SplitKit.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/LiveRangeEdit.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/VirtRegMap.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32STATISTIC(NumFinished, "Number of splits finished");
33STATISTIC(NumSimple,   "Number of splits that were simple");
34STATISTIC(NumCopies,   "Number of copies inserted for splitting");
35STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
36STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
37
38//===----------------------------------------------------------------------===//
39//                                 Split Analysis
40//===----------------------------------------------------------------------===//
41
42SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43                             const LiveIntervals &lis,
44                             const MachineLoopInfo &mli)
45  : MF(vrm.getMachineFunction()),
46    VRM(vrm),
47    LIS(lis),
48    Loops(mli),
49    TII(*MF.getTarget().getInstrInfo()),
50    CurLI(0),
51    LastSplitPoint(MF.getNumBlockIDs()) {}
52
53void SplitAnalysis::clear() {
54  UseSlots.clear();
55  UseBlocks.clear();
56  ThroughBlocks.clear();
57  CurLI = 0;
58  DidRepairRange = false;
59}
60
61SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65  SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67  // Compute split points on the first call. The pair is independent of the
68  // current live interval.
69  if (!LSP.first.isValid()) {
70    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71    if (FirstTerm == MBB->end())
72      LSP.first = MBBEnd;
73    else
74      LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76    // If there is a landing pad successor, also find the call instruction.
77    if (!LPad)
78      return LSP.first;
79    // There may not be a call instruction (?) in which case we ignore LPad.
80    LSP.second = LSP.first;
81    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82         I != E;) {
83      --I;
84      if (I->isCall()) {
85        LSP.second = LIS.getInstructionIndex(I);
86        break;
87      }
88    }
89  }
90
91  // If CurLI is live into a landing pad successor, move the last split point
92  // back to the call that may throw.
93  if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94    return LSP.first;
95
96  // Find the value leaving MBB.
97  const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98  if (!VNI)
99    return LSP.first;
100
101  // If the value leaving MBB was defined after the call in MBB, it can't
102  // really be live-in to the landing pad.  This can happen if the landing pad
103  // has a PHI, and this register is undef on the exceptional edge.
104  // <rdar://problem/10664933>
105  if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106    return LSP.first;
107
108  // Value is properly live-in to the landing pad.
109  // Only allow splits before the call.
110  return LSP.second;
111}
112
113MachineBasicBlock::iterator
114SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115  SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116  if (LSP == LIS.getMBBEndIdx(MBB))
117    return MBB->end();
118  return LIS.getInstructionFromIndex(LSP);
119}
120
121/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122void SplitAnalysis::analyzeUses() {
123  assert(UseSlots.empty() && "Call clear first");
124
125  // First get all the defs from the interval values. This provides the correct
126  // slots for early clobbers.
127  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128       E = CurLI->vni_end(); I != E; ++I)
129    if (!(*I)->isPHIDef() && !(*I)->isUnused())
130      UseSlots.push_back((*I)->def);
131
132  // Get use slots form the use-def chain.
133  const MachineRegisterInfo &MRI = MF.getRegInfo();
134  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
135    if (!MO.isUndef())
136      UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
137
138  array_pod_sort(UseSlots.begin(), UseSlots.end());
139
140  // Remove duplicates, keeping the smaller slot for each instruction.
141  // That is what we want for early clobbers.
142  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
143                             SlotIndex::isSameInstr),
144                 UseSlots.end());
145
146  // Compute per-live block info.
147  if (!calcLiveBlockInfo()) {
148    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
149    // I am looking at you, RegisterCoalescer!
150    DidRepairRange = true;
151    ++NumRepairs;
152    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
153    const_cast<LiveIntervals&>(LIS)
154      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
155    UseBlocks.clear();
156    ThroughBlocks.clear();
157    bool fixed = calcLiveBlockInfo();
158    (void)fixed;
159    assert(fixed && "Couldn't fix broken live interval");
160  }
161
162  DEBUG(dbgs() << "Analyze counted "
163               << UseSlots.size() << " instrs in "
164               << UseBlocks.size() << " blocks, through "
165               << NumThroughBlocks << " blocks.\n");
166}
167
168/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
169/// where CurLI is live.
170bool SplitAnalysis::calcLiveBlockInfo() {
171  ThroughBlocks.resize(MF.getNumBlockIDs());
172  NumThroughBlocks = NumGapBlocks = 0;
173  if (CurLI->empty())
174    return true;
175
176  LiveInterval::const_iterator LVI = CurLI->begin();
177  LiveInterval::const_iterator LVE = CurLI->end();
178
179  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
180  UseI = UseSlots.begin();
181  UseE = UseSlots.end();
182
183  // Loop over basic blocks where CurLI is live.
184  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
185  for (;;) {
186    BlockInfo BI;
187    BI.MBB = MFI;
188    SlotIndex Start, Stop;
189    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
190
191    // If the block contains no uses, the range must be live through. At one
192    // point, RegisterCoalescer could create dangling ranges that ended
193    // mid-block.
194    if (UseI == UseE || *UseI >= Stop) {
195      ++NumThroughBlocks;
196      ThroughBlocks.set(BI.MBB->getNumber());
197      // The range shouldn't end mid-block if there are no uses. This shouldn't
198      // happen.
199      if (LVI->end < Stop)
200        return false;
201    } else {
202      // This block has uses. Find the first and last uses in the block.
