SplitKit.cpp revision 63664042cf07901bc4e117f8ed9d5f9364a0db73
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "splitter"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : mf_(mf),
45    lis_(lis),
46    loops_(mli),
47    tii_(*mf.getTarget().getInstrInfo()),
48    curli_(0) {}
49
50void SplitAnalysis::clear() {
51  usingInstrs_.clear();
52  usingBlocks_.clear();
53  usingLoops_.clear();
54  curli_ = 0;
55}
56
57bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
58  MachineBasicBlock *T, *F;
59  SmallVector<MachineOperand, 4> Cond;
60  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
61}
62
63/// analyzeUses - Count instructions, basic blocks, and loops using curli.
64void SplitAnalysis::analyzeUses() {
65  const MachineRegisterInfo &MRI = mf_.getRegInfo();
66  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
67       MachineInstr *MI = I.skipInstruction();) {
68    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
69      continue;
70    MachineBasicBlock *MBB = MI->getParent();
71    if (usingBlocks_[MBB]++)
72      continue;
73    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
74         Loop = Loop->getParentLoop())
75      usingLoops_[Loop]++;
76  }
77  DEBUG(dbgs() << "  counted "
78               << usingInstrs_.size() << " instrs, "
79               << usingBlocks_.size() << " blocks, "
80               << usingLoops_.size()  << " loops.\n");
81}
82
83void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
84  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
85    unsigned count = usingBlocks_.lookup(*I);
86    OS << " BB#" << (*I)->getNumber();
87    if (count)
88      OS << '(' << count << ')';
89  }
90}
91
92// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
93// predecessor blocks, and exit blocks.
94void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
95  Blocks.clear();
96
97  // Blocks in the loop.
98  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
99
100  // Predecessor blocks.
101  const MachineBasicBlock *Header = Loop->getHeader();
102  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
103       E = Header->pred_end(); I != E; ++I)
104    if (!Blocks.Loop.count(*I))
105      Blocks.Preds.insert(*I);
106
107  // Exit blocks.
108  for (MachineLoop::block_iterator I = Loop->block_begin(),
109       E = Loop->block_end(); I != E; ++I) {
110    const MachineBasicBlock *MBB = *I;
111    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
112       SE = MBB->succ_end(); SI != SE; ++SI)
113      if (!Blocks.Loop.count(*SI))
114        Blocks.Exits.insert(*SI);
115  }
116}
117
118void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
119  OS << "Loop:";
120  print(B.Loop, OS);
121  OS << ", preds:";
122  print(B.Preds, OS);
123  OS << ", exits:";
124  print(B.Exits, OS);
125}
126
127/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
128/// and around the Loop.
129SplitAnalysis::LoopPeripheralUse SplitAnalysis::
130analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
131  LoopPeripheralUse use = ContainedInLoop;
132  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
133       I != E; ++I) {
134    const MachineBasicBlock *MBB = I->first;
135    // Is this a peripheral block?
136    if (use < MultiPeripheral &&
137        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
138      if (I->second > 1) use = MultiPeripheral;
139      else               use = SinglePeripheral;
140      continue;
141    }
142    // Is it a loop block?
143    if (Blocks.Loop.count(MBB))
144      continue;
145    // It must be an unrelated block.
146    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
147    return OutsideLoop;
148  }
149  return use;
150}
151
152/// getCriticalExits - It may be necessary to partially break critical edges
153/// leaving the loop if an exit block has predecessors from outside the loop
154/// periphery.
155void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
156                                     BlockPtrSet &CriticalExits) {
157  CriticalExits.clear();
158
159  // A critical exit block has curli live-in, and has a predecessor that is not
160  // in the loop nor a loop predecessor. For such an exit block, the edges
161  // carrying the new variable must be moved to a new pre-exit block.
162  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
163       I != E; ++I) {
164    const MachineBasicBlock *Exit = *I;
165    // A single-predecessor exit block is definitely not a critical edge.
166    if (Exit->pred_size() == 1)
167      continue;
168    // This exit may not have curli live in at all. No need to split.
169    if (!lis_.isLiveInToMBB(*curli_, Exit))
170      continue;
171    // Does this exit block have a predecessor that is not a loop block or loop
172    // predecessor?
173    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
174         PE = Exit->pred_end(); PI != PE; ++PI) {
175      const MachineBasicBlock *Pred = *PI;
176      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
177        continue;
178      // This is a critical exit block, and we need to split the exit edge.
