TargetLowering.cpp revision f9a5e40b90e5a98cfae5c0f8a42eedd71c849dbc
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/CodeGen/Analysis.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// NOTE: The constructor takes ownership of TLOF.
37TargetLowering::TargetLowering(const TargetMachine &tm,
38                               const TargetLoweringObjectFile *tlof)
39  : TargetLoweringBase(tm, tlof) {}
40
41const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42  return NULL;
43}
44
45/// Check whether a given call node is in tail position within its function. If
46/// so, it sets Chain to the input chain of the tail call.
47bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
48                                          SDValue &Chain) const {
49  const Function *F = DAG.getMachineFunction().getFunction();
50
51  // Conservatively require the attributes of the call to match those of
52  // the return. Ignore noalias because it doesn't affect the call sequence.
53  AttributeSet CallerAttrs = F->getAttributes();
54  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
55      .removeAttribute(Attribute::NoAlias).hasAttributes())
56    return false;
57
58  // It's not safe to eliminate the sign / zero extension of the return value.
59  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
60      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
61    return false;
62
63  // Check if the only use is a function return node.
64  return isUsedByReturnOnly(Node, Chain);
65}
66
67
68/// Generate a libcall taking the given operands as arguments and returning a
69/// result of type RetVT.
70std::pair<SDValue, SDValue>
71TargetLowering::makeLibCall(SelectionDAG &DAG,
72                            RTLIB::Libcall LC, EVT RetVT,
73                            const SDValue *Ops, unsigned NumOps,
74                            bool isSigned, SDLoc dl,
75                            bool doesNotReturn,
76                            bool isReturnValueUsed) const {
77  TargetLowering::ArgListTy Args;
78  Args.reserve(NumOps);
79
80  TargetLowering::ArgListEntry Entry;
81  for (unsigned i = 0; i != NumOps; ++i) {
82    Entry.Node = Ops[i];
83    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
84    Entry.isSExt = isSigned;
85    Entry.isZExt = !isSigned;
86    Args.push_back(Entry);
87  }
88  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
89
90  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
91  TargetLowering::
92  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
93                    false, 0, getLibcallCallingConv(LC),
94                    /*isTailCall=*/false,
95                    doesNotReturn, isReturnValueUsed, Callee, Args,
96                    DAG, dl);
97  return LowerCallTo(CLI);
98}
99
100
101/// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
102/// shared among BR_CC, SELECT_CC, and SETCC handlers.
103void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
104                                         SDValue &NewLHS, SDValue &NewRHS,
105                                         ISD::CondCode &CCCode,
106                                         SDLoc dl) const {
107  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
108         && "Unsupported setcc type!");
109
110  // Expand into one or more soft-fp libcall(s).
111  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
112  switch (CCCode) {
113  case ISD::SETEQ:
114  case ISD::SETOEQ:
115    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
116          (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
117    break;
118  case ISD::SETNE:
119  case ISD::SETUNE:
120    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
121          (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
122    break;
123  case ISD::SETGE:
124  case ISD::SETOGE:
125    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
126          (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
127    break;
128  case ISD::SETLT:
129  case ISD::SETOLT:
130    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
131          (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
132    break;
133  case ISD::SETLE:
134  case ISD::SETOLE:
135    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
136          (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
137    break;
138  case ISD::SETGT:
139  case ISD::SETOGT:
140    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
141          (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
142    break;
143  case ISD::SETUO:
144    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
145          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
146    break;
147  case ISD::SETO:
148    LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
149          (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
150    break;
151  default:
152    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
153          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
154    switch (CCCode) {
155    case ISD::SETONE:
156      // SETONE = SETOLT | SETOGT
157      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
158            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
159      // Fallthrough
160    case ISD::SETUGT:
161      LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
162            (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
163      break;
164    case ISD::SETUGE:
165      LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
166            (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
167      break;
168    case ISD::SETULT:
169      LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
170            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
171      break;
172    case ISD::SETULE:
173      LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
174            (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
175      break;
176    case ISD::SETUEQ:
177      LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
178            (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
179      break;
180    default: llvm_unreachable("Do not know how to soften this setcc!");
181    }
182  }
183
184  // Use the target specific return value for comparions lib calls.
185  EVT RetVT = getCmpLibcallReturnType();
186  SDValue Ops[2] = { NewLHS, NewRHS };
187  NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
188                       dl).first;
189  NewRHS = DAG.getConstant(0, RetVT);
190  CCCode = getCmpLibcallCC(LC1);
191  if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
192    SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
193                              getSetCCResultType(*DAG.getContext(), RetVT),
194                              NewLHS, NewRHS, DAG.getCondCode(CCCode));
195    NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
196                         dl).first;
197    NewLHS = DAG.getNode(ISD::SETCC, dl,
198                         getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
199                         NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
200    NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
201    NewRHS = SDValue();
202  }
203}
204
205/// getJumpTableEncoding - Return the entry encoding for a jump table in the
206/// current function.  The returned value is a member of the
207/// MachineJumpTableInfo::JTEntryKind enum.
208unsigned TargetLowering::getJumpTableEncoding() const {
209  // In non-pic modes, just use the address of a block.
210  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
211    return MachineJumpTableInfo::EK_BlockAddress;
212
213  // In PIC mode, if the target supports a GPRel32 directive, use it.
214  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
215    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
216
217  // Otherwise, use a label difference.
218  return MachineJumpTableInfo::EK_LabelDifference32;
219}
220
221SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
222                                                 SelectionDAG &DAG) const {
223  // If our PIC model is GP relative, use the global offset table as the base.
224  unsigned JTEncoding = getJumpTableEncoding();
225
226  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
227      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
228    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
229
230  return Table;
231}
232
233/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
234/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
235/// MCExpr.
236const MCExpr *
237TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
238                                             unsigned JTI,MCContext &Ctx) const{
239  // The normal PIC reloc base is the label at the start of the jump table.
240  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
241}
242
243bool
244TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
245  // Assume that everything is safe in static mode.
246  if (getTargetMachine().getRelocationModel() == Reloc::Static)
247    return true;
248
249  // In dynamic-no-pic mode, assume that known defined values are safe.
250  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
251      GA &&
252      !GA->getGlobal()->isDeclaration() &&
253      !GA->getGlobal()->isWeakForLinker())
254    return true;
255
256  // Otherwise assume nothing is safe.
257  return false;
258}
259
260//===----------------------------------------------------------------------===//
261//  Optimization Methods
262//===----------------------------------------------------------------------===//
263
264/// ShrinkDemandedConstant - Check to see if the specified operand of the
265/// specified instruction is a constant integer.  If so, check to see if there
266/// are any bits set in the constant that are not demanded.  If so, shrink the
267/// constant and return true.
268bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
269                                                        const APInt &Demanded) {
270  SDLoc dl(Op);
271
272  // FIXME: ISD::SELECT, ISD::SELECT_CC
273  switch (Op.getOpcode()) {
274  default: break;
275  case ISD::XOR:
276  case ISD::AND:
277  case ISD::OR: {
278    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
279    if (!C) return false;
280
281    if (Op.getOpcode() == ISD::XOR &&
282        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
283      return false;
284
285    // if we can expand it to have all bits set, do it
286    if (C->getAPIntValue().intersects(~Demanded)) {
287      EVT VT = Op.getValueType();
288      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
289                                DAG.getConstant(Demanded &
290                                                C->getAPIntValue(),
291                                                VT));
292      return CombineTo(Op, New);
293    }
294
295    break;
296  }
297  }
298
299  return false;
300}
301
302/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
303/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
304/// cast, but it could be generalized for targets with other types of
305/// implicit widening casts.
306bool
307TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
308                                                    unsigned BitWidth,
309                                                    const APInt &Demanded,
310                                                    SDLoc dl) {
311  assert(Op.getNumOperands() == 2 &&
312         "ShrinkDemandedOp only supports binary operators!");
313  assert(Op.getNode()->getNumValues() == 1 &&
314         "ShrinkDemandedOp only supports nodes with one result!");
315
316  // Don't do this if the node has another user, which may require the
317  // full value.
318  if (!Op.getNode()->hasOneUse())
319    return false;
320
321  // Search for the smallest integer type with free casts to and from
322  // Op's type. For expedience, just check power-of-2 integer types.
323  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
324  unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
325  unsigned SmallVTBits = DemandedSize;
326  if (!isPowerOf2_32(SmallVTBits))
327    SmallVTBits = NextPowerOf2(SmallVTBits);
328  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
329    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
330    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
331        TLI.isZExtFree(SmallVT, Op.getValueType())) {
332      // We found a type with free casts.
333      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
334                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
335                                          Op.getNode()->getOperand(0)),
336                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
337                                          Op.getNode()->getOperand(1)));
338      bool NeedZext = DemandedSize > SmallVTBits;
339      SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
340                              dl, Op.getValueType(), X);
341      return CombineTo(Op, Z);
342    }
343  }
344  return false;
345}
346
347/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
348/// DemandedMask bits of the result of Op are ever used downstream.  If we can
349/// use this information to simplify Op, create a new simplified DAG node and
350/// return true, returning the original and new nodes in Old and New. Otherwise,
351/// analyze the expression and return a mask of KnownOne and KnownZero bits for
352/// the expression (used to simplify the caller).  The KnownZero/One bits may
353/// only be accurate for those bits in the DemandedMask.
354bool TargetLowering::SimplifyDemandedBits(SDValue Op,
355                                          const APInt &DemandedMask,
356                                          APInt &KnownZero,
357                                          APInt &KnownOne,
358                                          TargetLoweringOpt &TLO,
359                                          unsigned Depth) const {
360  unsigned BitWidth = DemandedMask.getBitWidth();
361  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
362         "Mask size mismatches value type size!");
363  APInt NewMask = DemandedMask;
364  SDLoc dl(Op);
365
366  // Don't know anything.
367  KnownZero = KnownOne = APInt(BitWidth, 0);
368
369  // Other users may use these bits.
370  if (!Op.getNode()->hasOneUse()) {
371    if (Depth != 0) {
372      // If not at the root, Just compute the KnownZero/KnownOne bits to
373      // simplify things downstream.
374      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
375      return false;
376    }
377    // If this is the root being simplified, allow it to have multiple uses,
378    // just set the NewMask to all bits.
379    NewMask = APInt::getAllOnesValue(BitWidth);
380  } else if (DemandedMask == 0) {
381    // Not demanding any bits from Op.
