      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2011    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2012      return DAG.getConstant(UOF, VT);
2013    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2014    // if it is not already.
2015    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2016    if (NewCond != Cond)
2017      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2018  }
2019
2020  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2021      N0.getValueType().isInteger()) {
2022    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2023        N0.getOpcode() == ISD::XOR) {
2024      // Simplify (X+Y) == (X+Z) -->  Y == Z
2025      if (N0.getOpcode() == N1.getOpcode()) {
2026        if (N0.getOperand(0) == N1.getOperand(0))
2027          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2028        if (N0.getOperand(1) == N1.getOperand(1))
2029          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2030        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2031          // If X op Y == Y op X, try other combinations.
2032          if (N0.getOperand(0) == N1.getOperand(1))
2033            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2034                                Cond);
2035          if (N0.getOperand(1) == N1.getOperand(0))
2036            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2037                                Cond);
2038        }
2039      }
2040
2041      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2042        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2043          // Turn (X+C1) == C2 --> X == C2-C1
2044          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2045            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2046                                DAG.getConstant(RHSC->getAPIntValue()-
2047                                                LHSR->getAPIntValue(),
2048                                N0.getValueType()), Cond);
2049          }
2050
2051          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2052          if (N0.getOpcode() == ISD::XOR)
2053            // If we know that all of the inverted bits are zero, don't bother
2054            // performing the inversion.
2055            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2056              return
2057                DAG.getSetCC(dl, VT, N0.getOperand(0),
2058                             DAG.getConstant(LHSR->getAPIntValue() ^
2059                                               RHSC->getAPIntValue(),
2060                                             N0.getValueType()),
2061                             Cond);
2062        }
2063
2064        // Turn (C1-X) == C2 --> X == C1-C2
2065        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2066          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2067            return
2068              DAG.getSetCC(dl, VT, N0.getOperand(1),
2069                           DAG.getConstant(SUBC->getAPIntValue() -
2070                                             RHSC->getAPIntValue(),
2071                                           N0.getValueType()),
2072                           Cond);
2073          }
2074        }
2075      }
2076
2077      // Simplify (X+Z) == X -->  Z == 0
2078      if (N0.getOperand(0) == N1)
2079        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2080                        DAG.getConstant(0, N0.getValueType()), Cond);
2081      if (N0.getOperand(1) == N1) {
2082        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2083          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2084                          DAG.getConstant(0, N0.getValueType()), Cond);
2085        else if (N0.getNode()->hasOneUse()) {
2086          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2087          // (Z-X) == X  --> Z == X<<1
2088          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2089                                     N1,
2090                                     DAG.getConstant(1, getShiftAmountTy()));
2091          if (!DCI.isCalledByLegalizer())
2092            DCI.AddToWorklist(SH.getNode());
2093          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2094        }
2095      }
2096    }
2097
2098    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2099        N1.getOpcode() == ISD::XOR) {
2100      // Simplify  X == (X+Z) -->  Z == 0
2101      if (N1.getOperand(0) == N0) {
2102        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2103                        DAG.getConstant(0, N1.getValueType()), Cond);
2104      } else if (N1.getOperand(1) == N0) {
2105        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2106          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2107                          DAG.getConstant(0, N1.getValueType()), Cond);
2108        } else if (N1.getNode()->hasOneUse()) {
2109          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2110          // X == (Z-X)  --> X<<1 == Z
2111          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2112                                     DAG.getConstant(1, getShiftAmountTy()));
2113          if (!DCI.isCalledByLegalizer())
2114            DCI.AddToWorklist(SH.getNode());
2115          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2116        }
2117      }
2118    }
2119
2120    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2121    // Note that where y is variable and is known to have at most
2122    // one bit set (for example, if it is z&1) we cannot do this;
2123    // the expressions are not equivalent when y==0.
2124    if (N0.getOpcode() == ISD::AND)
2125      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2126        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2127          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2128          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2129          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2130        }
2131      }
2132    if (N1.getOpcode() == ISD::AND)
2133      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2134        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2135          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2136          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2137          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2138        }
2139      }
2140  }
2141
2142  // Fold away ALL boolean setcc's.
