SplitKit.cpp revision 1feb5854aeeda897e9318c8193d187673c8576b8
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/LiveRangeEdit.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/VirtRegMap.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32STATISTIC(NumFinished, "Number of splits finished");
33STATISTIC(NumSimple,   "Number of splits that were simple");
34STATISTIC(NumCopies,   "Number of copies inserted for splitting");
35STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
36STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
37
38//===----------------------------------------------------------------------===//
39//                                 Split Analysis
40//===----------------------------------------------------------------------===//
41
42SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43                             const LiveIntervals &lis,
44                             const MachineLoopInfo &mli)
45  : MF(vrm.getMachineFunction()),
46    VRM(vrm),
47    LIS(lis),
48    Loops(mli),
49    TII(*MF.getTarget().getInstrInfo()),
50    CurLI(0),
51    LastSplitPoint(MF.getNumBlockIDs()) {}
52
53void SplitAnalysis::clear() {
54  UseSlots.clear();
55  UseBlocks.clear();
56  ThroughBlocks.clear();
57  CurLI = 0;
58  DidRepairRange = false;
59}
60
61SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65  SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67  // Compute split points on the first call. The pair is independent of the
68  // current live interval.
69  if (!LSP.first.isValid()) {
70    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71    if (FirstTerm == MBB->end())
72      LSP.first = MBBEnd;
73    else
74      LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76    // If there is a landing pad successor, also find the call instruction.
77    if (!LPad)
78      return LSP.first;
79    // There may not be a call instruction (?) in which case we ignore LPad.
80    LSP.second = LSP.first;
81    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82         I != E;) {
83      --I;
84      if (I->isCall()) {
85        LSP.second = LIS.getInstructionIndex(I);
86        break;
87      }
88    }
89  }
90
91  // If CurLI is live into a landing pad successor, move the last split point
92  // back to the call that may throw.
93  if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94    return LSP.first;
95
96  // Find the value leaving MBB.
97  const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98  if (!VNI)
99    return LSP.first;
100
101  // If the value leaving MBB was defined after the call in MBB, it can't
102  // really be live-in to the landing pad.  This can happen if the landing pad
103  // has a PHI, and this register is undef on the exceptional edge.
104  // <rdar://problem/10664933>
105  if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106    return LSP.first;
107
108  // Value is properly live-in to the landing pad.
109  // Only allow splits before the call.
110  return LSP.second;
111}
112
113MachineBasicBlock::iterator
114SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115  SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116  if (LSP == LIS.getMBBEndIdx(MBB))
117    return MBB->end();
118  return LIS.getInstructionFromIndex(LSP);
119}
120
121/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122void SplitAnalysis::analyzeUses() {
123  assert(UseSlots.empty() && "Call clear first");
124
125  // First get all the defs from the interval values. This provides the correct
126  // slots for early clobbers.
127  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128       E = CurLI->vni_end(); I != E; ++I)
129    if (!(*I)->isPHIDef() && !(*I)->isUnused())
130      UseSlots.push_back((*I)->def);
131
132  // Get use slots form the use-def chain.
133  const MachineRegisterInfo &MRI = MF.getRegInfo();
134  for (MachineRegisterInfo::use_nodbg_iterator
135       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136       ++I)
137    if (!I.getOperand().isUndef())
138      UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140  array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142  // Remove duplicates, keeping the smaller slot for each instruction.
143  // That is what we want for early clobbers.
144  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145                             SlotIndex::isSameInstr),
146                 UseSlots.end());
147
148  // Compute per-live block info.
149  if (!calcLiveBlockInfo()) {
150    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151    // I am looking at you, RegisterCoalescer!
152    DidRepairRange = true;
153    ++NumRepairs;
154    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155    const_cast<LiveIntervals&>(LIS)
156      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157    UseBlocks.clear();
158    ThroughBlocks.clear();
159    bool fixed = calcLiveBlockInfo();
160    (void)fixed;
161    assert(fixed && "Couldn't fix broken live interval");
162  }
163
164  DEBUG(dbgs() << "Analyze counted "
165               << UseSlots.size() << " instrs in "
166               << UseBlocks.size() << " blocks, through "
167               << NumThroughBlocks << " blocks.\n");
168}
169
170/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171/// where CurLI is live.
172bool SplitAnalysis::calcLiveBlockInfo() {
173  ThroughBlocks.resize(MF.getNumBlockIDs());
174  NumThroughBlocks = NumGapBlocks = 0;
175  if (CurLI->empty())
176    return true;
177
178  LiveInterval::const_iterator LVI = CurLI->begin();
179  LiveInterval::const_iterator LVE = CurLI->end();
180
181  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182  UseI = UseSlots.begin();
183  UseE = UseSlots.end();
184
185  // Loop over basic blocks where CurLI is live.
186  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187  for (;;) {
188    BlockInfo BI;
189    BI.MBB = MFI;
190    SlotIndex Start, Stop;
191    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193    // If the block contains no uses, the range must be live through. At one
194    // point, RegisterCoalescer could create dangling ranges that ended
195    // mid-block.
196    if (UseI == UseE || *UseI >= Stop) {
197      ++NumThroughBlocks;
198      ThroughBlocks.set(BI.MBB->getNumber());
199      // The range shouldn't end mid-block if there are no uses. This shouldn't
200      // happen.
201      if (LVI->end < Stop)
202        return false;
203    } else {
204      // This block has uses. Find the first and last uses in the block.