203      BI.FirstInstr = *UseI;
204      assert(BI.FirstInstr >= Start);
205      do ++UseI;
206      while (UseI != UseE && *UseI < Stop);
207      BI.LastInstr = UseI[-1];
208      assert(BI.LastInstr < Stop);
209
210      // LVI is the first live segment overlapping MBB.
211      BI.LiveIn = LVI->start <= Start;
212
213      // When not live in, the first use should be a def.
214      if (!BI.LiveIn) {
215        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
216        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
217        BI.FirstDef = BI.FirstInstr;
218      }
219
220      // Look for gaps in the live range.
221      BI.LiveOut = true;
222      while (LVI->end < Stop) {
223        SlotIndex LastStop = LVI->end;
224        if (++LVI == LVE || LVI->start >= Stop) {
225          BI.LiveOut = false;
226          BI.LastInstr = LastStop;
227          break;
228        }
229
230        if (LastStop < LVI->start) {
231          // There is a gap in the live range. Create duplicate entries for the
232          // live-in snippet and the live-out snippet.
233          ++NumGapBlocks;
234
235          // Push the Live-in part.
236          BI.LiveOut = false;
237          UseBlocks.push_back(BI);
238          UseBlocks.back().LastInstr = LastStop;
239
240          // Set up BI for the live-out part.
241          BI.LiveIn = false;
242          BI.LiveOut = true;
243          BI.FirstInstr = BI.FirstDef = LVI->start;
244        }
245
246        // A Segment that starts in the middle of the block must be a def.
247        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
248        if (!BI.FirstDef)
249          BI.FirstDef = LVI->start;
250      }
251
252      UseBlocks.push_back(BI);
253
254      // LVI is now at LVE or LVI->end >= Stop.
255      if (LVI == LVE)
256        break;
257    }
258
259    // Live segment ends exactly at Stop. Move to the next segment.
260    if (LVI->end == Stop && ++LVI == LVE)
261      break;
262
263    // Pick the next basic block.
264    if (LVI->start < Stop)
265      ++MFI;
266    else
267      MFI = LIS.getMBBFromIndex(LVI->start);
268  }
269
270  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
271  return true;
272}
273
274unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
275  if (cli->empty())
276    return 0;
277  LiveInterval *li = const_cast<LiveInterval*>(cli);
278  LiveInterval::iterator LVI = li->begin();
279  LiveInterval::iterator LVE = li->end();
280  unsigned Count = 0;
281
282  // Loop over basic blocks where li is live.
283  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
284  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
285  for (;;) {
286    ++Count;
287    LVI = li->advanceTo(LVI, Stop);
288    if (LVI == LVE)
289      return Count;
290    do {
291      ++MFI;
292      Stop = LIS.getMBBEndIdx(MFI);
293    } while (Stop <= LVI->start);
294  }
295}
296
297bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
298  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
299  const LiveInterval &Orig = LIS.getInterval(OrigReg);
300  assert(!Orig.empty() && "Splitting empty interval?");
301  LiveInterval::const_iterator I = Orig.find(Idx);
302
303  // Range containing Idx should begin at Idx.
304  if (I != Orig.end() && I->start <= Idx)
305    return I->start == Idx;
306
307  // Range does not contain Idx, previous must end at Idx.
308  return I != Orig.begin() && (--I)->end == Idx;
309}
310
311void SplitAnalysis::analyze(const LiveInterval *li) {
312  clear();
313  CurLI = li;
314  analyzeUses();
315}
316
317
318//===----------------------------------------------------------------------===//
319//                               Split Editor
320//===----------------------------------------------------------------------===//
321
322/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
323SplitEditor::SplitEditor(SplitAnalysis &sa,
324                         LiveIntervals &lis,
325                         VirtRegMap &vrm,
326                         MachineDominatorTree &mdt,
327                         MachineBlockFrequencyInfo &mbfi)
328  : SA(sa), LIS(lis), VRM(vrm),
329    MRI(vrm.getMachineFunction().getRegInfo()),
330    MDT(mdt),
331    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
332    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
333    MBFI(mbfi),
334    Edit(0),
335    OpenIdx(0),
336    SpillMode(SM_Partition),
337    RegAssign(Allocator)
338{}
339
340void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
341  Edit = &LRE;
342  SpillMode = SM;
343  OpenIdx = 0;
344  RegAssign.clear();
345  Values.clear();
346
347  // Reset the LiveRangeCalc instances needed for this spill mode.
348  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
349                  &LIS.getVNInfoAllocator());
350  if (SpillMode)
351    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
352                    &LIS.getVNInfoAllocator());
353
354  // We don't need an AliasAnalysis since we will only be performing
355  // cheap-as-a-copy remats anyway.
356  Edit->anyRematerializable(0);
357}
358
359#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
360void SplitEditor::dump() const {
361  if (RegAssign.empty()) {
362    dbgs() << " empty\n";
363    return;
364  }
365
366  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
367    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
368  dbgs() << '\n';
369}
370#endif
371
372VNInfo *SplitEditor::defValue(unsigned RegIdx,
373                              const VNInfo *ParentVNI,
374                              SlotIndex Idx) {
375  assert(ParentVNI && "Mapping  NULL value");
376  assert(Idx.isValid() && "Invalid SlotIndex");
377  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
378  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
379
380  // Create a new value.
381  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
382
383  // Use insert for lookup, so we can add missing values with a second lookup.
384  std::pair<ValueMap::iterator, bool> InsP =
385    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
386                                 ValueForcePair(VNI, false)));
387
388  // This was the first time (RegIdx, ParentVNI) was mapped.
