SplitKit.cpp revision 5928046306d8bbe7db35707c294689f515f90e56
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33
34//===----------------------------------------------------------------------===//
35//                                 Split Analysis
36//===----------------------------------------------------------------------===//
37
38SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
39                             const LiveIntervals &lis,
40                             const MachineLoopInfo &mli)
41  : MF(vrm.getMachineFunction()),
42    VRM(vrm),
43    LIS(lis),
44    Loops(mli),
45    TII(*MF.getTarget().getInstrInfo()),
46    CurLI(0),
47    LastSplitPoint(MF.getNumBlockIDs()) {}
48
49void SplitAnalysis::clear() {
50  UseSlots.clear();
51  UseBlocks.clear();
52  ThroughBlocks.clear();
53  CurLI = 0;
54}
55
56SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
57  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
58  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
59  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
60
61  // Compute split points on the first call. The pair is independent of the
62  // current live interval.
63  if (!LSP.first.isValid()) {
64    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
65    if (FirstTerm == MBB->end())
66      LSP.first = LIS.getMBBEndIdx(MBB);
67    else
68      LSP.first = LIS.getInstructionIndex(FirstTerm);
69
70    // If there is a landing pad successor, also find the call instruction.
71    if (!LPad)
72      return LSP.first;
73    // There may not be a call instruction (?) in which case we ignore LPad.
74    LSP.second = LSP.first;
75    for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
76         I != E; --I)
77      if (I->getDesc().isCall()) {
78        LSP.second = LIS.getInstructionIndex(I);
79        break;
80      }
81  }
82
83  // If CurLI is live into a landing pad successor, move the last split point
84  // back to the call that may throw.
85  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
86    return LSP.second;
87  else
88    return LSP.first;
89}
90
91/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
92void SplitAnalysis::analyzeUses() {
93  assert(UseSlots.empty() && "Call clear first");
94
95  // First get all the defs from the interval values. This provides the correct
96  // slots for early clobbers.
97  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
98       E = CurLI->vni_end(); I != E; ++I)
99    if (!(*I)->isPHIDef() && !(*I)->isUnused())
100      UseSlots.push_back((*I)->def);
101
102  // Get use slots form the use-def chain.
103  const MachineRegisterInfo &MRI = MF.getRegInfo();
104  for (MachineRegisterInfo::use_nodbg_iterator
105       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
106       ++I)
107    if (!I.getOperand().isUndef())
108      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
109
110  array_pod_sort(UseSlots.begin(), UseSlots.end());
111
112  // Remove duplicates, keeping the smaller slot for each instruction.
113  // That is what we want for early clobbers.
114  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
115                             SlotIndex::isSameInstr),
116                 UseSlots.end());
117
118  // Compute per-live block info.
119  if (!calcLiveBlockInfo()) {
120    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
121    // I am looking at you, SimpleRegisterCoalescing!
122    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
123    const_cast<LiveIntervals&>(LIS)
124      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
125    UseBlocks.clear();
126    ThroughBlocks.clear();
127    bool fixed = calcLiveBlockInfo();
128    (void)fixed;
129    assert(fixed && "Couldn't fix broken live interval");
130  }
131
132  DEBUG(dbgs() << "Analyze counted "
133               << UseSlots.size() << " instrs in "
134               << UseBlocks.size() << " blocks, through "
135               << NumThroughBlocks << " blocks.\n");
136}
137
138/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
139/// where CurLI is live.
140bool SplitAnalysis::calcLiveBlockInfo() {
141  ThroughBlocks.resize(MF.getNumBlockIDs());
142  NumThroughBlocks = 0;
143  if (CurLI->empty())
144    return true;
145
146  LiveInterval::const_iterator LVI = CurLI->begin();
147  LiveInterval::const_iterator LVE = CurLI->end();
148
149  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
150  UseI = UseSlots.begin();
151  UseE = UseSlots.end();
152
153  // Loop over basic blocks where CurLI is live.
154  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
155  for (;;) {
156    BlockInfo BI;
157    BI.MBB = MFI;
158    SlotIndex Start, Stop;
159    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
160
161    // LVI is the first live segment overlapping MBB.
