ShadowStackGC.cpp revision 2ff961f66816daab8bbc58a19025161d969821c2
1//===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements lowering for the llvm.gc* intrinsics for targets that do
11// not natively support them (which includes the C backend). Note that the code
12// generated is not quite as efficient as algorithms which generate stack maps
13// to identify roots.
14//
15// This pass implements the code transformation described in this paper:
16//   "Accurate Garbage Collection in an Uncooperative Environment"
17//   Fergus Henderson, ISMM, 2002
18//
19// In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
20// ShadowStackGC.
21//
22// In order to support this particular transformation, all stack roots are
23// coallocated in the stack. This allows a fully target-independent stack map
24// while introducing only minor runtime overhead.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "shadowstackgc"
29#include "llvm/CodeGen/GCs.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/Module.h"
34#include "llvm/Support/IRBuilder.h"
35
36using namespace llvm;
37
38namespace {
39
40  class ShadowStackGC : public GCStrategy {
41    /// RootChain - This is the global linked-list that contains the chain of GC
42    /// roots.
43    GlobalVariable *Head;
44
45    /// StackEntryTy - Abstract type of a link in the shadow stack.
46    ///
47    const StructType *StackEntryTy;
48
49    /// Roots - GC roots in the current function. Each is a pair of the
50    /// intrinsic call and its corresponding alloca.
51    std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
52
53  public:
54    ShadowStackGC();
55
56    bool initializeCustomLowering(Module &M);
57    bool performCustomLowering(Function &F);
58
59  private:
60    bool IsNullValue(Value *V);
61    Constant *GetFrameMap(Function &F);
62    const Type* GetConcreteStackEntryType(Function &F);
63    void CollectRoots(Function &F);
64    static GetElementPtrInst *CreateGEP(LLVMContext &Context,
65                                        IRBuilder<> &B, Value *BasePtr,
66                                        int Idx1, const char *Name);
67    static GetElementPtrInst *CreateGEP(LLVMContext &Context,
68                                        IRBuilder<> &B, Value *BasePtr,
69                                        int Idx1, int Idx2, const char *Name);
70  };
71
72}
73
74static GCRegistry::Add<ShadowStackGC>
75X("shadow-stack", "Very portable GC for uncooperative code generators");
76
77namespace {
78  /// EscapeEnumerator - This is a little algorithm to find all escape points
79  /// from a function so that "finally"-style code can be inserted. In addition
80  /// to finding the existing return and unwind instructions, it also (if
81  /// necessary) transforms any call instructions into invokes and sends them to
82  /// a landing pad.
83  ///
84  /// It's wrapped up in a state machine using the same transform C# uses for
85  /// 'yield return' enumerators, This transform allows it to be non-allocating.
86  class EscapeEnumerator {
87    Function &F;
88    const char *CleanupBBName;
89
90    // State.
91    int State;
92    Function::iterator StateBB, StateE;
93    IRBuilder<> Builder;
94
95  public:
96    EscapeEnumerator(Function &F, const char *N = "cleanup")
97      : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
98
99    IRBuilder<> *Next() {
100      switch (State) {
101      default:
102        return 0;
103
104      case 0:
105        StateBB = F.begin();
106        StateE = F.end();
107        State = 1;
108
109      case 1:
110        // Find all 'return' and 'unwind' instructions.
111        while (StateBB != StateE) {
112          BasicBlock *CurBB = StateBB++;
113
114          // Branches and invokes do not escape, only unwind and return do.
115          TerminatorInst *TI = CurBB->getTerminator();
116          if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI))
117            continue;
118
119          Builder.SetInsertPoint(TI->getParent(), TI);
120          return &Builder;
121        }
122
123        State = 2;
124
125        // Find all 'call' instructions.
