TargetLowering.cpp revision f4aab034434769a98250611400b01a9f75cff607
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtarget.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
178  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
179  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
180  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
181  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
182  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
183  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
184  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
185  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
186  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
187  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
188  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
189  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
190  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
191  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
192  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
193  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
194  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
195  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
196  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
197  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
198  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
199  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
200  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
201  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
202  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
203  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
204  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
205  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
206  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
207  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
208  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
209  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
210  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
211  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
212  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
213  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
214  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
215  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
216  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
217  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
218  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
219  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
220  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
221  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
222  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
223  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
224  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
225  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
226  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
227  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
228  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
229  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
230  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
231  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
232  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
233  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
234  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
235  Names[RTLIB::OEQ_F32] = "__eqsf2";
236  Names[RTLIB::OEQ_F64] = "__eqdf2";
237  Names[RTLIB::UNE_F32] = "__nesf2";
238  Names[RTLIB::UNE_F64] = "__nedf2";
239  Names[RTLIB::OGE_F32] = "__gesf2";
240  Names[RTLIB::OGE_F64] = "__gedf2";
241  Names[RTLIB::OLT_F32] = "__ltsf2";
242  Names[RTLIB::OLT_F64] = "__ltdf2";
243  Names[RTLIB::OLE_F32] = "__lesf2";
244  Names[RTLIB::OLE_F64] = "__ledf2";
245  Names[RTLIB::OGT_F32] = "__gtsf2";
246  Names[RTLIB::OGT_F64] = "__gtdf2";
247  Names[RTLIB::UO_F32] = "__unordsf2";
248  Names[RTLIB::UO_F64] = "__unorddf2";
249  Names[RTLIB::O_F32] = "__unordsf2";
250  Names[RTLIB::O_F64] = "__unorddf2";
251  Names[RTLIB::MEMCPY] = "memcpy";
252  Names[RTLIB::MEMMOVE] = "memmove";
253  Names[RTLIB::MEMSET] = "memset";
254  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
255}
256
257/// InitLibcallCallingConvs - Set default libcall CallingConvs.
258///
259static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
260  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
261    CCs[i] = CallingConv::C;
262  }
263}
264
265/// getFPEXT - Return the FPEXT_*_* value for the given types, or
266/// UNKNOWN_LIBCALL if there is none.
267RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
268  if (OpVT == MVT::f32) {
269    if (RetVT == MVT::f64)
270      return FPEXT_F32_F64;
271  }
272  return UNKNOWN_LIBCALL;
273}
274
275/// getFPROUND - Return the FPROUND_*_* value for the given types, or
276/// UNKNOWN_LIBCALL if there is none.
277RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278  if (RetVT == MVT::f32) {
279    if (OpVT == MVT::f64)
280      return FPROUND_F64_F32;
281    if (OpVT == MVT::f80)
282      return FPROUND_F80_F32;
283    if (OpVT == MVT::ppcf128)
284      return FPROUND_PPCF128_F32;
285  } else if (RetVT == MVT::f64) {
286    if (OpVT == MVT::f80)
287      return FPROUND_F80_F64;
288    if (OpVT == MVT::ppcf128)
289      return FPROUND_PPCF128_F64;
290  }
291  return UNKNOWN_LIBCALL;
292}
293
294/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
295/// UNKNOWN_LIBCALL if there is none.
296RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
297  if (OpVT == MVT::f32) {
298    if (RetVT == MVT::i8)
299      return FPTOSINT_F32_I8;
300    if (RetVT == MVT::i16)
301      return FPTOSINT_F32_I16;
302    if (RetVT == MVT::i32)
303      return FPTOSINT_F32_I32;
304    if (RetVT == MVT::i64)
305      return FPTOSINT_F32_I64;
306    if (RetVT == MVT::i128)
307      return FPTOSINT_F32_I128;
308  } else if (OpVT == MVT::f64) {
309    if (RetVT == MVT::i32)
310      return FPTOSINT_F64_I32;
311    if (RetVT == MVT::i64)
312      return FPTOSINT_F64_I64;
313    if (RetVT == MVT::i128)
314      return FPTOSINT_F64_I128;
315  } else if (OpVT == MVT::f80) {
316    if (RetVT == MVT::i32)
317      return FPTOSINT_F80_I32;
318    if (RetVT == MVT::i64)
319      return FPTOSINT_F80_I64;
320    if (RetVT == MVT::i128)
321      return FPTOSINT_F80_I128;
322  } else if (OpVT == MVT::ppcf128) {
323    if (RetVT == MVT::i32)
324      return FPTOSINT_PPCF128_I32;
325    if (RetVT == MVT::i64)
326      return FPTOSINT_PPCF128_I64;
327    if (RetVT == MVT::i128)
328      return FPTOSINT_PPCF128_I128;
329  }
330  return UNKNOWN_LIBCALL;
331}
332
333/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
334/// UNKNOWN_LIBCALL if there is none.
335RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
336  if (OpVT == MVT::f32) {
337    if (RetVT == MVT::i8)
338      return FPTOUINT_F32_I8;
339    if (RetVT == MVT::i16)
340      return FPTOUINT_F32_I16;
341    if (RetVT == MVT::i32)
342      return FPTOUINT_F32_I32;
343    if (RetVT == MVT::i64)
344      return FPTOUINT_F32_I64;
345    if (RetVT == MVT::i128)
346      return FPTOUINT_F32_I128;
347  } else if (OpVT == MVT::f64) {
348    if (RetVT == MVT::i32)
349      return FPTOUINT_F64_I32;
350    if (RetVT == MVT::i64)
351      return FPTOUINT_F64_I64;
352    if (RetVT == MVT::i128)
353      return FPTOUINT_F64_I128;
354  } else if (OpVT == MVT::f80) {
355    if (RetVT == MVT::i32)
356      return FPTOUINT_F80_I32;
357    if (RetVT == MVT::i64)
358      return FPTOUINT_F80_I64;
359    if (RetVT == MVT::i128)
360      return FPTOUINT_F80_I128;
361  } else if (OpVT == MVT::ppcf128) {
362    if (RetVT == MVT::i32)
363      return FPTOUINT_PPCF128_I32;
364    if (RetVT == MVT::i64)
365      return FPTOUINT_PPCF128_I64;
366    if (RetVT == MVT::i128)
367      return FPTOUINT_PPCF128_I128;
368  }
369  return UNKNOWN_LIBCALL;
370}
371
372/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
373/// UNKNOWN_LIBCALL if there is none.
374RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
375  if (OpVT == MVT::i32) {
376    if (RetVT == MVT::f32)
377      return SINTTOFP_I32_F32;
378    else if (RetVT == MVT::f64)
379      return SINTTOFP_I32_F64;
380    else if (RetVT == MVT::f80)
381      return SINTTOFP_I32_F80;
382    else if (RetVT == MVT::ppcf128)
383      return SINTTOFP_I32_PPCF128;
384  } else if (OpVT == MVT::i64) {
385    if (RetVT == MVT::f32)
386      return SINTTOFP_I64_F32;
387    else if (RetVT == MVT::f64)
388      return SINTTOFP_I64_F64;
389    else if (RetVT == MVT::f80)
390      return SINTTOFP_I64_F80;
391    else if (RetVT == MVT::ppcf128)
392      return SINTTOFP_I64_PPCF128;
393  } else if (OpVT == MVT::i128) {
394    if (RetVT == MVT::f32)
395      return SINTTOFP_I128_F32;
396    else if (RetVT == MVT::f64)
397      return SINTTOFP_I128_F64;
398    else if (RetVT == MVT::f80)
399      return SINTTOFP_I128_F80;
400    else if (RetVT == MVT::ppcf128)
401      return SINTTOFP_I128_PPCF128;
402  }
403  return UNKNOWN_LIBCALL;
404}
405
406/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
407/// UNKNOWN_LIBCALL if there is none.
408RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
409  if (OpVT == MVT::i32) {
410    if (RetVT == MVT::f32)
411      return UINTTOFP_I32_F32;
412    else if (RetVT == MVT::f64)
413      return UINTTOFP_I32_F64;
414    else if (RetVT == MVT::f80)
415      return UINTTOFP_I32_F80;
416    else if (RetVT == MVT::ppcf128)
417      return UINTTOFP_I32_PPCF128;
418  } else if (OpVT == MVT::i64) {
419    if (RetVT == MVT::f32)
420      return UINTTOFP_I64_F32;
421    else if (RetVT == MVT::f64)
422      return UINTTOFP_I64_F64;
423    else if (RetVT == MVT::f80)
424      return UINTTOFP_I64_F80;
425    else if (RetVT == MVT::ppcf128)
426      return UINTTOFP_I64_PPCF128;
427  } else if (OpVT == MVT::i128) {
428    if (RetVT == MVT::f32)
429      return UINTTOFP_I128_F32;
430    else if (RetVT == MVT::f64)
431      return UINTTOFP_I128_F64;
432    else if (RetVT == MVT::f80)
433      return UINTTOFP_I128_F80;
434    else if (RetVT == MVT::ppcf128)
435      return UINTTOFP_I128_PPCF128;
436  }
437  return UNKNOWN_LIBCALL;
438}
439
440/// InitCmpLibcallCCs - Set default comparison libcall CC.
441///
442static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
443  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
444  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
445  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
446  CCs[RTLIB::UNE_F32] = ISD::SETNE;
447  CCs[RTLIB::UNE_F64] = ISD::SETNE;
448  CCs[RTLIB::OGE_F32] = ISD::SETGE;
449  CCs[RTLIB::OGE_F64] = ISD::SETGE;
450  CCs[RTLIB::OLT_F32] = ISD::SETLT;
451  CCs[RTLIB::OLT_F64] = ISD::SETLT;
452  CCs[RTLIB::OLE_F32] = ISD::SETLE;
453  CCs[RTLIB::OLE_F64] = ISD::SETLE;
454  CCs[RTLIB::OGT_F32] = ISD::SETGT;
455  CCs[RTLIB::OGT_F64] = ISD::SETGT;
456  CCs[RTLIB::UO_F32] = ISD::SETNE;
457  CCs[RTLIB::UO_F64] = ISD::SETNE;
458  CCs[RTLIB::O_F32] = ISD::SETEQ;
459  CCs[RTLIB::O_F64] = ISD::SETEQ;
460}
461
462/// NOTE: The constructor takes ownership of TLOF.
463TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
464  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
465  // All operations default to being supported.
466  memset(OpActions, 0, sizeof(OpActions));
467  memset(LoadExtActions, 0, sizeof(LoadExtActions));
468  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
469  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
470  memset(ConvertActions, 0, sizeof(ConvertActions));
471  memset(CondCodeActions, 0, sizeof(CondCodeActions));
472
473  // Set default actions for various operations.
474  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
475    // Default all indexed load / store to expand.
476    for (unsigned IM = (unsigned)ISD::PRE_INC;
477         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
478      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
479      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
480    }
481
482    // These operations default to expand.
483    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
484    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
485  }
486
487  // Most targets ignore the @llvm.prefetch intrinsic.
488  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
489
490  // ConstantFP nodes default to expand.  Targets can either change this to
491  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
492  // to optimize expansions for certain constants.
493  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
494  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
495  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
496
497  // These library functions default to expand.
498  setOperationAction(ISD::FLOG , MVT::f64, Expand);
499  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
500  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
501  setOperationAction(ISD::FEXP , MVT::f64, Expand);
502  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
503  setOperationAction(ISD::FLOG , MVT::f32, Expand);
504  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
505  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
506  setOperationAction(ISD::FEXP , MVT::f32, Expand);
507  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
508
509  // Default ISD::TRAP to expand (which turns it into abort).
510  setOperationAction(ISD::TRAP, MVT::Other, Expand);
511
512  IsLittleEndian = TD->isLittleEndian();
513  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
514  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
515  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
516  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
517  benefitFromCodePlacementOpt = false;
518  UseUnderscoreSetJmp = false;
519  UseUnderscoreLongJmp = false;
520  SelectIsExpensive = false;
521  IntDivIsCheap = false;
522  Pow2DivIsCheap = false;
523  StackPointerRegisterToSaveRestore = 0;
524  ExceptionPointerRegister = 0;
525  ExceptionSelectorRegister = 0;
526  BooleanContents = UndefinedBooleanContent;
527  SchedPreferenceInfo = SchedulingForLatency;
528  JumpBufSize = 0;
529  JumpBufAlignment = 0;
530  IfCvtBlockSizeLimit = 2;
531  IfCvtDupBlockSizeLimit = 0;
532  PrefLoopAlignment = 0;
533
534  InitLibcallNames(LibcallRoutineNames);
535  InitCmpLibcallCCs(CmpLibcallCCs);
536  InitLibcallCallingConvs(LibcallCallingConvs);
537}
538
539TargetLowering::~TargetLowering() {
540  delete &TLOF;
541}
542
543/// canOpTrap - Returns true if the operation can trap for the value type.
544/// VT must be a legal type.
545bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
546  assert(isTypeLegal(VT));
547  switch (Op) {
548  default:
549    return false;
550  case ISD::FDIV:
551  case ISD::FREM:
552  case ISD::SDIV:
553  case ISD::UDIV:
554  case ISD::SREM:
555  case ISD::UREM:
556    return true;
557  }
558}
559
560
561static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
562                                       unsigned &NumIntermediates,
563                                       EVT &RegisterVT,
564                                       TargetLowering* TLI) {
565  // Figure out the right, legal destination reg to copy into.
566  unsigned NumElts = VT.getVectorNumElements();
567  MVT EltTy = VT.getVectorElementType();
568
569  unsigned NumVectorRegs = 1;
570
571  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
572  // could break down into LHS/RHS like LegalizeDAG does.
573  if (!isPowerOf2_32(NumElts)) {
574    NumVectorRegs = NumElts;
575    NumElts = 1;
576  }
577
578  // Divide the input until we get to a supported size.  This will always
579  // end with a scalar if the target doesn't support vectors.
580  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
581    NumElts >>= 1;
582    NumVectorRegs <<= 1;
583  }
584
585  NumIntermediates = NumVectorRegs;
586
587  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
588  if (!TLI->isTypeLegal(NewVT))
589    NewVT = EltTy;
590  IntermediateVT = NewVT;
591
592  EVT DestVT = TLI->getRegisterType(NewVT);
593  RegisterVT = DestVT;
594  if (EVT(DestVT).bitsLT(NewVT)) {
595    // Value is expanded, e.g. i64 -> i16.
596    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
597  } else {
598    // Otherwise, promotion or legal types use the same number of registers as
599    // the vector decimated to the appropriate level.
600    return NumVectorRegs;
601  }
602
603  return 1;
604}
605
606/// computeRegisterProperties - Once all of the register classes are added,
607/// this allows us to compute derived properties we expose.
608void TargetLowering::computeRegisterProperties() {
609  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
610         "Too many value types for ValueTypeActions to hold!");
611
612  // Everything defaults to needing one register.
613  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
614    NumRegistersForVT[i] = 1;
615    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
616  }
617  // ...except isVoid, which doesn't need any registers.
618  NumRegistersForVT[MVT::isVoid] = 0;
619
620  // Find the largest integer register class.
621  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
622  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
623    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
624
625  // Every integer value type larger than this largest register takes twice as
626  // many registers to represent as the previous ValueType.
627  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
628    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
629    if (!ExpandedVT.isInteger())
630      break;
631    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
632    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
633    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
634    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
635  }
636
637  // Inspect all of the ValueType's smaller than the largest integer
638  // register to see which ones need promotion.
639  unsigned LegalIntReg = LargestIntReg;
640  for (unsigned IntReg = LargestIntReg - 1;
641       IntReg >= (unsigned)MVT::i1; --IntReg) {
642    EVT IVT = (MVT::SimpleValueType)IntReg;
643    if (isTypeLegal(IVT)) {
644      LegalIntReg = IntReg;
645    } else {
646      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
647        (MVT::SimpleValueType)LegalIntReg;
648      ValueTypeActions.setTypeAction(IVT, Promote);
649    }
650  }
651
652  // ppcf128 type is really two f64's.
653  if (!isTypeLegal(MVT::ppcf128)) {
654    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
655    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
656    TransformToType[MVT::ppcf128] = MVT::f64;
657    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
658  }
659
660  // Decide how to handle f64. If the target does not have native f64 support,
661  // expand it to i64 and we will be generating soft float library calls.
662  if (!isTypeLegal(MVT::f64)) {
663    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
664    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
665    TransformToType[MVT::f64] = MVT::i64;
666    ValueTypeActions.setTypeAction(MVT::f64, Expand);
667  }
668
669  // Decide how to handle f32. If the target does not have native support for
670  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
671  if (!isTypeLegal(MVT::f32)) {
672    if (isTypeLegal(MVT::f64)) {
673      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
674      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
675      TransformToType[MVT::f32] = MVT::f64;
676      ValueTypeActions.setTypeAction(MVT::f32, Promote);
677    } else {
678      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
679      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
680      TransformToType[MVT::f32] = MVT::i32;
681      ValueTypeActions.setTypeAction(MVT::f32, Expand);
682    }
683  }
684
685  // Loop over all of the vector value types to see which need transformations.
686  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
687       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
688    MVT VT = (MVT::SimpleValueType)i;
689    if (!isTypeLegal(VT)) {
690      MVT IntermediateVT;
691      EVT RegisterVT;
692      unsigned NumIntermediates;
693      NumRegistersForVT[i] =
694        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
695                                  RegisterVT, this);
696      RegisterTypeForVT[i] = RegisterVT;
697
698      // Determine if there is a legal wider type.
699      bool IsLegalWiderType = false;
700      EVT EltVT = VT.getVectorElementType();
701      unsigned NElts = VT.getVectorNumElements();
702      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
703        EVT SVT = (MVT::SimpleValueType)nVT;
704        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
705            SVT.getVectorNumElements() > NElts && NElts != 1) {
706          TransformToType[i] = SVT;
707          ValueTypeActions.setTypeAction(VT, Promote);
708          IsLegalWiderType = true;
709          break;
710        }
711      }
712      if (!IsLegalWiderType) {
713        EVT NVT = VT.getPow2VectorType();
714        if (NVT == VT) {
715          // Type is already a power of 2.  The default action is to split.
716          TransformToType[i] = MVT::Other;
717          ValueTypeActions.setTypeAction(VT, Expand);
718        } else {
719          TransformToType[i] = NVT;
720          ValueTypeActions.setTypeAction(VT, Promote);
721        }
722      }
723    }
724  }
725}
726
727const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
728  return NULL;
729}
730
731
732MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
733  return PointerTy.SimpleTy;
734}
735
736MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
737  return MVT::i32; // return the default value
738}
739
740/// getVectorTypeBreakdown - Vector types are broken down into some number of
741/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
742/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
743/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
744///
745/// This method returns the number of registers needed, and the VT for each
746/// register.  It also returns the VT and quantity of the intermediate values
747/// before they are promoted/expanded.
748///
749unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
750                                                EVT &IntermediateVT,
751                                                unsigned &NumIntermediates,
752                                                EVT &RegisterVT) const {
753  // Figure out the right, legal destination reg to copy into.
754  unsigned NumElts = VT.getVectorNumElements();
755  EVT EltTy = VT.getVectorElementType();
756
757  unsigned NumVectorRegs = 1;
758
759  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
760  // could break down into LHS/RHS like LegalizeDAG does.
761  if (!isPowerOf2_32(NumElts)) {
762    NumVectorRegs = NumElts;
763    NumElts = 1;
764  }
765
766  // Divide the input until we get to a supported size.  This will always
767  // end with a scalar if the target doesn't support vectors.
768  while (NumElts > 1 && !isTypeLegal(
769                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
770    NumElts >>= 1;
771    NumVectorRegs <<= 1;
772  }
773
774  NumIntermediates = NumVectorRegs;
775
776  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
777  if (!isTypeLegal(NewVT))
778    NewVT = EltTy;
779  IntermediateVT = NewVT;
780
781  EVT DestVT = getRegisterType(Context, NewVT);
782  RegisterVT = DestVT;
783  if (DestVT.bitsLT(NewVT)) {
784    // Value is expanded, e.g. i64 -> i16.