2143  SDValue Temp;
2144  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2145    switch (Cond) {
2146    default: llvm_unreachable("Unknown integer setcc!");
2147    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2148      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2149      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2150      if (!DCI.isCalledByLegalizer())
2151        DCI.AddToWorklist(Temp.getNode());
2152      break;
2153    case ISD::SETNE:  // X != Y   -->  (X^Y)
2154      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2155      break;
2156    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2157    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2158      Temp = DAG.getNOT(dl, N0, MVT::i1);
2159      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2160      if (!DCI.isCalledByLegalizer())
2161        DCI.AddToWorklist(Temp.getNode());
2162      break;
2163    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2164    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2165      Temp = DAG.getNOT(dl, N1, MVT::i1);
2166      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2167      if (!DCI.isCalledByLegalizer())
2168        DCI.AddToWorklist(Temp.getNode());
2169      break;
2170    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2171    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2172      Temp = DAG.getNOT(dl, N0, MVT::i1);
2173      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2174      if (!DCI.isCalledByLegalizer())
2175        DCI.AddToWorklist(Temp.getNode());
2176      break;
2177    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2178    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2179      Temp = DAG.getNOT(dl, N1, MVT::i1);
2180      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2181      break;
2182    }
2183    if (VT != MVT::i1) {
2184      if (!DCI.isCalledByLegalizer())
2185        DCI.AddToWorklist(N0.getNode());
2186      // FIXME: If running after legalize, we probably can't do this.
2187      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2188    }
2189    return N0;
2190  }
2191
2192  // Could not fold it.
2193  return SDValue();
2194}
2195
2196/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2197/// node is a GlobalAddress + offset.
2198bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2199                                    int64_t &Offset) const {
2200  if (isa<GlobalAddressSDNode>(N)) {
2201    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2202    GA = GASD->getGlobal();
2203    Offset += GASD->getOffset();
2204    return true;
2205  }
2206
2207  if (N->getOpcode() == ISD::ADD) {
2208    SDValue N1 = N->getOperand(0);
2209    SDValue N2 = N->getOperand(1);
2210    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2211      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2212      if (V) {
2213        Offset += V->getSExtValue();
2214        return true;
2215      }
2216    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2217      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2218      if (V) {
2219        Offset += V->getSExtValue();
2220        return true;
2221      }
2222    }
2223  }
2224  return false;
2225}
2226
2227
2228SDValue TargetLowering::
2229PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2230  // Default implementation: no optimization.
2231  return SDValue();
2232}
2233
2234//===----------------------------------------------------------------------===//
2235//  Inline Assembler Implementation Methods
2236//===----------------------------------------------------------------------===//
2237
2238
2239TargetLowering::ConstraintType
2240TargetLowering::getConstraintType(const std::string &Constraint) const {
2241  // FIXME: lots more standard ones to handle.
2242  if (Constraint.size() == 1) {
2243    switch (Constraint[0]) {
2244    default: break;
2245    case 'r': return C_RegisterClass;
2246    case 'm':    // memory
2247    case 'o':    // offsetable
2248    case 'V':    // not offsetable
2249      return C_Memory;
2250    case 'i':    // Simple Integer or Relocatable Constant
2251    case 'n':    // Simple Integer
2252    case 's':    // Relocatable Constant
2253    case 'X':    // Allow ANY value.
2254    case 'I':    // Target registers.
2255    case 'J':
2256    case 'K':
2257    case 'L':
2258    case 'M':
2259    case 'N':
2260    case 'O':
2261    case 'P':
2262      return C_Other;
2263    }
2264  }
2265
2266  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2267      Constraint[Constraint.size()-1] == '}')
2268    return C_Register;
2269  return C_Unknown;
2270}
2271
2272/// LowerXConstraint - try to replace an X constraint, which matches anything,
2273/// with another that has more specific requirements based on the type of the
2274/// corresponding operand.
2275const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2276  if (ConstraintVT.isInteger())
2277    return "r";
2278  if (ConstraintVT.isFloatingPoint())
2279    return "f";      // works for many targets
2280  return 0;
2281}
2282
2283/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2284/// vector.  If it is invalid, don't add anything to Ops.