179      CriticalExits.insert(Exit);
180      break;
181    }
182  }
183}
184
185void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
186                                     BlockPtrSet &CriticalPreds) {
187  CriticalPreds.clear();
188
189  // A critical predecessor block has curli live-out, and has a successor that
190  // has curli live-in and is not in the loop nor a loop exit block. For such a
191  // predecessor block, we must carry the value in both the 'inside' and
192  // 'outside' registers.
193  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
194       I != E; ++I) {
195    const MachineBasicBlock *Pred = *I;
196    // Definitely not a critical edge.
197    if (Pred->succ_size() == 1)
198      continue;
199    // This block may not have curli live out at all if there is a PHI.
200    if (!lis_.isLiveOutOfMBB(*curli_, Pred))
201      continue;
202    // Does this block have a successor outside the loop?
203    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
204         SE = Pred->succ_end(); SI != SE; ++SI) {
205      const MachineBasicBlock *Succ = *SI;
206      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
207        continue;
208      if (!lis_.isLiveInToMBB(*curli_, Succ))
209        continue;
210      // This is a critical predecessor block.
211      CriticalPreds.insert(Pred);
212      break;
213    }
214  }
215}
216
217/// canSplitCriticalExits - Return true if it is possible to insert new exit
218/// blocks before the blocks in CriticalExits.
219bool
220SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
221                                     BlockPtrSet &CriticalExits) {
222  // If we don't allow critical edge splitting, require no critical exits.
223  if (!AllowSplit)
224    return CriticalExits.empty();
225
226  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
227       I != E; ++I) {
228    const MachineBasicBlock *Succ = *I;
229    // We want to insert a new pre-exit MBB before Succ, and change all the
230    // in-loop blocks to branch to the pre-exit instead of Succ.
231    // Check that all the in-loop predecessors can be changed.
232    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
233         PE = Succ->pred_end(); PI != PE; ++PI) {
234      const MachineBasicBlock *Pred = *PI;
235      // The external predecessors won't be altered.
236      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
237        continue;
238      if (!canAnalyzeBranch(Pred))
239        return false;
240    }
241
242    // If Succ's layout predecessor falls through, that too must be analyzable.
243    // We need to insert the pre-exit block in the gap.
244    MachineFunction::const_iterator MFI = Succ;
245    if (MFI == mf_.begin())
246      continue;
247    if (!canAnalyzeBranch(--MFI))
248      return false;
249  }
250  // No problems found.
251  return true;
252}
253
254void SplitAnalysis::analyze(const LiveInterval *li) {
255  clear();
256  curli_ = li;
257  analyzeUses();
258}
259
260const MachineLoop *SplitAnalysis::getBestSplitLoop() {
261  assert(curli_ && "Call analyze() before getBestSplitLoop");
262  if (usingLoops_.empty())
263    return 0;
264
265  LoopPtrSet Loops;
266  LoopBlocks Blocks;
267  BlockPtrSet CriticalExits;
268
269  // We split around loops where curli is used outside the periphery.
270  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
271       E = usingLoops_.end(); I != E; ++I) {
272    const MachineLoop *Loop = I->first;
273    getLoopBlocks(Loop, Blocks);
274    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
275
276    switch(analyzeLoopPeripheralUse(Blocks)) {
277    case OutsideLoop:
278      break;
279    case MultiPeripheral:
280      // FIXME: We could split a live range with multiple uses in a peripheral
281      // block and still make progress. However, it is possible that splitting
282      // another live range will insert copies into a peripheral block, and
283      // there is a small chance we can enter an infinity loop, inserting copies
284      // forever.
285      // For safety, stick to splitting live ranges with uses outside the
286      // periphery.
287      DEBUG(dbgs() << ": multiple peripheral uses\n");
288      break;
289    case ContainedInLoop:
290      DEBUG(dbgs() << ": fully contained\n");
291      continue;
292    case SinglePeripheral:
293      DEBUG(dbgs() << ": single peripheral use\n");
294      continue;
295    }
296    // Will it be possible to split around this loop?
297    getCriticalExits(Blocks, CriticalExits);
298    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
299    if (!canSplitCriticalExits(Blocks, CriticalExits))
300      continue;
301    // This is a possible split.
302    Loops.insert(Loop);
303  }
304
305  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
306               << " candidate loops.\n");
307
308  if (Loops.empty())
309    return 0;
310
311  // Pick the earliest loop.
312  // FIXME: Are there other heuristics to consider?
313  const MachineLoop *Best = 0;
314  SlotIndex BestIdx;
315  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
316       ++I) {
317    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
318    if (!Best || Idx < BestIdx)
319      Best = *I, BestIdx = Idx;
320  }
321  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
322  return Best;
323}
324
325//===----------------------------------------------------------------------===//
326//                               LiveIntervalMap
327//===----------------------------------------------------------------------===//
328
329// Work around the fact that the std::pair constructors are broken for pointer
330// pairs in some implementations. makeVV(x, 0) works.