382    if (Op.getOpcode() != ISD::UNDEF)
383      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
384    return false;
385  } else if (Depth == 6) {        // Limit search depth.
386    return false;
387  }
388
389  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
390  switch (Op.getOpcode()) {
391  case ISD::Constant:
392    // We know all of the bits for a constant!
393    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
394    KnownZero = ~KnownOne;
395    return false;   // Don't fall through, will infinitely loop.
396  case ISD::AND:
397    // If the RHS is a constant, check to see if the LHS would be zero without
398    // using the bits from the RHS.  Below, we use knowledge about the RHS to
399    // simplify the LHS, here we're using information from the LHS to simplify
400    // the RHS.
401    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
402      APInt LHSZero, LHSOne;
403      // Do not increment Depth here; that can cause an infinite loop.
404      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
405      // If the LHS already has zeros where RHSC does, this and is dead.
406      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
407        return TLO.CombineTo(Op, Op.getOperand(0));
408      // If any of the set bits in the RHS are known zero on the LHS, shrink
409      // the constant.
410      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
411        return true;
412    }
413
414    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
415                             KnownOne, TLO, Depth+1))
416      return true;
417    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
418    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
419                             KnownZero2, KnownOne2, TLO, Depth+1))
420      return true;
421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
422
423    // If all of the demanded bits are known one on one side, return the other.
424    // These bits cannot contribute to the result of the 'and'.
425    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
426      return TLO.CombineTo(Op, Op.getOperand(0));
427    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
428      return TLO.CombineTo(Op, Op.getOperand(1));
429    // If all of the demanded bits in the inputs are known zeros, return zero.
430    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
431      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
432    // If the RHS is a constant, see if we can simplify it.
433    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
434      return true;
435    // If the operation can be done in a smaller type, do so.
436    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
437      return true;
438
439    // Output known-1 bits are only known if set in both the LHS & RHS.
440    KnownOne &= KnownOne2;
441    // Output known-0 are known to be clear if zero in either the LHS | RHS.
442    KnownZero |= KnownZero2;
443    break;
444  case ISD::OR:
445    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
446                             KnownOne, TLO, Depth+1))
447      return true;
448    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
449    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
450                             KnownZero2, KnownOne2, TLO, Depth+1))
451      return true;
452    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
453
454    // If all of the demanded bits are known zero on one side, return the other.
455    // These bits cannot contribute to the result of the 'or'.
456    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
457      return TLO.CombineTo(Op, Op.getOperand(0));
458    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
459      return TLO.CombineTo(Op, Op.getOperand(1));
460    // If all of the potentially set bits on one side are known to be set on
461    // the other side, just use the 'other' side.
462    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
463      return TLO.CombineTo(Op, Op.getOperand(0));
464    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
465      return TLO.CombineTo(Op, Op.getOperand(1));
466    // If the RHS is a constant, see if we can simplify it.
467    if (TLO.ShrinkDemandedConstant(Op, NewMask))
468      return true;
469    // If the operation can be done in a smaller type, do so.
470    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
471      return true;
472
473    // Output known-0 bits are only known if clear in both the LHS & RHS.
474    KnownZero &= KnownZero2;
475    // Output known-1 are known to be set if set in either the LHS | RHS.
476    KnownOne |= KnownOne2;
477    break;
478  case ISD::XOR:
479    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
480                             KnownOne, TLO, Depth+1))
481      return true;
482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
483    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
484                             KnownOne2, TLO, Depth+1))
485      return true;
486    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
487
488    // If all of the demanded bits are known zero on one side, return the other.
489    // These bits cannot contribute to the result of the 'xor'.
490    if ((KnownZero & NewMask) == NewMask)
491      return TLO.CombineTo(Op, Op.getOperand(0));
492    if ((KnownZero2 & NewMask) == NewMask)
493      return TLO.CombineTo(Op, Op.getOperand(1));
494    // If the operation can be done in a smaller type, do so.
495    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
496      return true;
497
498    // If all of the unknown bits are known to be zero on one side or the other
499    // (but not both) turn this into an *inclusive* or.
500    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
501    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
502      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
503                                               Op.getOperand(0),
504                                               Op.getOperand(1)));
505
506    // Output known-0 bits are known if clear or set in both the LHS & RHS.
507    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
508    // Output known-1 are known to be set if set in only one of the LHS, RHS.
509    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
510
511    // If all of the demanded bits on one side are known, and all of the set
512    // bits on that side are also known to be set on the other side, turn this
513    // into an AND, as we know the bits will be cleared.
514    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
515    // NB: it is okay if more bits are known than are requested
516    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
517      if (KnownOne == KnownOne2) { // set bits are the same on both sides
518        EVT VT = Op.getValueType();
519        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
520        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
521                                                 Op.getOperand(0), ANDC));
522      }
523    }
524
525    // If the RHS is a constant, see if we can simplify it.
526    // for XOR, we prefer to force bits to 1 if they will make a -1.
527    // if we can't force bits, try to shrink constant
528    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
529      APInt Expanded = C->getAPIntValue() | (~NewMask);
530      // if we can expand it to have all bits set, do it
531      if (Expanded.isAllOnesValue()) {
532        if (Expanded != C->getAPIntValue()) {
533          EVT VT = Op.getValueType();
534          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
535                                          TLO.DAG.getConstant(Expanded, VT));
536          return TLO.CombineTo(Op, New);
537        }
538        // if it already has all the bits set, nothing to change
539        // but don't shrink either!
540      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
541        return true;
542      }
543    }
544
545    KnownZero = KnownZeroOut;
546    KnownOne  = KnownOneOut;
547    break;
548  case ISD::SELECT:
549    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
550                             KnownOne, TLO, Depth+1))
551      return true;
552    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
553                             KnownOne2, TLO, Depth+1))
554      return true;
555    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
557
558    // If the operands are constants, see if we can simplify them.
559    if (TLO.ShrinkDemandedConstant(Op, NewMask))
560      return true;
561
562    // Only known if known in both the LHS and RHS.
563    KnownOne &= KnownOne2;
564    KnownZero &= KnownZero2;
565    break;
566  case ISD::SELECT_CC:
567    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
568                             KnownOne, TLO, Depth+1))
569      return true;
570    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
571                             KnownOne2, TLO, Depth+1))
572      return true;
573    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
574    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
575
576    // If the operands are constants, see if we can simplify them.
577    if (TLO.ShrinkDemandedConstant(Op, NewMask))
578      return true;
579
580    // Only known if known in both the LHS and RHS.
581    KnownOne &= KnownOne2;
582    KnownZero &= KnownZero2;
583    break;
584  case ISD::SHL:
585    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
586      unsigned ShAmt = SA->getZExtValue();
587      SDValue InOp = Op.getOperand(0);
588
589      // If the shift count is an invalid immediate, don't do anything.
590      if (ShAmt >= BitWidth)
591        break;
592
593      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
594      // single shift.  We can do this if the bottom bits (which are shifted
595      // out) are never demanded.
596      if (InOp.getOpcode() == ISD::SRL &&
597          isa<ConstantSDNode>(InOp.getOperand(1))) {
598        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
599          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
600          unsigned Opc = ISD::SHL;
601          int Diff = ShAmt-C1;
602          if (Diff < 0) {
603            Diff = -Diff;
604            Opc = ISD::SRL;
605          }
606
607          SDValue NewSA =
608            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
609          EVT VT = Op.getValueType();
610          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
611                                                   InOp.getOperand(0), NewSA));
612        }
613      }
614
615      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
616                               KnownZero, KnownOne, TLO, Depth+1))
617        return true;
618
619      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
620      // are not demanded. This will likely allow the anyext to be folded away.
621      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
622        SDValue InnerOp = InOp.getNode()->getOperand(0);
623        EVT InnerVT = InnerOp.getValueType();
624        unsigned InnerBits = InnerVT.getSizeInBits();
625        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
626            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
627          EVT ShTy = getShiftAmountTy(InnerVT);
628          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
629            ShTy = InnerVT;
630          SDValue NarrowShl =
631            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
632                            TLO.DAG.getConstant(ShAmt, ShTy));
633          return
634            TLO.CombineTo(Op,
635                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
636                                          NarrowShl));
637        }
638        // Repeat the SHL optimization above in cases where an extension
639        // intervenes: (shl (anyext (shr x, c1)), c2) to
640        // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
641        // aren't demanded (as above) and that the shifted upper c1 bits of
642        // x aren't demanded.
643        if (InOp.hasOneUse() &&
644            InnerOp.getOpcode() == ISD::SRL &&
645            InnerOp.hasOneUse() &&
646            isa<ConstantSDNode>(InnerOp.getOperand(1))) {
647          uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
648            ->getZExtValue();
649          if (InnerShAmt < ShAmt &&
650              InnerShAmt < InnerBits &&
651              NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
652              NewMask.trunc(ShAmt) == 0) {
653            SDValue NewSA =
654              TLO.DAG.getConstant(ShAmt - InnerShAmt,
655                                  Op.getOperand(1).getValueType());
656            EVT VT = Op.getValueType();
657            SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
658                                             InnerOp.getOperand(0));
659            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
660                                                     NewExt, NewSA));
661          }
662        }
663      }
664
665      KnownZero <<= SA->getZExtValue();
666      KnownOne  <<= SA->getZExtValue();
667      // low bits known zero.
668      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
669    }
670    break;
671  case ISD::SRL:
672    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
673      EVT VT = Op.getValueType();
674      unsigned ShAmt = SA->getZExtValue();
675      unsigned VTSize = VT.getSizeInBits();
676      SDValue InOp = Op.getOperand(0);
677
678      // If the shift count is an invalid immediate, don't do anything.
679      if (ShAmt >= BitWidth)
680        break;
681
682      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
683      // single shift.  We can do this if the top bits (which are shifted out)
684      // are never demanded.
685      if (InOp.getOpcode() == ISD::SHL &&
686          isa<ConstantSDNode>(InOp.getOperand(1))) {
687        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
688          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
689          unsigned Opc = ISD::SRL;
690          int Diff = ShAmt-C1;
691          if (Diff < 0) {
692            Diff = -Diff;
693            Opc = ISD::SHL;
694          }
695
696          SDValue NewSA =
697            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
698          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
699                                                   InOp.getOperand(0), NewSA));
700        }
701      }
702
703      // Compute the new bits that are at the top now.