785    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
786  } else {
787    // Otherwise, promotion or legal types use the same number of registers as
788    // the vector decimated to the appropriate level.
789    return NumVectorRegs;
790  }
791
792  return 1;
793}
794
795/// getWidenVectorType: given a vector type, returns the type to widen to
796/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
797/// If there is no vector type that we want to widen to, returns MVT::Other
798/// When and where to widen is target dependent based on the cost of
799/// scalarizing vs using the wider vector type.
800EVT TargetLowering::getWidenVectorType(EVT VT) const {
801  assert(VT.isVector());
802  if (isTypeLegal(VT))
803    return VT;
804
805  // Default is not to widen until moved to LegalizeTypes
806  return MVT::Other;
807}
808
809/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
810/// function arguments in the caller parameter area.  This is the actual
811/// alignment, not its logarithm.
812unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
813  return TD->getCallFrameTypeAlignment(Ty);
814}
815
816/// getJumpTableEncoding - Return the entry encoding for a jump table in the
817/// current function.  The returned value is a member of the
818/// MachineJumpTableInfo::JTEntryKind enum.
819unsigned TargetLowering::getJumpTableEncoding() const {
820  // In non-pic modes, just use the address of a block.
821  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
822    return MachineJumpTableInfo::EK_BlockAddress;
823
824  // In PIC mode, if the target supports a GPRel32 directive, use it.
825  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
826    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
827
828  // Otherwise, use a label difference.
829  return MachineJumpTableInfo::EK_LabelDifference32;
830}
831
832SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
833                                                 SelectionDAG &DAG) const {
834  // If our PIC model is GP relative, use the global offset table as the base.
835  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
836    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
837  return Table;
838}
839
840/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
841/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
842/// MCExpr.
843const MCExpr *
844TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
845                                             unsigned JTI,MCContext &Ctx) const{
846  // The normal PIC reloc base is the label at the start of the jump table.
847  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
848}
849
850bool
851TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
852  // Assume that everything is safe in static mode.
853  if (getTargetMachine().getRelocationModel() == Reloc::Static)
854    return true;
855
856  // In dynamic-no-pic mode, assume that known defined values are safe.
857  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
858      GA &&
859      !GA->getGlobal()->isDeclaration() &&
860      !GA->getGlobal()->isWeakForLinker())
861    return true;
862
863  // Otherwise assume nothing is safe.
864  return false;
865}
866
867//===----------------------------------------------------------------------===//
868//  Optimization Methods
869//===----------------------------------------------------------------------===//
870
871/// ShrinkDemandedConstant - Check to see if the specified operand of the
872/// specified instruction is a constant integer.  If so, check to see if there
873/// are any bits set in the constant that are not demanded.  If so, shrink the
874/// constant and return true.
875bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
876                                                        const APInt &Demanded) {
877  DebugLoc dl = Op.getDebugLoc();
878
879  // FIXME: ISD::SELECT, ISD::SELECT_CC
880  switch (Op.getOpcode()) {
881  default: break;
882  case ISD::XOR:
883  case ISD::AND:
884  case ISD::OR: {
885    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
886    if (!C) return false;
887
888    if (Op.getOpcode() == ISD::XOR &&
889        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
890      return false;
891
892    // if we can expand it to have all bits set, do it
893    if (C->getAPIntValue().intersects(~Demanded)) {
894      EVT VT = Op.getValueType();
895      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
896                                DAG.getConstant(Demanded &
897                                                C->getAPIntValue(),
898                                                VT));
899      return CombineTo(Op, New);
900    }
901
902    break;
903  }
904  }
905
906  return false;
907}
908
909/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
910/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
911/// cast, but it could be generalized for targets with other types of
912/// implicit widening casts.
913bool
914TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
915                                                    unsigned BitWidth,
916                                                    const APInt &Demanded,
917                                                    DebugLoc dl) {
918  assert(Op.getNumOperands() == 2 &&
919         "ShrinkDemandedOp only supports binary operators!");
920  assert(Op.getNode()->getNumValues() == 1 &&
921         "ShrinkDemandedOp only supports nodes with one result!");
922
923  // Don't do this if the node has another user, which may require the
924  // full value.
925  if (!Op.getNode()->hasOneUse())
926    return false;
927
928  // Search for the smallest integer type with free casts to and from
929  // Op's type. For expedience, just check power-of-2 integer types.
930  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
931  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
932  if (!isPowerOf2_32(SmallVTBits))
933    SmallVTBits = NextPowerOf2(SmallVTBits);
934  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
935    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
936    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
937        TLI.isZExtFree(SmallVT, Op.getValueType())) {
938      // We found a type with free casts.
939      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
940                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
941                                          Op.getNode()->getOperand(0)),
942                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
943                                          Op.getNode()->getOperand(1)));
944      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
945      return CombineTo(Op, Z);
946    }
947  }
948  return false;
949}
950
951/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
952/// DemandedMask bits of the result of Op are ever used downstream.  If we can
953/// use this information to simplify Op, create a new simplified DAG node and
954/// return true, returning the original and new nodes in Old and New. Otherwise,
955/// analyze the expression and return a mask of KnownOne and KnownZero bits for
956/// the expression (used to simplify the caller).  The KnownZero/One bits may
957/// only be accurate for those bits in the DemandedMask.
958bool TargetLowering::SimplifyDemandedBits(SDValue Op,
959                                          const APInt &DemandedMask,
960                                          APInt &KnownZero,
961                                          APInt &KnownOne,
962                                          TargetLoweringOpt &TLO,
963                                          unsigned Depth) const {
964  unsigned BitWidth = DemandedMask.getBitWidth();
965  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
966         "Mask size mismatches value type size!");
967  APInt NewMask = DemandedMask;
968  DebugLoc dl = Op.getDebugLoc();
969
970  // Don't know anything.
971  KnownZero = KnownOne = APInt(BitWidth, 0);
972
973  // Other users may use these bits.
974  if (!Op.getNode()->hasOneUse()) {
975    if (Depth != 0) {
976      // If not at the root, Just compute the KnownZero/KnownOne bits to
977      // simplify things downstream.
978      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
979      return false;
980    }
981    // If this is the root being simplified, allow it to have multiple uses,
982    // just set the NewMask to all bits.
983    NewMask = APInt::getAllOnesValue(BitWidth);
984  } else if (DemandedMask == 0) {
985    // Not demanding any bits from Op.
986    if (Op.getOpcode() != ISD::UNDEF)
987      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
988    return false;
989  } else if (Depth == 6) {        // Limit search depth.
990    return false;
991  }
992
993  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
994  switch (Op.getOpcode()) {
995  case ISD::Constant:
996    // We know all of the bits for a constant!
997    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
998    KnownZero = ~KnownOne & NewMask;
999    return false;   // Don't fall through, will infinitely loop.
1000  case ISD::AND:
1001    // If the RHS is a constant, check to see if the LHS would be zero without
1002    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1003    // simplify the LHS, here we're using information from the LHS to simplify
1004    // the RHS.
1005    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1006      APInt LHSZero, LHSOne;
1007      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1008                                LHSZero, LHSOne, Depth+1);
1009      // If the LHS already has zeros where RHSC does, this and is dead.
1010      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1011        return TLO.CombineTo(Op, Op.getOperand(0));
1012      // If any of the set bits in the RHS are known zero on the LHS, shrink
1013      // the constant.
1014      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1015        return true;
1016    }
1017
1018    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1019                             KnownOne, TLO, Depth+1))
1020      return true;
1021    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1022    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1023                             KnownZero2, KnownOne2, TLO, Depth+1))
1024      return true;
1025    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1026
1027    // If all of the demanded bits are known one on one side, return the other.
1028    // These bits cannot contribute to the result of the 'and'.
1029    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1030      return TLO.CombineTo(Op, Op.getOperand(0));
1031    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1032      return TLO.CombineTo(Op, Op.getOperand(1));
1033    // If all of the demanded bits in the inputs are known zeros, return zero.
1034    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1035      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1036    // If the RHS is a constant, see if we can simplify it.
1037    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1038      return true;
1039    // If the operation can be done in a smaller type, do so.
1040    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1041      return true;
1042
1043    // Output known-1 bits are only known if set in both the LHS & RHS.
1044    KnownOne &= KnownOne2;
1045    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1046    KnownZero |= KnownZero2;
1047    break;
1048  case ISD::OR:
1049    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1050                             KnownOne, TLO, Depth+1))
1051      return true;
1052    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1053    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1054                             KnownZero2, KnownOne2, TLO, Depth+1))
1055      return true;
1056    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1057
1058    // If all of the demanded bits are known zero on one side, return the other.
1059    // These bits cannot contribute to the result of the 'or'.
1060    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1061      return TLO.CombineTo(Op, Op.getOperand(0));
1062    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1063      return TLO.CombineTo(Op, Op.getOperand(1));
1064    // If all of the potentially set bits on one side are known to be set on
1065    // the other side, just use the 'other' side.
1066    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1067      return TLO.CombineTo(Op, Op.getOperand(0));
1068    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1069      return TLO.CombineTo(Op, Op.getOperand(1));
1070    // If the RHS is a constant, see if we can simplify it.
1071    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1072      return true;
1073    // If the operation can be done in a smaller type, do so.
1074    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1075      return true;
1076
1077    // Output known-0 bits are only known if clear in both the LHS & RHS.
1078    KnownZero &= KnownZero2;
1079    // Output known-1 are known to be set if set in either the LHS | RHS.
1080    KnownOne |= KnownOne2;
1081    break;
1082  case ISD::XOR:
1083    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1084                             KnownOne, TLO, Depth+1))
1085      return true;
1086    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1088                             KnownOne2, TLO, Depth+1))
1089      return true;
1090    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1091
1092    // If all of the demanded bits are known zero on one side, return the other.
1093    // These bits cannot contribute to the result of the 'xor'.
1094    if ((KnownZero & NewMask) == NewMask)
1095      return TLO.CombineTo(Op, Op.getOperand(0));
1096    if ((KnownZero2 & NewMask) == NewMask)
1097      return TLO.CombineTo(Op, Op.getOperand(1));
1098    // If the operation can be done in a smaller type, do so.
1099    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1100      return true;
1101
1102    // If all of the unknown bits are known to be zero on one side or the other
1103    // (but not both) turn this into an *inclusive* or.