162    BI.LiveIn = LVI->start <= Start;
163    if (!BI.LiveIn)
164      BI.Def = LVI->start;
165
166    // Find the first and last uses in the block.
167    bool Uses = UseI != UseE && *UseI < Stop;
168    if (Uses) {
169      BI.FirstUse = *UseI;
170      assert(BI.FirstUse >= Start);
171      do ++UseI;
172      while (UseI != UseE && *UseI < Stop);
173      BI.LastUse = UseI[-1];
174      assert(BI.LastUse < Stop);
175    }
176
177    // Look for gaps in the live range.
178    bool hasGap = false;
179    BI.LiveOut = true;
180    while (LVI->end < Stop) {
181      SlotIndex LastStop = LVI->end;
182      if (++LVI == LVE || LVI->start >= Stop) {
183        BI.Kill = LastStop;
184        BI.LiveOut = false;
185        break;
186      }
187      if (LastStop < LVI->start) {
188        hasGap = true;
189        BI.Kill = LastStop;
190        BI.Def = LVI->start;
191      }
192    }
193
194    // Don't set LiveThrough when the block has a gap.
195    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
196    if (Uses)
197      UseBlocks.push_back(BI);
198    else {
199      ++NumThroughBlocks;
200      ThroughBlocks.set(BI.MBB->getNumber());
201    }
202    // FIXME: This should never happen. The live range stops or starts without a
203    // corresponding use. An earlier pass did something wrong.
204    if (!BI.LiveThrough && !Uses)
205      return false;
206
207    // LVI is now at LVE or LVI->end >= Stop.
208    if (LVI == LVE)
209      break;
210
211    // Live segment ends exactly at Stop. Move to the next segment.
212    if (LVI->end == Stop && ++LVI == LVE)
213      break;
214
215    // Pick the next basic block.
216    if (LVI->start < Stop)
217      ++MFI;
218    else
219      MFI = LIS.getMBBFromIndex(LVI->start);
220  }
221  return true;
222}
223
224bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
225  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
226  const LiveInterval &Orig = LIS.getInterval(OrigReg);
227  assert(!Orig.empty() && "Splitting empty interval?");
228  LiveInterval::const_iterator I = Orig.find(Idx);
229
230  // Range containing Idx should begin at Idx.
231  if (I != Orig.end() && I->start <= Idx)
232    return I->start == Idx;
233
234  // Range does not contain Idx, previous must end at Idx.
235  return I != Orig.begin() && (--I)->end == Idx;
236}
237
238void SplitAnalysis::analyze(const LiveInterval *li) {
239  clear();
240  CurLI = li;
241  analyzeUses();
242}
243
244
245//===----------------------------------------------------------------------===//
246//                               Split Editor
247//===----------------------------------------------------------------------===//
248
249/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
250SplitEditor::SplitEditor(SplitAnalysis &sa,
251                         LiveIntervals &lis,
252                         VirtRegMap &vrm,
253                         MachineDominatorTree &mdt)
254  : SA(sa), LIS(lis), VRM(vrm),
255    MRI(vrm.getMachineFunction().getRegInfo()),
256    MDT(mdt),
257    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
258    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
259    Edit(0),
260    OpenIdx(0),
261    RegAssign(Allocator)
262{}
263
264void SplitEditor::reset(LiveRangeEdit &lre) {
265  Edit = &lre;
266  OpenIdx = 0;
267  RegAssign.clear();
268  Values.clear();
269
270  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
271  LiveOutSeen.clear();
272
273  // We don't need an AliasAnalysis since we will only be performing
274  // cheap-as-a-copy remats anyway.
275  Edit->anyRematerializable(LIS, TII, 0);
276}
277
278void SplitEditor::dump() const {
279  if (RegAssign.empty()) {
280    dbgs() << " empty\n";
281    return;
282  }
283
284  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
285    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
286  dbgs() << '\n';
287}
288
289VNInfo *SplitEditor::defValue(unsigned RegIdx,
290                              const VNInfo *ParentVNI,
291                              SlotIndex Idx) {
292  assert(ParentVNI && "Mapping  NULL value");
293  assert(Idx.isValid() && "Invalid SlotIndex");
294  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
295  LiveInterval *LI = Edit->get(RegIdx);
296
297  // Create a new value.