389  // Keep it as a simple def without any liveness.
390  if (InsP.second)
391    return VNI;
392
393  // If the previous value was a simple mapping, add liveness for it now.
394  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
395    SlotIndex Def = OldVNI->def;
396    LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
397    // No longer a simple mapping.  Switch to a complex, non-forced mapping.
398    InsP.first->second = ValueForcePair();
399  }
400
401  // This is a complex mapping, add liveness for VNI
402  SlotIndex Def = VNI->def;
403  LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
404
405  return VNI;
406}
407
408void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
409  assert(ParentVNI && "Mapping  NULL value");
410  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
411  VNInfo *VNI = VFP.getPointer();
412
413  // ParentVNI was either unmapped or already complex mapped. Either way, just
414  // set the force bit.
415  if (!VNI) {
416    VFP.setInt(true);
417    return;
418  }
419
420  // This was previously a single mapping. Make sure the old def is represented
421  // by a trivial live range.
422  SlotIndex Def = VNI->def;
423  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
424  LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
425  // Mark as complex mapped, forced.
426  VFP = ValueForcePair(0, true);
427}
428
429VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
430                                   VNInfo *ParentVNI,
431                                   SlotIndex UseIdx,
432                                   MachineBasicBlock &MBB,
433                                   MachineBasicBlock::iterator I) {
434  MachineInstr *CopyMI = 0;
435  SlotIndex Def;
436  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
437
438  // We may be trying to avoid interference that ends at a deleted instruction,
439  // so always begin RegIdx 0 early and all others late.
440  bool Late = RegIdx != 0;
441
442  // Attempt cheap-as-a-copy rematerialization.
443  LiveRangeEdit::Remat RM(ParentVNI);
444  if (Edit->canRematerializeAt(RM, UseIdx, true)) {
445    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
446    ++NumRemats;
447  } else {
448    // Can't remat, just insert a copy from parent.
449    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
450               .addReg(Edit->getReg());
451    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
452            .getRegSlot();
453    ++NumCopies;
454  }
455
456  // Define the value in Reg.
457  return defValue(RegIdx, ParentVNI, Def);
458}
459
460/// Create a new virtual register and live interval.
461unsigned SplitEditor::openIntv() {
462  // Create the complement as index 0.
463  if (Edit->empty())
464    Edit->createEmptyInterval();
465
466  // Create the open interval.
467  OpenIdx = Edit->size();
468  Edit->createEmptyInterval();
469  return OpenIdx;
470}
471
472void SplitEditor::selectIntv(unsigned Idx) {
473  assert(Idx != 0 && "Cannot select the complement interval");
474  assert(Idx < Edit->size() && "Can only select previously opened interval");
475  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
476  OpenIdx = Idx;
477}
478
479SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
480  assert(OpenIdx && "openIntv not called before enterIntvBefore");
481  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
482  Idx = Idx.getBaseIndex();
483  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
484  if (!ParentVNI) {
485    DEBUG(dbgs() << ": not live\n");
486    return Idx;
487  }
488  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
489  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
490  assert(MI && "enterIntvBefore called with invalid index");
491
492  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
493  return VNI->def;
494}
495
496SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
497  assert(OpenIdx && "openIntv not called before enterIntvAfter");
498  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
499  Idx = Idx.getBoundaryIndex();
500  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
501  if (!ParentVNI) {
502    DEBUG(dbgs() << ": not live\n");
503    return Idx;
504  }
505  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
506  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
507  assert(MI && "enterIntvAfter called with invalid index");
508
509  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
510                              std::next(MachineBasicBlock::iterator(MI)));
511  return VNI->def;
512}
513
514SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
515  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
516  SlotIndex End = LIS.getMBBEndIdx(&MBB);
517  SlotIndex Last = End.getPrevSlot();
518  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
519  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
520  if (!ParentVNI) {
521    DEBUG(dbgs() << ": not live\n");
522    return End;
523  }
524  DEBUG(dbgs() << ": valno " << ParentVNI->id);
525  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
526                              SA.getLastSplitPointIter(&MBB));
527  RegAssign.insert(VNI->def, End, OpenIdx);
528  DEBUG(dump());
529  return VNI->def;
530}
531
532/// useIntv - indicate that all instructions in MBB should use OpenLI.
533void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
534  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
535}
536
537void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
538  assert(OpenIdx && "openIntv not called before useIntv");
539  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
540  RegAssign.insert(Start, End, OpenIdx);
541  DEBUG(dump());
542}
543
544SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
545  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
546  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
547
548  // The interval must be live beyond the instruction at Idx.
549  SlotIndex Boundary = Idx.getBoundaryIndex();
550  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
551  if (!ParentVNI) {
552    DEBUG(dbgs() << ": not live\n");
553    return Boundary.getNextSlot();
554  }
555  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
556  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
557  assert(MI && "No instruction at index");
558
559  // In spill mode, make live ranges as short as possible by inserting the copy
560  // before MI.  This is only possible if that instruction doesn't redefine the
561  // value.  The inserted COPY is not a kill, and we don't need to recompute
562  // the source live range.  The spiller also won't try to hoist this copy.
563  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
564      MI->readsVirtualRegister(Edit->getReg())) {
565    forceRecompute(0, ParentVNI);
566    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
567    return Idx;
568  }
569
570  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
571                              std::next(MachineBasicBlock::iterator(MI)));
572  return VNI->def;
573}
574
575SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
576  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
577  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
578
579  // The interval must be live into the instruction at Idx.