205      BI.FirstInstr = *UseI;
206      assert(BI.FirstInstr >= Start);
207      do ++UseI;
208      while (UseI != UseE && *UseI < Stop);
209      BI.LastInstr = UseI[-1];
210      assert(BI.LastInstr < Stop);
211
212      // LVI is the first live segment overlapping MBB.
213      BI.LiveIn = LVI->start <= Start;
214
215      // When not live in, the first use should be a def.
216      if (!BI.LiveIn) {
217        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219        BI.FirstDef = BI.FirstInstr;
220      }
221
222      // Look for gaps in the live range.
223      BI.LiveOut = true;
224      while (LVI->end < Stop) {
225        SlotIndex LastStop = LVI->end;
226        if (++LVI == LVE || LVI->start >= Stop) {
227          BI.LiveOut = false;
228          BI.LastInstr = LastStop;
229          break;
230        }
231
232        if (LastStop < LVI->start) {
233          // There is a gap in the live range. Create duplicate entries for the
234          // live-in snippet and the live-out snippet.
235          ++NumGapBlocks;
236
237          // Push the Live-in part.
238          BI.LiveOut = false;
239          UseBlocks.push_back(BI);
240          UseBlocks.back().LastInstr = LastStop;
241
242          // Set up BI for the live-out part.
243          BI.LiveIn = false;
244          BI.LiveOut = true;
245          BI.FirstInstr = BI.FirstDef = LVI->start;
246        }
247
248        // A LiveRange that starts in the middle of the block must be a def.
249        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250        if (!BI.FirstDef)
251          BI.FirstDef = LVI->start;
252      }
253
254      UseBlocks.push_back(BI);
255
256      // LVI is now at LVE or LVI->end >= Stop.
257      if (LVI == LVE)
258        break;
259    }
260
261    // Live segment ends exactly at Stop. Move to the next segment.
262    if (LVI->end == Stop && ++LVI == LVE)
263      break;
264
265    // Pick the next basic block.
266    if (LVI->start < Stop)
267      ++MFI;
268    else
269      MFI = LIS.getMBBFromIndex(LVI->start);
270  }
271
272  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273  return true;
274}
275
276unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277  if (cli->empty())
278    return 0;
279  LiveInterval *li = const_cast<LiveInterval*>(cli);
280  LiveInterval::iterator LVI = li->begin();
281  LiveInterval::iterator LVE = li->end();
282  unsigned Count = 0;
283
284  // Loop over basic blocks where li is live.
285  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287  for (;;) {
288    ++Count;
289    LVI = li->advanceTo(LVI, Stop);
290    if (LVI == LVE)
291      return Count;
292    do {
293      ++MFI;
294      Stop = LIS.getMBBEndIdx(MFI);
295    } while (Stop <= LVI->start);
296  }
297}
298
299bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301  const LiveInterval &Orig = LIS.getInterval(OrigReg);
302  assert(!Orig.empty() && "Splitting empty interval?");
303  LiveInterval::const_iterator I = Orig.find(Idx);
304
305  // Range containing Idx should begin at Idx.
306  if (I != Orig.end() && I->start <= Idx)
307    return I->start == Idx;
308
309  // Range does not contain Idx, previous must end at Idx.
310  return I != Orig.begin() && (--I)->end == Idx;
311}
312
313void SplitAnalysis::analyze(const LiveInterval *li) {
314  clear();
315  CurLI = li;
316  analyzeUses();
317}
318
319
320//===----------------------------------------------------------------------===//
321//                               Split Editor
322//===----------------------------------------------------------------------===//
323
324/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
325SplitEditor::SplitEditor(SplitAnalysis &sa,
326                         LiveIntervals &lis,
327                         VirtRegMap &vrm,
328                         MachineDominatorTree &mdt,
329                         MachineBlockFrequencyInfo &mbfi)
330  : SA(sa), LIS(lis), VRM(vrm),
331    MRI(vrm.getMachineFunction().getRegInfo()),
332    MDT(mdt),
333    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
334    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
335    MBFI(mbfi),
336    Edit(0),
337    OpenIdx(0),
338    SpillMode(SM_Partition),
339    RegAssign(Allocator)
340{}
341
342void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
343  Edit = &LRE;
344  SpillMode = SM;
345  OpenIdx = 0;
346  RegAssign.clear();
347  Values.clear();
348
349  // Reset the LiveRangeCalc instances needed for this spill mode.
350  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
351                  &LIS.getVNInfoAllocator());
352  if (SpillMode)
353    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
354                    &LIS.getVNInfoAllocator());
355
356  // We don't need an AliasAnalysis since we will only be performing
357  // cheap-as-a-copy remats anyway.
358  Edit->anyRematerializable(0);
359}
360
361#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
362void SplitEditor::dump() const {
363  if (RegAssign.empty()) {
364    dbgs() << " empty\n";
365    return;
366  }
367
368  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
369    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
370  dbgs() << '\n';
371}
372#endif
373
374VNInfo *SplitEditor::defValue(unsigned RegIdx,
375                              const VNInfo *ParentVNI,
376                              SlotIndex Idx) {
377  assert(ParentVNI && "Mapping  NULL value");
378  assert(Idx.isValid() && "Invalid SlotIndex");
379  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
380  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
381
382  // Create a new value.
383  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
384
385  // Use insert for lookup, so we can add missing values with a second lookup.
386  std::pair<ValueMap::iterator, bool> InsP =
387    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
388                                 ValueForcePair(VNI, false)));
389
390  // This was the first time (RegIdx, ParentVNI) was mapped.