298  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
299
300  // Use insert for lookup, so we can add missing values with a second lookup.
301  std::pair<ValueMap::iterator, bool> InsP =
302    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
303
304  // This was the first time (RegIdx, ParentVNI) was mapped.
305  // Keep it as a simple def without any liveness.
306  if (InsP.second)
307    return VNI;
308
309  // If the previous value was a simple mapping, add liveness for it now.
310  if (VNInfo *OldVNI = InsP.first->second) {
311    SlotIndex Def = OldVNI->def;
312    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
313    // No longer a simple mapping.
314    InsP.first->second = 0;
315  }
316
317  // This is a complex mapping, add liveness for VNI
318  SlotIndex Def = VNI->def;
319  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
320
321  return VNI;
322}
323
324void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
325  assert(ParentVNI && "Mapping  NULL value");
326  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
327
328  // ParentVNI was either unmapped or already complex mapped. Either way.
329  if (!VNI)
330    return;
331
332  // This was previously a single mapping. Make sure the old def is represented
333  // by a trivial live range.
334  SlotIndex Def = VNI->def;
335  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
336  VNI = 0;
337}
338
339// extendRange - Extend the live range to reach Idx.
340// Potentially create phi-def values.
341void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
342  assert(Idx.isValid() && "Invalid SlotIndex");
343  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
344  assert(IdxMBB && "No MBB at Idx");
345  LiveInterval *LI = Edit->get(RegIdx);
346
347  // Is there a def in the same MBB we can extend?
348  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
349    return;
350
351  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
352  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
353  // Perform a search for all predecessor blocks where we know the dominating
354  // VNInfo.
355  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
356
357  // When there were multiple different values, we may need new PHIs.
358  if (!VNI)
359    return updateSSA();
360
361  // Poor man's SSA update for the single-value case.
362  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
363  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
364         E = LiveInBlocks.end(); I != E; ++I) {
365    MachineBasicBlock *MBB = I->DomNode->getBlock();
366    SlotIndex Start = LIS.getMBBStartIdx(MBB);
367    if (I->Kill.isValid())
368      LI->addRange(LiveRange(Start, I->Kill, VNI));
369    else {
370      LiveOutCache[MBB] = LOP;
371      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
372    }
373  }
374}
375
376/// findReachingDefs - Search the CFG for known live-out values.
377/// Add required live-in blocks to LiveInBlocks.
378VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
379                                      MachineBasicBlock *KillMBB,
380                                      SlotIndex Kill) {
381  // Initialize the live-out cache the first time it is needed.
382  if (LiveOutSeen.empty()) {
383    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
384    LiveOutSeen.resize(N);
385    LiveOutCache.resize(N);
386  }
387
388  // Blocks where LI should be live-in.
389  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
390
391  // Remember if we have seen more than one value.
392  bool UniqueVNI = true;
393  VNInfo *TheVNI = 0;
394
395  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
396  for (unsigned i = 0; i != WorkList.size(); ++i) {
397    MachineBasicBlock *MBB = WorkList[i];
398    assert(!MBB->pred_empty() && "Value live-in to entry block?");
399    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
400           PE = MBB->pred_end(); PI != PE; ++PI) {
401       MachineBasicBlock *Pred = *PI;
402       LiveOutPair &LOP = LiveOutCache[Pred];
403
404       // Is this a known live-out block?
405       if (LiveOutSeen.test(Pred->getNumber())) {
406         if (VNInfo *VNI = LOP.first) {
407           if (TheVNI && TheVNI != VNI)
408             UniqueVNI = false;
409           TheVNI = VNI;
410         }
411         continue;
412       }
413
414       // First time. LOP is garbage and must be cleared below.
415       LiveOutSeen.set(Pred->getNumber());
416
417       // Does Pred provide a live-out value?