1104    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1105    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1106      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1107                                               Op.getOperand(0),
1108                                               Op.getOperand(1)));
1109
1110    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1111    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1112    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1113    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1114
1115    // If all of the demanded bits on one side are known, and all of the set
1116    // bits on that side are also known to be set on the other side, turn this
1117    // into an AND, as we know the bits will be cleared.
1118    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1119    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1120      if ((KnownOne & KnownOne2) == KnownOne) {
1121        EVT VT = Op.getValueType();
1122        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1123        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1124                                                 Op.getOperand(0), ANDC));
1125      }
1126    }
1127
1128    // If the RHS is a constant, see if we can simplify it.
1129    // for XOR, we prefer to force bits to 1 if they will make a -1.
1130    // if we can't force bits, try to shrink constant
1131    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1132      APInt Expanded = C->getAPIntValue() | (~NewMask);
1133      // if we can expand it to have all bits set, do it
1134      if (Expanded.isAllOnesValue()) {
1135        if (Expanded != C->getAPIntValue()) {
1136          EVT VT = Op.getValueType();
1137          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1138                                          TLO.DAG.getConstant(Expanded, VT));
1139          return TLO.CombineTo(Op, New);
1140        }
1141        // if it already has all the bits set, nothing to change
1142        // but don't shrink either!
1143      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1144        return true;
1145      }
1146    }
1147
1148    KnownZero = KnownZeroOut;
1149    KnownOne  = KnownOneOut;
1150    break;
1151  case ISD::SELECT:
1152    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1153                             KnownOne, TLO, Depth+1))
1154      return true;
1155    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1156                             KnownOne2, TLO, Depth+1))
1157      return true;
1158    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1159    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1160
1161    // If the operands are constants, see if we can simplify them.
1162    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1163      return true;
1164
1165    // Only known if known in both the LHS and RHS.
1166    KnownOne &= KnownOne2;
1167    KnownZero &= KnownZero2;
1168    break;
1169  case ISD::SELECT_CC:
1170    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1171                             KnownOne, TLO, Depth+1))
1172      return true;
1173    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1174                             KnownOne2, TLO, Depth+1))
1175      return true;
1176    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1177    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1178
1179    // If the operands are constants, see if we can simplify them.
1180    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1181      return true;
1182
1183    // Only known if known in both the LHS and RHS.
1184    KnownOne &= KnownOne2;
1185    KnownZero &= KnownZero2;
1186    break;
1187  case ISD::SHL:
1188    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1189      unsigned ShAmt = SA->getZExtValue();
1190      SDValue InOp = Op.getOperand(0);
1191
1192      // If the shift count is an invalid immediate, don't do anything.
1193      if (ShAmt >= BitWidth)
1194        break;
1195
1196      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1197      // single shift.  We can do this if the bottom bits (which are shifted
1198      // out) are never demanded.
1199      if (InOp.getOpcode() == ISD::SRL &&
1200          isa<ConstantSDNode>(InOp.getOperand(1))) {
1201        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1202          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1203          unsigned Opc = ISD::SHL;
1204          int Diff = ShAmt-C1;
1205          if (Diff < 0) {
1206            Diff = -Diff;
1207            Opc = ISD::SRL;
1208          }
1209
1210          SDValue NewSA =
1211            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1212          EVT VT = Op.getValueType();
1213          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1214                                                   InOp.getOperand(0), NewSA));
1215        }
1216      }
1217
1218      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1219                               KnownZero, KnownOne, TLO, Depth+1))
1220        return true;
1221      KnownZero <<= SA->getZExtValue();
1222      KnownOne  <<= SA->getZExtValue();
1223      // low bits known zero.
1224      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1225    }
1226    break;
1227  case ISD::SRL:
1228    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1229      EVT VT = Op.getValueType();
1230      unsigned ShAmt = SA->getZExtValue();
1231      unsigned VTSize = VT.getSizeInBits();
1232      SDValue InOp = Op.getOperand(0);
1233
1234      // If the shift count is an invalid immediate, don't do anything.
1235      if (ShAmt >= BitWidth)
1236        break;
1237
1238      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1239      // single shift.  We can do this if the top bits (which are shifted out)
1240      // are never demanded.
1241      if (InOp.getOpcode() == ISD::SHL &&
1242          isa<ConstantSDNode>(InOp.getOperand(1))) {
1243        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1244          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1245          unsigned Opc = ISD::SRL;
1246          int Diff = ShAmt-C1;
1247          if (Diff < 0) {
1248            Diff = -Diff;
1249            Opc = ISD::SHL;
1250          }
1251
1252          SDValue NewSA =
1253            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1254          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1255                                                   InOp.getOperand(0), NewSA));
1256        }
1257      }
1258
1259      // Compute the new bits that are at the top now.
1260      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1261                               KnownZero, KnownOne, TLO, Depth+1))
1262        return true;
1263      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1264      KnownZero = KnownZero.lshr(ShAmt);
1265      KnownOne  = KnownOne.lshr(ShAmt);
1266
1267      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1268      KnownZero |= HighBits;  // High bits known zero.
1269    }
1270    break;
1271  case ISD::SRA:
1272    // If this is an arithmetic shift right and only the low-bit is set, we can
1273    // always convert this into a logical shr, even if the shift amount is
1274    // variable.  The low bit of the shift cannot be an input sign bit unless
1275    // the shift amount is >= the size of the datatype, which is undefined.
1276    if (DemandedMask == 1)
1277      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1278                                               Op.getOperand(0), Op.getOperand(1)));
1279
1280    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1281      EVT VT = Op.getValueType();
1282      unsigned ShAmt = SA->getZExtValue();
1283
1284      // If the shift count is an invalid immediate, don't do anything.
1285      if (ShAmt >= BitWidth)
1286        break;
1287
1288      APInt InDemandedMask = (NewMask << ShAmt);
1289
1290      // If any of the demanded bits are produced by the sign extension, we also
1291      // demand the input sign bit.
1292      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1293      if (HighBits.intersects(NewMask))
1294        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1295
1296      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1297                               KnownZero, KnownOne, TLO, Depth+1))
1298        return true;
1299      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300      KnownZero = KnownZero.lshr(ShAmt);
1301      KnownOne  = KnownOne.lshr(ShAmt);
1302
1303      // Handle the sign bit, adjusted to where it is now in the mask.
1304      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1305
1306      // If the input sign bit is known to be zero, or if none of the top bits
1307      // are demanded, turn this into an unsigned shift right.
1308      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1309        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1310                                                 Op.getOperand(0),
1311                                                 Op.getOperand(1)));
1312      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1313        KnownOne |= HighBits;
1314      }
1315    }
1316    break;
1317  case ISD::SIGN_EXTEND_INREG: {
1318    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1319
1320    // Sign extension.  Compute the demanded bits in the result that are not
1321    // present in the input.
1322    APInt NewBits =
1323      APInt::getHighBitsSet(BitWidth,
1324                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1325      NewMask;
1326
1327    // If none of the extended bits are demanded, eliminate the sextinreg.
1328    if (NewBits == 0)
1329      return TLO.CombineTo(Op, Op.getOperand(0));
1330
1331    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1332    InSignBit.zext(BitWidth);
1333    APInt InputDemandedBits =
1334      APInt::getLowBitsSet(BitWidth,
1335                           EVT.getScalarType().getSizeInBits()) &
1336      NewMask;
1337
1338    // Since the sign extended bits are demanded, we know that the sign
1339    // bit is demanded.
1340    InputDemandedBits |= InSignBit;
1341
1342    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1343                             KnownZero, KnownOne, TLO, Depth+1))
1344      return true;
1345    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1346
1347    // If the sign bit of the input is known set or clear, then we know the
1348    // top bits of the result.
1349
1350    // If the input sign bit is known zero, convert this into a zero extension.
1351    if (KnownZero.intersects(InSignBit))
1352      return TLO.CombineTo(Op,
1353                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1354
1355    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1356      KnownOne |= NewBits;
1357      KnownZero &= ~NewBits;
1358    } else {                       // Input sign bit unknown
1359      KnownZero &= ~NewBits;
1360      KnownOne &= ~NewBits;
1361    }
1362    break;
1363  }
1364  case ISD::ZERO_EXTEND: {
1365    unsigned OperandBitWidth =
1366      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1367    APInt InMask = NewMask;
1368    InMask.trunc(OperandBitWidth);
1369
1370    // If none of the top bits are demanded, convert this into an any_extend.
1371    APInt NewBits =
1372      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1373    if (!NewBits.intersects(NewMask))
1374      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1375                                               Op.getValueType(),
1376                                               Op.getOperand(0)));
1377
1378    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1379                             KnownZero, KnownOne, TLO, Depth+1))
1380      return true;
1381    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382    KnownZero.zext(BitWidth);
1383    KnownOne.zext(BitWidth);
1384    KnownZero |= NewBits;
1385    break;
1386  }
1387  case ISD::SIGN_EXTEND: {
1388    EVT InVT = Op.getOperand(0).getValueType();
1389    unsigned InBits = InVT.getScalarType().getSizeInBits();
1390    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1391    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1392    APInt NewBits   = ~InMask & NewMask;
1393
1394    // If none of the top bits are demanded, convert this into an any_extend.
1395    if (NewBits == 0)
1396      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1397                                              Op.getValueType(),
1398                                              Op.getOperand(0)));
1399
1400    // Since some of the sign extended bits are demanded, we know that the sign
1401    // bit is demanded.
1402    APInt InDemandedBits = InMask & NewMask;
1403    InDemandedBits |= InSignBit;
1404    InDemandedBits.trunc(InBits);
1405
1406    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1407                             KnownOne, TLO, Depth+1))
1408      return true;
1409    KnownZero.zext(BitWidth);
1410    KnownOne.zext(BitWidth);
1411
1412    // If the sign bit is known zero, convert this to a zero extend.
1413    if (KnownZero.intersects(InSignBit))
1414      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1415                                               Op.getValueType(),
1416                                               Op.getOperand(0)));
1417
1418    // If the sign bit is known one, the top bits match.
1419    if (KnownOne.intersects(InSignBit)) {
1420      KnownOne  |= NewBits;
1421      KnownZero &= ~NewBits;
1422    } else {   // Otherwise, top bits aren't known.