2285void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2286                                                  char ConstraintLetter,
2287                                                  bool hasMemory,
2288                                                  std::vector<SDValue> &Ops,
2289                                                  SelectionDAG &DAG) const {
2290  switch (ConstraintLetter) {
2291  default: break;
2292  case 'X':     // Allows any operand; labels (basic block) use this.
2293    if (Op.getOpcode() == ISD::BasicBlock) {
2294      Ops.push_back(Op);
2295      return;
2296    }
2297    // fall through
2298  case 'i':    // Simple Integer or Relocatable Constant
2299  case 'n':    // Simple Integer
2300  case 's': {  // Relocatable Constant
2301    // These operands are interested in values of the form (GV+C), where C may
2302    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2303    // is possible and fine if either GV or C are missing.
2304    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2305    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2306
2307    // If we have "(add GV, C)", pull out GV/C
2308    if (Op.getOpcode() == ISD::ADD) {
2309      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2310      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2311      if (C == 0 || GA == 0) {
2312        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2313        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2314      }
2315      if (C == 0 || GA == 0)
2316        C = 0, GA = 0;
2317    }
2318
2319    // If we find a valid operand, map to the TargetXXX version so that the
2320    // value itself doesn't get selected.
2321    if (GA) {   // Either &GV   or   &GV+C
2322      if (ConstraintLetter != 'n') {
2323        int64_t Offs = GA->getOffset();
2324        if (C) Offs += C->getZExtValue();
2325        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2326                                                 Op.getValueType(), Offs));
2327        return;
2328      }
2329    }
2330    if (C) {   // just C, no GV.
2331      // Simple constants are not allowed for 's'.
2332      if (ConstraintLetter != 's') {
2333        // gcc prints these as sign extended.  Sign extend value to 64 bits
2334        // now; without this it would get ZExt'd later in
2335        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2336        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2337                                            MVT::i64));
2338        return;
2339      }
2340    }
2341    break;
2342  }
2343  }
2344}
2345
2346std::vector<unsigned> TargetLowering::
2347getRegClassForInlineAsmConstraint(const std::string &Constraint,
2348                                  EVT VT) const {
2349  return std::vector<unsigned>();
2350}
2351
2352
2353std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2354getRegForInlineAsmConstraint(const std::string &Constraint,
2355                             EVT VT) const {
2356  if (Constraint[0] != '{')
2357    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2358  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2359
2360  // Remove the braces from around the name.
2361  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2362
2363  // Figure out which register class contains this reg.
2364  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2365  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2366       E = RI->regclass_end(); RCI != E; ++RCI) {
2367    const TargetRegisterClass *RC = *RCI;
2368
2369    // If none of the value types for this register class are valid, we
2370    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2371    bool isLegal = false;
2372    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2373         I != E; ++I) {
2374      if (isTypeLegal(*I)) {
2375        isLegal = true;
2376        break;
2377      }
2378    }
2379
2380    if (!isLegal) continue;
2381
2382    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2383         I != E; ++I) {
2384      if (RegName.equals_lower(RI->getName(*I)))
2385        return std::make_pair(*I, RC);
2386    }
2387  }
2388
2389  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2390}
2391
2392//===----------------------------------------------------------------------===//
2393// Constraint Selection.
2394
2395/// isMatchingInputConstraint - Return true of this is an input operand that is
2396/// a matching constraint like "4".
2397bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2398  assert(!ConstraintCode.empty() && "No known constraint!");
2399  return isdigit(ConstraintCode[0]);
2400}
2401
2402/// getMatchedOperand - If this is an input matching constraint, this method
2403/// returns the output operand it matches.
2404unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2405  assert(!ConstraintCode.empty() && "No known constraint!");
2406  return atoi(ConstraintCode.c_str());
2407}
2408
2409
2410/// getConstraintGenerality - Return an integer indicating how general CT
2411/// is.