418       SlotIndex Start, Last;
419       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
420       Last = Last.getPrevSlot();
421       VNInfo *VNI = LI->extendInBlock(Start, Last);
422       LOP.first = VNI;
423       if (VNI) {
424         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
425         if (TheVNI && TheVNI != VNI)
426           UniqueVNI = false;
427         TheVNI = VNI;
428         continue;
429       }
430       LOP.second = 0;
431
432       // No, we need a live-in value for Pred as well
433       if (Pred != KillMBB)
434          WorkList.push_back(Pred);
435       else
436          // Loopback to KillMBB, so value is really live through.
437         Kill = SlotIndex();
438    }
439  }
440
441  // Transfer WorkList to LiveInBlocks in reverse order.
442  // This ordering works best with updateSSA().
443  LiveInBlocks.clear();
444  LiveInBlocks.reserve(WorkList.size());
445  while(!WorkList.empty())
446    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
447
448  // The kill block may not be live-through.
449  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
450  LiveInBlocks.back().Kill = Kill;
451
452  return UniqueVNI ? TheVNI : 0;
453}
454
455void SplitEditor::updateSSA() {
456  // This is essentially the same iterative algorithm that SSAUpdater uses,
457  // except we already have a dominator tree, so we don't have to recompute it.
458  unsigned Changes;
459  do {
460    Changes = 0;
461    // Propagate live-out values down the dominator tree, inserting phi-defs
462    // when necessary.
463    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
464           E = LiveInBlocks.end(); I != E; ++I) {
465      MachineDomTreeNode *Node = I->DomNode;
466      // Skip block if the live-in value has already been determined.
467      if (!Node)
468        continue;
469      MachineBasicBlock *MBB = Node->getBlock();
470      MachineDomTreeNode *IDom = Node->getIDom();
471      LiveOutPair IDomValue;
472
473      // We need a live-in value to a block with no immediate dominator?
474      // This is probably an unreachable block that has survived somehow.
475      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
476
477      // IDom dominates all of our predecessors, but it may not be their
478      // immediate dominator. Check if any of them have live-out values that are
479      // properly dominated by IDom. If so, we need a phi-def here.
480      if (!needPHI) {
481        IDomValue = LiveOutCache[IDom->getBlock()];
482        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
483               PE = MBB->pred_end(); PI != PE; ++PI) {
484          LiveOutPair Value = LiveOutCache[*PI];
485          if (!Value.first || Value.first == IDomValue.first)
486            continue;
487          // This predecessor is carrying something other than IDomValue.
488          // It could be because IDomValue hasn't propagated yet, or it could be
489          // because MBB is in the dominance frontier of that value.
490          if (MDT.dominates(IDom, Value.second)) {
491            needPHI = true;
492            break;
493          }
494        }
495      }
496
497      // The value may be live-through even if Kill is set, as can happen when
498      // we are called from extendRange. In that case LiveOutSeen is true, and
499      // LiveOutCache indicates a foreign or missing value.
500      LiveOutPair &LOP = LiveOutCache[MBB];
501
502      // Create a phi-def if required.
503      if (needPHI) {
504        ++Changes;
505        SlotIndex Start = LIS.getMBBStartIdx(MBB);
506        unsigned RegIdx = RegAssign.lookup(Start);
507        LiveInterval *LI = Edit->get(RegIdx);
508        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
509        VNI->setIsPHIDef(true);
510        I->Value = VNI;
511        // This block is done, we know the final value.
512        I->DomNode = 0;
513        if (I->Kill.isValid())
514          LI->addRange(LiveRange(Start, I->Kill, VNI));
515        else {
516          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
517          LOP = LiveOutPair(VNI, Node);
518        }
519      } else if (IDomValue.first) {
520        // No phi-def here. Remember incoming value.
521        I->Value = IDomValue.first;
522        if (I->Kill.isValid())
523          continue;
524        // Propagate IDomValue if needed:
525        // MBB is live-out and doesn't define its own value.