1423      KnownOne  &= ~NewBits;
1424      KnownZero &= ~NewBits;
1425    }
1426    break;
1427  }
1428  case ISD::ANY_EXTEND: {
1429    unsigned OperandBitWidth =
1430      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1431    APInt InMask = NewMask;
1432    InMask.trunc(OperandBitWidth);
1433    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1434                             KnownZero, KnownOne, TLO, Depth+1))
1435      return true;
1436    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1437    KnownZero.zext(BitWidth);
1438    KnownOne.zext(BitWidth);
1439    break;
1440  }
1441  case ISD::TRUNCATE: {
1442    // Simplify the input, using demanded bit information, and compute the known
1443    // zero/one bits live out.
1444    unsigned OperandBitWidth =
1445      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1446    APInt TruncMask = NewMask;
1447    TruncMask.zext(OperandBitWidth);
1448    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1449                             KnownZero, KnownOne, TLO, Depth+1))
1450      return true;
1451    KnownZero.trunc(BitWidth);
1452    KnownOne.trunc(BitWidth);
1453
1454    // If the input is only used by this truncate, see if we can shrink it based
1455    // on the known demanded bits.
1456    if (Op.getOperand(0).getNode()->hasOneUse()) {
1457      SDValue In = Op.getOperand(0);
1458      switch (In.getOpcode()) {
1459      default: break;
1460      case ISD::SRL:
1461        // Shrink SRL by a constant if none of the high bits shifted in are
1462        // demanded.
1463        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1464          APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1465                                                 OperandBitWidth - BitWidth);
1466          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1467          HighBits.trunc(BitWidth);
1468
1469          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1470            // None of the shifted in bits are needed.  Add a truncate of the
1471            // shift input, then shift it.
1472            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1473                                                 Op.getValueType(),
1474                                                 In.getOperand(0));
1475            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1476                                                     Op.getValueType(),
1477                                                     NewTrunc,
1478                                                     In.getOperand(1)));
1479          }
1480        }
1481        break;
1482      }
1483    }
1484
1485    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1486    break;
1487  }
1488  case ISD::AssertZext: {
1489    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1490    APInt InMask = APInt::getLowBitsSet(BitWidth,
1491                                        VT.getSizeInBits());
1492    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1493                             KnownZero, KnownOne, TLO, Depth+1))
1494      return true;
1495    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1496    KnownZero |= ~InMask & NewMask;
1497    break;
1498  }
1499  case ISD::BIT_CONVERT:
1500#if 0
1501    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1502    // is demanded, turn this into a FGETSIGN.
1503    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1504        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1505        !MVT::isVector(Op.getOperand(0).getValueType())) {
1506      // Only do this xform if FGETSIGN is valid or if before legalize.
1507      if (!TLO.AfterLegalize ||
1508          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1509        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1510        // place.  We expect the SHL to be eliminated by other optimizations.
1511        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1512                                         Op.getOperand(0));
1513        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1514        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1515        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1516                                                 Sign, ShAmt));
1517      }
1518    }
1519#endif
1520    break;
1521  case ISD::ADD:
1522  case ISD::MUL:
1523  case ISD::SUB: {
1524    // Add, Sub, and Mul don't demand any bits in positions beyond that
1525    // of the highest bit demanded of them.
1526    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1527                                        BitWidth - NewMask.countLeadingZeros());
1528    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1529                             KnownOne2, TLO, Depth+1))
1530      return true;
1531    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1532                             KnownOne2, TLO, Depth+1))
1533      return true;
1534    // See if the operation should be performed at a smaller bit width.
1535    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1536      return true;
1537  }
1538  // FALL THROUGH
1539  default:
1540    // Just use ComputeMaskedBits to compute output bits.
1541    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1542    break;
1543  }
1544
1545  // If we know the value of all of the demanded bits, return this as a
1546  // constant.
1547  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1548    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1549
1550  return false;
1551}
1552
1553/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1554/// in Mask are known to be either zero or one and return them in the
1555/// KnownZero/KnownOne bitsets.
1556void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1557                                                    const APInt &Mask,
1558                                                    APInt &KnownZero,
1559                                                    APInt &KnownOne,
1560                                                    const SelectionDAG &DAG,
1561                                                    unsigned Depth) const {
1562  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1563          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1564          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1565          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1566         "Should use MaskedValueIsZero if you don't know whether Op"
1567         " is a target node!");
1568  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1569}
1570
1571/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1572/// targets that want to expose additional information about sign bits to the
1573/// DAG Combiner.
1574unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1575                                                         unsigned Depth) const {
1576  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1577          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1578          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1579          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1580         "Should use ComputeNumSignBits if you don't know whether Op"
1581         " is a target node!");
1582  return 1;
1583}
1584
1585/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1586/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1587/// determine which bit is set.
1588///
1589static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1590  // A left-shift of a constant one will have exactly one bit set, because
1591  // shifting the bit off the end is undefined.
1592  if (Val.getOpcode() == ISD::SHL)
1593    if (ConstantSDNode *C =
1594         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1595      if (C->getAPIntValue() == 1)
1596        return true;
1597
1598  // Similarly, a right-shift of a constant sign-bit will have exactly
1599  // one bit set.
1600  if (Val.getOpcode() == ISD::SRL)
1601    if (ConstantSDNode *C =
1602         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1603      if (C->getAPIntValue().isSignBit())
1604        return true;
1605
1606  // More could be done here, though the above checks are enough
1607  // to handle some common cases.
1608
1609  // Fall back to ComputeMaskedBits to catch other known cases.
1610  EVT OpVT = Val.getValueType();
1611  unsigned BitWidth = OpVT.getSizeInBits();
1612  APInt Mask = APInt::getAllOnesValue(BitWidth);
1613  APInt KnownZero, KnownOne;
1614  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1615  return (KnownZero.countPopulation() == BitWidth - 1) &&
1616         (KnownOne.countPopulation() == 1);
1617}
1618
1619/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1620/// and cc. If it is unable to simplify it, return a null SDValue.
1621SDValue
1622TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1623                              ISD::CondCode Cond, bool foldBooleans,
1624                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1625  SelectionDAG &DAG = DCI.DAG;
1626  LLVMContext &Context = *DAG.getContext();
1627
1628  // These setcc operations always fold.
1629  switch (Cond) {
1630  default: break;
1631  case ISD::SETFALSE:
1632  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1633  case ISD::SETTRUE:
1634  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1635  }
1636
1637  if (isa<ConstantSDNode>(N0.getNode())) {
1638    // Ensure that the constant occurs on the RHS, and fold constant
1639    // comparisons.
1640    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1641  }
1642
1643  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1644    const APInt &C1 = N1C->getAPIntValue();
1645
1646    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1647    // equality comparison, then we're just comparing whether X itself is
1648    // zero.
1649    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1650        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1651        N0.getOperand(1).getOpcode() == ISD::Constant) {
1652      const APInt &ShAmt
1653        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1654      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1655          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1656        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1657          // (srl (ctlz x), 5) == 0  -> X != 0
1658          // (srl (ctlz x), 5) != 1  -> X != 0
1659          Cond = ISD::SETNE;
1660        } else {
1661          // (srl (ctlz x), 5) != 0  -> X == 0
1662          // (srl (ctlz x), 5) == 1  -> X == 0
1663          Cond = ISD::SETEQ;
1664        }
1665        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1666        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1667                            Zero, Cond);
1668      }
1669    }
1670
1671    // If the LHS is '(and load, const)', the RHS is 0,
1672    // the test is for equality or unsigned, and all 1 bits of the const are
1673    // in the same partial word, see if we can shorten the load.
1674    if (DCI.isBeforeLegalize() &&
1675        N0.getOpcode() == ISD::AND && C1 == 0 &&
1676        N0.getNode()->hasOneUse() &&
1677        isa<LoadSDNode>(N0.getOperand(0)) &&
1678        N0.getOperand(0).getNode()->hasOneUse() &&
1679        isa<ConstantSDNode>(N0.getOperand(1))) {
1680      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1681      APInt bestMask;
1682      unsigned bestWidth = 0, bestOffset = 0;
1683      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1684        unsigned origWidth = N0.getValueType().getSizeInBits();
1685        unsigned maskWidth = origWidth;
1686        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1687        // 8 bits, but have to be careful...
1688        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1689          origWidth = Lod->getMemoryVT().getSizeInBits();
1690        const APInt &Mask =
1691          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1692        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1693          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1694          for (unsigned offset=0; offset<origWidth/width; offset++) {
1695            if ((newMask & Mask) == Mask) {
1696              if (!TD->isLittleEndian())
1697                bestOffset = (origWidth/width - offset - 1) * (width/8);
1698              else
1699                bestOffset = (uint64_t)offset * (width/8);
1700              bestMask = Mask.lshr(offset * (width/8) * 8);
1701              bestWidth = width;
1702              break;
1703            }
1704            newMask = newMask << width;
1705          }
1706        }
1707      }
1708      if (bestWidth) {
1709        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1710        if (newVT.isRound()) {
1711          EVT PtrType = Lod->getOperand(1).getValueType();
1712          SDValue Ptr = Lod->getBasePtr();
1713          if (bestOffset != 0)
1714            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1715                              DAG.getConstant(bestOffset, PtrType));
1716          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1717          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1718                                        Lod->getSrcValue(),
1719                                        Lod->getSrcValueOffset() + bestOffset,
1720                                        false, false, NewAlign);
1721          return DAG.getSetCC(dl, VT,
1722                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1723                                      DAG.getConstant(bestMask.trunc(bestWidth),
1724                                                      newVT)),
1725                              DAG.getConstant(0LL, newVT), Cond);
1726        }
1727      }
1728    }
1729
1730    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1731    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1732      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1733
1734      // If the comparison constant has bits in the upper part, the
1735      // zero-extended value could never match.
1736      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1737                                              C1.getBitWidth() - InSize))) {
1738        switch (Cond) {
1739        case ISD::SETUGT:
1740        case ISD::SETUGE:
1741        case ISD::SETEQ: return DAG.getConstant(0, VT);
1742        case ISD::SETULT:
1743        case ISD::SETULE:
1744        case ISD::SETNE: return DAG.getConstant(1, VT);
1745        case ISD::SETGT:
1746        case ISD::SETGE:
1747          // True if the sign bit of C1 is set.