580  Idx = Idx.getBaseIndex();
581  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
582  if (!ParentVNI) {
583    DEBUG(dbgs() << ": not live\n");
584    return Idx.getNextSlot();
585  }
586  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
587
588  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
589  assert(MI && "No instruction at index");
590  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
591  return VNI->def;
592}
593
594SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
595  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
596  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
597  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
598
599  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
600  if (!ParentVNI) {
601    DEBUG(dbgs() << ": not live\n");
602    return Start;
603  }
604
605  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
606                              MBB.SkipPHIsAndLabels(MBB.begin()));
607  RegAssign.insert(Start, VNI->def, OpenIdx);
608  DEBUG(dump());
609  return VNI->def;
610}
611
612void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
613  assert(OpenIdx && "openIntv not called before overlapIntv");
614  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
615  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
616         "Parent changes value in extended range");
617  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
618         "Range cannot span basic blocks");
619
620  // The complement interval will be extended as needed by LRCalc.extend().
621  if (ParentVNI)
622    forceRecompute(0, ParentVNI);
623  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
624  RegAssign.insert(Start, End, OpenIdx);
625  DEBUG(dump());
626}
627
628//===----------------------------------------------------------------------===//
629//                                  Spill modes
630//===----------------------------------------------------------------------===//
631
632void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
633  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
634  DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
635  RegAssignMap::iterator AssignI;
636  AssignI.setMap(RegAssign);
637
638  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
639    VNInfo *VNI = Copies[i];
640    SlotIndex Def = VNI->def;
641    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
642    assert(MI && "No instruction for back-copy");
643
644    MachineBasicBlock *MBB = MI->getParent();
645    MachineBasicBlock::iterator MBBI(MI);
646    bool AtBegin;
647    do AtBegin = MBBI == MBB->begin();
648    while (!AtBegin && (--MBBI)->isDebugValue());
649
650    DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
651    LI->removeValNo(VNI);
652    LIS.RemoveMachineInstrFromMaps(MI);
653    MI->eraseFromParent();
654
655    // Adjust RegAssign if a register assignment is killed at VNI->def.  We
656    // want to avoid calculating the live range of the source register if
657    // possible.
658    AssignI.find(Def.getPrevSlot());
659    if (!AssignI.valid() || AssignI.start() >= Def)
660      continue;
661    // If MI doesn't kill the assigned register, just leave it.
662    if (AssignI.stop() != Def)
663      continue;
664    unsigned RegIdx = AssignI.value();
665    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
666      DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
667      forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
668    } else {
669      SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
670      DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
671      AssignI.setStop(Kill);
672    }
673  }
674}
675
676MachineBasicBlock*
677SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
678                                  MachineBasicBlock *DefMBB) {
679  if (MBB == DefMBB)
680    return MBB;
681  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
682
683  const MachineLoopInfo &Loops = SA.Loops;
684  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
685  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
686
687  // Best candidate so far.
688  MachineBasicBlock *BestMBB = MBB;
689  unsigned BestDepth = UINT_MAX;
690
691  for (;;) {
692    const MachineLoop *Loop = Loops.getLoopFor(MBB);
693
694    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
695    // higher frequency by definition.
696    if (!Loop) {
697      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
698                   << MBB->getNumber() << " at depth 0\n");
699      return MBB;
700    }
701
702    // We'll never be able to exit the DefLoop.
703    if (Loop == DefLoop) {
704      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
705                   << MBB->getNumber() << " in the same loop\n");
706      return MBB;
707    }
708
709    // Least busy dominator seen so far.
710    unsigned Depth = Loop->getLoopDepth();
711    if (Depth < BestDepth) {
712      BestMBB = MBB;
713      BestDepth = Depth;
714      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
715                   << MBB->getNumber() << " at depth " << Depth << '\n');
716    }
717
718    // Leave loop by going to the immediate dominator of the loop header.
719    // This is a bigger stride than simply walking up the dominator tree.
720    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
721
722    // Too far up the dominator tree?
723    if (!IDom || !MDT.dominates(DefDomNode, IDom))
724      return BestMBB;
725
726    MBB = IDom->getBlock();
727  }
728}
729
730void SplitEditor::hoistCopiesForSize() {
731  // Get the complement interval, always RegIdx 0.
732  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
733  LiveInterval *Parent = &Edit->getParent();
734
735  // Track the nearest common dominator for all back-copies for each ParentVNI,
736  // indexed by ParentVNI->id.
737  typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
738  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
739
740  // Find the nearest common dominator for parent values with multiple
741  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
742  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
743       VI != VE; ++VI) {
744    VNInfo *VNI = *VI;
745    if (VNI->isUnused())
746      continue;
747    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
748    assert(ParentVNI && "Parent not live at complement def");
749
750    // Don't hoist remats.  The complement is probably going to disappear
751    // completely anyway.
752    if (Edit->didRematerialize(ParentVNI))
753      continue;
754
755    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
756    DomPair &Dom = NearestDom[ParentVNI->id];
757
758    // Keep directly defined parent values.  This is either a PHI or an
759    // instruction in the complement range.  All other copies of ParentVNI
760    // should be eliminated.
761    if (VNI->def == ParentVNI->def) {
762      DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
763      Dom = DomPair(ValMBB, VNI->def);
764      continue;
765    }
766    // Skip the singly mapped values.  There is nothing to gain from hoisting a
767    // single back-copy.