331static inline std::pair<const VNInfo*, VNInfo*>
332makeVV(const VNInfo *a, VNInfo *b) {
333  return std::make_pair(a, b);
334}
335
336void LiveIntervalMap::reset(LiveInterval *li) {
337  li_ = li;
338  valueMap_.clear();
339  liveOutCache_.clear();
340}
341
342bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
343  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
344  return i != valueMap_.end() && i->second == 0;
345}
346
347// defValue - Introduce a li_ def for ParentVNI that could be later than
348// ParentVNI->def.
349VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
350  assert(li_ && "call reset first");
351  assert(ParentVNI && "Mapping  NULL value");
352  assert(Idx.isValid() && "Invalid SlotIndex");
353  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
354
355  // Create a new value.
356  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
357
358  // Preserve the PHIDef bit.
359  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
360    VNI->setIsPHIDef(true);
361
362  // Use insert for lookup, so we can add missing values with a second lookup.
363  std::pair<ValueMap::iterator,bool> InsP =
364    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
365
366  // This is now a complex def. Mark with a NULL in valueMap.
367  if (!InsP.second)
368    InsP.first->second = 0;
369
370  return VNI;
371}
372
373
374// mapValue - Find the mapped value for ParentVNI at Idx.
375// Potentially create phi-def values.
376VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
377                                  bool *simple) {
378  assert(li_ && "call reset first");
379  assert(ParentVNI && "Mapping  NULL value");
380  assert(Idx.isValid() && "Invalid SlotIndex");
381  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
382
383  // Use insert for lookup, so we can add missing values with a second lookup.
384  std::pair<ValueMap::iterator,bool> InsP =
385    valueMap_.insert(makeVV(ParentVNI, 0));
386
387  // This was an unknown value. Create a simple mapping.
388  if (InsP.second) {
389    if (simple) *simple = true;
390    return InsP.first->second = li_->createValueCopy(ParentVNI,
391                                                     lis_.getVNInfoAllocator());
392  }
393
394  // This was a simple mapped value.
395  if (InsP.first->second) {
396    if (simple) *simple = true;
397    return InsP.first->second;
398  }
399
400  // This is a complex mapped value. There may be multiple defs, and we may need
401  // to create phi-defs.
402  if (simple) *simple = false;
403  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
404  assert(IdxMBB && "No MBB at Idx");
405
406  // Is there a def in the same MBB we can extend?
407  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
408    return VNI;
409
410  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
411  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
412  // Perform a search for all predecessor blocks where we know the dominating
413  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
414  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
415               << " at " << Idx << " in " << *li_ << '\n');
416
417  // Blocks where li_ should be live-in.
418  SmallVector<MachineDomTreeNode*, 16> LiveIn;
419  LiveIn.push_back(mdt_[IdxMBB]);
420
421  // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
422  for (unsigned i = 0; i != LiveIn.size(); ++i) {
423    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
424    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
425           PE = MBB->pred_end(); PI != PE; ++PI) {
426       MachineBasicBlock *Pred = *PI;
427       // Is this a known live-out block?
428       std::pair<LiveOutMap::iterator,bool> LOIP =
429         liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
430       // Yes, we have been here before.
431       if (!LOIP.second) {
432         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
433                 dbgs() << "    known valno #" << VNI->id
434                        << " at BB#" << Pred->getNumber() << '\n');
435         continue;
436       }
437
438       // Does Pred provide a live-out value?
439       SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
440       if (VNInfo *VNI = extendTo(Pred, Last)) {
441         MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
442         DEBUG(dbgs() << "    found valno #" << VNI->id
443                      << " from BB#" << DefMBB->getNumber()
444                      << " at BB#" << Pred->getNumber() << '\n');
445         LiveOutPair &LOP = LOIP.first->second;
446         LOP.first = VNI;
447         LOP.second = mdt_[DefMBB];
448         continue;
449       }
450       // No, we need a live-in value for Pred as well
451       if (Pred != IdxMBB)
452         LiveIn.push_back(mdt_[Pred]);
453    }
454  }
455
456  // We may need to add phi-def values to preserve the SSA form.
457  // This is essentially the same iterative algorithm that SSAUpdater uses,
458  // except we already have a dominator tree, so we don't have to recompute it.
459  VNInfo *IdxVNI = 0;
460  unsigned Changes;
461  do {
462    Changes = 0;
463    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
464    // Propagate live-out values down the dominator tree, inserting phi-defs when
465    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
466    // likely for us to visit immediate dominators before their children.