704      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
705                               KnownZero, KnownOne, TLO, Depth+1))
706        return true;
707      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
708      KnownZero = KnownZero.lshr(ShAmt);
709      KnownOne  = KnownOne.lshr(ShAmt);
710
711      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
712      KnownZero |= HighBits;  // High bits known zero.
713    }
714    break;
715  case ISD::SRA:
716    // If this is an arithmetic shift right and only the low-bit is set, we can
717    // always convert this into a logical shr, even if the shift amount is
718    // variable.  The low bit of the shift cannot be an input sign bit unless
719    // the shift amount is >= the size of the datatype, which is undefined.
720    if (NewMask == 1)
721      return TLO.CombineTo(Op,
722                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
723                                           Op.getOperand(0), Op.getOperand(1)));
724
725    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
726      EVT VT = Op.getValueType();
727      unsigned ShAmt = SA->getZExtValue();
728
729      // If the shift count is an invalid immediate, don't do anything.
730      if (ShAmt >= BitWidth)
731        break;
732
733      APInt InDemandedMask = (NewMask << ShAmt);
734
735      // If any of the demanded bits are produced by the sign extension, we also
736      // demand the input sign bit.
737      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
738      if (HighBits.intersects(NewMask))
739        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
740
741      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
742                               KnownZero, KnownOne, TLO, Depth+1))
743        return true;
744      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
745      KnownZero = KnownZero.lshr(ShAmt);
746      KnownOne  = KnownOne.lshr(ShAmt);
747
748      // Handle the sign bit, adjusted to where it is now in the mask.
749      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
750
751      // If the input sign bit is known to be zero, or if none of the top bits
752      // are demanded, turn this into an unsigned shift right.
753      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
754        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
755                                                 Op.getOperand(0),
756                                                 Op.getOperand(1)));
757
758      int Log2 = NewMask.exactLogBase2();
759      if (Log2 >= 0) {
760        // The bit must come from the sign.
761        SDValue NewSA =
762          TLO.DAG.getConstant(BitWidth - 1 - Log2,
763                              Op.getOperand(1).getValueType());
764        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
765                                                 Op.getOperand(0), NewSA));
766      }
767
768      if (KnownOne.intersects(SignBit))
769        // New bits are known one.
770        KnownOne |= HighBits;
771    }
772    break;
773  case ISD::SIGN_EXTEND_INREG: {
774    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
775
776    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
777    // If we only care about the highest bit, don't bother shifting right.
778    if (MsbMask == DemandedMask) {
779      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
780      SDValue InOp = Op.getOperand(0);
781
782      // Compute the correct shift amount type, which must be getShiftAmountTy
783      // for scalar types after legalization.
784      EVT ShiftAmtTy = Op.getValueType();
785      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
786        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
787
788      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
789      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
790                                            Op.getValueType(), InOp, ShiftAmt));
791    }
792
793    // Sign extension.  Compute the demanded bits in the result that are not
794    // present in the input.
795    APInt NewBits =
796      APInt::getHighBitsSet(BitWidth,
797                            BitWidth - ExVT.getScalarType().getSizeInBits());
798
799    // If none of the extended bits are demanded, eliminate the sextinreg.
800    if ((NewBits & NewMask) == 0)
801      return TLO.CombineTo(Op, Op.getOperand(0));
802
803    APInt InSignBit =
804      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
805    APInt InputDemandedBits =
806      APInt::getLowBitsSet(BitWidth,
807                           ExVT.getScalarType().getSizeInBits()) &
808      NewMask;
809
810    // Since the sign extended bits are demanded, we know that the sign
811    // bit is demanded.
812    InputDemandedBits |= InSignBit;
813
814    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
815                             KnownZero, KnownOne, TLO, Depth+1))
816      return true;
817    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
818
819    // If the sign bit of the input is known set or clear, then we know the
820    // top bits of the result.
821
822    // If the input sign bit is known zero, convert this into a zero extension.
823    if (KnownZero.intersects(InSignBit))
824      return TLO.CombineTo(Op,
825                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
826
827    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
828      KnownOne |= NewBits;
829      KnownZero &= ~NewBits;
830    } else {                       // Input sign bit unknown
831      KnownZero &= ~NewBits;
832      KnownOne &= ~NewBits;
833    }
834    break;
835  }
836  case ISD::ZERO_EXTEND: {
837    unsigned OperandBitWidth =
838      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
839    APInt InMask = NewMask.trunc(OperandBitWidth);
840
841    // If none of the top bits are demanded, convert this into an any_extend.
842    APInt NewBits =
843      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
844    if (!NewBits.intersects(NewMask))
845      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
846                                               Op.getValueType(),
847                                               Op.getOperand(0)));
848
849    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
850                             KnownZero, KnownOne, TLO, Depth+1))
851      return true;
852    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
853    KnownZero = KnownZero.zext(BitWidth);
854    KnownOne = KnownOne.zext(BitWidth);
855    KnownZero |= NewBits;
856    break;
857  }
858  case ISD::SIGN_EXTEND: {
859    EVT InVT = Op.getOperand(0).getValueType();
860    unsigned InBits = InVT.getScalarType().getSizeInBits();
861    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
862    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
863    APInt NewBits   = ~InMask & NewMask;
864
865    // If none of the top bits are demanded, convert this into an any_extend.
866    if (NewBits == 0)
867      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
868                                              Op.getValueType(),
869                                              Op.getOperand(0)));
870
871    // Since some of the sign extended bits are demanded, we know that the sign
872    // bit is demanded.
873    APInt InDemandedBits = InMask & NewMask;
874    InDemandedBits |= InSignBit;
875    InDemandedBits = InDemandedBits.trunc(InBits);
876
877    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
878                             KnownOne, TLO, Depth+1))
879      return true;
880    KnownZero = KnownZero.zext(BitWidth);
881    KnownOne = KnownOne.zext(BitWidth);
882
883    // If the sign bit is known zero, convert this to a zero extend.
884    if (KnownZero.intersects(InSignBit))
885      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
886                                               Op.getValueType(),
887                                               Op.getOperand(0)));
888
889    // If the sign bit is known one, the top bits match.
890    if (KnownOne.intersects(InSignBit)) {
891      KnownOne |= NewBits;
892      assert((KnownZero & NewBits) == 0);
893    } else {   // Otherwise, top bits aren't known.
894      assert((KnownOne & NewBits) == 0);
895      assert((KnownZero & NewBits) == 0);
896    }
897    break;
898  }
899  case ISD::ANY_EXTEND: {
900    unsigned OperandBitWidth =
901      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
902    APInt InMask = NewMask.trunc(OperandBitWidth);
903    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
904                             KnownZero, KnownOne, TLO, Depth+1))
905      return true;
906    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
907    KnownZero = KnownZero.zext(BitWidth);
908    KnownOne = KnownOne.zext(BitWidth);
909    break;
910  }
911  case ISD::TRUNCATE: {
912    // Simplify the input, using demanded bit information, and compute the known
913    // zero/one bits live out.
914    unsigned OperandBitWidth =
915      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
916    APInt TruncMask = NewMask.zext(OperandBitWidth);
917    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
918                             KnownZero, KnownOne, TLO, Depth+1))
919      return true;
920    KnownZero = KnownZero.trunc(BitWidth);
921    KnownOne = KnownOne.trunc(BitWidth);
922
923    // If the input is only used by this truncate, see if we can shrink it based
924    // on the known demanded bits.
925    if (Op.getOperand(0).getNode()->hasOneUse()) {
926      SDValue In = Op.getOperand(0);
927      switch (In.getOpcode()) {
928      default: break;
929      case ISD::SRL:
930        // Shrink SRL by a constant if none of the high bits shifted in are
931        // demanded.
932        if (TLO.LegalTypes() &&
933            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
934          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
935          // undesirable.
936          break;
937        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
938        if (!ShAmt)
939          break;
940        SDValue Shift = In.getOperand(1);
941        if (TLO.LegalTypes()) {
942          uint64_t ShVal = ShAmt->getZExtValue();
943          Shift =
944            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
945        }
946
947        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
948                                               OperandBitWidth - BitWidth);
949        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
950
951        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
952          // None of the shifted in bits are needed.  Add a truncate of the
953          // shift input, then shift it.
954          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
955                                             Op.getValueType(),
956                                             In.getOperand(0));
957          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
958                                                   Op.getValueType(),
959                                                   NewTrunc,
960                                                   Shift));
961        }
962        break;
963      }
964    }
965
966    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
967    break;
968  }
969  case ISD::AssertZext: {
970    // AssertZext demands all of the high bits, plus any of the low bits
971    // demanded by its users.
972    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
973    APInt InMask = APInt::getLowBitsSet(BitWidth,
974                                        VT.getSizeInBits());
975    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
976                             KnownZero, KnownOne, TLO, Depth+1))
977      return true;
978    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
979
980    KnownZero |= ~InMask & NewMask;
981    break;
982  }
983  case ISD::BITCAST:
984    // If this is an FP->Int bitcast and if the sign bit is the only
985    // thing demanded, turn this into a FGETSIGN.
986    if (!TLO.LegalOperations() &&
987        !Op.getValueType().isVector() &&
988        !Op.getOperand(0).getValueType().isVector() &&
989        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
990        Op.getOperand(0).getValueType().isFloatingPoint()) {
991      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
992      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
993      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
994        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
995        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
996        // place.  We expect the SHL to be eliminated by other optimizations.
997        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
998        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
999        if (!OpVTLegal && OpVTSizeInBits > 32)
1000          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1001        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1002        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1003        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1004                                                 Op.getValueType(),
1005                                                 Sign, ShAmt));
1006      }
1007    }
1008    break;
1009  case ISD::ADD:
1010  case ISD::MUL:
1011  case ISD::SUB: {
1012    // Add, Sub, and Mul don't demand any bits in positions beyond that
1013    // of the highest bit demanded of them.
1014    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1015                                        BitWidth - NewMask.countLeadingZeros());
1016    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1017                             KnownOne2, TLO, Depth+1))
1018      return true;
1019    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1020                             KnownOne2, TLO, Depth+1))
1021      return true;
1022    // See if the operation should be performed at a smaller bit width.
1023    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1024      return true;
1025  }
1026  // FALL THROUGH
1027  default:
1028    // Just use ComputeMaskedBits to compute output bits.
1029    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1030    break;
1031  }
1032
1033  // If we know the value of all of the demanded bits, return this as a
1034  // constant.
1035  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1036    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1037
1038  return false;
1039}
1040
1041/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1042/// in Mask are known to be either zero or one and return them in the
1043/// KnownZero/KnownOne bitsets.