768    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
769      DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
770      continue;
771    }
772
773    if (!Dom.first) {
774      // First time we see ParentVNI.  VNI dominates itself.
775      Dom = DomPair(ValMBB, VNI->def);
776    } else if (Dom.first == ValMBB) {
777      // Two defs in the same block.  Pick the earlier def.
778      if (!Dom.second.isValid() || VNI->def < Dom.second)
779        Dom.second = VNI->def;
780    } else {
781      // Different basic blocks. Check if one dominates.
782      MachineBasicBlock *Near =
783        MDT.findNearestCommonDominator(Dom.first, ValMBB);
784      if (Near == ValMBB)
785        // Def ValMBB dominates.
786        Dom = DomPair(ValMBB, VNI->def);
787      else if (Near != Dom.first)
788        // None dominate. Hoist to common dominator, need new def.
789        Dom = DomPair(Near, SlotIndex());
790    }
791
792    DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
793                 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
794                 << " hoist to BB#" << Dom.first->getNumber() << ' '
795                 << Dom.second << '\n');
796  }
797
798  // Insert the hoisted copies.
799  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
800    DomPair &Dom = NearestDom[i];
801    if (!Dom.first || Dom.second.isValid())
802      continue;
803    // This value needs a hoisted copy inserted at the end of Dom.first.
804    VNInfo *ParentVNI = Parent->getValNumInfo(i);
805    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
806    // Get a less loopy dominator than Dom.first.
807    Dom.first = findShallowDominator(Dom.first, DefMBB);
808    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
809    Dom.second =
810      defFromParent(0, ParentVNI, Last, *Dom.first,
811                    SA.getLastSplitPointIter(Dom.first))->def;
812  }
813
814  // Remove redundant back-copies that are now known to be dominated by another
815  // def with the same value.
816  SmallVector<VNInfo*, 8> BackCopies;
817  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
818       VI != VE; ++VI) {
819    VNInfo *VNI = *VI;
820    if (VNI->isUnused())
821      continue;
822    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
823    const DomPair &Dom = NearestDom[ParentVNI->id];
824    if (!Dom.first || Dom.second == VNI->def)
825      continue;
826    BackCopies.push_back(VNI);
827    forceRecompute(0, ParentVNI);
828  }
829  removeBackCopies(BackCopies);
830}
831
832
833/// transferValues - Transfer all possible values to the new live ranges.
834/// Values that were rematerialized are left alone, they need LRCalc.extend().
835bool SplitEditor::transferValues() {
836  bool Skipped = false;
837  RegAssignMap::const_iterator AssignI = RegAssign.begin();
838  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
839         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
840    DEBUG(dbgs() << "  blit " << *ParentI << ':');
841    VNInfo *ParentVNI = ParentI->valno;
842    // RegAssign has holes where RegIdx 0 should be used.
843    SlotIndex Start = ParentI->start;
844    AssignI.advanceTo(Start);
845    do {
846      unsigned RegIdx;
847      SlotIndex End = ParentI->end;
848      if (!AssignI.valid()) {
849        RegIdx = 0;
850      } else if (AssignI.start() <= Start) {
851        RegIdx = AssignI.value();
852        if (AssignI.stop() < End) {
853          End = AssignI.stop();
854          ++AssignI;
855        }
856      } else {
857        RegIdx = 0;
858        End = std::min(End, AssignI.start());
859      }
860
861      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
862      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
863      LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
864
865      // Check for a simply defined value that can be blitted directly.
866      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
867      if (VNInfo *VNI = VFP.getPointer()) {
868        DEBUG(dbgs() << ':' << VNI->id);
869        LR.addSegment(LiveInterval::Segment(Start, End, VNI));
870        Start = End;
871        continue;
872      }
873
874      // Skip values with forced recomputation.
875      if (VFP.getInt()) {
876        DEBUG(dbgs() << "(recalc)");
877        Skipped = true;
878        Start = End;
879        continue;
880      }
881
882      LiveRangeCalc &LRC = getLRCalc(RegIdx);
883
884      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
885      // so the live range is accurate. Add live-in blocks in [Start;End) to the
886      // LiveInBlocks.
887      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
888      SlotIndex BlockStart, BlockEnd;
889      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
890
891      // The first block may be live-in, or it may have its own def.
892      if (Start != BlockStart) {
893        VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
894        assert(VNI && "Missing def for complex mapped value");
895        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
896        // MBB has its own def. Is it also live-out?
897        if (BlockEnd <= End)
898          LRC.setLiveOutValue(MBB, VNI);
899
900        // Skip to the next block for live-in.
901        ++MBB;
902        BlockStart = BlockEnd;
903      }
904
905      // Handle the live-in blocks covered by [Start;End).
906      assert(Start <= BlockStart && "Expected live-in block");
907      while (BlockStart < End) {
908        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
909        BlockEnd = LIS.getMBBEndIdx(MBB);
910        if (BlockStart == ParentVNI->def) {
911          // This block has the def of a parent PHI, so it isn't live-in.
912          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
913          VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
914          assert(VNI && "Missing def for complex mapped parent PHI");
915          if (End >= BlockEnd)
916            LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
917        } else {
918          // This block needs a live-in value.  The last block covered may not
919          // be live-out.
920          if (End < BlockEnd)
921            LRC.addLiveInBlock(LR, MDT[MBB], End);
922          else {
923            // Live-through, and we don't know the value.