467    for (unsigned i = LiveIn.size(); i; --i) {
468      MachineDomTreeNode *Node = LiveIn[i-1];
469      MachineBasicBlock *MBB = Node->getBlock();
470      MachineDomTreeNode *IDom = Node->getIDom();
471      LiveOutPair IDomValue;
472      // We need a live-in value to a block with no immediate dominator?
473      // This is probably an unreachable block that has survived somehow.
474      bool needPHI = !IDom;
475
476      // Get the IDom live-out value.
477      if (!needPHI) {
478        LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
479        if (I != liveOutCache_.end())
480          IDomValue = I->second;
481        else
482          // If IDom is outside our set of live-out blocks, there must be new
483          // defs, and we need a phi-def here.
484          needPHI = true;
485      }
486
487      // IDom dominates all of our predecessors, but it may not be the immediate
488      // dominator. Check if any of them have live-out values that are properly
489      // dominated by IDom. If so, we need a phi-def here.
490      if (!needPHI) {
491        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
492               PE = MBB->pred_end(); PI != PE; ++PI) {
493          LiveOutPair Value = liveOutCache_[*PI];
494          if (!Value.first || Value.first == IDomValue.first)
495            continue;
496          // This predecessor is carrying something other than IDomValue.
497          // It could be because IDomValue hasn't propagated yet, or it could be
498          // because MBB is in the dominance frontier of that value.
499          if (mdt_.dominates(IDom, Value.second)) {
500            needPHI = true;
501            break;
502          }
503        }
504      }
505
506      // Create a phi-def if required.
507      if (needPHI) {
508        ++Changes;
509        SlotIndex Start = lis_.getMBBStartIdx(MBB);
510        VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
511        VNI->setIsPHIDef(true);
512        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
513                     << " phi-def #" << VNI->id << " at " << Start << '\n');
514        // We no longer need li_ to be live-in.
515        LiveIn.erase(LiveIn.begin()+(i-1));
516        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
517        if (MBB == IdxMBB)
518          IdxVNI = VNI;
519        // Check if we need to update live-out info.
520        LiveOutMap::iterator I = liveOutCache_.find(MBB);
521        if (I == liveOutCache_.end() || I->second.second == Node) {
522          // We already have a live-out defined in MBB, so this must be IdxMBB.
523          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
524          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
525        } else {
526          // This phi-def is also live-out, so color the whole block.
527          li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
528          I->second = LiveOutPair(VNI, Node);
529        }
530      } else if (IDomValue.first) {
531        // No phi-def here. Remember incoming value for IdxMBB.
532        if (MBB == IdxMBB)
533          IdxVNI = IDomValue.first;
534        // Propagate IDomValue if needed:
535        // MBB is live-out and doesn't define its own value.
536        LiveOutMap::iterator I = liveOutCache_.find(MBB);
537        if (I != liveOutCache_.end() && I->second.second != Node &&
538            I->second.first != IDomValue.first) {
539          ++Changes;
540          I->second = IDomValue;
541          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
542                       << " idom valno #" << IDomValue.first->id
543                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
544        }
545      }
546    }
547    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
548  } while (Changes);
549
550  assert(IdxVNI && "Didn't find value for Idx");
551
552#ifndef NDEBUG
553  // Check the liveOutCache_ invariants.
554  for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
555         I != E; ++I) {
556    assert(I->first && "Null MBB entry in cache");
557    assert(I->second.first && "Null VNInfo in cache");
558    assert(I->second.second && "Null DomTreeNode in cache");
559    if (I->second.second->getBlock() == I->first)
560      continue;
561    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
562           PE = I->first->pred_end(); PI != PE; ++PI)
563      assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
564  }
565#endif
566
567  // Since we went through the trouble of a full BFS visiting all reaching defs,
568  // the values in LiveIn are now accurate. No more phi-defs are needed
569  // for these blocks, so we can color the live ranges.
570  // This makes the next mapValue call much faster.
571  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
572    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
573    SlotIndex Start = lis_.getMBBStartIdx(MBB);
574    if (MBB == IdxMBB) {
575      li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
576      continue;
577    }
578    // Anything in LiveIn other than IdxMBB is live-through.
579    VNInfo *VNI = liveOutCache_.lookup(MBB).first;
580    assert(VNI && "Missing block value");
581    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
582  }
583
584  return IdxVNI;
585}
586
587// extendTo - Find the last li_ value defined in MBB at or before Idx. The
588// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
589// Return the found VNInfo, or NULL.
590VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
591  assert(li_ && "call reset first");
592  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
593  if (I == li_->begin())
594    return 0;
595  --I;
596  if (I->end <= lis_.getMBBStartIdx(MBB))
597    return 0;
598  if (I->end <= Idx)
599    I->end = Idx.getNextSlot();
600  return I->valno;
601}
602
603// addSimpleRange - Add a simple range from parentli_ to li_.
604// ParentVNI must be live in the [Start;End) interval.
605void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
606                                     const VNInfo *ParentVNI) {
607  assert(li_ && "call reset first");
608  bool simple;
609  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
610  // A simple mapping is easy.
611  if (simple) {
612    li_->addRange(LiveRange(Start, End, VNI));
613    return;
614  }
615
616  // ParentVNI is a complex value. We must map per MBB.
617  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
618  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
619
620  if (MBB == MBBE) {
621    li_->addRange(LiveRange(Start, End, VNI));
622    return;
623  }
624
625  // First block.
626  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
627
628  // Run sequence of full blocks.
629  for (++MBB; MBB != MBBE; ++MBB) {
630    Start = lis_.getMBBStartIdx(MBB);
631    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
632                            mapValue(ParentVNI, Start)));
633  }
634
635  // Final block.
636  Start = lis_.getMBBStartIdx(MBB);
637  if (Start != End)
638    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
639}
640
641/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
642/// All needed values whose def is not inside [Start;End) must be defined
643/// beforehand so mapValue will work.
644void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
645  assert(li_ && "call reset first");
646  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
647  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
648
649  // Check if --I begins before Start and overlaps.
650  if (I != B) {
651    --I;
652    if (I->end > Start)
653      addSimpleRange(Start, std::min(End, I->end), I->valno);
654    ++I;
655  }
656
657  // The remaining ranges begin after Start.
658  for (;I != E && I->start < End; ++I)
659    addSimpleRange(I->start, std::min(End, I->end), I->valno);
660}
661
662VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
663                                       const VNInfo *ParentVNI,
664                                       MachineBasicBlock &MBB,
665                                       MachineBasicBlock::iterator I) {
666  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
667    get(TargetOpcode::COPY);
668  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
669  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
670  VNInfo *VNI = defValue(ParentVNI, DefIdx);
671  VNI->setCopy(MI);
672  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
673  return VNI;
674}
675
676//===----------------------------------------------------------------------===//
677//                               Split Editor
678//===----------------------------------------------------------------------===//
679
680/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
681SplitEditor::SplitEditor(SplitAnalysis &sa,
682                         LiveIntervals &lis,
683                         VirtRegMap &vrm,
684                         MachineDominatorTree &mdt,
685                         LiveRangeEdit &edit)
686  : sa_(sa), lis_(lis), vrm_(vrm),
687    mri_(vrm.getMachineFunction().getRegInfo()),
688    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
689    edit_(edit),
690    dupli_(lis_, mdt, edit.getParent()),
691    openli_(lis_, mdt, edit.getParent())
692{
693}
694
695bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
696  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
697    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
698      return true;
699  return false;
700}
701
702/// Create a new virtual register and live interval.
703void SplitEditor::openIntv() {
704  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
705
706  if (!dupli_.getLI())
707    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
708
709  openli_.reset(&edit_.create(mri_, lis_, vrm_));
710}
711
712/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
713/// not live before Idx, a COPY is not inserted.
714void SplitEditor::enterIntvBefore(SlotIndex Idx) {
715  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
716  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
717  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
718  if (!ParentVNI) {
719    DEBUG(dbgs() << ": not live\n");
720    return;
721  }
722  DEBUG(dbgs() << ": valno " << ParentVNI->id);
723  truncatedValues.insert(ParentVNI);
724  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
725  assert(MI && "enterIntvBefore called with invalid index");
726  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
727                                      *MI->getParent(), MI);
728  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
729  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
730}
731
732/// enterIntvAtEnd - Enter openli at the end of MBB.
733void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
734  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
735  SlotIndex End = lis_.getMBBEndIdx(&MBB);
736  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
737  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
738  if (!ParentVNI) {
739    DEBUG(dbgs() << ": not live\n");
740    return;
741  }
742  DEBUG(dbgs() << ": valno " << ParentVNI->id);
743  truncatedValues.insert(ParentVNI);
744  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
745                                      MBB, MBB.getFirstTerminator());
746  // Make sure openli is live out of MBB.
747  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
748  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
749}
750
751/// useIntv - indicate that all instructions in MBB should use openli.
752void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
753  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
754}
755
756void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
757  assert(openli_.getLI() && "openIntv not called before useIntv");
758  openli_.addRange(Start, End);
759  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
760               << *openli_.getLI() << '\n');
761}
762
763/// leaveIntvAfter - Leave openli after the instruction at Idx.