126        SmallVector<Instruction*,16> Calls;
127        for (Function::iterator BB = F.begin(),
128                                E = F.end(); BB != E; ++BB)
129          for (BasicBlock::iterator II = BB->begin(),
130                                    EE = BB->end(); II != EE; ++II)
131            if (CallInst *CI = dyn_cast<CallInst>(II))
132              if (!CI->getCalledFunction() ||
133                  !CI->getCalledFunction()->getIntrinsicID())
134                Calls.push_back(CI);
135
136        if (Calls.empty())
137          return 0;
138
139        // Create a cleanup block.
140        BasicBlock *CleanupBB = BasicBlock::Create(F.getContext(),
141                                                   CleanupBBName, &F);
142        UnwindInst *UI = new UnwindInst(F.getContext(), CleanupBB);
143
144        // Transform the 'call' instructions into 'invoke's branching to the
145        // cleanup block. Go in reverse order to make prettier BB names.
146        SmallVector<Value*,16> Args;
147        for (unsigned I = Calls.size(); I != 0; ) {
148          CallInst *CI = cast<CallInst>(Calls[--I]);
149
150          // Split the basic block containing the function call.
151          BasicBlock *CallBB = CI->getParent();
152          BasicBlock *NewBB =
153            CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
154
155          // Remove the unconditional branch inserted at the end of CallBB.
156          CallBB->getInstList().pop_back();
157          NewBB->getInstList().remove(CI);
158
159          // Create a new invoke instruction.
160          Args.clear();
161          Args.append(CI->op_begin(), CI->op_end() - 1);
162
163          InvokeInst *II = InvokeInst::Create(CI->getCalledValue(),
164                                              NewBB, CleanupBB,
165                                              Args.begin(), Args.end(),
166                                              CI->getName(), CallBB);
167          II->setCallingConv(CI->getCallingConv());
168          II->setAttributes(CI->getAttributes());
169          CI->replaceAllUsesWith(II);
170          delete CI;
171        }
172
173        Builder.SetInsertPoint(UI->getParent(), UI);
174        return &Builder;
175      }
176    }
177  };
178}
179
180// -----------------------------------------------------------------------------
181
182void llvm::linkShadowStackGC() { }
183
184ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
185  InitRoots = true;
186  CustomRoots = true;
187}
188
189Constant *ShadowStackGC::GetFrameMap(Function &F) {
190  // doInitialization creates the abstract type of this value.
191  const Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
192
193  // Truncate the ShadowStackDescriptor if some metadata is null.
194  unsigned NumMeta = 0;
195  SmallVector<Constant*,16> Metadata;
196  for (unsigned I = 0; I != Roots.size(); ++I) {
197    Constant *C = cast<Constant>(Roots[I].first->getOperand(1));
198    if (!C->isNullValue())
199      NumMeta = I + 1;
200    Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
201  }
202
203  Constant *BaseElts[] = {
204    ConstantInt::get(Type::getInt32Ty(F.getContext()), Roots.size(), false),
205    ConstantInt::get(Type::getInt32Ty(F.getContext()), NumMeta, false),
206  };
207
208  Constant *DescriptorElts[] = {
209    ConstantStruct::get(F.getContext(), BaseElts, 2, false),
210    ConstantArray::get(ArrayType::get(VoidPtr, NumMeta),
211                       Metadata.begin(), NumMeta)
212  };
213
214  Constant *FrameMap = ConstantStruct::get(F.getContext(), DescriptorElts, 2,
215                                           false);
216
217  std::string TypeName("gc_map.");
218  TypeName += utostr(NumMeta);
219  F.getParent()->addTypeName(TypeName, FrameMap->getType());
220
221  // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
222  //        that, short of multithreaded LLVM, it should be safe; all that is
223  //        necessary is that a simple Module::iterator loop not be invalidated.
224  //        Appending to the GlobalVariable list is safe in that sense.
225  //
226  //        All of the output passes emit globals last. The ExecutionEngine
227  //        explicitly supports adding globals to the module after
228  //        initialization.
229  //
230  //        Still, if it isn't deemed acceptable, then this transformation needs
231  //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
232  //        (which uses a FunctionPassManager (which segfaults (not asserts) if
233  //        provided a ModulePass))).