1044void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1045                                                    APInt &KnownZero,
1046                                                    APInt &KnownOne,
1047                                                    const SelectionDAG &DAG,
1048                                                    unsigned Depth) const {
1049  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1050          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1051          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1052          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1053         "Should use MaskedValueIsZero if you don't know whether Op"
1054         " is a target node!");
1055  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1056}
1057
1058/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1059/// targets that want to expose additional information about sign bits to the
1060/// DAG Combiner.
1061unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1062                                                         unsigned Depth) const {
1063  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1064          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1065          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1066          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1067         "Should use ComputeNumSignBits if you don't know whether Op"
1068         " is a target node!");
1069  return 1;
1070}
1071
1072/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1073/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1074/// determine which bit is set.
1075///
1076static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1077  // A left-shift of a constant one will have exactly one bit set, because
1078  // shifting the bit off the end is undefined.
1079  if (Val.getOpcode() == ISD::SHL)
1080    if (ConstantSDNode *C =
1081         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1082      if (C->getAPIntValue() == 1)
1083        return true;
1084
1085  // Similarly, a right-shift of a constant sign-bit will have exactly
1086  // one bit set.
1087  if (Val.getOpcode() == ISD::SRL)
1088    if (ConstantSDNode *C =
1089         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1090      if (C->getAPIntValue().isSignBit())
1091        return true;
1092
1093  // More could be done here, though the above checks are enough
1094  // to handle some common cases.
1095
1096  // Fall back to ComputeMaskedBits to catch other known cases.
1097  EVT OpVT = Val.getValueType();
1098  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1099  APInt KnownZero, KnownOne;
1100  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1101  return (KnownZero.countPopulation() == BitWidth - 1) &&
1102         (KnownOne.countPopulation() == 1);
1103}
1104
1105/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1106/// and cc. If it is unable to simplify it, return a null SDValue.
1107SDValue
1108TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1109                              ISD::CondCode Cond, bool foldBooleans,
1110                              DAGCombinerInfo &DCI, SDLoc dl) const {
1111  SelectionDAG &DAG = DCI.DAG;
1112
1113  // These setcc operations always fold.
1114  switch (Cond) {
1115  default: break;
1116  case ISD::SETFALSE:
1117  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1118  case ISD::SETTRUE:
1119  case ISD::SETTRUE2: {
1120    TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector());
1121    return DAG.getConstant(
1122        Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1123  }
1124  }
1125
1126  // Ensure that the constant occurs on the RHS, and fold constant
1127  // comparisons.
1128  ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1129  if (isa<ConstantSDNode>(N0.getNode()) &&
1130      (DCI.isBeforeLegalizeOps() ||
1131       isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1132    return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1133
1134  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1135    const APInt &C1 = N1C->getAPIntValue();
1136
1137    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1138    // equality comparison, then we're just comparing whether X itself is
1139    // zero.
1140    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1141        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1142        N0.getOperand(1).getOpcode() == ISD::Constant) {
1143      const APInt &ShAmt
1144        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1145      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1146          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1147        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1148          // (srl (ctlz x), 5) == 0  -> X != 0
1149          // (srl (ctlz x), 5) != 1  -> X != 0
1150          Cond = ISD::SETNE;
1151        } else {
1152          // (srl (ctlz x), 5) != 0  -> X == 0
1153          // (srl (ctlz x), 5) == 1  -> X == 0
1154          Cond = ISD::SETEQ;
1155        }
1156        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1157        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1158                            Zero, Cond);
1159      }
1160    }
1161
1162    SDValue CTPOP = N0;
1163    // Look through truncs that don't change the value of a ctpop.
1164    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1165      CTPOP = N0.getOperand(0);
1166
1167    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1168        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1169                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1170      EVT CTVT = CTPOP.getValueType();
1171      SDValue CTOp = CTPOP.getOperand(0);
1172
1173      // (ctpop x) u< 2 -> (x & x-1) == 0
1174      // (ctpop x) u> 1 -> (x & x-1) != 0
1175      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1176        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1177                                  DAG.getConstant(1, CTVT));
1178        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1179        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1180        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1181      }
1182
1183      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1184    }
1185
1186    // (zext x) == C --> x == (trunc C)
1187    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1188        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1189      unsigned MinBits = N0.getValueSizeInBits();
1190      SDValue PreZExt;
1191      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1192        // ZExt
1193        MinBits = N0->getOperand(0).getValueSizeInBits();
1194        PreZExt = N0->getOperand(0);
1195      } else if (N0->getOpcode() == ISD::AND) {
1196        // DAGCombine turns costly ZExts into ANDs
1197        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1198          if ((C->getAPIntValue()+1).isPowerOf2()) {
1199            MinBits = C->getAPIntValue().countTrailingOnes();
1200            PreZExt = N0->getOperand(0);
1201          }
1202      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1203        // ZEXTLOAD
1204        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1205          MinBits = LN0->getMemoryVT().getSizeInBits();
1206          PreZExt = N0;
1207        }
1208      }
1209
1210      // Make sure we're not losing bits from the constant.
1211      if (MinBits > 0 &&
1212          MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
1213        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1214        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1215          // Will get folded away.
1216          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1217          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1218          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1219        }
1220      }
1221    }
1222
1223    // If the LHS is '(and load, const)', the RHS is 0,
1224    // the test is for equality or unsigned, and all 1 bits of the const are
1225    // in the same partial word, see if we can shorten the load.
1226    if (DCI.isBeforeLegalize() &&
1227        !ISD::isSignedIntSetCC(Cond) &&
1228        N0.getOpcode() == ISD::AND && C1 == 0 &&
1229        N0.getNode()->hasOneUse() &&
1230        isa<LoadSDNode>(N0.getOperand(0)) &&
1231        N0.getOperand(0).getNode()->hasOneUse() &&
1232        isa<ConstantSDNode>(N0.getOperand(1))) {
1233      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1234      APInt bestMask;
1235      unsigned bestWidth = 0, bestOffset = 0;
1236      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1237        unsigned origWidth = N0.getValueType().getSizeInBits();
1238        unsigned maskWidth = origWidth;
1239        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1240        // 8 bits, but have to be careful...
1241        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1242          origWidth = Lod->getMemoryVT().getSizeInBits();
1243        const APInt &Mask =
1244          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1245        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1246          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1247          for (unsigned offset=0; offset<origWidth/width; offset++) {
1248            if ((newMask & Mask) == Mask) {
1249              if (!getDataLayout()->isLittleEndian())
1250                bestOffset = (origWidth/width - offset - 1) * (width/8);
1251              else
1252                bestOffset = (uint64_t)offset * (width/8);
1253              bestMask = Mask.lshr(offset * (width/8) * 8);
1254              bestWidth = width;
1255              break;
1256            }
1257            newMask = newMask << width;
1258          }
1259        }
1260      }
1261      if (bestWidth) {
1262        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1263        if (newVT.isRound()) {
1264          EVT PtrType = Lod->getOperand(1).getValueType();
1265          SDValue Ptr = Lod->getBasePtr();
1266          if (bestOffset != 0)
1267            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1268                              DAG.getConstant(bestOffset, PtrType));
1269          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1270          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1271                                Lod->getPointerInfo().getWithOffset(bestOffset),
1272                                        false, false, false, NewAlign);
1273          return DAG.getSetCC(dl, VT,
1274                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1275                                      DAG.getConstant(bestMask.trunc(bestWidth),
1276                                                      newVT)),
1277                              DAG.getConstant(0LL, newVT), Cond);
1278        }
1279      }
1280    }
1281
1282    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1283    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1284      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1285
1286      // If the comparison constant has bits in the upper part, the
1287      // zero-extended value could never match.
1288      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1289                                              C1.getBitWidth() - InSize))) {
1290        switch (Cond) {
1291        case ISD::SETUGT:
1292        case ISD::SETUGE:
1293        case ISD::SETEQ: return DAG.getConstant(0, VT);
1294        case ISD::SETULT:
1295        case ISD::SETULE:
1296        case ISD::SETNE: return DAG.getConstant(1, VT);
1297        case ISD::SETGT:
1298        case ISD::SETGE:
1299          // True if the sign bit of C1 is set.
1300          return DAG.getConstant(C1.isNegative(), VT);
1301        case ISD::SETLT:
1302        case ISD::SETLE:
1303          // True if the sign bit of C1 isn't set.
1304          return DAG.getConstant(C1.isNonNegative(), VT);
1305        default:
1306          break;
1307        }
1308      }
1309
1310      // Otherwise, we can perform the comparison with the low bits.
1311      switch (Cond) {
1312      case ISD::SETEQ:
1313      case ISD::SETNE:
1314      case ISD::SETUGT:
1315      case ISD::SETUGE:
1316      case ISD::SETULT:
1317      case ISD::SETULE: {
1318        EVT newVT = N0.getOperand(0).getValueType();
1319        if (DCI.isBeforeLegalizeOps() ||
1320            (isOperationLegal(ISD::SETCC, newVT) &&
1321             getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
1322          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1323                              DAG.getConstant(C1.trunc(InSize), newVT),
1324                              Cond);
1325        break;
1326      }
1327      default:
1328        break;   // todo, be more careful with signed comparisons
1329      }
1330    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1331               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1332      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1333      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1334      EVT ExtDstTy = N0.getValueType();
1335      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1336
1337      // If the constant doesn't fit into the number of bits for the source of
1338      // the sign extension, it is impossible for both sides to be equal.
1339      if (C1.getMinSignedBits() > ExtSrcTyBits)
1340        return DAG.getConstant(Cond == ISD::SETNE, VT);
1341
1342      SDValue ZextOp;
1343      EVT Op0Ty = N0.getOperand(0).getValueType();
1344      if (Op0Ty == ExtSrcTy) {
1345        ZextOp = N0.getOperand(0);
1346      } else {
1347        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1348        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1349                              DAG.getConstant(Imm, Op0Ty));
1350      }
1351      if (!DCI.isCalledByLegalizer())
1352        DCI.AddToWorklist(ZextOp.getNode());
1353      // Otherwise, make this a use of a zext.
1354      return DAG.getSetCC(dl, VT, ZextOp,
1355                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1356                                                              ExtDstTyBits,
1357                                                              ExtSrcTyBits),
1358                                          ExtDstTy),
1359                          Cond);
1360    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1361                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1362      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1363      if (N0.getOpcode() == ISD::SETCC &&
1364          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1365        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1366        if (TrueWhenTrue)
1367          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1368        // Invert the condition.