391  // Keep it as a simple def without any liveness.
392  if (InsP.second)
393    return VNI;
394
395  // If the previous value was a simple mapping, add liveness for it now.
396  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
397    SlotIndex Def = OldVNI->def;
398    LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
399    // No longer a simple mapping.  Switch to a complex, non-forced mapping.
400    InsP.first->second = ValueForcePair();
401  }
402
403  // This is a complex mapping, add liveness for VNI
404  SlotIndex Def = VNI->def;
405  LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
406
407  return VNI;
408}
409
410void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
411  assert(ParentVNI && "Mapping  NULL value");
412  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
413  VNInfo *VNI = VFP.getPointer();
414
415  // ParentVNI was either unmapped or already complex mapped. Either way, just
416  // set the force bit.
417  if (!VNI) {
418    VFP.setInt(true);
419    return;
420  }
421
422  // This was previously a single mapping. Make sure the old def is represented
423  // by a trivial live range.
424  SlotIndex Def = VNI->def;
425  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
426  LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
427  // Mark as complex mapped, forced.
428  VFP = ValueForcePair(0, true);
429}
430
431VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
432                                   VNInfo *ParentVNI,
433                                   SlotIndex UseIdx,
434                                   MachineBasicBlock &MBB,
435                                   MachineBasicBlock::iterator I) {
436  MachineInstr *CopyMI = 0;
437  SlotIndex Def;
438  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
439
440  // We may be trying to avoid interference that ends at a deleted instruction,
441  // so always begin RegIdx 0 early and all others late.
442  bool Late = RegIdx != 0;
443
444  // Attempt cheap-as-a-copy rematerialization.
445  LiveRangeEdit::Remat RM(ParentVNI);
446  if (Edit->canRematerializeAt(RM, UseIdx, true)) {
447    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
448    ++NumRemats;
449  } else {
450    // Can't remat, just insert a copy from parent.
451    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
452               .addReg(Edit->getReg());
453    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
454            .getRegSlot();
455    ++NumCopies;
456  }
457
458  // Define the value in Reg.
459  return defValue(RegIdx, ParentVNI, Def);
460}
461
462/// Create a new virtual register and live interval.
463unsigned SplitEditor::openIntv() {
464  // Create the complement as index 0.
465  if (Edit->empty())
466    Edit->create();
467
468  // Create the open interval.
469  OpenIdx = Edit->size();
470  Edit->create();
471  return OpenIdx;
472}
473
474void SplitEditor::selectIntv(unsigned Idx) {
475  assert(Idx != 0 && "Cannot select the complement interval");
476  assert(Idx < Edit->size() && "Can only select previously opened interval");
477  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
478  OpenIdx = Idx;
479}
480
481SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
482  assert(OpenIdx && "openIntv not called before enterIntvBefore");
483  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
484  Idx = Idx.getBaseIndex();
485  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
486  if (!ParentVNI) {
487    DEBUG(dbgs() << ": not live\n");
488    return Idx;
489  }
490  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
491  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
492  assert(MI && "enterIntvBefore called with invalid index");
493
494  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
495  return VNI->def;
496}
497
498SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
499  assert(OpenIdx && "openIntv not called before enterIntvAfter");
500  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
501  Idx = Idx.getBoundaryIndex();
502  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
503  if (!ParentVNI) {
504    DEBUG(dbgs() << ": not live\n");
505    return Idx;
506  }
507  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
508  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
509  assert(MI && "enterIntvAfter called with invalid index");
510
511  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
512                              llvm::next(MachineBasicBlock::iterator(MI)));
513  return VNI->def;
514}
515
516SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
517  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
518  SlotIndex End = LIS.getMBBEndIdx(&MBB);
519  SlotIndex Last = End.getPrevSlot();
520  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
521  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
522  if (!ParentVNI) {
523    DEBUG(dbgs() << ": not live\n");
524    return End;
525  }
526  DEBUG(dbgs() << ": valno " << ParentVNI->id);
527  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
528                              SA.getLastSplitPointIter(&MBB));
529  RegAssign.insert(VNI->def, End, OpenIdx);
530  DEBUG(dump());
531  return VNI->def;
532}
533
534/// useIntv - indicate that all instructions in MBB should use OpenLI.
535void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
536  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
537}
538
539void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
540  assert(OpenIdx && "openIntv not called before useIntv");
541  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
542  RegAssign.insert(Start, End, OpenIdx);
543  DEBUG(dump());
544}
545
546SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
547  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
548  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
549
550  // The interval must be live beyond the instruction at Idx.
551  SlotIndex Boundary = Idx.getBoundaryIndex();
552  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
553  if (!ParentVNI) {
554    DEBUG(dbgs() << ": not live\n");
555    return Boundary.getNextSlot();
556  }
557  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
558  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
559  assert(MI && "No instruction at index");
560
561  // In spill mode, make live ranges as short as possible by inserting the copy
562  // before MI.  This is only possible if that instruction doesn't redefine the
563  // value.  The inserted COPY is not a kill, and we don't need to recompute
564  // the source live range.  The spiller also won't try to hoist this copy.
565  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
566      MI->readsVirtualRegister(Edit->getReg())) {
567    forceRecompute(0, ParentVNI);
568    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
569    return Idx;
570  }
571
572  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
573                              llvm::next(MachineBasicBlock::iterator(MI)));
574  return VNI->def;
575}
576
577SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
578  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
579  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
580
581  // The interval must be live into the instruction at Idx.