234  Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
235                                    GlobalVariable::InternalLinkage,
236                                    FrameMap, "__gc_" + F.getName());
237
238  Constant *GEPIndices[2] = {
239                          ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
240                          ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
241                          };
242  return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2);
243}
244
245const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
246  // doInitialization creates the generic version of this type.
247  std::vector<const Type*> EltTys;
248  EltTys.push_back(StackEntryTy);
249  for (size_t I = 0; I != Roots.size(); I++)
250    EltTys.push_back(Roots[I].second->getAllocatedType());
251  Type *Ty = StructType::get(F.getContext(), EltTys);
252
253  std::string TypeName("gc_stackentry.");
254  TypeName += F.getName();
255  F.getParent()->addTypeName(TypeName, Ty);
256
257  return Ty;
258}
259
260/// doInitialization - If this module uses the GC intrinsics, find them now. If
261/// not, exit fast.
262bool ShadowStackGC::initializeCustomLowering(Module &M) {
263  // struct FrameMap {
264  //   int32_t NumRoots; // Number of roots in stack frame.
265  //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
266  //   void *Meta[];     // May be absent for roots without metadata.
267  // };
268  std::vector<const Type*> EltTys;
269  // 32 bits is ok up to a 32GB stack frame. :)
270  EltTys.push_back(Type::getInt32Ty(M.getContext()));
271  // Specifies length of variable length array.
272  EltTys.push_back(Type::getInt32Ty(M.getContext()));
273  StructType *FrameMapTy = StructType::get(M.getContext(), EltTys);
274  M.addTypeName("gc_map", FrameMapTy);
275  PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
276
277  // struct StackEntry {
278  //   ShadowStackEntry *Next; // Caller's stack entry.
279  //   FrameMap *Map;          // Pointer to constant FrameMap.
280  //   void *Roots[];          // Stack roots (in-place array, so we pretend).
281  // };
282  OpaqueType *RecursiveTy = OpaqueType::get(M.getContext());
283
284  EltTys.clear();
285  EltTys.push_back(PointerType::getUnqual(RecursiveTy));
286  EltTys.push_back(FrameMapPtrTy);
287  PATypeHolder LinkTyH = StructType::get(M.getContext(), EltTys);
288
289  RecursiveTy->refineAbstractTypeTo(LinkTyH.get());
290  StackEntryTy = cast<StructType>(LinkTyH.get());
291  const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
292  M.addTypeName("gc_stackentry", LinkTyH.get());  // FIXME: Is this safe from
293                                                  //        a FunctionPass?
294
295  // Get the root chain if it already exists.
296  Head = M.getGlobalVariable("llvm_gc_root_chain");
297  if (!Head) {
298    // If the root chain does not exist, insert a new one with linkonce
299    // linkage!
300    Head = new GlobalVariable(M, StackEntryPtrTy, false,
301                              GlobalValue::LinkOnceAnyLinkage,
302                              Constant::getNullValue(StackEntryPtrTy),
303                              "llvm_gc_root_chain");
304  } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
305    Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
306    Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
307  }
308
309  return true;
310}
311
312bool ShadowStackGC::IsNullValue(Value *V) {
313  if (Constant *C = dyn_cast<Constant>(V))
314    return C->isNullValue();
315  return false;
316}
317
318void ShadowStackGC::CollectRoots(Function &F) {
319  // FIXME: Account for original alignment. Could fragment the root array.
320  //   Approach 1: Null initialize empty slots at runtime. Yuck.
321  //   Approach 2: Emit a map of the array instead of just a count.
322
323  assert(Roots.empty() && "Not cleaned up?");
324
325  SmallVector<std::pair<CallInst*, AllocaInst*>,16> MetaRoots;
326
327  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
328    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
329      if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
330        if (Function *F = CI->getCalledFunction())
331          if (F->getIntrinsicID() == Intrinsic::gcroot) {
332            std::pair<CallInst*, AllocaInst*> Pair = std::make_pair(
333              CI, cast<AllocaInst>(CI->getOperand(0)->stripPointerCasts()));
334            if (IsNullValue(CI->getOperand(1)))
335              Roots.push_back(Pair);
336            else
337              MetaRoots.push_back(Pair);
338          }
339
340  // Number roots with metadata (usually empty) at the beginning, so that the
341  // FrameMap::Meta array can be elided.