526        if (LOP.second != Node && LOP.first != IDomValue.first) {
527          ++Changes;
528          LOP = IDomValue;
529        }
530      }
531    }
532  } while (Changes);
533
534  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
535  // for these blocks, so we can color the live ranges.
536  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
537         E = LiveInBlocks.end(); I != E; ++I) {
538    if (!I->DomNode)
539      continue;
540    assert(I->Value && "No live-in value found");
541    MachineBasicBlock *MBB = I->DomNode->getBlock();
542    SlotIndex Start = LIS.getMBBStartIdx(MBB);
543    unsigned RegIdx = RegAssign.lookup(Start);
544    LiveInterval *LI = Edit->get(RegIdx);
545    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
546                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
547  }
548}
549
550VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
551                                   VNInfo *ParentVNI,
552                                   SlotIndex UseIdx,
553                                   MachineBasicBlock &MBB,
554                                   MachineBasicBlock::iterator I) {
555  MachineInstr *CopyMI = 0;
556  SlotIndex Def;
557  LiveInterval *LI = Edit->get(RegIdx);
558
559  // Attempt cheap-as-a-copy rematerialization.
560  LiveRangeEdit::Remat RM(ParentVNI);
561  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
562    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
563  } else {
564    // Can't remat, just insert a copy from parent.
565    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
566               .addReg(Edit->getReg());
567    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
568  }
569
570  // Define the value in Reg.
571  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
572  VNI->setCopy(CopyMI);
573  return VNI;
574}
575
576/// Create a new virtual register and live interval.
577unsigned SplitEditor::openIntv() {
578  // Create the complement as index 0.
579  if (Edit->empty())
580    Edit->create(LIS, VRM);
581
582  // Create the open interval.
583  OpenIdx = Edit->size();
584  Edit->create(LIS, VRM);
585  return OpenIdx;
586}
587
588void SplitEditor::selectIntv(unsigned Idx) {
589  assert(Idx != 0 && "Cannot select the complement interval");
590  assert(Idx < Edit->size() && "Can only select previously opened interval");
591  OpenIdx = Idx;
592}
593
594SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
595  assert(OpenIdx && "openIntv not called before enterIntvBefore");
596  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
597  Idx = Idx.getBaseIndex();
598  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
599  if (!ParentVNI) {
600    DEBUG(dbgs() << ": not live\n");
601    return Idx;
602  }
603  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
604  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
605  assert(MI && "enterIntvBefore called with invalid index");
606
607  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
608  return VNI->def;
609}
610
611SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
612  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
613  SlotIndex End = LIS.getMBBEndIdx(&MBB);
614  SlotIndex Last = End.getPrevSlot();
615  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
616  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
617  if (!ParentVNI) {
618    DEBUG(dbgs() << ": not live\n");
619    return End;
620  }
621  DEBUG(dbgs() << ": valno " << ParentVNI->id);
622  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
623                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
624  RegAssign.insert(VNI->def, End, OpenIdx);
625  DEBUG(dump());
626  return VNI->def;
627}
628
629/// useIntv - indicate that all instructions in MBB should use OpenLI.
630void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
631  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
632}
633
634void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
635  assert(OpenIdx && "openIntv not called before useIntv");
636  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
637  RegAssign.insert(Start, End, OpenIdx);
638  DEBUG(dump());
639}
640
641SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
642  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
643  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
644
645  // The interval must be live beyond the instruction at Idx.
646  Idx = Idx.getBoundaryIndex();
647  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
648  if (!ParentVNI) {
649    DEBUG(dbgs() << ": not live\n");
650    return Idx.getNextSlot();
651  }
652  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
653
654  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
655  assert(MI && "No instruction at index");
656  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
657                              llvm::next(MachineBasicBlock::iterator(MI)));
658  return VNI->def;
659}
660
661SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
662  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
663  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
664
665  // The interval must be live into the instruction at Idx.