1748          return DAG.getConstant(C1.isNegative(), VT);
1749        case ISD::SETLT:
1750        case ISD::SETLE:
1751          // True if the sign bit of C1 isn't set.
1752          return DAG.getConstant(C1.isNonNegative(), VT);
1753        default:
1754          break;
1755        }
1756      }
1757
1758      // Otherwise, we can perform the comparison with the low bits.
1759      switch (Cond) {
1760      case ISD::SETEQ:
1761      case ISD::SETNE:
1762      case ISD::SETUGT:
1763      case ISD::SETUGE:
1764      case ISD::SETULT:
1765      case ISD::SETULE: {
1766        EVT newVT = N0.getOperand(0).getValueType();
1767        if (DCI.isBeforeLegalizeOps() ||
1768            (isOperationLegal(ISD::SETCC, newVT) &&
1769              getCondCodeAction(Cond, newVT)==Legal))
1770          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1771                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1772                              Cond);
1773        break;
1774      }
1775      default:
1776        break;   // todo, be more careful with signed comparisons
1777      }
1778    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1779               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1780      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1781      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1782      EVT ExtDstTy = N0.getValueType();
1783      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1784
1785      // If the extended part has any inconsistent bits, it cannot ever
1786      // compare equal.  In other words, they have to be all ones or all
1787      // zeros.
1788      APInt ExtBits =
1789        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1790      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1791        return DAG.getConstant(Cond == ISD::SETNE, VT);
1792
1793      SDValue ZextOp;
1794      EVT Op0Ty = N0.getOperand(0).getValueType();
1795      if (Op0Ty == ExtSrcTy) {
1796        ZextOp = N0.getOperand(0);
1797      } else {
1798        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1799        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1800                              DAG.getConstant(Imm, Op0Ty));
1801      }
1802      if (!DCI.isCalledByLegalizer())
1803        DCI.AddToWorklist(ZextOp.getNode());
1804      // Otherwise, make this a use of a zext.
1805      return DAG.getSetCC(dl, VT, ZextOp,
1806                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1807                                                              ExtDstTyBits,
1808                                                              ExtSrcTyBits),
1809                                          ExtDstTy),
1810                          Cond);
1811    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1812                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1813      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1814      if (N0.getOpcode() == ISD::SETCC &&
1815          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1816        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1817        if (TrueWhenTrue)
1818          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1819        // Invert the condition.
1820        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1821        CC = ISD::getSetCCInverse(CC,
1822                                  N0.getOperand(0).getValueType().isInteger());
1823        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1824      }
1825
1826      if ((N0.getOpcode() == ISD::XOR ||
1827           (N0.getOpcode() == ISD::AND &&
1828            N0.getOperand(0).getOpcode() == ISD::XOR &&
1829            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1830          isa<ConstantSDNode>(N0.getOperand(1)) &&
1831          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1832        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1833        // can only do this if the top bits are known zero.
1834        unsigned BitWidth = N0.getValueSizeInBits();
1835        if (DAG.MaskedValueIsZero(N0,
1836                                  APInt::getHighBitsSet(BitWidth,
1837                                                        BitWidth-1))) {
1838          // Okay, get the un-inverted input value.
1839          SDValue Val;
1840          if (N0.getOpcode() == ISD::XOR)
1841            Val = N0.getOperand(0);
1842          else {
1843            assert(N0.getOpcode() == ISD::AND &&
1844                    N0.getOperand(0).getOpcode() == ISD::XOR);
1845            // ((X^1)&1)^1 -> X & 1
1846            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1847                              N0.getOperand(0).getOperand(0),
1848                              N0.getOperand(1));
1849          }
1850
1851          return DAG.getSetCC(dl, VT, Val, N1,
1852                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1853        }
1854      } else if (N1C->getAPIntValue() == 1 &&
1855                 (VT == MVT::i1 ||
1856                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1857        SDValue Op0 = N0;
1858        if (Op0.getOpcode() == ISD::TRUNCATE)
1859          Op0 = Op0.getOperand(0);
1860
1861        if ((Op0.getOpcode() == ISD::XOR) &&
1862            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1863            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1864          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1865          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1866          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1867                              Cond);
1868        } else if (Op0.getOpcode() == ISD::AND &&
1869                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1870                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1871          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1872          if (Op0.getValueType() != VT)
1873            Op0 = DAG.getNode(ISD::AND, dl, VT,
1874                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1875                          DAG.getConstant(1, VT));
1876          return DAG.getSetCC(dl, VT, Op0,
1877                              DAG.getConstant(0, Op0.getValueType()),
1878                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1879        }
1880      }
1881    }
1882
1883    APInt MinVal, MaxVal;
1884    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1885    if (ISD::isSignedIntSetCC(Cond)) {
1886      MinVal = APInt::getSignedMinValue(OperandBitSize);
1887      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1888    } else {
1889      MinVal = APInt::getMinValue(OperandBitSize);
1890      MaxVal = APInt::getMaxValue(OperandBitSize);
1891    }
1892
1893    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1894    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1895      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1896      // X >= C0 --> X > (C0-1)
1897      return DAG.getSetCC(dl, VT, N0,
1898                          DAG.getConstant(C1-1, N1.getValueType()),
1899                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1900    }
1901
1902    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1903      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1904      // X <= C0 --> X < (C0+1)
1905      return DAG.getSetCC(dl, VT, N0,
1906                          DAG.getConstant(C1+1, N1.getValueType()),
1907                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1908    }
1909
1910    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1911      return DAG.getConstant(0, VT);      // X < MIN --> false
1912    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1913      return DAG.getConstant(1, VT);      // X >= MIN --> true
1914    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1915      return DAG.getConstant(0, VT);      // X > MAX --> false
1916    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1917      return DAG.getConstant(1, VT);      // X <= MAX --> true
1918
1919    // Canonicalize setgt X, Min --> setne X, Min
1920    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1921      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1922    // Canonicalize setlt X, Max --> setne X, Max
1923    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1924      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1925
1926    // If we have setult X, 1, turn it into seteq X, 0
1927    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1928      return DAG.getSetCC(dl, VT, N0,
1929                          DAG.getConstant(MinVal, N0.getValueType()),
1930                          ISD::SETEQ);
1931    // If we have setugt X, Max-1, turn it into seteq X, Max
1932    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1933      return DAG.getSetCC(dl, VT, N0,
1934                          DAG.getConstant(MaxVal, N0.getValueType()),
1935                          ISD::SETEQ);
1936
1937    // If we have "setcc X, C0", check to see if we can shrink the immediate
1938    // by changing cc.
1939
1940    // SETUGT X, SINTMAX  -> SETLT X, 0
1941    if (Cond == ISD::SETUGT &&
1942        C1 == APInt::getSignedMaxValue(OperandBitSize))
1943      return DAG.getSetCC(dl, VT, N0,
1944                          DAG.getConstant(0, N1.getValueType()),
1945                          ISD::SETLT);
1946
1947    // SETULT X, SINTMIN  -> SETGT X, -1
1948    if (Cond == ISD::SETULT &&
1949        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1950      SDValue ConstMinusOne =
1951          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1952                          N1.getValueType());
1953      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1954    }
1955
1956    // Fold bit comparisons when we can.
1957    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1958        (VT == N0.getValueType() ||
1959         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1960        N0.getOpcode() == ISD::AND)
1961      if (ConstantSDNode *AndRHS =
1962                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1963        EVT ShiftTy = DCI.isBeforeLegalize() ?
1964          getPointerTy() : getShiftAmountTy();
1965        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1966          // Perform the xform if the AND RHS is a single bit.
1967          if (AndRHS->getAPIntValue().isPowerOf2()) {
1968            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1969                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1970                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1971          }
1972        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1973          // (X & 8) == 8  -->  (X & 8) >> 3
1974          // Perform the xform if C1 is a single bit.
1975          if (C1.isPowerOf2()) {
1976            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1977                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1978                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1979          }
1980        }
1981      }
1982  }
1983
1984  if (isa<ConstantFPSDNode>(N0.getNode())) {
1985    // Constant fold or commute setcc.
1986    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1987    if (O.getNode()) return O;
1988  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1989    // If the RHS of an FP comparison is a constant, simplify it away in
1990    // some cases.
1991    if (CFP->getValueAPF().isNaN()) {
1992      // If an operand is known to be a nan, we can fold it.
1993      switch (ISD::getUnorderedFlavor(Cond)) {
1994      default: llvm_unreachable("Unknown flavor!");
1995      case 0:  // Known false.
1996        return DAG.getConstant(0, VT);
1997      case 1:  // Known true.
1998        return DAG.getConstant(1, VT);
1999      case 2:  // Undefined.
2000        return DAG.getUNDEF(VT);
2001      }
2002    }
2003
2004    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2005    // constant if knowing that the operand is non-nan is enough.  We prefer to
2006    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2007    // materialize 0.0.
2008    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2009      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2010
2011    // If the condition is not legal, see if we can find an equivalent one
2012    // which is legal.
2013    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2014      // If the comparison was an awkward floating-point == or != and one of
2015      // the comparison operands is infinity or negative infinity, convert the
2016      // condition to a less-awkward <= or >=.
2017      if (CFP->getValueAPF().isInfinity()) {
2018        if (CFP->getValueAPF().isNegative()) {
2019          if (Cond == ISD::SETOEQ &&
2020              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2021            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2022          if (Cond == ISD::SETUEQ &&
2023              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2024            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2025          if (Cond == ISD::SETUNE &&
2026              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2027            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2028          if (Cond == ISD::SETONE &&
2029              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2030            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2031        } else {
2032          if (Cond == ISD::SETOEQ &&
2033              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2034            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2035          if (Cond == ISD::SETUEQ &&
2036              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2037            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2038          if (Cond == ISD::SETUNE &&
2039              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2040            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2041          if (Cond == ISD::SETONE &&
2042              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2043            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2044        }
2045      }
2046    }
2047  }
2048
2049  if (N0 == N1) {
2050    // We can always fold X == X for integer setcc's.