1369        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1370        CC = ISD::getSetCCInverse(CC,
1371                                  N0.getOperand(0).getValueType().isInteger());
1372        if (DCI.isBeforeLegalizeOps() ||
1373            isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1374          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1375      }
1376
1377      if ((N0.getOpcode() == ISD::XOR ||
1378           (N0.getOpcode() == ISD::AND &&
1379            N0.getOperand(0).getOpcode() == ISD::XOR &&
1380            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1381          isa<ConstantSDNode>(N0.getOperand(1)) &&
1382          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1383        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1384        // can only do this if the top bits are known zero.
1385        unsigned BitWidth = N0.getValueSizeInBits();
1386        if (DAG.MaskedValueIsZero(N0,
1387                                  APInt::getHighBitsSet(BitWidth,
1388                                                        BitWidth-1))) {
1389          // Okay, get the un-inverted input value.
1390          SDValue Val;
1391          if (N0.getOpcode() == ISD::XOR)
1392            Val = N0.getOperand(0);
1393          else {
1394            assert(N0.getOpcode() == ISD::AND &&
1395                    N0.getOperand(0).getOpcode() == ISD::XOR);
1396            // ((X^1)&1)^1 -> X & 1
1397            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1398                              N0.getOperand(0).getOperand(0),
1399                              N0.getOperand(1));
1400          }
1401
1402          return DAG.getSetCC(dl, VT, Val, N1,
1403                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1404        }
1405      } else if (N1C->getAPIntValue() == 1 &&
1406                 (VT == MVT::i1 ||
1407                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
1408        SDValue Op0 = N0;
1409        if (Op0.getOpcode() == ISD::TRUNCATE)
1410          Op0 = Op0.getOperand(0);
1411
1412        if ((Op0.getOpcode() == ISD::XOR) &&
1413            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1414            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1415          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1416          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1417          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1418                              Cond);
1419        }
1420        if (Op0.getOpcode() == ISD::AND &&
1421            isa<ConstantSDNode>(Op0.getOperand(1)) &&
1422            cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1423          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1424          if (Op0.getValueType().bitsGT(VT))
1425            Op0 = DAG.getNode(ISD::AND, dl, VT,
1426                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1427                          DAG.getConstant(1, VT));
1428          else if (Op0.getValueType().bitsLT(VT))
1429            Op0 = DAG.getNode(ISD::AND, dl, VT,
1430                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1431                        DAG.getConstant(1, VT));
1432
1433          return DAG.getSetCC(dl, VT, Op0,
1434                              DAG.getConstant(0, Op0.getValueType()),
1435                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1436        }
1437        if (Op0.getOpcode() == ISD::AssertZext &&
1438            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1439          return DAG.getSetCC(dl, VT, Op0,
1440                              DAG.getConstant(0, Op0.getValueType()),
1441                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1442      }
1443    }
1444
1445    APInt MinVal, MaxVal;
1446    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1447    if (ISD::isSignedIntSetCC(Cond)) {
1448      MinVal = APInt::getSignedMinValue(OperandBitSize);
1449      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1450    } else {
1451      MinVal = APInt::getMinValue(OperandBitSize);
1452      MaxVal = APInt::getMaxValue(OperandBitSize);
1453    }
1454
1455    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1456    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1457      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1458      // X >= C0 --> X > (C0-1)
1459      return DAG.getSetCC(dl, VT, N0,
1460                          DAG.getConstant(C1-1, N1.getValueType()),
1461                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1462    }
1463
1464    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1465      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1466      // X <= C0 --> X < (C0+1)
1467      return DAG.getSetCC(dl, VT, N0,
1468                          DAG.getConstant(C1+1, N1.getValueType()),
1469                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1470    }
1471
1472    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1473      return DAG.getConstant(0, VT);      // X < MIN --> false
1474    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1475      return DAG.getConstant(1, VT);      // X >= MIN --> true
1476    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1477      return DAG.getConstant(0, VT);      // X > MAX --> false
1478    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1479      return DAG.getConstant(1, VT);      // X <= MAX --> true
1480
1481    // Canonicalize setgt X, Min --> setne X, Min
1482    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1483      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1484    // Canonicalize setlt X, Max --> setne X, Max
1485    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1486      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1487
1488    // If we have setult X, 1, turn it into seteq X, 0
1489    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1490      return DAG.getSetCC(dl, VT, N0,
1491                          DAG.getConstant(MinVal, N0.getValueType()),
1492                          ISD::SETEQ);
1493    // If we have setugt X, Max-1, turn it into seteq X, Max
1494    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1495      return DAG.getSetCC(dl, VT, N0,
1496                          DAG.getConstant(MaxVal, N0.getValueType()),
1497                          ISD::SETEQ);
1498
1499    // If we have "setcc X, C0", check to see if we can shrink the immediate
1500    // by changing cc.
1501
1502    // SETUGT X, SINTMAX  -> SETLT X, 0
1503    if (Cond == ISD::SETUGT &&
1504        C1 == APInt::getSignedMaxValue(OperandBitSize))
1505      return DAG.getSetCC(dl, VT, N0,
1506                          DAG.getConstant(0, N1.getValueType()),
1507                          ISD::SETLT);
1508
1509    // SETULT X, SINTMIN  -> SETGT X, -1
1510    if (Cond == ISD::SETULT &&
1511        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1512      SDValue ConstMinusOne =
1513          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1514                          N1.getValueType());
1515      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1516    }
1517
1518    // Fold bit comparisons when we can.
1519    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1520        (VT == N0.getValueType() ||
1521         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1522        N0.getOpcode() == ISD::AND)
1523      if (ConstantSDNode *AndRHS =
1524                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1525        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1526          getPointerTy() : getShiftAmountTy(N0.getValueType());
1527        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1528          // Perform the xform if the AND RHS is a single bit.
1529          if (AndRHS->getAPIntValue().isPowerOf2()) {
1530            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1531                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1532                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1533          }
1534        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1535          // (X & 8) == 8  -->  (X & 8) >> 3
1536          // Perform the xform if C1 is a single bit.
1537          if (C1.isPowerOf2()) {
1538            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1539                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1540                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1541          }
1542        }
1543      }
1544
1545    if (C1.getMinSignedBits() <= 64 &&
1546        !isLegalICmpImmediate(C1.getSExtValue())) {
1547      // (X & -256) == 256 -> (X >> 8) == 1
1548      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1549          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1550        if (ConstantSDNode *AndRHS =
1551            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1552          const APInt &AndRHSC = AndRHS->getAPIntValue();
1553          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1554            unsigned ShiftBits = AndRHSC.countTrailingZeros();
1555            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1556              getPointerTy() : getShiftAmountTy(N0.getValueType());
1557            EVT CmpTy = N0.getValueType();
1558            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1559                                        DAG.getConstant(ShiftBits, ShiftTy));
1560            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1561            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1562          }
1563        }
1564      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1565                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1566        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1567        // X <  0x100000000 -> (X >> 32) <  1
1568        // X >= 0x100000000 -> (X >> 32) >= 1
1569        // X <= 0x0ffffffff -> (X >> 32) <  1
1570        // X >  0x0ffffffff -> (X >> 32) >= 1
1571        unsigned ShiftBits;
1572        APInt NewC = C1;
1573        ISD::CondCode NewCond = Cond;
1574        if (AdjOne) {
1575          ShiftBits = C1.countTrailingOnes();
1576          NewC = NewC + 1;
1577          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1578        } else {
1579          ShiftBits = C1.countTrailingZeros();
1580        }
1581        NewC = NewC.lshr(ShiftBits);
1582        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1583          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1584            getPointerTy() : getShiftAmountTy(N0.getValueType());
1585          EVT CmpTy = N0.getValueType();
1586          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1587                                      DAG.getConstant(ShiftBits, ShiftTy));
1588          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1589          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1590        }
1591      }
1592    }
1593  }
1594
1595  if (isa<ConstantFPSDNode>(N0.getNode())) {
1596    // Constant fold or commute setcc.
1597    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1598    if (O.getNode()) return O;
1599  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1600    // If the RHS of an FP comparison is a constant, simplify it away in
1601    // some cases.
1602    if (CFP->getValueAPF().isNaN()) {
1603      // If an operand is known to be a nan, we can fold it.
1604      switch (ISD::getUnorderedFlavor(Cond)) {
1605      default: llvm_unreachable("Unknown flavor!");
1606      case 0:  // Known false.
1607        return DAG.getConstant(0, VT);
1608      case 1:  // Known true.
1609        return DAG.getConstant(1, VT);
1610      case 2:  // Undefined.
1611        return DAG.getUNDEF(VT);
1612      }
1613    }
1614
1615    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1616    // constant if knowing that the operand is non-nan is enough.  We prefer to
1617    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1618    // materialize 0.0.
1619    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1620      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1621
1622    // If the condition is not legal, see if we can find an equivalent one
1623    // which is legal.
1624    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1625      // If the comparison was an awkward floating-point == or != and one of
1626      // the comparison operands is infinity or negative infinity, convert the
1627      // condition to a less-awkward <= or >=.
1628      if (CFP->getValueAPF().isInfinity()) {
1629        if (CFP->getValueAPF().isNegative()) {
1630          if (Cond == ISD::SETOEQ &&
1631              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1632            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1633          if (Cond == ISD::SETUEQ &&
1634              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1635            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1636          if (Cond == ISD::SETUNE &&
1637              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1638            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1639          if (Cond == ISD::SETONE &&
1640              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1641            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1642        } else {
1643          if (Cond == ISD::SETOEQ &&
1644              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1645            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1646          if (Cond == ISD::SETUEQ &&
1647              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1648            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1649          if (Cond == ISD::SETUNE &&
1650              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1651            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1652          if (Cond == ISD::SETONE &&
1653              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1654            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1655        }
1656      }
1657    }
1658  }
1659
1660  if (N0 == N1) {
1661    // The sext(setcc()) => setcc() optimization relies on the appropriate
1662    // constant being emitted.
1663    uint64_t EqVal = 0;
1664    switch (getBooleanContents(N0.getValueType().isVector())) {
1665    case UndefinedBooleanContent:
1666    case ZeroOrOneBooleanContent:
1667      EqVal = ISD::isTrueWhenEqual(Cond);
1668      break;
1669    case ZeroOrNegativeOneBooleanContent:
1670      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1671      break;
1672    }
1673
1674    // We can always fold X == X for integer setcc's.