666  Idx = Idx.getBoundaryIndex();
667  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
668  if (!ParentVNI) {
669    DEBUG(dbgs() << ": not live\n");
670    return Idx.getNextSlot();
671  }
672  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
673
674  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
675  assert(MI && "No instruction at index");
676  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
677  return VNI->def;
678}
679
680SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
681  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
682  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
683  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
684
685  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
686  if (!ParentVNI) {
687    DEBUG(dbgs() << ": not live\n");
688    return Start;
689  }
690
691  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
692                              MBB.SkipPHIsAndLabels(MBB.begin()));
693  RegAssign.insert(Start, VNI->def, OpenIdx);
694  DEBUG(dump());
695  return VNI->def;
696}
697
698void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
699  assert(OpenIdx && "openIntv not called before overlapIntv");
700  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
701  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
702         "Parent changes value in extended range");
703  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
704         "Range cannot span basic blocks");
705
706  // The complement interval will be extended as needed by extendRange().
707  if (ParentVNI)
708    markComplexMapped(0, ParentVNI);
709  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
710  RegAssign.insert(Start, End, OpenIdx);
711  DEBUG(dump());
712}
713
714/// transferValues - Transfer all possible values to the new live ranges.
715/// Values that were rematerialized are left alone, they need extendRange().
716bool SplitEditor::transferValues() {
717  bool Skipped = false;
718  LiveInBlocks.clear();
719  RegAssignMap::const_iterator AssignI = RegAssign.begin();
720  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
721         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
722    DEBUG(dbgs() << "  blit " << *ParentI << ':');
723    VNInfo *ParentVNI = ParentI->valno;
724    // RegAssign has holes where RegIdx 0 should be used.
725    SlotIndex Start = ParentI->start;
726    AssignI.advanceTo(Start);
727    do {
728      unsigned RegIdx;
729      SlotIndex End = ParentI->end;
730      if (!AssignI.valid()) {
731        RegIdx = 0;
732      } else if (AssignI.start() <= Start) {
733        RegIdx = AssignI.value();
734        if (AssignI.stop() < End) {
735          End = AssignI.stop();
736          ++AssignI;
737        }
738      } else {
739        RegIdx = 0;
740        End = std::min(End, AssignI.start());
741      }
742
743      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
744      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
745      LiveInterval *LI = Edit->get(RegIdx);
746
747      // Check for a simply defined value that can be blitted directly.
748      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
749        DEBUG(dbgs() << ':' << VNI->id);
750        LI->addRange(LiveRange(Start, End, VNI));
751        Start = End;
752        continue;
753      }
754
755      // Skip rematerialized values, we need to use extendRange() and
756      // extendPHIKillRanges() to completely recompute the live ranges.
757      if (Edit->didRematerialize(ParentVNI)) {
758        DEBUG(dbgs() << "(remat)");
759        Skipped = true;
760        Start = End;
761        continue;
762      }
763
764      // Initialize the live-out cache the first time it is needed.
765      if (LiveOutSeen.empty()) {
766        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
767        LiveOutSeen.resize(N);
768        LiveOutCache.resize(N);
769      }
770
771      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
772      // so the live range is accurate. Add live-in blocks in [Start;End) to the
773      // LiveInBlocks.
774      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
775      SlotIndex BlockStart, BlockEnd;
776      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
777
778      // The first block may be live-in, or it may have its own def.
779      if (Start != BlockStart) {
780        VNInfo *VNI = LI->extendInBlock(BlockStart,
781                                        std::min(BlockEnd, End).getPrevSlot());
782        assert(VNI && "Missing def for complex mapped value");
783        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
784        // MBB has its own def. Is it also live-out?
785        if (BlockEnd <= End) {
786          LiveOutSeen.set(MBB->getNumber());
787          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
788        }
789        // Skip to the next block for live-in.
790        ++MBB;
791        BlockStart = BlockEnd;
792      }
793
794      // Handle the live-in blocks covered by [Start;End).
795      assert(Start <= BlockStart && "Expected live-in block");
796      while (BlockStart < End) {
797        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
798        BlockEnd = LIS.getMBBEndIdx(MBB);
799        if (BlockStart == ParentVNI->def) {
800          // This block has the def of a parent PHI, so it isn't live-in.