924            LRC.addLiveInBlock(LR, MDT[MBB]);
925            LRC.setLiveOutValue(MBB, 0);
926          }
927        }
928        BlockStart = BlockEnd;
929        ++MBB;
930      }
931      Start = End;
932    } while (Start != ParentI->end);
933    DEBUG(dbgs() << '\n');
934  }
935
936  LRCalc[0].calculateValues();
937  if (SpillMode)
938    LRCalc[1].calculateValues();
939
940  return Skipped;
941}
942
943void SplitEditor::extendPHIKillRanges() {
944    // Extend live ranges to be live-out for successor PHI values.
945  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
946       E = Edit->getParent().vni_end(); I != E; ++I) {
947    const VNInfo *PHIVNI = *I;
948    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
949      continue;
950    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
951    LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
952    LiveRangeCalc &LRC = getLRCalc(RegIdx);
953    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
954    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
955         PE = MBB->pred_end(); PI != PE; ++PI) {
956      SlotIndex End = LIS.getMBBEndIdx(*PI);
957      SlotIndex LastUse = End.getPrevSlot();
958      // The predecessor may not have a live-out value. That is OK, like an
959      // undef PHI operand.
960      if (Edit->getParent().liveAt(LastUse)) {
961        assert(RegAssign.lookup(LastUse) == RegIdx &&
962               "Different register assignment in phi predecessor");
963        LRC.extend(LR, End);
964      }
965    }
966  }
967}
968
969/// rewriteAssigned - Rewrite all uses of Edit->getReg().
970void SplitEditor::rewriteAssigned(bool ExtendRanges) {
971  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
972       RE = MRI.reg_end(); RI != RE;) {
973    MachineOperand &MO = *RI;
974    MachineInstr *MI = MO.getParent();
975    ++RI;
976    // LiveDebugVariables should have handled all DBG_VALUE instructions.
977    if (MI->isDebugValue()) {
978      DEBUG(dbgs() << "Zapping " << *MI);
979      MO.setReg(0);
980      continue;
981    }
982
983    // <undef> operands don't really read the register, so it doesn't matter
984    // which register we choose.  When the use operand is tied to a def, we must
985    // use the same register as the def, so just do that always.
986    SlotIndex Idx = LIS.getInstructionIndex(MI);
987    if (MO.isDef() || MO.isUndef())
988      Idx = Idx.getRegSlot(MO.isEarlyClobber());
989
990    // Rewrite to the mapped register at Idx.
991    unsigned RegIdx = RegAssign.lookup(Idx);
992    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
993    MO.setReg(LI->reg);
994    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
995                 << Idx << ':' << RegIdx << '\t' << *MI);
996
997    // Extend liveness to Idx if the instruction reads reg.
998    if (!ExtendRanges || MO.isUndef())
999      continue;
1000
1001    // Skip instructions that don't read Reg.
1002    if (MO.isDef()) {
1003      if (!MO.getSubReg() && !MO.isEarlyClobber())
1004        continue;
1005      // We may wan't to extend a live range for a partial redef, or for a use
1006      // tied to an early clobber.
1007      Idx = Idx.getPrevSlot();
1008      if (!Edit->getParent().liveAt(Idx))
1009        continue;
1010    } else
1011      Idx = Idx.getRegSlot(true);
1012
1013    getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1014  }
1015}
1016
1017void SplitEditor::deleteRematVictims() {
1018  SmallVector<MachineInstr*, 8> Dead;
1019  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1020    LiveInterval *LI = &LIS.getInterval(*I);
1021    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1022           LII != LIE; ++LII) {
1023      // Dead defs end at the dead slot.
1024      if (LII->end != LII->valno->def.getDeadSlot())
1025        continue;
1026      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1027      assert(MI && "Missing instruction for dead def");
1028      MI->addRegisterDead(LI->reg, &TRI);
1029
1030      if (!MI->allDefsAreDead())
1031        continue;
1032
1033      DEBUG(dbgs() << "All defs dead: " << *MI);
1034      Dead.push_back(MI);
1035    }
1036  }
1037
1038  if (Dead.empty())
1039    return;
1040
1041  Edit->eliminateDeadDefs(Dead);
1042}
1043
1044void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1045  ++NumFinished;
1046
1047  // At this point, the live intervals in Edit contain VNInfos corresponding to
1048  // the inserted copies.
1049
1050  // Add the original defs from the parent interval.
1051  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1052         E = Edit->getParent().vni_end(); I != E; ++I) {
1053    const VNInfo *ParentVNI = *I;
1054    if (ParentVNI->isUnused())
1055      continue;
1056    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1057    defValue(RegIdx, ParentVNI, ParentVNI->def);
1058
1059    // Force rematted values to be recomputed everywhere.
1060    // The new live ranges may be truncated.
1061    if (Edit->didRematerialize(ParentVNI))
1062      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1063        forceRecompute(i, ParentVNI);
1064  }
1065
1066  // Hoist back-copies to the complement interval when in spill mode.
1067  switch (SpillMode) {
1068  case SM_Partition:
1069    // Leave all back-copies as is.
1070    break;
1071  case SM_Size:
1072    hoistCopiesForSize();
1073    break;
1074  case SM_Speed:
1075    llvm_unreachable("Spill mode 'speed' not implemented yet");
1076  }
1077
1078  // Transfer the simply mapped values, check if any are skipped.
1079  bool Skipped = transferValues();
1080  if (Skipped)
1081    extendPHIKillRanges();
1082  else
1083    ++NumSimple;
1084
1085  // Rewrite virtual registers, possibly extending ranges.