1675    if (N0.getValueType().isInteger()) {
1676      return DAG.getConstant(EqVal, VT);
1677    }
1678    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1679    if (UOF == 2)   // FP operators that are undefined on NaNs.
1680      return DAG.getConstant(EqVal, VT);
1681    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1682      return DAG.getConstant(EqVal, VT);
1683    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1684    // if it is not already.
1685    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1686    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1687          getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1688      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1689  }
1690
1691  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1692      N0.getValueType().isInteger()) {
1693    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1694        N0.getOpcode() == ISD::XOR) {
1695      // Simplify (X+Y) == (X+Z) -->  Y == Z
1696      if (N0.getOpcode() == N1.getOpcode()) {
1697        if (N0.getOperand(0) == N1.getOperand(0))
1698          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1699        if (N0.getOperand(1) == N1.getOperand(1))
1700          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1701        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1702          // If X op Y == Y op X, try other combinations.
1703          if (N0.getOperand(0) == N1.getOperand(1))
1704            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1705                                Cond);
1706          if (N0.getOperand(1) == N1.getOperand(0))
1707            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1708                                Cond);
1709        }
1710      }
1711
1712      // If RHS is a legal immediate value for a compare instruction, we need
1713      // to be careful about increasing register pressure needlessly.
1714      bool LegalRHSImm = false;
1715
1716      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1717        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1718          // Turn (X+C1) == C2 --> X == C2-C1
1719          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1720            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1721                                DAG.getConstant(RHSC->getAPIntValue()-
1722                                                LHSR->getAPIntValue(),
1723                                N0.getValueType()), Cond);
1724          }
1725
1726          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1727          if (N0.getOpcode() == ISD::XOR)
1728            // If we know that all of the inverted bits are zero, don't bother
1729            // performing the inversion.
1730            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1731              return
1732                DAG.getSetCC(dl, VT, N0.getOperand(0),
1733                             DAG.getConstant(LHSR->getAPIntValue() ^
1734                                               RHSC->getAPIntValue(),
1735                                             N0.getValueType()),
1736                             Cond);
1737        }
1738
1739        // Turn (C1-X) == C2 --> X == C1-C2
1740        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1741          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1742            return
1743              DAG.getSetCC(dl, VT, N0.getOperand(1),
1744                           DAG.getConstant(SUBC->getAPIntValue() -
1745                                             RHSC->getAPIntValue(),
1746                                           N0.getValueType()),
1747                           Cond);
1748          }
1749        }
1750
1751        // Could RHSC fold directly into a compare?
1752        if (RHSC->getValueType(0).getSizeInBits() <= 64)
1753          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1754      }
1755
1756      // Simplify (X+Z) == X -->  Z == 0
1757      // Don't do this if X is an immediate that can fold into a cmp
1758      // instruction and X+Z has other uses. It could be an induction variable
1759      // chain, and the transform would increase register pressure.
1760      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1761        if (N0.getOperand(0) == N1)
1762          return DAG.getSetCC(dl, VT, N0.getOperand(1),
1763                              DAG.getConstant(0, N0.getValueType()), Cond);
1764        if (N0.getOperand(1) == N1) {
1765          if (DAG.isCommutativeBinOp(N0.getOpcode()))
1766            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1767                                DAG.getConstant(0, N0.getValueType()), Cond);
1768          if (N0.getNode()->hasOneUse()) {
1769            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1770            // (Z-X) == X  --> Z == X<<1
1771            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1772                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1773            if (!DCI.isCalledByLegalizer())
1774              DCI.AddToWorklist(SH.getNode());
1775            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1776          }
1777        }
1778      }
1779    }
1780
1781    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1782        N1.getOpcode() == ISD::XOR) {
1783      // Simplify  X == (X+Z) -->  Z == 0
1784      if (N1.getOperand(0) == N0)
1785        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1786                        DAG.getConstant(0, N1.getValueType()), Cond);
1787      if (N1.getOperand(1) == N0) {
1788        if (DAG.isCommutativeBinOp(N1.getOpcode()))
1789          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1790                          DAG.getConstant(0, N1.getValueType()), Cond);
1791        if (N1.getNode()->hasOneUse()) {
1792          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1793          // X == (Z-X)  --> X<<1 == Z
1794          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1795                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1796          if (!DCI.isCalledByLegalizer())
1797            DCI.AddToWorklist(SH.getNode());
1798          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1799        }
1800      }
1801    }
1802
1803    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1804    // Note that where y is variable and is known to have at most
1805    // one bit set (for example, if it is z&1) we cannot do this;
1806    // the expressions are not equivalent when y==0.
1807    if (N0.getOpcode() == ISD::AND)
1808      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1809        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1810          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1811          if (DCI.isBeforeLegalizeOps() ||
1812              isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1813            SDValue Zero = DAG.getConstant(0, N1.getValueType());
1814            return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1815          }
1816        }
1817      }
1818    if (N1.getOpcode() == ISD::AND)
1819      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1820        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1821          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1822          if (DCI.isBeforeLegalizeOps() ||
1823              isCondCodeLegal(Cond, N1.getSimpleValueType())) {
1824            SDValue Zero = DAG.getConstant(0, N0.getValueType());
1825            return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1826          }
1827        }
1828      }
1829  }
1830
1831  // Fold away ALL boolean setcc's.
1832  SDValue Temp;
1833  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1834    switch (Cond) {
1835    default: llvm_unreachable("Unknown integer setcc!");
1836    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1837      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1838      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1839      if (!DCI.isCalledByLegalizer())
1840        DCI.AddToWorklist(Temp.getNode());
1841      break;
1842    case ISD::SETNE:  // X != Y   -->  (X^Y)
1843      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1844      break;
1845    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1846    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1847      Temp = DAG.getNOT(dl, N0, MVT::i1);
1848      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1849      if (!DCI.isCalledByLegalizer())
1850        DCI.AddToWorklist(Temp.getNode());
1851      break;
1852    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1853    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1854      Temp = DAG.getNOT(dl, N1, MVT::i1);
1855      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1856      if (!DCI.isCalledByLegalizer())
1857        DCI.AddToWorklist(Temp.getNode());
1858      break;
1859    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1860    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1861      Temp = DAG.getNOT(dl, N0, MVT::i1);
1862      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1863      if (!DCI.isCalledByLegalizer())
1864        DCI.AddToWorklist(Temp.getNode());
1865      break;
1866    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1867    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1868      Temp = DAG.getNOT(dl, N1, MVT::i1);
1869      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1870      break;
1871    }
1872    if (VT != MVT::i1) {
1873      if (!DCI.isCalledByLegalizer())
1874        DCI.AddToWorklist(N0.getNode());
1875      // FIXME: If running after legalize, we probably can't do this.
1876      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1877    }
1878    return N0;
1879  }
1880
1881  // Could not fold it.
1882  return SDValue();
1883}
1884
1885/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1886/// node is a GlobalAddress + offset.
1887bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
1888                                    int64_t &Offset) const {
1889  if (isa<GlobalAddressSDNode>(N)) {
1890    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1891    GA = GASD->getGlobal();
1892    Offset += GASD->getOffset();
1893    return true;
1894  }
1895
1896  if (N->getOpcode() == ISD::ADD) {
1897    SDValue N1 = N->getOperand(0);
1898    SDValue N2 = N->getOperand(1);
1899    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1900      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1901      if (V) {
1902        Offset += V->getSExtValue();
1903        return true;
1904      }
1905    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1906      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1907      if (V) {
1908        Offset += V->getSExtValue();
1909        return true;
1910      }
1911    }
1912  }
1913
1914  return false;
1915}
1916
1917
1918SDValue TargetLowering::
1919PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1920  // Default implementation: no optimization.
1921  return SDValue();
1922}
1923
1924//===----------------------------------------------------------------------===//
1925//  Inline Assembler Implementation Methods
1926//===----------------------------------------------------------------------===//
1927
1928
1929TargetLowering::ConstraintType
1930TargetLowering::getConstraintType(const std::string &Constraint) const {
1931  unsigned S = Constraint.size();
1932
1933  if (S == 1) {
1934    switch (Constraint[0]) {
1935    default: break;
1936    case 'r': return C_RegisterClass;
1937    case 'm':    // memory
1938    case 'o':    // offsetable
1939    case 'V':    // not offsetable
1940      return C_Memory;
1941    case 'i':    // Simple Integer or Relocatable Constant
1942    case 'n':    // Simple Integer
1943    case 'E':    // Floating Point Constant
1944    case 'F':    // Floating Point Constant
1945    case 's':    // Relocatable Constant
1946    case 'p':    // Address.
1947    case 'X':    // Allow ANY value.
1948    case 'I':    // Target registers.
1949    case 'J':
1950    case 'K':
1951    case 'L':
1952    case 'M':
1953    case 'N':
1954    case 'O':
1955    case 'P':
1956    case '<':
1957    case '>':
1958      return C_Other;
1959    }
1960  }
1961
1962  if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
1963    if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
1964      return C_Memory;
1965    return C_Register;
1966  }
1967  return C_Unknown;
1968}
1969
1970/// LowerXConstraint - try to replace an X constraint, which matches anything,
1971/// with another that has more specific requirements based on the type of the
1972/// corresponding operand.
1973const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
1974  if (ConstraintVT.isInteger())
1975    return "r";
1976  if (ConstraintVT.isFloatingPoint())
1977    return "f";      // works for many targets
1978  return 0;
1979}
1980
1981/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1982/// vector.  If it is invalid, don't add anything to Ops.
1983void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1984                                                  std::string &Constraint,
1985                                                  std::vector<SDValue> &Ops,
1986                                                  SelectionDAG &DAG) const {
1987
1988  if (Constraint.length() > 1) return;
1989
1990  char ConstraintLetter = Constraint[0];
1991  switch (ConstraintLetter) {
1992  default: break;
1993  case 'X':     // Allows any operand; labels (basic block) use this.
1994    if (Op.getOpcode() == ISD::BasicBlock) {
1995      Ops.push_back(Op);
1996      return;
1997    }
1998    // fall through
1999  case 'i':    // Simple Integer or Relocatable Constant
2000  case 'n':    // Simple Integer
2001  case 's': {  // Relocatable Constant
2002    // These operands are interested in values of the form (GV+C), where C may
2003    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2004    // is possible and fine if either GV or C are missing.