764void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
765  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
766  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
767
768  // The interval must be live beyond the instruction at Idx.
769  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
770  if (!ParentVNI) {
771    DEBUG(dbgs() << ": not live\n");
772    return;
773  }
774  DEBUG(dbgs() << ": valno " << ParentVNI->id);
775
776  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
777  MachineBasicBlock *MBB = MII->getParent();
778  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
779                                     llvm::next(MII));
780
781  // Finally we must make sure that openli is properly extended from Idx to the
782  // new copy.
783  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
784  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
785}
786
787/// leaveIntvAtTop - Leave the interval at the top of MBB.
788/// Currently, only one value can leave the interval.
789void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
790  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
791  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
792  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
793
794  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
795  if (!ParentVNI) {
796    DEBUG(dbgs() << ": not live\n");
797    return;
798  }
799
800  // We are going to insert a back copy, so we must have a dupli_.
801  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
802                                     MBB, MBB.begin());
803
804  // Finally we must make sure that openli is properly extended from Start to
805  // the new copy.
806  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
807  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
808}
809
810/// closeIntv - Indicate that we are done editing the currently open
811/// LiveInterval, and ranges can be trimmed.
812void SplitEditor::closeIntv() {
813  assert(openli_.getLI() && "openIntv not called before closeIntv");
814
815  DEBUG(dbgs() << "    closeIntv cleaning up\n");
816  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
817  openli_.reset(0);
818}
819
820/// rewrite - Rewrite all uses of reg to use the new registers.
821void SplitEditor::rewrite(unsigned reg) {
822  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
823       RE = mri_.reg_end(); RI != RE;) {
824    MachineOperand &MO = RI.getOperand();
825    MachineInstr *MI = MO.getParent();
826    ++RI;
827    if (MI->isDebugValue()) {
828      DEBUG(dbgs() << "Zapping " << *MI);
829      // FIXME: We can do much better with debug values.
830      MO.setReg(0);
831      continue;
832    }
833    SlotIndex Idx = lis_.getInstructionIndex(MI);
834    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
835    LiveInterval *LI = 0;
836    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
837         ++I) {
838      LiveInterval *testli = *I;
839      if (testli->liveAt(Idx)) {
840        LI = testli;
841        break;
842      }
843    }
844    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
845    assert(LI && "No register was live at use");
846    MO.setReg(LI->reg);
847    DEBUG(dbgs() << '\t' << *MI);
848  }
849}
850
851void
852SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
853  // Build vector of iterator pairs from the intervals.
854  typedef std::pair<LiveInterval::const_iterator,
855                    LiveInterval::const_iterator> IIPair;
856  SmallVector<IIPair, 8> Iters;
857  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
858       ++LI) {
859    if (*LI == dupli_.getLI())
860      continue;
861    LiveInterval::const_iterator I = (*LI)->find(Start);
862    LiveInterval::const_iterator E = (*LI)->end();
863    if (I != E)
864      Iters.push_back(std::make_pair(I, E));
865  }
866
867  SlotIndex sidx = Start;
868  // Break [Start;End) into segments that don't overlap any intervals.
869  for (;;) {
870    SlotIndex next = sidx, eidx = End;
871    // Find overlapping intervals.
872    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
873      LiveInterval::const_iterator I = Iters[i].first;
874      // Interval I is overlapping [sidx;eidx). Trim sidx.
875      if (I->start <= sidx) {
876        sidx = I->end;
877        // Move to the next run, remove iters when all are consumed.
878        I = ++Iters[i].first;
879        if (I == Iters[i].second) {
880          Iters.erase(Iters.begin() + i);
881          --i;
882          continue;
883        }
884      }
885      // Trim eidx too if needed.
886      if (I->start >= eidx)
887        continue;
888      eidx = I->start;
889      next = I->end;
890    }
891    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
892    if (sidx < eidx)
893      dupli_.addSimpleRange(sidx, eidx, VNI);
894    // If the interval end was truncated, we can try again from next.
895    if (next <= sidx)
896      break;
897    sidx = next;
898  }
899}
900
901void SplitEditor::computeRemainder() {
902  // First we need to fill in the live ranges in dupli.
903  // If values were redefined, we need a full recoloring with SSA update.
904  // If values were truncated, we only need to truncate the ranges.
905  // If values were partially rematted, we should shrink to uses.
906  // If values were fully rematted, they should be omitted.
907  // FIXME: If a single value is redefined, just move the def and truncate.
908  LiveInterval &parent = edit_.getParent();
909
910  // Values that are fully contained in the split intervals.
911  SmallPtrSet<const VNInfo*, 8> deadValues;
912  // Map all curli values that should have live defs in dupli.