2412static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2413  switch (CT) {
2414  default: llvm_unreachable("Unknown constraint type!");
2415  case TargetLowering::C_Other:
2416  case TargetLowering::C_Unknown:
2417    return 0;
2418  case TargetLowering::C_Register:
2419    return 1;
2420  case TargetLowering::C_RegisterClass:
2421    return 2;
2422  case TargetLowering::C_Memory:
2423    return 3;
2424  }
2425}
2426
2427/// ChooseConstraint - If there are multiple different constraints that we
2428/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2429/// This is somewhat tricky: constraints fall into four classes:
2430///    Other         -> immediates and magic values
2431///    Register      -> one specific register
2432///    RegisterClass -> a group of regs
2433///    Memory        -> memory
2434/// Ideally, we would pick the most specific constraint possible: if we have
2435/// something that fits into a register, we would pick it.  The problem here
2436/// is that if we have something that could either be in a register or in
2437/// memory that use of the register could cause selection of *other*
2438/// operands to fail: they might only succeed if we pick memory.  Because of
2439/// this the heuristic we use is:
2440///
2441///  1) If there is an 'other' constraint, and if the operand is valid for
2442///     that constraint, use it.  This makes us take advantage of 'i'
2443///     constraints when available.
2444///  2) Otherwise, pick the most general constraint present.  This prefers
2445///     'm' over 'r', for example.
2446///
2447static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2448                             bool hasMemory,  const TargetLowering &TLI,
2449                             SDValue Op, SelectionDAG *DAG) {
2450  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2451  unsigned BestIdx = 0;
2452  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2453  int BestGenerality = -1;
2454
2455  // Loop over the options, keeping track of the most general one.
2456  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2457    TargetLowering::ConstraintType CType =
2458      TLI.getConstraintType(OpInfo.Codes[i]);
2459
2460    // If this is an 'other' constraint, see if the operand is valid for it.
2461    // For example, on X86 we might have an 'rI' constraint.  If the operand
2462    // is an integer in the range [0..31] we want to use I (saving a load
2463    // of a register), otherwise we must use 'r'.
2464    if (CType == TargetLowering::C_Other && Op.getNode()) {
2465      assert(OpInfo.Codes[i].size() == 1 &&
2466             "Unhandled multi-letter 'other' constraint");
2467      std::vector<SDValue> ResultOps;
2468      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2469                                       ResultOps, *DAG);
2470      if (!ResultOps.empty()) {
2471        BestType = CType;
2472        BestIdx = i;
2473        break;
2474      }
2475    }
2476
2477    // This constraint letter is more general than the previous one, use it.
2478    int Generality = getConstraintGenerality(CType);
2479    if (Generality > BestGenerality) {
2480      BestType = CType;
2481      BestIdx = i;
2482      BestGenerality = Generality;
2483    }
2484  }
2485
2486  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2487  OpInfo.ConstraintType = BestType;
2488}
2489
2490/// ComputeConstraintToUse - Determines the constraint code and constraint
2491/// type to use for the specific AsmOperandInfo, setting
2492/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2493void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2494                                            SDValue Op,
2495                                            bool hasMemory,
2496                                            SelectionDAG *DAG) const {
2497  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2498
2499  // Single-letter constraints ('r') are very common.
2500  if (OpInfo.Codes.size() == 1) {
2501    OpInfo.ConstraintCode = OpInfo.Codes[0];
2502    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2503  } else {
2504    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2505  }
2506
2507  // 'X' matches anything.
2508  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2509    // Labels and constants are handled elsewhere ('X' is the only thing
2510    // that matches labels).  For Functions, the type here is the type of
2511    // the result, which is not what we want to look at; leave them alone.
2512    Value *v = OpInfo.CallOperandVal;
2513    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2514      OpInfo.CallOperandVal = v;
2515      return;
2516    }
2517
2518    // Otherwise, try to resolve it to something we know about by looking at
2519    // the actual operand type.
2520    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2521      OpInfo.ConstraintCode = Repl;
2522      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2523    }
2524  }
2525}
2526
2527//===----------------------------------------------------------------------===//
2528//  Loop Strength Reduction hooks
2529//===----------------------------------------------------------------------===//
2530
2531/// isLegalAddressingMode - Return true if the addressing mode represented
2532/// by AM is legal for this target, for a load/store of the specified type.