582  Idx = Idx.getBaseIndex();
583  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
584  if (!ParentVNI) {
585    DEBUG(dbgs() << ": not live\n");
586    return Idx.getNextSlot();
587  }
588  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
589
590  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
591  assert(MI && "No instruction at index");
592  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
593  return VNI->def;
594}
595
596SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
597  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
598  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
599  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
600
601  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
602  if (!ParentVNI) {
603    DEBUG(dbgs() << ": not live\n");
604    return Start;
605  }
606
607  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
608                              MBB.SkipPHIsAndLabels(MBB.begin()));
609  RegAssign.insert(Start, VNI->def, OpenIdx);
610  DEBUG(dump());
611  return VNI->def;
612}
613
614void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
615  assert(OpenIdx && "openIntv not called before overlapIntv");
616  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
617  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
618         "Parent changes value in extended range");
619  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
620         "Range cannot span basic blocks");
621
622  // The complement interval will be extended as needed by LRCalc.extend().
623  if (ParentVNI)
624    forceRecompute(0, ParentVNI);
625  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
626  RegAssign.insert(Start, End, OpenIdx);
627  DEBUG(dump());
628}
629
630//===----------------------------------------------------------------------===//
631//                                  Spill modes
632//===----------------------------------------------------------------------===//
633
634void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
635  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
636  DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
637  RegAssignMap::iterator AssignI;
638  AssignI.setMap(RegAssign);
639
640  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
641    VNInfo *VNI = Copies[i];
642    SlotIndex Def = VNI->def;
643    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
644    assert(MI && "No instruction for back-copy");
645
646    MachineBasicBlock *MBB = MI->getParent();
647    MachineBasicBlock::iterator MBBI(MI);
648    bool AtBegin;
649    do AtBegin = MBBI == MBB->begin();
650    while (!AtBegin && (--MBBI)->isDebugValue());
651
652    DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
653    LI->removeValNo(VNI);
654    LIS.RemoveMachineInstrFromMaps(MI);
655    MI->eraseFromParent();
656
657    // Adjust RegAssign if a register assignment is killed at VNI->def.  We
658    // want to avoid calculating the live range of the source register if
659    // possible.
660    AssignI.find(Def.getPrevSlot());
661    if (!AssignI.valid() || AssignI.start() >= Def)
662      continue;
663    // If MI doesn't kill the assigned register, just leave it.
664    if (AssignI.stop() != Def)
665      continue;
666    unsigned RegIdx = AssignI.value();
667    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
668      DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
669      forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
670    } else {
671      SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
672      DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
673      AssignI.setStop(Kill);
674    }
675  }
676}
677
678MachineBasicBlock*
679SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
680                                  MachineBasicBlock *DefMBB) {
681  if (MBB == DefMBB)
682    return MBB;
683  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
684
685  const MachineLoopInfo &Loops = SA.Loops;
686  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
687  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
688
689  // Best candidate so far.
690  MachineBasicBlock *BestMBB = MBB;
691  unsigned BestDepth = UINT_MAX;
692
693  for (;;) {
694    const MachineLoop *Loop = Loops.getLoopFor(MBB);
695
696    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
697    // higher frequency by definition.
698    if (!Loop) {
699      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700                   << MBB->getNumber() << " at depth 0\n");
701      return MBB;
702    }
703
704    // We'll never be able to exit the DefLoop.
705    if (Loop == DefLoop) {
706      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
707                   << MBB->getNumber() << " in the same loop\n");
708      return MBB;
709    }
710
711    // Least busy dominator seen so far.
712    unsigned Depth = Loop->getLoopDepth();
713    if (Depth < BestDepth) {
714      BestMBB = MBB;
715      BestDepth = Depth;
716      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
717                   << MBB->getNumber() << " at depth " << Depth << '\n');
718    }
719
720    // Leave loop by going to the immediate dominator of the loop header.
721    // This is a bigger stride than simply walking up the dominator tree.
722    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
723
724    // Too far up the dominator tree?
725    if (!IDom || !MDT.dominates(DefDomNode, IDom))
726      return BestMBB;
727
728    MBB = IDom->getBlock();
729  }
730}
731
732void SplitEditor::hoistCopiesForSize() {
733  // Get the complement interval, always RegIdx 0.
734  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
735  LiveInterval *Parent = &Edit->getParent();
736
737  // Track the nearest common dominator for all back-copies for each ParentVNI,
738  // indexed by ParentVNI->id.
739  typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
740  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
741
742  // Find the nearest common dominator for parent values with multiple
743  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
744  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
745       VI != VE; ++VI) {
746    VNInfo *VNI = *VI;
747    if (VNI->isUnused())
748      continue;
749    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
750    assert(ParentVNI && "Parent not live at complement def");
751
752    // Don't hoist remats.  The complement is probably going to disappear
753    // completely anyway.
754    if (Edit->didRematerialize(ParentVNI))
755      continue;
756
757    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
758    DomPair &Dom = NearestDom[ParentVNI->id];
759
760    // Keep directly defined parent values.  This is either a PHI or an
761    // instruction in the complement range.  All other copies of ParentVNI
762    // should be eliminated.
763    if (VNI->def == ParentVNI->def) {
764      DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
765      Dom = DomPair(ValMBB, VNI->def);
766      continue;
767    }
768    // Skip the singly mapped values.  There is nothing to gain from hoisting a
769    // single back-copy.