913  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
914       E = parent.vni_end(); I != E; ++I) {
915    const VNInfo *VNI = *I;
916    // Don't transfer unused values to the new intervals.
917    if (VNI->isUnused())
918      continue;
919    // Original def is contained in the split intervals.
920    if (intervalsLiveAt(VNI->def)) {
921      // Did this value escape?
922      if (dupli_.isMapped(VNI))
923        truncatedValues.insert(VNI);
924      else
925        deadValues.insert(VNI);
926      continue;
927    }
928    // Add minimal live range at the definition.
929    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
930    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
931  }
932
933  // Add all ranges to dupli.
934  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
935       I != E; ++I) {
936    const LiveRange &LR = *I;
937    if (truncatedValues.count(LR.valno)) {
938      // recolor after removing intervals_.
939      addTruncSimpleRange(LR.start, LR.end, LR.valno);
940    } else if (!deadValues.count(LR.valno)) {
941      // recolor without truncation.
942      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
943    }
944  }
945
946  // Extend dupli_ to be live out of any critical loop predecessors.
947  // This means we have multiple registers live out of those blocks.
948  // The alternative would be to split the critical edges.
949  if (criticalPreds_.empty())
950    return;
951  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
952       E = criticalPreds_.end(); I != E; ++I)
953     dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
954   criticalPreds_.clear();
955}
956
957void SplitEditor::finish() {
958  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
959  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
960
961  // Complete dupli liveness.
962  computeRemainder();
963
964  // Get rid of unused values and set phi-kill flags.
965  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
966    (*I)->RenumberValues(lis_);
967
968  // Rewrite instructions.
969  rewrite(edit_.getReg());
970
971  // Now check if any registers were separated into multiple components.
972  ConnectedVNInfoEqClasses ConEQ(lis_);
973  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
974    // Don't use iterators, they are invalidated by create() below.
975    LiveInterval *li = edit_.get(i);
976    unsigned NumComp = ConEQ.Classify(li);
977    if (NumComp <= 1)
978      continue;
979    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
980    SmallVector<LiveInterval*, 8> dups;
981    dups.push_back(li);
982    for (unsigned i = 1; i != NumComp; ++i)
983      dups.push_back(&edit_.create(mri_, lis_, vrm_));
984    ConEQ.Distribute(&dups[0]);
985    // Rewrite uses to the new regs.
986    rewrite(li->reg);
987  }
988
989  // Calculate spill weight and allocation hints for new intervals.
990  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
991  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
992    LiveInterval &li = **I;
993    vrai.CalculateRegClass(li.reg);
994    vrai.CalculateWeightAndHint(li);
995    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
996                 << ":" << li << '\n');
997  }
998}
999
1000
1001//===----------------------------------------------------------------------===//
1002//                               Loop Splitting
1003//===----------------------------------------------------------------------===//
1004
1005void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
1006  SplitAnalysis::LoopBlocks Blocks;
1007  sa_.getLoopBlocks(Loop, Blocks);
1008
1009  DEBUG({
1010    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
1011  });
1012
1013  // Break critical edges as needed.
1014  SplitAnalysis::BlockPtrSet CriticalExits;
1015  sa_.getCriticalExits(Blocks, CriticalExits);
1016  assert(CriticalExits.empty() && "Cannot break critical exits yet");
1017
1018  // Get critical predecessors so computeRemainder can deal with them.
1019  sa_.getCriticalPreds(Blocks, criticalPreds_);
1020
1021  // Create new live interval for the loop.
1022  openIntv();
1023
1024  // Insert copies in the predecessors.
1025  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
1026       E = Blocks.Preds.end(); I != E; ++I) {
1027    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1028    enterIntvAtEnd(MBB);
1029  }
1030
1031  // Switch all loop blocks.
1032  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
1033       E = Blocks.Loop.end(); I != E; ++I)
1034     useIntv(**I);
1035
1036  // Insert back copies in the exit blocks.
1037  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
1038       E = Blocks.Exits.end(); I != E; ++I) {
1039    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1040    leaveIntvAtTop(MBB);
1041  }
1042
1043  // Done.
1044  closeIntv();
1045  finish();
1046}
1047
1048
1049//===----------------------------------------------------------------------===//
1050//                            Single Block Splitting
1051//===----------------------------------------------------------------------===//
1052
1053/// getMultiUseBlocks - if curli has more than one use in a basic block, it
1054/// may be an advantage to split curli for the duration of the block.
1055bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1056  // If curli is local to one block, there is no point to splitting it.
1057  if (usingBlocks_.size() <= 1)
1058    return false;
1059  // Add blocks with multiple uses.