1086  rewriteAssigned(Skipped);
1087
1088  // Delete defs that were rematted everywhere.
1089  if (Skipped)
1090    deleteRematVictims();
1091
1092  // Get rid of unused values and set phi-kill flags.
1093  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1094    LiveInterval &LI = LIS.getInterval(*I);
1095    LI.RenumberValues();
1096  }
1097
1098  // Provide a reverse mapping from original indices to Edit ranges.
1099  if (LRMap) {
1100    LRMap->clear();
1101    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1102      LRMap->push_back(i);
1103  }
1104
1105  // Now check if any registers were separated into multiple components.
1106  ConnectedVNInfoEqClasses ConEQ(LIS);
1107  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1108    // Don't use iterators, they are invalidated by create() below.
1109    LiveInterval *li = &LIS.getInterval(Edit->get(i));
1110    unsigned NumComp = ConEQ.Classify(li);
1111    if (NumComp <= 1)
1112      continue;
1113    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1114    SmallVector<LiveInterval*, 8> dups;
1115    dups.push_back(li);
1116    for (unsigned j = 1; j != NumComp; ++j)
1117      dups.push_back(&Edit->createEmptyInterval());
1118    ConEQ.Distribute(&dups[0], MRI);
1119    // The new intervals all map back to i.
1120    if (LRMap)
1121      LRMap->resize(Edit->size(), i);
1122  }
1123
1124  // Calculate spill weight and allocation hints for new intervals.
1125  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1126
1127  assert(!LRMap || LRMap->size() == Edit->size());
1128}
1129
1130
1131//===----------------------------------------------------------------------===//
1132//                            Single Block Splitting
1133//===----------------------------------------------------------------------===//
1134
1135bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1136                                           bool SingleInstrs) const {
1137  // Always split for multiple instructions.
1138  if (!BI.isOneInstr())
1139    return true;
1140  // Don't split for single instructions unless explicitly requested.
1141  if (!SingleInstrs)
1142    return false;
1143  // Splitting a live-through range always makes progress.
1144  if (BI.LiveIn && BI.LiveOut)
1145    return true;
1146  // No point in isolating a copy. It has no register class constraints.
1147  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1148    return false;
1149  // Finally, don't isolate an end point that was created by earlier splits.
1150  return isOriginalEndpoint(BI.FirstInstr);
1151}
1152
1153void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1154  openIntv();
1155  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1156  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1157    LastSplitPoint));
1158  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1159    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1160  } else {
1161      // The last use is after the last valid split point.
1162    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1163    useIntv(SegStart, SegStop);
1164    overlapIntv(SegStop, BI.LastInstr);
1165  }
1166}
1167
1168
1169//===----------------------------------------------------------------------===//
1170//                    Global Live Range Splitting Support
1171//===----------------------------------------------------------------------===//
1172
1173// These methods support a method of global live range splitting that uses a
1174// global algorithm to decide intervals for CFG edges. They will insert split
1175// points and color intervals in basic blocks while avoiding interference.
1176//
1177// Note that splitSingleBlock is also useful for blocks where both CFG edges
1178// are on the stack.
1179
1180void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1181                                        unsigned IntvIn, SlotIndex LeaveBefore,
1182                                        unsigned IntvOut, SlotIndex EnterAfter){
1183  SlotIndex Start, Stop;
1184  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1185
1186  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1187               << ") intf " << LeaveBefore << '-' << EnterAfter
1188               << ", live-through " << IntvIn << " -> " << IntvOut);
1189
1190  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1191
1192  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1193  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1194  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1195
1196  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1197
1198  if (!IntvOut) {
1199    DEBUG(dbgs() << ", spill on entry.\n");
1200    //
1201    //        <<<<<<<<<    Possible LeaveBefore interference.
1202    //    |-----------|    Live through.
1203    //    -____________    Spill on entry.
1204    //
1205    selectIntv(IntvIn);
1206    SlotIndex Idx = leaveIntvAtTop(*MBB);
1207    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1208    (void)Idx;
1209    return;
1210  }
1211
1212  if (!IntvIn) {
1213    DEBUG(dbgs() << ", reload on exit.\n");
1214    //
1215    //    >>>>>>>          Possible EnterAfter interference.
1216    //    |-----------|    Live through.
1217    //    ___________--    Reload on exit.
1218    //
1219    selectIntv(IntvOut);
1220    SlotIndex Idx = enterIntvAtEnd(*MBB);
1221    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1222    (void)Idx;
1223    return;
1224  }
1225
1226  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1227    DEBUG(dbgs() << ", straight through.\n");
1228    //
1229    //    |-----------|    Live through.
1230    //    -------------    Straight through, same intv, no interference.
1231    //
1232    selectIntv(IntvOut);
1233    useIntv(Start, Stop);
1234    return;
1235  }
1236
1237  // We cannot legally insert splits after LSP.
1238  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1239  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1240
1241  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1242                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1243    DEBUG(dbgs() << ", switch avoiding interference.\n");
1244    //
1245    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1246    //    |-----------|    Live through.
1247    //    ------=======    Switch intervals between interference.
1248    //
1249    selectIntv(IntvOut);
1250    SlotIndex Idx;
1251    if (LeaveBefore && LeaveBefore < LSP) {
1252      Idx = enterIntvBefore(LeaveBefore);
1253      useIntv(Idx, Stop);
1254    } else {
1255      Idx = enterIntvAtEnd(*MBB);
1256    }
1257    selectIntv(IntvIn);
1258    useIntv(Start, Idx);
1259    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1260    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1261    return;
1262  }
1263
1264  DEBUG(dbgs() << ", create local intv for interference.\n");
1265  //
1266  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1267  //    |-----------|    Live through.