770    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
771      DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
772      continue;
773    }
774
775    if (!Dom.first) {
776      // First time we see ParentVNI.  VNI dominates itself.
777      Dom = DomPair(ValMBB, VNI->def);
778    } else if (Dom.first == ValMBB) {
779      // Two defs in the same block.  Pick the earlier def.
780      if (!Dom.second.isValid() || VNI->def < Dom.second)
781        Dom.second = VNI->def;
782    } else {
783      // Different basic blocks. Check if one dominates.
784      MachineBasicBlock *Near =
785        MDT.findNearestCommonDominator(Dom.first, ValMBB);
786      if (Near == ValMBB)
787        // Def ValMBB dominates.
788        Dom = DomPair(ValMBB, VNI->def);
789      else if (Near != Dom.first)
790        // None dominate. Hoist to common dominator, need new def.
791        Dom = DomPair(Near, SlotIndex());
792    }
793
794    DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
795                 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
796                 << " hoist to BB#" << Dom.first->getNumber() << ' '
797                 << Dom.second << '\n');
798  }
799
800  // Insert the hoisted copies.
801  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
802    DomPair &Dom = NearestDom[i];
803    if (!Dom.first || Dom.second.isValid())
804      continue;
805    // This value needs a hoisted copy inserted at the end of Dom.first.
806    VNInfo *ParentVNI = Parent->getValNumInfo(i);
807    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
808    // Get a less loopy dominator than Dom.first.
809    Dom.first = findShallowDominator(Dom.first, DefMBB);
810    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
811    Dom.second =
812      defFromParent(0, ParentVNI, Last, *Dom.first,
813                    SA.getLastSplitPointIter(Dom.first))->def;
814  }
815
816  // Remove redundant back-copies that are now known to be dominated by another
817  // def with the same value.
818  SmallVector<VNInfo*, 8> BackCopies;
819  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
820       VI != VE; ++VI) {
821    VNInfo *VNI = *VI;
822    if (VNI->isUnused())
823      continue;
824    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
825    const DomPair &Dom = NearestDom[ParentVNI->id];
826    if (!Dom.first || Dom.second == VNI->def)
827      continue;
828    BackCopies.push_back(VNI);
829    forceRecompute(0, ParentVNI);
830  }
831  removeBackCopies(BackCopies);
832}
833
834
835/// transferValues - Transfer all possible values to the new live ranges.
836/// Values that were rematerialized are left alone, they need LRCalc.extend().
837bool SplitEditor::transferValues() {
838  bool Skipped = false;
839  RegAssignMap::const_iterator AssignI = RegAssign.begin();
840  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
841         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
842    DEBUG(dbgs() << "  blit " << *ParentI << ':');
843    VNInfo *ParentVNI = ParentI->valno;
844    // RegAssign has holes where RegIdx 0 should be used.
845    SlotIndex Start = ParentI->start;
846    AssignI.advanceTo(Start);
847    do {
848      unsigned RegIdx;
849      SlotIndex End = ParentI->end;
850      if (!AssignI.valid()) {
851        RegIdx = 0;
852      } else if (AssignI.start() <= Start) {
853        RegIdx = AssignI.value();
854        if (AssignI.stop() < End) {
855          End = AssignI.stop();
856          ++AssignI;
857        }
858      } else {
859        RegIdx = 0;
860        End = std::min(End, AssignI.start());
861      }
862
863      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
864      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
865      LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
866
867      // Check for a simply defined value that can be blitted directly.
868      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
869      if (VNInfo *VNI = VFP.getPointer()) {
870        DEBUG(dbgs() << ':' << VNI->id);
871        LI->addRange(LiveRange(Start, End, VNI));
872        Start = End;
873        continue;
874      }
875
876      // Skip values with forced recomputation.
877      if (VFP.getInt()) {
878        DEBUG(dbgs() << "(recalc)");
879        Skipped = true;
880        Start = End;
881        continue;
882      }
883
884      LiveRangeCalc &LRC = getLRCalc(RegIdx);
885
886      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
887      // so the live range is accurate. Add live-in blocks in [Start;End) to the
888      // LiveInBlocks.
889      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
890      SlotIndex BlockStart, BlockEnd;
891      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
892
893      // The first block may be live-in, or it may have its own def.
894      if (Start != BlockStart) {
895        VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
896        assert(VNI && "Missing def for complex mapped value");
897        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
898        // MBB has its own def. Is it also live-out?
899        if (BlockEnd <= End)
900          LRC.setLiveOutValue(MBB, VNI);
901
902        // Skip to the next block for live-in.
903        ++MBB;
904        BlockStart = BlockEnd;
905      }
906
907      // Handle the live-in blocks covered by [Start;End).
908      assert(Start <= BlockStart && "Expected live-in block");
909      while (BlockStart < End) {
910        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
911        BlockEnd = LIS.getMBBEndIdx(MBB);
912        if (BlockStart == ParentVNI->def) {
913          // This block has the def of a parent PHI, so it isn't live-in.
914          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
915          VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
916          assert(VNI && "Missing def for complex mapped parent PHI");
917          if (End >= BlockEnd)
918            LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
919        } else {
920          // This block needs a live-in value.  The last block covered may not
921          // be live-out.
922          if (End < BlockEnd)
923            LRC.addLiveInBlock(LI, MDT[MBB], End);
924          else {
925            // Live-through, and we don't know the value.
