SpillPlacement.cpp revision f31034db8c12197d00b3e356e1d2a702c2339d49
1//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the spill code placement analysis.
11//
12// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13// basic blocks are weighted by the block frequency and added to become the node
14// bias.
15//
16// Transparent basic blocks have the variable live through, but don't care if it
17// is spilled or in a register. These blocks become connections in the Hopfield
18// network, again weighted by block frequency.
19//
20// The Hopfield network minimizes (possibly locally) its energy function:
21//
22//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23//
24// The energy function represents the expected spill code execution frequency,
25// or the cost of spilling. This is a Lyapunov function which never increases
26// when a node is updated. It is guaranteed to converge to a local minimum.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "spillplacement"
31#include "SpillPlacement.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/CodeGen/EdgeBundles.h"
34#include "llvm/CodeGen/LiveIntervalAnalysis.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineLoopInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/Format.h"
41
42using namespace llvm;
43
44char SpillPlacement::ID = 0;
45INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
46                      "Spill Code Placement Analysis", true, true)
47INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
48INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
49INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
50                    "Spill Code Placement Analysis", true, true)
51
52char &llvm::SpillPlacementID = SpillPlacement::ID;
53
54void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.setPreservesAll();
56  AU.addRequiredTransitive<EdgeBundles>();
57  AU.addRequiredTransitive<MachineLoopInfo>();
58  MachineFunctionPass::getAnalysisUsage(AU);
59}
60
61/// Node - Each edge bundle corresponds to a Hopfield node.
62///
63/// The node contains precomputed frequency data that only depends on the CFG,
64/// but Bias and Links are computed each time placeSpills is called.
65///
66/// The node Value is positive when the variable should be in a register. The
67/// value can change when linked nodes change, but convergence is very fast
68/// because all weights are positive.
69///
70struct SpillPlacement::Node {
71  /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle.
72  /// Ideally, these two numbers should be identical, but inaccuracies in the
73  /// block frequency estimates means that we need to normalize ingoing and
74  /// outgoing frequencies separately so they are commensurate.
75  float Scale[2];
76
77  /// Bias - Normalized contributions from non-transparent blocks.
78  /// A bundle connected to a MustSpill block has a huge negative bias,
79  /// otherwise it is a number in the range [-2;2].
80  float Bias;
81
82  /// Value - Output value of this node computed from the Bias and links.
83  /// This is always in the range [-1;1]. A positive number means the variable
84  /// should go in a register through this bundle.
85  float Value;
86
87  typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
88
89  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
90  /// bundles. The weights are all positive and add up to at most 2, weights
91  /// from ingoing and outgoing nodes separately add up to a most 1. The weight
92  /// sum can be less than 2 when the variable is not live into / out of some
93  /// connected basic blocks.
94  LinkVector Links;
95
96  /// preferReg - Return true when this node prefers to be in a register.
97  bool preferReg() const {
98    // Undecided nodes (Value==0) go on the stack.
99    return Value > 0;
100  }
101
102  /// mustSpill - Return True if this node is so biased that it must spill.
103  bool mustSpill() const {
104    // Actually, we must spill if Bias < sum(weights).
105    // It may be worth it to compute the weight sum here?
106    return Bias < -2.0f;
107  }
108
109  /// Node - Create a blank Node.
110  Node() {
111    Scale[0] = Scale[1] = 0;
112  }
113
114  /// clear - Reset per-query data, but preserve frequencies that only depend on
115  // the CFG.
116  void clear() {
117    Bias = Value = 0;
118    Links.clear();
119  }
120
121  /// addLink - Add a link to bundle b with weight w.
122  /// out=0 for an ingoing link, and 1 for an outgoing link.
123  void addLink(unsigned b, float w, bool out) {
124    // Normalize w relative to all connected blocks from that direction.
125    w *= Scale[out];
126
127    // There can be multiple links to the same bundle, add them up.
128    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
129      if (I->second == b) {
130        I->first += w;
131        return;
132      }
133    // This must be the first link to b.
134    Links.push_back(std::make_pair(w, b));
135  }
136
137  /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
138  /// Return the change to the total number of positive biases.