1060  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
1061       I != E; ++I)
1062    switch (I->second) {
1063    case 0:
1064    case 1:
1065      continue;
1066    case 2: {
1067      // When there are only two uses and curli is both live in and live out,
1068      // we don't really win anything by isolating the block since we would be
1069      // inserting two copies.
1070      // The remaing register would still have two uses in the block. (Unless it
1071      // separates into disconnected components).
1072      if (lis_.isLiveInToMBB(*curli_, I->first) &&
1073          lis_.isLiveOutOfMBB(*curli_, I->first))
1074        continue;
1075    } // Fall through.
1076    default:
1077      Blocks.insert(I->first);
1078    }
1079  return !Blocks.empty();
1080}
1081
1082/// splitSingleBlocks - Split curli into a separate live interval inside each
1083/// basic block in Blocks.
1084void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1085  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1086  // Determine the first and last instruction using curli in each block.
1087  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
1088  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
1089  IndexPairMap MBBRange;
1090  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1091       E = sa_.usingInstrs_.end(); I != E; ++I) {
1092    const MachineBasicBlock *MBB = (*I)->getParent();
1093    if (!Blocks.count(MBB))
1094      continue;
1095    SlotIndex Idx = lis_.getInstructionIndex(*I);
1096    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
1097    IndexPair &IP = MBBRange[MBB];
1098    if (!IP.first.isValid() || Idx < IP.first)
1099      IP.first = Idx;
1100    if (!IP.second.isValid() || Idx > IP.second)
1101      IP.second = Idx;
1102  }
1103
1104  // Create a new interval for each block.
1105  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
1106       E = Blocks.end(); I != E; ++I) {
1107    IndexPair &IP = MBBRange[*I];
1108    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
1109                 << IP.first << ';' << IP.second << ")\n");
1110    assert(IP.first.isValid() && IP.second.isValid());
1111
1112    openIntv();
1113    enterIntvBefore(IP.first);
1114    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
1115    leaveIntvAfter(IP.second);
1116    closeIntv();
1117  }
1118  finish();
1119}
1120
1121
1122//===----------------------------------------------------------------------===//
1123//                            Sub Block Splitting
1124//===----------------------------------------------------------------------===//
1125
1126/// getBlockForInsideSplit - If curli is contained inside a single basic block,
1127/// and it wou pay to subdivide the interval inside that block, return it.
1128/// Otherwise return NULL. The returned block can be passed to
1129/// SplitEditor::splitInsideBlock.
1130const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1131  // The interval must be exclusive to one block.
1132  if (usingBlocks_.size() != 1)
1133    return 0;
1134  // Don't to this for less than 4 instructions. We want to be sure that
1135  // splitting actually reduces the instruction count per interval.
1136  if (usingInstrs_.size() < 4)
1137    return 0;
1138  return usingBlocks_.begin()->first;
1139}
1140
1141/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1142void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1143  SmallVector<SlotIndex, 32> Uses;
1144  Uses.reserve(sa_.usingInstrs_.size());
1145  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1146       E = sa_.usingInstrs_.end(); I != E; ++I)
1147    if ((*I)->getParent() == MBB)
1148      Uses.push_back(lis_.getInstructionIndex(*I));
1149  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1150               << Uses.size() << " instructions.\n");
1151  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1152  array_pod_sort(Uses.begin(), Uses.end());
1153
1154  // Simple algorithm: Find the largest gap between uses as determined by slot
1155  // indices. Create new intervals for instructions before the gap and after the
1156  // gap.
1157  unsigned bestPos = 0;
1158  int bestGap = 0;
1159  DEBUG(dbgs() << "    dist (" << Uses[0]);
1160  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1161    int g = Uses[i-1].distance(Uses[i]);
1162    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1163    if (g > bestGap)
1164      bestPos = i, bestGap = g;
1165  }
1166  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1167
1168  // bestPos points to the first use after the best gap.
1169  assert(bestPos > 0 && "Invalid gap");
1170
1171  // FIXME: Don't create intervals for low densities.
1172
1173  // First interval before the gap. Don't create single-instr intervals.
1174  if (bestPos > 1) {
1175    openIntv();
1176    enterIntvBefore(Uses.front());
1177    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1178    leaveIntvAfter(Uses[bestPos-1]);
1179    closeIntv();
1180  }
1181
1182  // Second interval after the gap.
1183  if (bestPos < Uses.size()-1) {
1184    openIntv();
1185    enterIntvBefore(Uses[bestPos]);
1186    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1187    leaveIntvAfter(Uses.back());
1188    closeIntv();
1189  }
1190
1191  finish();
1192}
1193