342  Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
343}
344
345GetElementPtrInst *
346ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
347                         int Idx, int Idx2, const char *Name) {
348  Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
349                       ConstantInt::get(Type::getInt32Ty(Context), Idx),
350                       ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
351  Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
352
353  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
354
355  return dyn_cast<GetElementPtrInst>(Val);
356}
357
358GetElementPtrInst *
359ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
360                         int Idx, const char *Name) {
361  Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
362                       ConstantInt::get(Type::getInt32Ty(Context), Idx) };
363  Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
364
365  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
366
367  return dyn_cast<GetElementPtrInst>(Val);
368}
369
370/// runOnFunction - Insert code to maintain the shadow stack.
371bool ShadowStackGC::performCustomLowering(Function &F) {
372  LLVMContext &Context = F.getContext();
373
374  // Find calls to llvm.gcroot.
375  CollectRoots(F);
376
377  // If there are no roots in this function, then there is no need to add a
378  // stack map entry for it.
379  if (Roots.empty())
380    return false;
381
382  // Build the constant map and figure the type of the shadow stack entry.
383  Value *FrameMap = GetFrameMap(F);
384  const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
385
386  // Build the shadow stack entry at the very start of the function.
387  BasicBlock::iterator IP = F.getEntryBlock().begin();
388  IRBuilder<> AtEntry(IP->getParent(), IP);
389
390  Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
391                                                   "gc_frame");
392
393  while (isa<AllocaInst>(IP)) ++IP;
394  AtEntry.SetInsertPoint(IP->getParent(), IP);
395
396  // Initialize the map pointer and load the current head of the shadow stack.
397  Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead");
398  Instruction *EntryMapPtr  = CreateGEP(Context, AtEntry, StackEntry,
399                                        0,1,"gc_frame.map");
400                              AtEntry.CreateStore(FrameMap, EntryMapPtr);
401
402  // After all the allocas...
403  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
404    // For each root, find the corresponding slot in the aggregate...
405    Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
406
407    // And use it in lieu of the alloca.
408    AllocaInst *OriginalAlloca = Roots[I].second;
409    SlotPtr->takeName(OriginalAlloca);
410    OriginalAlloca->replaceAllUsesWith(SlotPtr);
411  }
412
413  // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
414  // really necessary (the collector would never see the intermediate state at
415  // runtime), but it's nicer not to push the half-initialized entry onto the
416  // shadow stack.
417  while (isa<StoreInst>(IP)) ++IP;
418  AtEntry.SetInsertPoint(IP->getParent(), IP);
419
420  // Push the entry onto the shadow stack.
421  Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
422                                        StackEntry,0,0,"gc_frame.next");
423  Instruction *NewHeadVal   = CreateGEP(Context, AtEntry,
424                                        StackEntry, 0, "gc_newhead");
425  AtEntry.CreateStore(CurrentHead, EntryNextPtr);
426  AtEntry.CreateStore(NewHeadVal, Head);
427
428  // For each instruction that escapes...
429  EscapeEnumerator EE(F, "gc_cleanup");
430  while (IRBuilder<> *AtExit = EE.Next()) {
431    // Pop the entry from the shadow stack. Don't reuse CurrentHead from
432    // AtEntry, since that would make the value live for the entire function.
433    Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
434                                           "gc_frame.next");
435    Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
436                       AtExit->CreateStore(SavedHead, Head);
437  }
438
439  // Delete the original allocas (which are no longer used) and the intrinsic
440  // calls (which are no longer valid). Doing this last avoids invalidating
441  // iterators.
442  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
443    Roots[I].first->eraseFromParent();
444    Roots[I].second->eraseFromParent();
445  }
446
447  Roots.clear();
448  return true;
449}
450