926            LRC.addLiveInBlock(LI, MDT[MBB]);
927            LRC.setLiveOutValue(MBB, 0);
928          }
929        }
930        BlockStart = BlockEnd;
931        ++MBB;
932      }
933      Start = End;
934    } while (Start != ParentI->end);
935    DEBUG(dbgs() << '\n');
936  }
937
938  LRCalc[0].calculateValues();
939  if (SpillMode)
940    LRCalc[1].calculateValues();
941
942  return Skipped;
943}
944
945void SplitEditor::extendPHIKillRanges() {
946    // Extend live ranges to be live-out for successor PHI values.
947  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
948       E = Edit->getParent().vni_end(); I != E; ++I) {
949    const VNInfo *PHIVNI = *I;
950    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
951      continue;
952    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
953    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
954    LiveRangeCalc &LRC = getLRCalc(RegIdx);
955    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
956    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
957         PE = MBB->pred_end(); PI != PE; ++PI) {
958      SlotIndex End = LIS.getMBBEndIdx(*PI);
959      SlotIndex LastUse = End.getPrevSlot();
960      // The predecessor may not have a live-out value. That is OK, like an
961      // undef PHI operand.
962      if (Edit->getParent().liveAt(LastUse)) {
963        assert(RegAssign.lookup(LastUse) == RegIdx &&
964               "Different register assignment in phi predecessor");
965        LRC.extend(LI, End);
966      }
967    }
968  }
969}
970
971/// rewriteAssigned - Rewrite all uses of Edit->getReg().
972void SplitEditor::rewriteAssigned(bool ExtendRanges) {
973  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
974       RE = MRI.reg_end(); RI != RE;) {
975    MachineOperand &MO = RI.getOperand();
976    MachineInstr *MI = MO.getParent();
977    ++RI;
978    // LiveDebugVariables should have handled all DBG_VALUE instructions.
979    if (MI->isDebugValue()) {
980      DEBUG(dbgs() << "Zapping " << *MI);
981      MO.setReg(0);
982      continue;
983    }
984
985    // <undef> operands don't really read the register, so it doesn't matter
986    // which register we choose.  When the use operand is tied to a def, we must
987    // use the same register as the def, so just do that always.
988    SlotIndex Idx = LIS.getInstructionIndex(MI);
989    if (MO.isDef() || MO.isUndef())
990      Idx = Idx.getRegSlot(MO.isEarlyClobber());
991
992    // Rewrite to the mapped register at Idx.
993    unsigned RegIdx = RegAssign.lookup(Idx);
994    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
995    MO.setReg(LI->reg);
996    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
997                 << Idx << ':' << RegIdx << '\t' << *MI);
998
999    // Extend liveness to Idx if the instruction reads reg.
1000    if (!ExtendRanges || MO.isUndef())
1001      continue;
1002
1003    // Skip instructions that don't read Reg.
1004    if (MO.isDef()) {
1005      if (!MO.getSubReg() && !MO.isEarlyClobber())
1006        continue;
1007      // We may wan't to extend a live range for a partial redef, or for a use
1008      // tied to an early clobber.
1009      Idx = Idx.getPrevSlot();
1010      if (!Edit->getParent().liveAt(Idx))
1011        continue;
1012    } else
1013      Idx = Idx.getRegSlot(true);
1014
1015    getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
1016  }
1017}
1018
1019void SplitEditor::deleteRematVictims() {
1020  SmallVector<MachineInstr*, 8> Dead;
1021  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1022    LiveInterval *LI = &LIS.getInterval(*I);
1023    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1024           LII != LIE; ++LII) {
1025      // Dead defs end at the dead slot.
1026      if (LII->end != LII->valno->def.getDeadSlot())
1027        continue;
1028      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1029      assert(MI && "Missing instruction for dead def");
1030      MI->addRegisterDead(LI->reg, &TRI);
1031
1032      if (!MI->allDefsAreDead())
1033        continue;
1034
1035      DEBUG(dbgs() << "All defs dead: " << *MI);
1036      Dead.push_back(MI);
1037    }
1038  }
1039
1040  if (Dead.empty())
1041    return;
1042
1043  Edit->eliminateDeadDefs(Dead);
1044}
1045
1046void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1047  ++NumFinished;
1048
1049  // At this point, the live intervals in Edit contain VNInfos corresponding to
1050  // the inserted copies.
1051
1052  // Add the original defs from the parent interval.
1053  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1054         E = Edit->getParent().vni_end(); I != E; ++I) {
1055    const VNInfo *ParentVNI = *I;
1056    if (ParentVNI->isUnused())
1057      continue;
1058    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1059    defValue(RegIdx, ParentVNI, ParentVNI->def);
1060
1061    // Force rematted values to be recomputed everywhere.
1062    // The new live ranges may be truncated.
1063    if (Edit->didRematerialize(ParentVNI))
1064      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1065        forceRecompute(i, ParentVNI);
1066  }
1067
1068  // Hoist back-copies to the complement interval when in spill mode.
1069  switch (SpillMode) {
1070  case SM_Partition:
1071    // Leave all back-copies as is.
1072    break;
1073  case SM_Size:
1074    hoistCopiesForSize();
1075    break;
1076  case SM_Speed:
1077    llvm_unreachable("Spill mode 'speed' not implemented yet");
1078  }
1079
1080  // Transfer the simply mapped values, check if any are skipped.
1081  bool Skipped = transferValues();
1082  if (Skipped)
1083    extendPHIKillRanges();
1084  else
1085    ++NumSimple;
1086
1087  // Rewrite virtual registers, possibly extending ranges.