801          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
802          VNInfo *VNI = LI->extendInBlock(BlockStart,
803                                         std::min(BlockEnd, End).getPrevSlot());
804          assert(VNI && "Missing def for complex mapped parent PHI");
805          if (End >= BlockEnd) {
806            // Live-out as well.
807            LiveOutSeen.set(MBB->getNumber());
808            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
809          }
810        } else {
811          // This block needs a live-in value.
812          LiveInBlocks.push_back(MDT[MBB]);
813          // The last block covered may not be live-out.
814          if (End < BlockEnd)
815            LiveInBlocks.back().Kill = End;
816          else {
817            // Live-out, but we need updateSSA to tell us the value.
818            LiveOutSeen.set(MBB->getNumber());
819            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
820                                            (MachineDomTreeNode*)0);
821          }
822        }
823        BlockStart = BlockEnd;
824        ++MBB;
825      }
826      Start = End;
827    } while (Start != ParentI->end);
828    DEBUG(dbgs() << '\n');
829  }
830
831  if (!LiveInBlocks.empty())
832    updateSSA();
833
834  return Skipped;
835}
836
837void SplitEditor::extendPHIKillRanges() {
838    // Extend live ranges to be live-out for successor PHI values.
839  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
840       E = Edit->getParent().vni_end(); I != E; ++I) {
841    const VNInfo *PHIVNI = *I;
842    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
843      continue;
844    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
845    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
846    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
847         PE = MBB->pred_end(); PI != PE; ++PI) {
848      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
849      // The predecessor may not have a live-out value. That is OK, like an
850      // undef PHI operand.
851      if (Edit->getParent().liveAt(End)) {
852        assert(RegAssign.lookup(End) == RegIdx &&
853               "Different register assignment in phi predecessor");
854        extendRange(RegIdx, End);
855      }
856    }
857  }
858}
859
860/// rewriteAssigned - Rewrite all uses of Edit->getReg().
861void SplitEditor::rewriteAssigned(bool ExtendRanges) {
862  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
863       RE = MRI.reg_end(); RI != RE;) {
864    MachineOperand &MO = RI.getOperand();
865    MachineInstr *MI = MO.getParent();
866    ++RI;
867    // LiveDebugVariables should have handled all DBG_VALUE instructions.
868    if (MI->isDebugValue()) {
869      DEBUG(dbgs() << "Zapping " << *MI);
870      MO.setReg(0);
871      continue;
872    }
873
874    // <undef> operands don't really read the register, so just assign them to
875    // the complement.
876    if (MO.isUse() && MO.isUndef()) {
877      MO.setReg(Edit->get(0)->reg);
878      continue;
879    }
880
881    SlotIndex Idx = LIS.getInstructionIndex(MI);
882    if (MO.isDef())
883      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
884
885    // Rewrite to the mapped register at Idx.
886    unsigned RegIdx = RegAssign.lookup(Idx);
887    MO.setReg(Edit->get(RegIdx)->reg);
888    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
889                 << Idx << ':' << RegIdx << '\t' << *MI);
890
891    // Extend liveness to Idx if the instruction reads reg.
892    if (!ExtendRanges)
893      continue;
894
895    // Skip instructions that don't read Reg.
896    if (MO.isDef()) {
897      if (!MO.getSubReg() && !MO.isEarlyClobber())
898        continue;
899      // We may wan't to extend a live range for a partial redef, or for a use
900      // tied to an early clobber.
901      Idx = Idx.getPrevSlot();
902      if (!Edit->getParent().liveAt(Idx))
903        continue;
904    } else
905      Idx = Idx.getUseIndex();
906
907    extendRange(RegIdx, Idx);
908  }
909}
910
911void SplitEditor::deleteRematVictims() {
912  SmallVector<MachineInstr*, 8> Dead;
913  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
914    LiveInterval *LI = *I;
915    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
916           LII != LIE; ++LII) {
917      // Dead defs end at the store slot.