2005    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2006    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2007
2008    // If we have "(add GV, C)", pull out GV/C
2009    if (Op.getOpcode() == ISD::ADD) {
2010      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2011      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2012      if (C == 0 || GA == 0) {
2013        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2014        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2015      }
2016      if (C == 0 || GA == 0)
2017        C = 0, GA = 0;
2018    }
2019
2020    // If we find a valid operand, map to the TargetXXX version so that the
2021    // value itself doesn't get selected.
2022    if (GA) {   // Either &GV   or   &GV+C
2023      if (ConstraintLetter != 'n') {
2024        int64_t Offs = GA->getOffset();
2025        if (C) Offs += C->getZExtValue();
2026        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2027                                                 C ? SDLoc(C) : SDLoc(),
2028                                                 Op.getValueType(), Offs));
2029        return;
2030      }
2031    }
2032    if (C) {   // just C, no GV.
2033      // Simple constants are not allowed for 's'.
2034      if (ConstraintLetter != 's') {
2035        // gcc prints these as sign extended.  Sign extend value to 64 bits
2036        // now; without this it would get ZExt'd later in
2037        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2038        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2039                                            MVT::i64));
2040        return;
2041      }
2042    }
2043    break;
2044  }
2045  }
2046}
2047
2048std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2049getRegForInlineAsmConstraint(const std::string &Constraint,
2050                             MVT VT) const {
2051  if (Constraint.empty() || Constraint[0] != '{')
2052    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2053  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2054
2055  // Remove the braces from around the name.
2056  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2057
2058  std::pair<unsigned, const TargetRegisterClass*> R =
2059    std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2060
2061  // Figure out which register class contains this reg.
2062  const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
2063  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2064       E = RI->regclass_end(); RCI != E; ++RCI) {
2065    const TargetRegisterClass *RC = *RCI;
2066
2067    // If none of the value types for this register class are valid, we
2068    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2069    if (!isLegalRC(RC))
2070      continue;
2071
2072    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2073         I != E; ++I) {
2074      if (RegName.equals_lower(RI->getName(*I))) {
2075        std::pair<unsigned, const TargetRegisterClass*> S =
2076          std::make_pair(*I, RC);
2077
2078        // If this register class has the requested value type, return it,
2079        // otherwise keep searching and return the first class found
2080        // if no other is found which explicitly has the requested type.
2081        if (RC->hasType(VT))
2082          return S;
2083        else if (!R.second)
2084          R = S;
2085      }
2086    }
2087  }
2088
2089  return R;
2090}
2091
2092//===----------------------------------------------------------------------===//
2093// Constraint Selection.
2094
2095/// isMatchingInputConstraint - Return true of this is an input operand that is
2096/// a matching constraint like "4".
2097bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2098  assert(!ConstraintCode.empty() && "No known constraint!");
2099  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2100}
2101
2102/// getMatchedOperand - If this is an input matching constraint, this method
2103/// returns the output operand it matches.
2104unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2105  assert(!ConstraintCode.empty() && "No known constraint!");
2106  return atoi(ConstraintCode.c_str());
2107}
2108
2109
2110/// ParseConstraints - Split up the constraint string from the inline
2111/// assembly value into the specific constraints and their prefixes,
2112/// and also tie in the associated operand values.
2113/// If this returns an empty vector, and if the constraint string itself
2114/// isn't empty, there was an error parsing.
2115TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2116    ImmutableCallSite CS) const {
2117  /// ConstraintOperands - Information about all of the constraints.
2118  AsmOperandInfoVector ConstraintOperands;
2119  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2120  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2121
2122  // Do a prepass over the constraints, canonicalizing them, and building up the
2123  // ConstraintOperands list.
2124  InlineAsm::ConstraintInfoVector
2125    ConstraintInfos = IA->ParseConstraints();
2126
2127  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2128  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2129
2130  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2131    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2132    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2133
2134    // Update multiple alternative constraint count.
2135    if (OpInfo.multipleAlternatives.size() > maCount)
2136      maCount = OpInfo.multipleAlternatives.size();
2137
2138    OpInfo.ConstraintVT = MVT::Other;
2139
2140    // Compute the value type for each operand.
2141    switch (OpInfo.Type) {
2142    case InlineAsm::isOutput:
2143      // Indirect outputs just consume an argument.
2144      if (OpInfo.isIndirect) {
2145        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2146        break;
2147      }
2148
2149      // The return value of the call is this value.  As such, there is no
2150      // corresponding argument.
2151      assert(!CS.getType()->isVoidTy() &&
2152             "Bad inline asm!");
2153      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2154        OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2155      } else {
2156        assert(ResNo == 0 && "Asm only has one result!");
2157        OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2158      }
2159      ++ResNo;
2160      break;
2161    case InlineAsm::isInput:
2162      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2163      break;
2164    case InlineAsm::isClobber:
2165      // Nothing to do.
2166      break;
2167    }
2168
2169    if (OpInfo.CallOperandVal) {
2170      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2171      if (OpInfo.isIndirect) {
2172        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2173        if (!PtrTy)
2174          report_fatal_error("Indirect operand for inline asm not a pointer!");
2175        OpTy = PtrTy->getElementType();
2176      }
2177
2178      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2179      if (StructType *STy = dyn_cast<StructType>(OpTy))
2180        if (STy->getNumElements() == 1)
2181          OpTy = STy->getElementType(0);
2182
2183      // If OpTy is not a single value, it may be a struct/union that we
2184      // can tile with integers.
2185      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2186        unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2187        switch (BitSize) {
2188        default: break;
2189        case 1:
2190        case 8:
2191        case 16:
2192        case 32:
2193        case 64:
2194        case 128:
2195          OpInfo.ConstraintVT =
2196            MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2197          break;
2198        }
2199      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2200        unsigned PtrSize
2201          = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
2202        OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2203      } else {
2204        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2205      }
2206    }
2207  }
2208
2209  // If we have multiple alternative constraints, select the best alternative.
2210  if (ConstraintInfos.size()) {
2211    if (maCount) {
2212      unsigned bestMAIndex = 0;
2213      int bestWeight = -1;
2214      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2215      int weight = -1;
2216      unsigned maIndex;
2217      // Compute the sums of the weights for each alternative, keeping track
2218      // of the best (highest weight) one so far.
2219      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2220        int weightSum = 0;
2221        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2222            cIndex != eIndex; ++cIndex) {
2223          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2224          if (OpInfo.Type == InlineAsm::isClobber)
2225            continue;
2226
2227          // If this is an output operand with a matching input operand,
2228          // look up the matching input. If their types mismatch, e.g. one
2229          // is an integer, the other is floating point, or their sizes are
2230          // different, flag it as an maCantMatch.
2231          if (OpInfo.hasMatchingInput()) {
2232            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2233            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2234              if ((OpInfo.ConstraintVT.isInteger() !=
2235                   Input.ConstraintVT.isInteger()) ||
2236                  (OpInfo.ConstraintVT.getSizeInBits() !=
2237                   Input.ConstraintVT.getSizeInBits())) {
2238                weightSum = -1;  // Can't match.
2239                break;
2240              }
2241            }
2242          }
2243          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2244          if (weight == -1) {
2245            weightSum = -1;
2246            break;
2247          }
2248          weightSum += weight;
2249        }
2250        // Update best.
2251        if (weightSum > bestWeight) {
2252          bestWeight = weightSum;
2253          bestMAIndex = maIndex;
2254        }
2255      }
2256
2257      // Now select chosen alternative in each constraint.
2258      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2259          cIndex != eIndex; ++cIndex) {
2260        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2261        if (cInfo.Type == InlineAsm::isClobber)
2262          continue;
2263        cInfo.selectAlternative(bestMAIndex);
2264      }
2265    }
2266  }
2267
2268  // Check and hook up tied operands, choose constraint code to use.
2269  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2270      cIndex != eIndex; ++cIndex) {
2271    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2272
2273    // If this is an output operand with a matching input operand, look up the
2274    // matching input. If their types mismatch, e.g. one is an integer, the
2275    // other is floating point, or their sizes are different, flag it as an
2276    // error.
2277    if (OpInfo.hasMatchingInput()) {
2278      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2279
2280      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2281        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2282          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
2283                                       OpInfo.ConstraintVT);
2284        std::pair<unsigned, const TargetRegisterClass*> InputRC =
2285          getRegForInlineAsmConstraint(Input.ConstraintCode,
2286                                       Input.ConstraintVT);
2287        if ((OpInfo.ConstraintVT.isInteger() !=
2288             Input.ConstraintVT.isInteger()) ||
2289            (MatchRC.second != InputRC.second)) {
2290          report_fatal_error("Unsupported asm: input constraint"
2291                             " with a matching output constraint of"
2292                             " incompatible type!");
2293        }
2294      }
2295
2296    }
2297  }
2298
2299  return ConstraintOperands;
2300}
2301
2302
2303/// getConstraintGenerality - Return an integer indicating how general CT
2304/// is.
2305static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2306  switch (CT) {
2307  case TargetLowering::C_Other:
2308  case TargetLowering::C_Unknown:
2309    return 0;
2310  case TargetLowering::C_Register:
2311    return 1;
2312  case TargetLowering::C_RegisterClass:
2313    return 2;
2314  case TargetLowering::C_Memory:
2315    return 3;
2316  }
2317  llvm_unreachable("Invalid constraint type");
2318}
2319
2320/// Examine constraint type and operand type and determine a weight value.
2321/// This object must already have been set up with the operand type
2322/// and the current alternative constraint selected.
2323TargetLowering::ConstraintWeight
2324  TargetLowering::getMultipleConstraintMatchWeight(
2325    AsmOperandInfo &info, int maIndex) const {
2326  InlineAsm::ConstraintCodeVector *rCodes;
2327  if (maIndex >= (int)info.multipleAlternatives.size())
2328    rCodes = &info.Codes;
2329  else
2330    rCodes = &info.multipleAlternatives[maIndex].Codes;
2331  ConstraintWeight BestWeight = CW_Invalid;
2332
2333  // Loop over the options, keeping track of the most general one.
2334  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2335    ConstraintWeight weight =
2336      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2337    if (weight > BestWeight)
2338      BestWeight = weight;
2339  }
2340
2341  return BestWeight;
2342}
2343
2344/// Examine constraint type and operand type and determine a weight value.
2345/// This object must already have been set up with the operand type
2346/// and the current alternative constraint selected.