2051    if (N0.getValueType().isInteger())
2052      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2053    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2054    if (UOF == 2)   // FP operators that are undefined on NaNs.
2055      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2056    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2057      return DAG.getConstant(UOF, VT);
2058    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2059    // if it is not already.
2060    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2061    if (NewCond != Cond)
2062      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2063  }
2064
2065  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2066      N0.getValueType().isInteger()) {
2067    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2068        N0.getOpcode() == ISD::XOR) {
2069      // Simplify (X+Y) == (X+Z) -->  Y == Z
2070      if (N0.getOpcode() == N1.getOpcode()) {
2071        if (N0.getOperand(0) == N1.getOperand(0))
2072          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2073        if (N0.getOperand(1) == N1.getOperand(1))
2074          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2075        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2076          // If X op Y == Y op X, try other combinations.
2077          if (N0.getOperand(0) == N1.getOperand(1))
2078            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2079                                Cond);
2080          if (N0.getOperand(1) == N1.getOperand(0))
2081            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2082                                Cond);
2083        }
2084      }
2085
2086      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2087        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2088          // Turn (X+C1) == C2 --> X == C2-C1
2089          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2090            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2091                                DAG.getConstant(RHSC->getAPIntValue()-
2092                                                LHSR->getAPIntValue(),
2093                                N0.getValueType()), Cond);
2094          }
2095
2096          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2097          if (N0.getOpcode() == ISD::XOR)
2098            // If we know that all of the inverted bits are zero, don't bother
2099            // performing the inversion.
2100            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2101              return
2102                DAG.getSetCC(dl, VT, N0.getOperand(0),
2103                             DAG.getConstant(LHSR->getAPIntValue() ^
2104                                               RHSC->getAPIntValue(),
2105                                             N0.getValueType()),
2106                             Cond);
2107        }
2108
2109        // Turn (C1-X) == C2 --> X == C1-C2
2110        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2111          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2112            return
2113              DAG.getSetCC(dl, VT, N0.getOperand(1),
2114                           DAG.getConstant(SUBC->getAPIntValue() -
2115                                             RHSC->getAPIntValue(),
2116                                           N0.getValueType()),
2117                           Cond);
2118          }
2119        }
2120      }
2121
2122      // Simplify (X+Z) == X -->  Z == 0
2123      if (N0.getOperand(0) == N1)
2124        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2125                        DAG.getConstant(0, N0.getValueType()), Cond);
2126      if (N0.getOperand(1) == N1) {
2127        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2128          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2129                          DAG.getConstant(0, N0.getValueType()), Cond);
2130        else if (N0.getNode()->hasOneUse()) {
2131          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2132          // (Z-X) == X  --> Z == X<<1
2133          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2134                                     N1,
2135                                     DAG.getConstant(1, getShiftAmountTy()));
2136          if (!DCI.isCalledByLegalizer())
2137            DCI.AddToWorklist(SH.getNode());
2138          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2139        }
2140      }
2141    }
2142
2143    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2144        N1.getOpcode() == ISD::XOR) {
2145      // Simplify  X == (X+Z) -->  Z == 0
2146      if (N1.getOperand(0) == N0) {
2147        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2148                        DAG.getConstant(0, N1.getValueType()), Cond);
2149      } else if (N1.getOperand(1) == N0) {
2150        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2151          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2152                          DAG.getConstant(0, N1.getValueType()), Cond);
2153        } else if (N1.getNode()->hasOneUse()) {
2154          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2155          // X == (Z-X)  --> X<<1 == Z
2156          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2157                                     DAG.getConstant(1, getShiftAmountTy()));
2158          if (!DCI.isCalledByLegalizer())
2159            DCI.AddToWorklist(SH.getNode());
2160          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2161        }
2162      }
2163    }
2164
2165    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2166    // Note that where y is variable and is known to have at most
2167    // one bit set (for example, if it is z&1) we cannot do this;
2168    // the expressions are not equivalent when y==0.
2169    if (N0.getOpcode() == ISD::AND)
2170      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2171        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2172          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2173          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2174          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2175        }
2176      }
2177    if (N1.getOpcode() == ISD::AND)
2178      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2179        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2180          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2181          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2182          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2183        }
2184      }
2185  }
2186
2187  // Fold away ALL boolean setcc's.
2188  SDValue Temp;
2189  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2190    switch (Cond) {
2191    default: llvm_unreachable("Unknown integer setcc!");
2192    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2193      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2194      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2195      if (!DCI.isCalledByLegalizer())
2196        DCI.AddToWorklist(Temp.getNode());
2197      break;
2198    case ISD::SETNE:  // X != Y   -->  (X^Y)
2199      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2200      break;
2201    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2202    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2203      Temp = DAG.getNOT(dl, N0, MVT::i1);
2204      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2205      if (!DCI.isCalledByLegalizer())
2206        DCI.AddToWorklist(Temp.getNode());
2207      break;
2208    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2209    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2210      Temp = DAG.getNOT(dl, N1, MVT::i1);
2211      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2212      if (!DCI.isCalledByLegalizer())
2213        DCI.AddToWorklist(Temp.getNode());
2214      break;
2215    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2216    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2217      Temp = DAG.getNOT(dl, N0, MVT::i1);
2218      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2219      if (!DCI.isCalledByLegalizer())
2220        DCI.AddToWorklist(Temp.getNode());
2221      break;
2222    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2223    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2224      Temp = DAG.getNOT(dl, N1, MVT::i1);
2225      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2226      break;
2227    }
2228    if (VT != MVT::i1) {
2229      if (!DCI.isCalledByLegalizer())
2230        DCI.AddToWorklist(N0.getNode());
2231      // FIXME: If running after legalize, we probably can't do this.
2232      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2233    }
2234    return N0;
2235  }
2236
2237  // Could not fold it.
2238  return SDValue();
2239}
2240
2241/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2242/// node is a GlobalAddress + offset.
2243bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2244                                    int64_t &Offset) const {
2245  if (isa<GlobalAddressSDNode>(N)) {
2246    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2247    GA = GASD->getGlobal();
2248    Offset += GASD->getOffset();
2249    return true;
2250  }
2251
2252  if (N->getOpcode() == ISD::ADD) {
2253    SDValue N1 = N->getOperand(0);
2254    SDValue N2 = N->getOperand(1);
2255    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2256      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2257      if (V) {
2258        Offset += V->getSExtValue();
2259        return true;
2260      }
2261    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2262      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2263      if (V) {
2264        Offset += V->getSExtValue();
2265        return true;
2266      }
2267    }
2268  }
2269  return false;
2270}
2271
2272
2273SDValue TargetLowering::
2274PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2275  // Default implementation: no optimization.
2276  return SDValue();
2277}
2278
2279//===----------------------------------------------------------------------===//
2280//  Inline Assembler Implementation Methods
2281//===----------------------------------------------------------------------===//
2282
2283
2284TargetLowering::ConstraintType
2285TargetLowering::getConstraintType(const std::string &Constraint) const {
2286  // FIXME: lots more standard ones to handle.
2287  if (Constraint.size() == 1) {
2288    switch (Constraint[0]) {
2289    default: break;
2290    case 'r': return C_RegisterClass;
2291    case 'm':    // memory
2292    case 'o':    // offsetable
2293    case 'V':    // not offsetable
2294      return C_Memory;
2295    case 'i':    // Simple Integer or Relocatable Constant
2296    case 'n':    // Simple Integer
2297    case 's':    // Relocatable Constant
2298    case 'X':    // Allow ANY value.
2299    case 'I':    // Target registers.
2300    case 'J':
2301    case 'K':
2302    case 'L':
2303    case 'M':
2304    case 'N':
2305    case 'O':
2306    case 'P':
2307      return C_Other;
2308    }
2309  }
2310
2311  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2312      Constraint[Constraint.size()-1] == '}')
2313    return C_Register;
2314  return C_Unknown;
2315}
2316
2317/// LowerXConstraint - try to replace an X constraint, which matches anything,
2318/// with another that has more specific requirements based on the type of the
2319/// corresponding operand.
2320const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2321  if (ConstraintVT.isInteger())
2322    return "r";
2323  if (ConstraintVT.isFloatingPoint())
2324    return "f";      // works for many targets
2325  return 0;
2326}
2327
2328/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2329/// vector.  If it is invalid, don't add anything to Ops.
2330void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2331                                                  char ConstraintLetter,
2332                                                  bool hasMemory,
2333                                                  std::vector<SDValue> &Ops,
2334                                                  SelectionDAG &DAG) const {
2335  switch (ConstraintLetter) {
2336  default: break;
2337  case 'X':     // Allows any operand; labels (basic block) use this.
2338    if (Op.getOpcode() == ISD::BasicBlock) {
2339      Ops.push_back(Op);
2340      return;
2341    }
2342    // fall through
2343  case 'i':    // Simple Integer or Relocatable Constant
2344  case 'n':    // Simple Integer
2345  case 's': {  // Relocatable Constant
2346    // These operands are interested in values of the form (GV+C), where C may
2347    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2348    // is possible and fine if either GV or C are missing.
2349    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2350    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2351
2352    // If we have "(add GV, C)", pull out GV/C
2353    if (Op.getOpcode() == ISD::ADD) {
2354      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2355      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2356      if (C == 0 || GA == 0) {
2357        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2358        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2359      }
2360      if (C == 0 || GA == 0)
2361        C = 0, GA = 0;
2362    }
2363
2364    // If we find a valid operand, map to the TargetXXX version so that the
2365    // value itself doesn't get selected.
2366    if (GA) {   // Either &GV   or   &GV+C
2367      if (ConstraintLetter != 'n') {
2368        int64_t Offs = GA->getOffset();
2369        if (C) Offs += C->getZExtValue();
2370        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2371                                                 Op.getValueType(), Offs));
2372        return;
2373      }
2374    }
2375    if (C) {   // just C, no GV.
2376      // Simple constants are not allowed for 's'.