2533bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2534                                           const Type *Ty) const {
2535  // The default implementation of this implements a conservative RISCy, r+r and
2536  // r+i addr mode.
2537
2538  // Allows a sign-extended 16-bit immediate field.
2539  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2540    return false;
2541
2542  // No global is ever allowed as a base.
2543  if (AM.BaseGV)
2544    return false;
2545
2546  // Only support r+r,
2547  switch (AM.Scale) {
2548  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2549    break;
2550  case 1:
2551    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2552      return false;
2553    // Otherwise we have r+r or r+i.
2554    break;
2555  case 2:
2556    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2557      return false;
2558    // Allow 2*r as r+r.
2559    break;
2560  }
2561
2562  return true;
2563}
2564
2565/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2566/// return a DAG expression to select that will generate the same value by
2567/// multiplying by a magic number.  See:
2568/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2569SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2570                                  std::vector<SDNode*>* Created) const {
2571  EVT VT = N->getValueType(0);
2572  DebugLoc dl= N->getDebugLoc();
2573
2574  // Check to see if we can do this.
2575  // FIXME: We should be more aggressive here.
2576  if (!isTypeLegal(VT))
2577    return SDValue();
2578
2579  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2580  APInt::ms magics = d.magic();
2581
2582  // Multiply the numerator (operand 0) by the magic value
2583  // FIXME: We should support doing a MUL in a wider type
2584  SDValue Q;
2585  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2586    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2587                    DAG.getConstant(magics.m, VT));
2588  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2589    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2590                              N->getOperand(0),
2591                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2592  else
2593    return SDValue();       // No mulhs or equvialent
2594  // If d > 0 and m < 0, add the numerator
2595  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2596    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2597    if (Created)
2598      Created->push_back(Q.getNode());
2599  }
2600  // If d < 0 and m > 0, subtract the numerator.
2601  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2602    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2603    if (Created)
2604      Created->push_back(Q.getNode());
2605  }
2606  // Shift right algebraic if shift value is nonzero
2607  if (magics.s > 0) {
2608    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2609                    DAG.getConstant(magics.s, getShiftAmountTy()));
2610    if (Created)
2611      Created->push_back(Q.getNode());
2612  }
2613  // Extract the sign bit and add it to the quotient
2614  SDValue T =
2615    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2616                                                 getShiftAmountTy()));
2617  if (Created)
2618    Created->push_back(T.getNode());
2619  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2620}
2621
2622/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2623/// return a DAG expression to select that will generate the same value by
2624/// multiplying by a magic number.  See:
2625/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2626SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2627                                  std::vector<SDNode*>* Created) const {
2628  EVT VT = N->getValueType(0);
2629  DebugLoc dl = N->getDebugLoc();
2630
2631  // Check to see if we can do this.
2632  // FIXME: We should be more aggressive here.
2633  if (!isTypeLegal(VT))
2634    return SDValue();
2635
2636  // FIXME: We should use a narrower constant when the upper
2637  // bits are known to be zero.
2638  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2639  APInt::mu magics = N1C->getAPIntValue().magicu();
2640
2641  // Multiply the numerator (operand 0) by the magic value
2642  // FIXME: We should support doing a MUL in a wider type
2643  SDValue Q;
2644  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2645    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2646                    DAG.getConstant(magics.m, VT));
2647  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2648    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2649                              N->getOperand(0),
2650                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2651  else
2652    return SDValue();       // No mulhu or equvialent
2653  if (Created)
2654    Created->push_back(Q.getNode());
2655
2656  if (magics.a == 0) {
2657    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2658           "We shouldn't generate an undefined shift!");
2659    return DAG.getNode(ISD::SRL, dl, VT, Q,
2660                       DAG.getConstant(magics.s, getShiftAmountTy()));
2661  } else {
2662    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2663    if (Created)
2664      Created->push_back(NPQ.getNode());
2665    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2666                      DAG.getConstant(1, getShiftAmountTy()));
2667    if (Created)
2668      Created->push_back(NPQ.getNode());
2669    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2670    if (Created)
2671      Created->push_back(NPQ.getNode());
2672    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2673                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2674  }
2675}
2676