1088  rewriteAssigned(Skipped);
1089
1090  // Delete defs that were rematted everywhere.
1091  if (Skipped)
1092    deleteRematVictims();
1093
1094  // Get rid of unused values and set phi-kill flags.
1095  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1096    LiveInterval &LI = LIS.getInterval(*I);
1097    LI.RenumberValues();
1098  }
1099
1100  // Provide a reverse mapping from original indices to Edit ranges.
1101  if (LRMap) {
1102    LRMap->clear();
1103    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1104      LRMap->push_back(i);
1105  }
1106
1107  // Now check if any registers were separated into multiple components.
1108  ConnectedVNInfoEqClasses ConEQ(LIS);
1109  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1110    // Don't use iterators, they are invalidated by create() below.
1111    LiveInterval *li = &LIS.getInterval(Edit->get(i));
1112    unsigned NumComp = ConEQ.Classify(li);
1113    if (NumComp <= 1)
1114      continue;
1115    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1116    SmallVector<LiveInterval*, 8> dups;
1117    dups.push_back(li);
1118    for (unsigned j = 1; j != NumComp; ++j)
1119      dups.push_back(&Edit->create());
1120    ConEQ.Distribute(&dups[0], MRI);
1121    // The new intervals all map back to i.
1122    if (LRMap)
1123      LRMap->resize(Edit->size(), i);
1124  }
1125
1126  // Calculate spill weight and allocation hints for new intervals.
1127  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1128
1129  assert(!LRMap || LRMap->size() == Edit->size());
1130}
1131
1132
1133//===----------------------------------------------------------------------===//
1134//                            Single Block Splitting
1135//===----------------------------------------------------------------------===//
1136
1137bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1138                                           bool SingleInstrs) const {
1139  // Always split for multiple instructions.
1140  if (!BI.isOneInstr())
1141    return true;
1142  // Don't split for single instructions unless explicitly requested.
1143  if (!SingleInstrs)
1144    return false;
1145  // Splitting a live-through range always makes progress.
1146  if (BI.LiveIn && BI.LiveOut)
1147    return true;
1148  // No point in isolating a copy. It has no register class constraints.
1149  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1150    return false;
1151  // Finally, don't isolate an end point that was created by earlier splits.
1152  return isOriginalEndpoint(BI.FirstInstr);
1153}
1154
1155void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1156  openIntv();
1157  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1158  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1159    LastSplitPoint));
1160  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1161    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1162  } else {
1163      // The last use is after the last valid split point.
1164    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1165    useIntv(SegStart, SegStop);
1166    overlapIntv(SegStop, BI.LastInstr);
1167  }
1168}
1169
1170
1171//===----------------------------------------------------------------------===//
1172//                    Global Live Range Splitting Support
1173//===----------------------------------------------------------------------===//
1174
1175// These methods support a method of global live range splitting that uses a
1176// global algorithm to decide intervals for CFG edges. They will insert split
1177// points and color intervals in basic blocks while avoiding interference.
1178//
1179// Note that splitSingleBlock is also useful for blocks where both CFG edges
1180// are on the stack.
1181
1182void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1183                                        unsigned IntvIn, SlotIndex LeaveBefore,
1184                                        unsigned IntvOut, SlotIndex EnterAfter){
1185  SlotIndex Start, Stop;
1186  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1187
1188  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1189               << ") intf " << LeaveBefore << '-' << EnterAfter
1190               << ", live-through " << IntvIn << " -> " << IntvOut);
1191
1192  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1193
1194  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1195  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1196  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1197
1198  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1199
1200  if (!IntvOut) {
1201    DEBUG(dbgs() << ", spill on entry.\n");
1202    //
1203    //        <<<<<<<<<    Possible LeaveBefore interference.
1204    //    |-----------|    Live through.
1205    //    -____________    Spill on entry.
1206    //
1207    selectIntv(IntvIn);
1208    SlotIndex Idx = leaveIntvAtTop(*MBB);
1209    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1210    (void)Idx;
1211    return;
1212  }
1213
1214  if (!IntvIn) {
1215    DEBUG(dbgs() << ", reload on exit.\n");
1216    //
1217    //    >>>>>>>          Possible EnterAfter interference.
1218    //    |-----------|    Live through.
1219    //    ___________--    Reload on exit.
1220    //
1221    selectIntv(IntvOut);
1222    SlotIndex Idx = enterIntvAtEnd(*MBB);
1223    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1224    (void)Idx;
1225    return;
1226  }
1227
1228  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1229    DEBUG(dbgs() << ", straight through.\n");
1230    //
1231    //    |-----------|    Live through.
1232    //    -------------    Straight through, same intv, no interference.
1233    //
1234    selectIntv(IntvOut);
1235    useIntv(Start, Stop);
1236    return;
1237  }
1238
1239  // We cannot legally insert splits after LSP.
1240  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1241  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1242
1243  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1244                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1245    DEBUG(dbgs() << ", switch avoiding interference.\n");
1246    //
1247    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1248    //    |-----------|    Live through.
1249    //    ------=======    Switch intervals between interference.
1250    //
1251    selectIntv(IntvOut);
1252    SlotIndex Idx;
1253    if (LeaveBefore && LeaveBefore < LSP) {
1254      Idx = enterIntvBefore(LeaveBefore);
1255      useIntv(Idx, Stop);
1256    } else {
1257      Idx = enterIntvAtEnd(*MBB);
1258    }
1259    selectIntv(IntvIn);
1260    useIntv(Start, Idx);
1261    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1262    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1263    return;
1264  }
1265
1266  DEBUG(dbgs() << ", create local intv for interference.\n");
1267  //
1268  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1269  //    |-----------|    Live through.