139  void addBias(float w, bool out) {
140    // Normalize w relative to all connected blocks from that direction.
141    w *= Scale[out];
142    Bias += w;
143  }
144
145  /// update - Recompute Value from Bias and Links. Return true when node
146  /// preference changes.
147  bool update(const Node nodes[]) {
148    // Compute the weighted sum of inputs.
149    float Sum = Bias;
150    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
151      Sum += I->first * nodes[I->second].Value;
152
153    // The weighted sum is going to be in the range [-2;2]. Ideally, we should
154    // simply set Value = sign(Sum), but we will add a dead zone around 0 for
155    // two reasons:
156    //  1. It avoids arbitrary bias when all links are 0 as is possible during
157    //     initial iterations.
158    //  2. It helps tame rounding errors when the links nominally sum to 0.
159    const float Thres = 1e-4f;
160    bool Before = preferReg();
161    if (Sum < -Thres)
162      Value = -1;
163    else if (Sum > Thres)
164      Value = 1;
165    else
166      Value = 0;
167    return Before != preferReg();
168  }
169};
170
171bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
172  MF = &mf;
173  bundles = &getAnalysis<EdgeBundles>();
174  loops = &getAnalysis<MachineLoopInfo>();
175
176  assert(!nodes && "Leaking node array");
177  nodes = new Node[bundles->getNumBundles()];
178
179  // Compute total ingoing and outgoing block frequencies for all bundles.
180  BlockFrequency.resize(mf.getNumBlockIDs());
181  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
182    float Freq = LiveIntervals::getSpillWeight(true, false,
183                                               loops->getLoopDepth(I));
184    unsigned Num = I->getNumber();
185    BlockFrequency[Num] = Freq;
186    nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq;
187    nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq;
188  }
189
190  // Scales are reciprocal frequencies.
191  for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i)
192    for (unsigned d = 0; d != 2; ++d)
193      if (nodes[i].Scale[d] > 0)
194        nodes[i].Scale[d] = 1 / nodes[i].Scale[d];
195
196  // We never change the function.
197  return false;
198}
199
200void SpillPlacement::releaseMemory() {
201  delete[] nodes;
202  nodes = 0;
203}
204
205/// activate - mark node n as active if it wasn't already.
206void SpillPlacement::activate(unsigned n) {
207  if (ActiveNodes->test(n))
208    return;
209  ActiveNodes->set(n);
210  nodes[n].clear();
211
212  // Very large bundles usually come from big switches, indirect branches,
213  // landing pads, or loops with many 'continue' statements. It is difficult to
214  // allocate registers when so many different blocks are involved.
215  //
216  // Give a small negative bias to large bundles such that 1/32 of the
217  // connected blocks need to be interested before we consider expanding the
218  // region through the bundle. This helps compile time by limiting the number
219  // of blocks visited and the number of links in the Hopfield network.
220  if (bundles->getBlocks(n).size() > 100)
221    nodes[n].Bias = -0.0625f;
222}
223
224
225/// addConstraints - Compute node biases and weights from a set of constraints.
226/// Set a bit in NodeMask for each active node.
227void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
228  for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
229       E = LiveBlocks.end(); I != E; ++I) {
230    float Freq = getBlockFrequency(I->Number);
231    const float Bias[] = {
232      0,           // DontCare,
233      1,           // PrefReg,
234      -1,          // PrefSpill
235      0,           // PrefBoth
236      -HUGE_VALF   // MustSpill
237    };
238
239    // Live-in to block?
240    if (I->Entry != DontCare) {
241      unsigned ib = bundles->getBundle(I->Number, 0);
242      activate(ib);
243      nodes[ib].addBias(Freq * Bias[I->Entry], 1);
244    }
245
246    // Live-out from block?