2377      if (ConstraintLetter != 's') {
2378        // gcc prints these as sign extended.  Sign extend value to 64 bits
2379        // now; without this it would get ZExt'd later in
2380        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2381        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2382                                            MVT::i64));
2383        return;
2384      }
2385    }
2386    break;
2387  }
2388  }
2389}
2390
2391std::vector<unsigned> TargetLowering::
2392getRegClassForInlineAsmConstraint(const std::string &Constraint,
2393                                  EVT VT) const {
2394  return std::vector<unsigned>();
2395}
2396
2397
2398std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2399getRegForInlineAsmConstraint(const std::string &Constraint,
2400                             EVT VT) const {
2401  if (Constraint[0] != '{')
2402    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2403  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2404
2405  // Remove the braces from around the name.
2406  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2407
2408  // Figure out which register class contains this reg.
2409  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2410  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2411       E = RI->regclass_end(); RCI != E; ++RCI) {
2412    const TargetRegisterClass *RC = *RCI;
2413
2414    // If none of the value types for this register class are valid, we
2415    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2416    bool isLegal = false;
2417    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2418         I != E; ++I) {
2419      if (isTypeLegal(*I)) {
2420        isLegal = true;
2421        break;
2422      }
2423    }
2424
2425    if (!isLegal) continue;
2426
2427    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2428         I != E; ++I) {
2429      if (RegName.equals_lower(RI->getName(*I)))
2430        return std::make_pair(*I, RC);
2431    }
2432  }
2433
2434  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2435}
2436
2437//===----------------------------------------------------------------------===//
2438// Constraint Selection.
2439
2440/// isMatchingInputConstraint - Return true of this is an input operand that is
2441/// a matching constraint like "4".
2442bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2443  assert(!ConstraintCode.empty() && "No known constraint!");
2444  return isdigit(ConstraintCode[0]);
2445}
2446
2447/// getMatchedOperand - If this is an input matching constraint, this method
2448/// returns the output operand it matches.
2449unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2450  assert(!ConstraintCode.empty() && "No known constraint!");
2451  return atoi(ConstraintCode.c_str());
2452}
2453
2454
2455/// getConstraintGenerality - Return an integer indicating how general CT
2456/// is.
2457static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2458  switch (CT) {
2459  default: llvm_unreachable("Unknown constraint type!");
2460  case TargetLowering::C_Other:
2461  case TargetLowering::C_Unknown:
2462    return 0;
2463  case TargetLowering::C_Register:
2464    return 1;
2465  case TargetLowering::C_RegisterClass:
2466    return 2;
2467  case TargetLowering::C_Memory:
2468    return 3;
2469  }
2470}
2471
2472/// ChooseConstraint - If there are multiple different constraints that we
2473/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2474/// This is somewhat tricky: constraints fall into four classes:
2475///    Other         -> immediates and magic values
2476///    Register      -> one specific register
2477///    RegisterClass -> a group of regs
2478///    Memory        -> memory
2479/// Ideally, we would pick the most specific constraint possible: if we have
2480/// something that fits into a register, we would pick it.  The problem here
2481/// is that if we have something that could either be in a register or in
2482/// memory that use of the register could cause selection of *other*
2483/// operands to fail: they might only succeed if we pick memory.  Because of
2484/// this the heuristic we use is:
2485///
2486///  1) If there is an 'other' constraint, and if the operand is valid for
2487///     that constraint, use it.  This makes us take advantage of 'i'
2488///     constraints when available.
2489///  2) Otherwise, pick the most general constraint present.  This prefers
2490///     'm' over 'r', for example.
2491///
2492static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2493                             bool hasMemory,  const TargetLowering &TLI,
2494                             SDValue Op, SelectionDAG *DAG) {
2495  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2496  unsigned BestIdx = 0;
2497  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2498  int BestGenerality = -1;
2499
2500  // Loop over the options, keeping track of the most general one.
2501  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2502    TargetLowering::ConstraintType CType =
2503      TLI.getConstraintType(OpInfo.Codes[i]);
2504
2505    // If this is an 'other' constraint, see if the operand is valid for it.
2506    // For example, on X86 we might have an 'rI' constraint.  If the operand
2507    // is an integer in the range [0..31] we want to use I (saving a load
2508    // of a register), otherwise we must use 'r'.
2509    if (CType == TargetLowering::C_Other && Op.getNode()) {
2510      assert(OpInfo.Codes[i].size() == 1 &&
2511             "Unhandled multi-letter 'other' constraint");
2512      std::vector<SDValue> ResultOps;
2513      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2514                                       ResultOps, *DAG);
2515      if (!ResultOps.empty()) {
2516        BestType = CType;
2517        BestIdx = i;
2518        break;
2519      }
2520    }
2521
2522    // This constraint letter is more general than the previous one, use it.
2523    int Generality = getConstraintGenerality(CType);
2524    if (Generality > BestGenerality) {
2525      BestType = CType;
2526      BestIdx = i;
2527      BestGenerality = Generality;
2528    }
2529  }
2530
2531  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2532  OpInfo.ConstraintType = BestType;
2533}
2534
2535/// ComputeConstraintToUse - Determines the constraint code and constraint
2536/// type to use for the specific AsmOperandInfo, setting
2537/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2538void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2539                                            SDValue Op,
2540                                            bool hasMemory,
2541                                            SelectionDAG *DAG) const {
2542  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2543
2544  // Single-letter constraints ('r') are very common.
2545  if (OpInfo.Codes.size() == 1) {
2546    OpInfo.ConstraintCode = OpInfo.Codes[0];
2547    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2548  } else {
2549    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2550  }
2551
2552  // 'X' matches anything.
2553  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2554    // Labels and constants are handled elsewhere ('X' is the only thing
2555    // that matches labels).  For Functions, the type here is the type of
2556    // the result, which is not what we want to look at; leave them alone.
2557    Value *v = OpInfo.CallOperandVal;
2558    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2559      OpInfo.CallOperandVal = v;
2560      return;
2561    }
2562
2563    // Otherwise, try to resolve it to something we know about by looking at
2564    // the actual operand type.
2565    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2566      OpInfo.ConstraintCode = Repl;
2567      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2568    }
2569  }
2570}
2571
2572//===----------------------------------------------------------------------===//
2573//  Loop Strength Reduction hooks
2574//===----------------------------------------------------------------------===//
2575
2576/// isLegalAddressingMode - Return true if the addressing mode represented
2577/// by AM is legal for this target, for a load/store of the specified type.
2578bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2579                                           const Type *Ty) const {
2580  // The default implementation of this implements a conservative RISCy, r+r and
2581  // r+i addr mode.
2582
2583  // Allows a sign-extended 16-bit immediate field.
2584  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2585    return false;
2586
2587  // No global is ever allowed as a base.
2588  if (AM.BaseGV)
2589    return false;
2590
2591  // Only support r+r,
2592  switch (AM.Scale) {
2593  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2594    break;
2595  case 1:
2596    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2597      return false;
2598    // Otherwise we have r+r or r+i.
2599    break;
2600  case 2:
2601    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2602      return false;
2603    // Allow 2*r as r+r.
2604    break;
2605  }
2606
2607  return true;
2608}
2609
2610/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2611/// return a DAG expression to select that will generate the same value by
2612/// multiplying by a magic number.  See:
2613/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2614SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2615                                  std::vector<SDNode*>* Created) const {
2616  EVT VT = N->getValueType(0);
2617  DebugLoc dl= N->getDebugLoc();
2618
2619  // Check to see if we can do this.
2620  // FIXME: We should be more aggressive here.
2621  if (!isTypeLegal(VT))
2622    return SDValue();
2623
2624  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2625  APInt::ms magics = d.magic();
2626
2627  // Multiply the numerator (operand 0) by the magic value
2628  // FIXME: We should support doing a MUL in a wider type
2629  SDValue Q;
2630  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2631    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2632                    DAG.getConstant(magics.m, VT));
2633  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2634    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2635                              N->getOperand(0),
2636                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2637  else
2638    return SDValue();       // No mulhs or equvialent
2639  // If d > 0 and m < 0, add the numerator
2640  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2641    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2642    if (Created)
2643      Created->push_back(Q.getNode());
2644  }
2645  // If d < 0 and m > 0, subtract the numerator.
2646  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2647    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2648    if (Created)
2649      Created->push_back(Q.getNode());
2650  }
2651  // Shift right algebraic if shift value is nonzero
2652  if (magics.s > 0) {
2653    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2654                    DAG.getConstant(magics.s, getShiftAmountTy()));
2655    if (Created)
2656      Created->push_back(Q.getNode());
2657  }
2658  // Extract the sign bit and add it to the quotient
2659  SDValue T =
2660    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2661                                                 getShiftAmountTy()));
2662  if (Created)
2663    Created->push_back(T.getNode());
2664  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2665}
2666
2667/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2668/// return a DAG expression to select that will generate the same value by
2669/// multiplying by a magic number.  See:
2670/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2671SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2672                                  std::vector<SDNode*>* Created) const {
2673  EVT VT = N->getValueType(0);
2674  DebugLoc dl = N->getDebugLoc();
2675
2676  // Check to see if we can do this.
2677  // FIXME: We should be more aggressive here.
2678  if (!isTypeLegal(VT))
2679    return SDValue();
2680
2681  // FIXME: We should use a narrower constant when the upper
2682  // bits are known to be zero.
2683  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2684  APInt::mu magics = N1C->getAPIntValue().magicu();
2685
2686  // Multiply the numerator (operand 0) by the magic value
2687  // FIXME: We should support doing a MUL in a wider type
2688  SDValue Q;
2689  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2690    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2691                    DAG.getConstant(magics.m, VT));
2692  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2693    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2694                              N->getOperand(0),
2695                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2696  else
2697    return SDValue();       // No mulhu or equvialent
2698  if (Created)
2699    Created->push_back(Q.getNode());
2700
2701  if (magics.a == 0) {
2702    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2703           "We shouldn't generate an undefined shift!");
2704    return DAG.getNode(ISD::SRL, dl, VT, Q,
2705                       DAG.getConstant(magics.s, getShiftAmountTy()));
2706  } else {
2707    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2708    if (Created)
2709      Created->push_back(NPQ.getNode());
2710    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2711                      DAG.getConstant(1, getShiftAmountTy()));
2712    if (Created)
2713      Created->push_back(NPQ.getNode());
2714    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2715    if (Created)
2716      Created->push_back(NPQ.getNode());
2717    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2718                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2719  }
2720}
2721