2347TargetLowering::ConstraintWeight
2348  TargetLowering::getSingleConstraintMatchWeight(
2349    AsmOperandInfo &info, const char *constraint) const {
2350  ConstraintWeight weight = CW_Invalid;
2351  Value *CallOperandVal = info.CallOperandVal;
2352    // If we don't have a value, we can't do a match,
2353    // but allow it at the lowest weight.
2354  if (CallOperandVal == NULL)
2355    return CW_Default;
2356  // Look at the constraint type.
2357  switch (*constraint) {
2358    case 'i': // immediate integer.
2359    case 'n': // immediate integer with a known value.
2360      if (isa<ConstantInt>(CallOperandVal))
2361        weight = CW_Constant;
2362      break;
2363    case 's': // non-explicit intregal immediate.
2364      if (isa<GlobalValue>(CallOperandVal))
2365        weight = CW_Constant;
2366      break;
2367    case 'E': // immediate float if host format.
2368    case 'F': // immediate float.
2369      if (isa<ConstantFP>(CallOperandVal))
2370        weight = CW_Constant;
2371      break;
2372    case '<': // memory operand with autodecrement.
2373    case '>': // memory operand with autoincrement.
2374    case 'm': // memory operand.
2375    case 'o': // offsettable memory operand
2376    case 'V': // non-offsettable memory operand
2377      weight = CW_Memory;
2378      break;
2379    case 'r': // general register.
2380    case 'g': // general register, memory operand or immediate integer.
2381              // note: Clang converts "g" to "imr".
2382      if (CallOperandVal->getType()->isIntegerTy())
2383        weight = CW_Register;
2384      break;
2385    case 'X': // any operand.
2386    default:
2387      weight = CW_Default;
2388      break;
2389  }
2390  return weight;
2391}
2392
2393/// ChooseConstraint - If there are multiple different constraints that we
2394/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2395/// This is somewhat tricky: constraints fall into four classes:
2396///    Other         -> immediates and magic values
2397///    Register      -> one specific register
2398///    RegisterClass -> a group of regs
2399///    Memory        -> memory
2400/// Ideally, we would pick the most specific constraint possible: if we have
2401/// something that fits into a register, we would pick it.  The problem here
2402/// is that if we have something that could either be in a register or in
2403/// memory that use of the register could cause selection of *other*
2404/// operands to fail: they might only succeed if we pick memory.  Because of
2405/// this the heuristic we use is:
2406///
2407///  1) If there is an 'other' constraint, and if the operand is valid for
2408///     that constraint, use it.  This makes us take advantage of 'i'
2409///     constraints when available.
2410///  2) Otherwise, pick the most general constraint present.  This prefers
2411///     'm' over 'r', for example.
2412///
2413static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2414                             const TargetLowering &TLI,
2415                             SDValue Op, SelectionDAG *DAG) {
2416  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2417  unsigned BestIdx = 0;
2418  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2419  int BestGenerality = -1;
2420
2421  // Loop over the options, keeping track of the most general one.
2422  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2423    TargetLowering::ConstraintType CType =
2424      TLI.getConstraintType(OpInfo.Codes[i]);
2425
2426    // If this is an 'other' constraint, see if the operand is valid for it.
2427    // For example, on X86 we might have an 'rI' constraint.  If the operand
2428    // is an integer in the range [0..31] we want to use I (saving a load
2429    // of a register), otherwise we must use 'r'.
2430    if (CType == TargetLowering::C_Other && Op.getNode()) {
2431      assert(OpInfo.Codes[i].size() == 1 &&
2432             "Unhandled multi-letter 'other' constraint");
2433      std::vector<SDValue> ResultOps;
2434      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2435                                       ResultOps, *DAG);
2436      if (!ResultOps.empty()) {
2437        BestType = CType;
2438        BestIdx = i;
2439        break;
2440      }
2441    }
2442
2443    // Things with matching constraints can only be registers, per gcc
2444    // documentation.  This mainly affects "g" constraints.
2445    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2446      continue;
2447
2448    // This constraint letter is more general than the previous one, use it.
2449    int Generality = getConstraintGenerality(CType);
2450    if (Generality > BestGenerality) {
2451      BestType = CType;
2452      BestIdx = i;
2453      BestGenerality = Generality;
2454    }
2455  }
2456
2457  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2458  OpInfo.ConstraintType = BestType;
2459}
2460
2461/// ComputeConstraintToUse - Determines the constraint code and constraint
2462/// type to use for the specific AsmOperandInfo, setting
2463/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2464void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2465                                            SDValue Op,
2466                                            SelectionDAG *DAG) const {
2467  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2468
2469  // Single-letter constraints ('r') are very common.
2470  if (OpInfo.Codes.size() == 1) {
2471    OpInfo.ConstraintCode = OpInfo.Codes[0];
2472    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2473  } else {
2474    ChooseConstraint(OpInfo, *this, Op, DAG);
2475  }
2476
2477  // 'X' matches anything.
2478  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2479    // Labels and constants are handled elsewhere ('X' is the only thing
2480    // that matches labels).  For Functions, the type here is the type of
2481    // the result, which is not what we want to look at; leave them alone.
2482    Value *v = OpInfo.CallOperandVal;
2483    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2484      OpInfo.CallOperandVal = v;
2485      return;
2486    }
2487
2488    // Otherwise, try to resolve it to something we know about by looking at
2489    // the actual operand type.
2490    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2491      OpInfo.ConstraintCode = Repl;
2492      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2493    }
2494  }
2495}
2496
2497/// \brief Given an exact SDIV by a constant, create a multiplication
2498/// with the multiplicative inverse of the constant.
2499SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2500                                       SelectionDAG &DAG) const {
2501  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2502  APInt d = C->getAPIntValue();
2503  assert(d != 0 && "Division by zero!");
2504
2505  // Shift the value upfront if it is even, so the LSB is one.
2506  unsigned ShAmt = d.countTrailingZeros();
2507  if (ShAmt) {
2508    // TODO: For UDIV use SRL instead of SRA.
2509    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2510    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
2511    d = d.ashr(ShAmt);
2512  }
2513
2514  // Calculate the multiplicative inverse, using Newton's method.
2515  APInt t, xn = d;
2516  while ((t = d*xn) != 1)
2517    xn *= APInt(d.getBitWidth(), 2) - t;
2518
2519  Op2 = DAG.getConstant(xn, Op1.getValueType());
2520  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2521}
2522
2523/// \brief Given an ISD::SDIV node expressing a divide by constant,
2524/// return a DAG expression to select that will generate the same value by
2525/// multiplying by a magic number.  See:
2526/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2527SDValue TargetLowering::
2528BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2529          std::vector<SDNode*> *Created) const {
2530  EVT VT = N->getValueType(0);
2531  SDLoc dl(N);
2532
2533  // Check to see if we can do this.
2534  // FIXME: We should be more aggressive here.
2535  if (!isTypeLegal(VT))
2536    return SDValue();
2537
2538  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2539  APInt::ms magics = d.magic();
2540
2541  // Multiply the numerator (operand 0) by the magic value
2542  // FIXME: We should support doing a MUL in a wider type
2543  SDValue Q;
2544  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2545                            isOperationLegalOrCustom(ISD::MULHS, VT))
2546    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2547                    DAG.getConstant(magics.m, VT));
2548  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2549                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2550    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2551                              N->getOperand(0),
2552                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2553  else
2554    return SDValue();       // No mulhs or equvialent
2555  // If d > 0 and m < 0, add the numerator
2556  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2557    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2558    if (Created)
2559      Created->push_back(Q.getNode());
2560  }
2561  // If d < 0 and m > 0, subtract the numerator.
2562  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2563    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2564    if (Created)
2565      Created->push_back(Q.getNode());
2566  }
2567  // Shift right algebraic if shift value is nonzero
2568  if (magics.s > 0) {
2569    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2570                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2571    if (Created)
2572      Created->push_back(Q.getNode());
2573  }
2574  // Extract the sign bit and add it to the quotient
2575  SDValue T =
2576    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2577                                           getShiftAmountTy(Q.getValueType())));
2578  if (Created)
2579    Created->push_back(T.getNode());
2580  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2581}
2582
2583/// \brief Given an ISD::UDIV node expressing a divide by constant,
2584/// return a DAG expression to select that will generate the same value by
2585/// multiplying by a magic number.  See:
2586/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2587SDValue TargetLowering::
2588BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2589          std::vector<SDNode*> *Created) const {
2590  EVT VT = N->getValueType(0);
2591  SDLoc dl(N);
2592
2593  // Check to see if we can do this.
2594  // FIXME: We should be more aggressive here.
2595  if (!isTypeLegal(VT))
2596    return SDValue();
2597
2598  // FIXME: We should use a narrower constant when the upper
2599  // bits are known to be zero.
2600  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2601  APInt::mu magics = N1C.magicu();
2602
2603  SDValue Q = N->getOperand(0);
2604
2605  // If the divisor is even, we can avoid using the expensive fixup by shifting
2606  // the divided value upfront.
2607  if (magics.a != 0 && !N1C[0]) {
2608    unsigned Shift = N1C.countTrailingZeros();
2609    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2610                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2611    if (Created)
2612      Created->push_back(Q.getNode());
2613
2614    // Get magic number for the shifted divisor.
2615    magics = N1C.lshr(Shift).magicu(Shift);
2616    assert(magics.a == 0 && "Should use cheap fixup now");
2617  }
2618
2619  // Multiply the numerator (operand 0) by the magic value
2620  // FIXME: We should support doing a MUL in a wider type
2621  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2622                            isOperationLegalOrCustom(ISD::MULHU, VT))
2623    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2624  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2625                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2626    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2627                            DAG.getConstant(magics.m, VT)).getNode(), 1);
2628  else
2629    return SDValue();       // No mulhu or equvialent
2630  if (Created)
2631    Created->push_back(Q.getNode());
2632
2633  if (magics.a == 0) {
2634    assert(magics.s < N1C.getBitWidth() &&
2635           "We shouldn't generate an undefined shift!");
2636    return DAG.getNode(ISD::SRL, dl, VT, Q,
2637                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2638  } else {
2639    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2640    if (Created)
2641      Created->push_back(NPQ.getNode());
2642    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2643                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2644    if (Created)
2645      Created->push_back(NPQ.getNode());
2646    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2647    if (Created)
2648      Created->push_back(NPQ.getNode());
2649    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2650             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2651  }
2652}
2653