247    if (I->Exit != DontCare) {
248      unsigned ob = bundles->getBundle(I->Number, 1);
249      activate(ob);
250      nodes[ob].addBias(Freq * Bias[I->Exit], 0);
251    }
252  }
253}
254
255/// addPrefSpill - Same as addConstraints(PrefSpill)
256void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
257  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
258       I != E; ++I) {
259    float Freq = getBlockFrequency(*I);
260    if (Strong)
261      Freq += Freq;
262    unsigned ib = bundles->getBundle(*I, 0);
263    unsigned ob = bundles->getBundle(*I, 1);
264    activate(ib);
265    activate(ob);
266    nodes[ib].addBias(-Freq, 1);
267    nodes[ob].addBias(-Freq, 0);
268  }
269}
270
271void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
272  for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
273       ++I) {
274    unsigned Number = *I;
275    unsigned ib = bundles->getBundle(Number, 0);
276    unsigned ob = bundles->getBundle(Number, 1);
277
278    // Ignore self-loops.
279    if (ib == ob)
280      continue;
281    activate(ib);
282    activate(ob);
283    if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
284      Linked.push_back(ib);
285    if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
286      Linked.push_back(ob);
287    float Freq = getBlockFrequency(Number);
288    nodes[ib].addLink(ob, Freq, 1);
289    nodes[ob].addLink(ib, Freq, 0);
290  }
291}
292
293bool SpillPlacement::scanActiveBundles() {
294  Linked.clear();
295  RecentPositive.clear();
296  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
297    nodes[n].update(nodes);
298    // A node that must spill, or a node without any links is not going to
299    // change its value ever again, so exclude it from iterations.
300    if (nodes[n].mustSpill())
301      continue;
302    if (!nodes[n].Links.empty())
303      Linked.push_back(n);
304    if (nodes[n].preferReg())
305      RecentPositive.push_back(n);
306  }
307  return !RecentPositive.empty();
308}
309
310/// iterate - Repeatedly update the Hopfield nodes until stability or the
311/// maximum number of iterations is reached.
312/// @param Linked - Numbers of linked nodes that need updating.
313void SpillPlacement::iterate() {
314  // First update the recently positive nodes. They have likely received new
315  // negative bias that will turn them off.
316  while (!RecentPositive.empty())
317    nodes[RecentPositive.pop_back_val()].update(nodes);
318
319  if (Linked.empty())
320    return;
321
322  // Run up to 10 iterations. The edge bundle numbering is closely related to
323  // basic block numbering, so there is a strong tendency towards chains of
324  // linked nodes with sequential numbers. By scanning the linked nodes
325  // backwards and forwards, we make it very likely that a single node can
326  // affect the entire network in a single iteration. That means very fast
327  // convergence, usually in a single iteration.
328  for (unsigned iteration = 0; iteration != 10; ++iteration) {
329    // Scan backwards, skipping the last node which was just updated.
330    bool Changed = false;
331    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
332           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
333      unsigned n = *I;
334      if (nodes[n].update(nodes)) {
335        Changed = true;
336        if (nodes[n].preferReg())
337          RecentPositive.push_back(n);
338      }
339    }
340    if (!Changed || !RecentPositive.empty())
341      return;
342
343    // Scan forwards, skipping the first node which was just updated.
344    Changed = false;
345    for (SmallVectorImpl<unsigned>::const_iterator I =
346           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
347      unsigned n = *I;
348      if (nodes[n].update(nodes)) {
349        Changed = true;
350        if (nodes[n].preferReg())
351          RecentPositive.push_back(n);
352      }
353    }
354    if (!Changed || !RecentPositive.empty())
355      return;
356  }
357}
358
359void SpillPlacement::prepare(BitVector &RegBundles) {
360  Linked.clear();
361  RecentPositive.clear();
362  // Reuse RegBundles as our ActiveNodes vector.
363  ActiveNodes = &RegBundles;
364  ActiveNodes->clear();
365  ActiveNodes->resize(bundles->getNumBundles());
366}
367
368bool
369SpillPlacement::finish() {
370  assert(ActiveNodes && "Call prepare() first");
371
372  // Write preferences back to ActiveNodes.
373  bool Perfect = true;
374  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
375    if (!nodes[n].preferReg()) {
376      ActiveNodes->reset(n);
377      Perfect = false;
378    }
379  ActiveNodes = 0;
380  return Perfect;
381}
382