1270  //    ==---------==    Switch intervals before/after interference.
1271  //
1272  assert(LeaveBefore <= EnterAfter && "Missed case");
1273
1274  selectIntv(IntvOut);
1275  SlotIndex Idx = enterIntvAfter(EnterAfter);
1276  useIntv(Idx, Stop);
1277  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1278
1279  selectIntv(IntvIn);
1280  Idx = leaveIntvBefore(LeaveBefore);
1281  useIntv(Start, Idx);
1282  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1283}
1284
1285
1286void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1287                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1288  SlotIndex Start, Stop;
1289  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1290
1291  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1292               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1293               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1294               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1295
1296  assert(IntvIn && "Must have register in");
1297  assert(BI.LiveIn && "Must be live-in");
1298  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1299
1300  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1301    DEBUG(dbgs() << " before interference.\n");
1302    //
1303    //               <<<    Interference after kill.
1304    //     |---o---x   |    Killed in block.
1305    //     =========        Use IntvIn everywhere.
1306    //
1307    selectIntv(IntvIn);
1308    useIntv(Start, BI.LastInstr);
1309    return;
1310  }
1311
1312  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1313
1314  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1315    //
1316    //               <<<    Possible interference after last use.
1317    //     |---o---o---|    Live-out on stack.
1318    //     =========____    Leave IntvIn after last use.
1319    //
1320    //                 <    Interference after last use.
1321    //     |---o---o--o|    Live-out on stack, late last use.
1322    //     ============     Copy to stack after LSP, overlap IntvIn.
1323    //            \_____    Stack interval is live-out.
1324    //
1325    if (BI.LastInstr < LSP) {
1326      DEBUG(dbgs() << ", spill after last use before interference.\n");
1327      selectIntv(IntvIn);
1328      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1329      useIntv(Start, Idx);
1330      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1331    } else {
1332      DEBUG(dbgs() << ", spill before last split point.\n");
1333      selectIntv(IntvIn);
1334      SlotIndex Idx = leaveIntvBefore(LSP);
1335      overlapIntv(Idx, BI.LastInstr);
1336      useIntv(Start, Idx);
1337      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1338    }
1339    return;
1340  }
1341
1342  // The interference is overlapping somewhere we wanted to use IntvIn. That
1343  // means we need to create a local interval that can be allocated a
1344  // different register.
1345  unsigned LocalIntv = openIntv();
1346  (void)LocalIntv;
1347  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1348
1349  if (!BI.LiveOut || BI.LastInstr < LSP) {
1350    //
1351    //           <<<<<<<    Interference overlapping uses.
1352    //     |---o---o---|    Live-out on stack.
1353    //     =====----____    Leave IntvIn before interference, then spill.
1354    //
1355    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1356    SlotIndex From = enterIntvBefore(LeaveBefore);
1357    useIntv(From, To);
1358    selectIntv(IntvIn);
1359    useIntv(Start, From);
1360    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1361    return;
1362  }
1363
1364  //           <<<<<<<    Interference overlapping uses.
1365  //     |---o---o--o|    Live-out on stack, late last use.
1366  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1367  //            \_____    Stack interval is live-out.
1368  //
1369  SlotIndex To = leaveIntvBefore(LSP);
1370  overlapIntv(To, BI.LastInstr);
1371  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1372  useIntv(From, To);
1373  selectIntv(IntvIn);
1374  useIntv(Start, From);
1375  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1376}
1377
1378void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1379                                   unsigned IntvOut, SlotIndex EnterAfter) {
1380  SlotIndex Start, Stop;
1381  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1382
1383  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1384               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1385               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1386               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1387
1388  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1389
1390  assert(IntvOut && "Must have register out");
1391  assert(BI.LiveOut && "Must be live-out");
1392  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1393
1394  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1395    DEBUG(dbgs() << " after interference.\n");
1396    //
1397    //    >>>>             Interference before def.
1398    //    |   o---o---|    Defined in block.
1399    //        =========    Use IntvOut everywhere.
1400    //
1401    selectIntv(IntvOut);
1402    useIntv(BI.FirstInstr, Stop);
1403    return;
1404  }
1405
1406  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1407    DEBUG(dbgs() << ", reload after interference.\n");
1408    //
1409    //    >>>>             Interference before def.
1410    //    |---o---o---|    Live-through, stack-in.
1411    //    ____=========    Enter IntvOut before first use.
1412    //
1413    selectIntv(IntvOut);
1414    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1415    useIntv(Idx, Stop);
1416    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1417    return;
1418  }
1419
1420  // The interference is overlapping somewhere we wanted to use IntvOut. That
1421  // means we need to create a local interval that can be allocated a
1422  // different register.
1423  DEBUG(dbgs() << ", interference overlaps uses.\n");
1424  //
1425  //    >>>>>>>          Interference overlapping uses.
1426  //    |---o---o---|    Live-through, stack-in.
1427  //    ____---======    Create local interval for interference range.
1428  //
1429  selectIntv(IntvOut);
1430  SlotIndex Idx = enterIntvAfter(EnterAfter);
1431  useIntv(Idx, Stop);
1432  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1433
1434  openIntv();
1435  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1436  useIntv(From, Idx);
1437}
1438