918      if (LII->end != LII->valno->def.getNextSlot())
919        continue;
920      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
921      assert(MI && "Missing instruction for dead def");
922      MI->addRegisterDead(LI->reg, &TRI);
923
924      if (!MI->allDefsAreDead())
925        continue;
926
927      DEBUG(dbgs() << "All defs dead: " << *MI);
928      Dead.push_back(MI);
929    }
930  }
931
932  if (Dead.empty())
933    return;
934
935  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
936}
937
938void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
939  ++NumFinished;
940
941  // At this point, the live intervals in Edit contain VNInfos corresponding to
942  // the inserted copies.
943
944  // Add the original defs from the parent interval.
945  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
946         E = Edit->getParent().vni_end(); I != E; ++I) {
947    const VNInfo *ParentVNI = *I;
948    if (ParentVNI->isUnused())
949      continue;
950    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
951    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
952    VNI->setIsPHIDef(ParentVNI->isPHIDef());
953    VNI->setCopy(ParentVNI->getCopy());
954
955    // Mark rematted values as complex everywhere to force liveness computation.
956    // The new live ranges may be truncated.
957    if (Edit->didRematerialize(ParentVNI))
958      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
959        markComplexMapped(i, ParentVNI);
960  }
961
962#ifndef NDEBUG
963  // Every new interval must have a def by now, otherwise the split is bogus.
964  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
965    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
966#endif
967
968  // Transfer the simply mapped values, check if any are skipped.
969  bool Skipped = transferValues();
970  if (Skipped)
971    extendPHIKillRanges();
972  else
973    ++NumSimple;
974
975  // Rewrite virtual registers, possibly extending ranges.
976  rewriteAssigned(Skipped);
977
978  // Delete defs that were rematted everywhere.
979  if (Skipped)
980    deleteRematVictims();
981
982  // Get rid of unused values and set phi-kill flags.
983  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
984    (*I)->RenumberValues(LIS);
985
986  // Provide a reverse mapping from original indices to Edit ranges.
987  if (LRMap) {
988    LRMap->clear();
989    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
990      LRMap->push_back(i);
991  }
992
993  // Now check if any registers were separated into multiple components.
994  ConnectedVNInfoEqClasses ConEQ(LIS);
995  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
996    // Don't use iterators, they are invalidated by create() below.
997    LiveInterval *li = Edit->get(i);
998    unsigned NumComp = ConEQ.Classify(li);
999    if (NumComp <= 1)
1000      continue;
1001    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1002    SmallVector<LiveInterval*, 8> dups;
1003    dups.push_back(li);
1004    for (unsigned i = 1; i != NumComp; ++i)
1005      dups.push_back(&Edit->create(LIS, VRM));
1006    ConEQ.Distribute(&dups[0], MRI);
1007    // The new intervals all map back to i.
1008    if (LRMap)
1009      LRMap->resize(Edit->size(), i);
1010  }
1011
1012  // Calculate spill weight and allocation hints for new intervals.
1013  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1014
1015  assert(!LRMap || LRMap->size() == Edit->size());
1016}
1017
1018
1019//===----------------------------------------------------------------------===//
1020//                            Single Block Splitting
1021//===----------------------------------------------------------------------===//
1022
1023/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1024/// may be an advantage to split CurLI for the duration of the block.
1025bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1026  // If CurLI is local to one block, there is no point to splitting it.
1027  if (UseBlocks.size() <= 1)
1028    return false;
1029  // Add blocks with multiple uses.
1030  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1031    const BlockInfo &BI = UseBlocks[i];
1032    if (BI.FirstUse == BI.LastUse)
1033      continue;
1034    Blocks.insert(BI.MBB);
1035  }
1036  return !Blocks.empty();
1037}
1038
1039void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1040  openIntv();
1041  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1042  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1043    LastSplitPoint));
1044  if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1045    useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1046  } else {
1047      // The last use is after the last valid split point.
1048    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1049    useIntv(SegStart, SegStop);
1050    overlapIntv(SegStop, BI.LastUse);
1051  }
1052}
1053
1054/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1055/// basic block in Blocks.
1056void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1057  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1058  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1059  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1060    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1061    if (Blocks.count(BI.MBB))
1062      splitSingleBlock(BI);
1063  }
1064  finish();
1065}
1066