1268  //    ==---------==    Switch intervals before/after interference.
1269  //
1270  assert(LeaveBefore <= EnterAfter && "Missed case");
1271
1272  selectIntv(IntvOut);
1273  SlotIndex Idx = enterIntvAfter(EnterAfter);
1274  useIntv(Idx, Stop);
1275  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1276
1277  selectIntv(IntvIn);
1278  Idx = leaveIntvBefore(LeaveBefore);
1279  useIntv(Start, Idx);
1280  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1281}
1282
1283
1284void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1285                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1286  SlotIndex Start, Stop;
1287  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1288
1289  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1290               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1291               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1292               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1293
1294  assert(IntvIn && "Must have register in");
1295  assert(BI.LiveIn && "Must be live-in");
1296  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1297
1298  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1299    DEBUG(dbgs() << " before interference.\n");
1300    //
1301    //               <<<    Interference after kill.
1302    //     |---o---x   |    Killed in block.
1303    //     =========        Use IntvIn everywhere.
1304    //
1305    selectIntv(IntvIn);
1306    useIntv(Start, BI.LastInstr);
1307    return;
1308  }
1309
1310  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1311
1312  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1313    //
1314    //               <<<    Possible interference after last use.
1315    //     |---o---o---|    Live-out on stack.
1316    //     =========____    Leave IntvIn after last use.
1317    //
1318    //                 <    Interference after last use.
1319    //     |---o---o--o|    Live-out on stack, late last use.
1320    //     ============     Copy to stack after LSP, overlap IntvIn.
1321    //            \_____    Stack interval is live-out.
1322    //
1323    if (BI.LastInstr < LSP) {
1324      DEBUG(dbgs() << ", spill after last use before interference.\n");
1325      selectIntv(IntvIn);
1326      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1327      useIntv(Start, Idx);
1328      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1329    } else {
1330      DEBUG(dbgs() << ", spill before last split point.\n");
1331      selectIntv(IntvIn);
1332      SlotIndex Idx = leaveIntvBefore(LSP);
1333      overlapIntv(Idx, BI.LastInstr);
1334      useIntv(Start, Idx);
1335      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1336    }
1337    return;
1338  }
1339
1340  // The interference is overlapping somewhere we wanted to use IntvIn. That
1341  // means we need to create a local interval that can be allocated a
1342  // different register.
1343  unsigned LocalIntv = openIntv();
1344  (void)LocalIntv;
1345  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1346
1347  if (!BI.LiveOut || BI.LastInstr < LSP) {
1348    //
1349    //           <<<<<<<    Interference overlapping uses.
1350    //     |---o---o---|    Live-out on stack.
1351    //     =====----____    Leave IntvIn before interference, then spill.
1352    //
1353    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1354    SlotIndex From = enterIntvBefore(LeaveBefore);
1355    useIntv(From, To);
1356    selectIntv(IntvIn);
1357    useIntv(Start, From);
1358    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1359    return;
1360  }
1361
1362  //           <<<<<<<    Interference overlapping uses.
1363  //     |---o---o--o|    Live-out on stack, late last use.
1364  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1365  //            \_____    Stack interval is live-out.
1366  //
1367  SlotIndex To = leaveIntvBefore(LSP);
1368  overlapIntv(To, BI.LastInstr);
1369  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1370  useIntv(From, To);
1371  selectIntv(IntvIn);
1372  useIntv(Start, From);
1373  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1374}
1375
1376void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1377                                   unsigned IntvOut, SlotIndex EnterAfter) {
1378  SlotIndex Start, Stop;
1379  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1380
1381  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1382               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1383               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1384               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1385
1386  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1387
1388  assert(IntvOut && "Must have register out");
1389  assert(BI.LiveOut && "Must be live-out");
1390  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1391
1392  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1393    DEBUG(dbgs() << " after interference.\n");
1394    //
1395    //    >>>>             Interference before def.
1396    //    |   o---o---|    Defined in block.
1397    //        =========    Use IntvOut everywhere.
1398    //
1399    selectIntv(IntvOut);
1400    useIntv(BI.FirstInstr, Stop);
1401    return;
1402  }
1403
1404  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1405    DEBUG(dbgs() << ", reload after interference.\n");
1406    //
1407    //    >>>>             Interference before def.
1408    //    |---o---o---|    Live-through, stack-in.
1409    //    ____=========    Enter IntvOut before first use.
1410    //
1411    selectIntv(IntvOut);
1412    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1413    useIntv(Idx, Stop);
1414    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1415    return;
1416  }
1417
1418  // The interference is overlapping somewhere we wanted to use IntvOut. That
1419  // means we need to create a local interval that can be allocated a
1420  // different register.
1421  DEBUG(dbgs() << ", interference overlaps uses.\n");
1422  //
1423  //    >>>>>>>          Interference overlapping uses.
1424  //    |---o---o---|    Live-through, stack-in.
1425  //    ____---======    Create local interval for interference range.
1426  //
1427  selectIntv(IntvOut);
1428  SlotIndex Idx = enterIntvAfter(EnterAfter);
1429  useIntv(Idx, Stop);
1430  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1431
1432  openIntv();
1433  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1434  useIntv(From, Idx);
1435}
1436