SplitKit.cpp revision 6a3dbd3b25bbc99bd1a233d6a74ddea3493ba6ac
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/CalcSpillWeights.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37STATISTIC(NumFinished, "Number of splits finished");
38STATISTIC(NumSimple,   "Number of splits that were simple");
39
40//===----------------------------------------------------------------------===//
41//                                 Split Analysis
42//===----------------------------------------------------------------------===//
43
44SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
45                             const LiveIntervals &lis,
46                             const MachineLoopInfo &mli)
47  : MF(vrm.getMachineFunction()),
48    VRM(vrm),
49    LIS(lis),
50    Loops(mli),
51    TII(*MF.getTarget().getInstrInfo()),
52    CurLI(0) {}
53
54void SplitAnalysis::clear() {
55  UseSlots.clear();
56  UsingInstrs.clear();
57  UsingBlocks.clear();
58  LiveBlocks.clear();
59  CurLI = 0;
60}
61
62bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
63  MachineBasicBlock *T, *F;
64  SmallVector<MachineOperand, 4> Cond;
65  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
66}
67
68/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
69void SplitAnalysis::analyzeUses() {
70  const MachineRegisterInfo &MRI = MF.getRegInfo();
71  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
72       E = MRI.reg_end(); I != E; ++I) {
73    MachineOperand &MO = I.getOperand();
74    if (MO.isUse() && MO.isUndef())
75      continue;
76    MachineInstr *MI = MO.getParent();
77    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
78      continue;
79    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
80    MachineBasicBlock *MBB = MI->getParent();
81    UsingBlocks[MBB]++;
82  }
83  array_pod_sort(UseSlots.begin(), UseSlots.end());
84
85  // Compute per-live block info.
86  if (!calcLiveBlockInfo()) {
87    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
88    // I am looking at you, SimpleRegisterCoalescing!
89    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
90    const_cast<LiveIntervals&>(LIS)
91      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
92    LiveBlocks.clear();
93    bool fixed = calcLiveBlockInfo();
94    (void)fixed;
95    assert(fixed && "Couldn't fix broken live interval");
96  }
97
98  DEBUG(dbgs() << "  counted "
99               << UsingInstrs.size() << " instrs, "
100               << UsingBlocks.size() << " blocks.\n");
101}
102
103/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
104/// where CurLI is live.
105bool SplitAnalysis::calcLiveBlockInfo() {
106  if (CurLI->empty())
107    return true;
108
109  LiveInterval::const_iterator LVI = CurLI->begin();
110  LiveInterval::const_iterator LVE = CurLI->end();
111
112  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
113  UseI = UseSlots.begin();
114  UseE = UseSlots.end();
115
116  // Loop over basic blocks where CurLI is live.
117  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
118  for (;;) {
119    BlockInfo BI;
120    BI.MBB = MFI;
121    tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
122
123    // The last split point is the latest possible insertion point that dominates
124    // all successor blocks. If interference reaches LastSplitPoint, it is not
125    // possible to insert a split or reload that makes CurLI live in the
126    // outgoing bundle.
127    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
128    if (LSP == BI.MBB->end())
129      BI.LastSplitPoint = BI.Stop;
130    else
131      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
132
133    // LVI is the first live segment overlapping MBB.
134    BI.LiveIn = LVI->start <= BI.Start;
135    if (!BI.LiveIn)
136      BI.Def = LVI->start;
137
138    // Find the first and last uses in the block.
139    BI.Uses = hasUses(MFI);
140    if (BI.Uses && UseI != UseE) {
141      BI.FirstUse = *UseI;
142      assert(BI.FirstUse >= BI.Start);
143      do ++UseI;
144      while (UseI != UseE && *UseI < BI.Stop);
145      BI.LastUse = UseI[-1];
146      assert(BI.LastUse < BI.Stop);
147    }
148
149    // Look for gaps in the live range.
150    bool hasGap = false;
151    BI.LiveOut = true;
152    while (LVI->end < BI.Stop) {
153      SlotIndex LastStop = LVI->end;
154      if (++LVI == LVE || LVI->start >= BI.Stop) {
155        BI.Kill = LastStop;
156        BI.LiveOut = false;
157        break;
158      }
159      if (LastStop < LVI->start) {
160        hasGap = true;
161        BI.Kill = LastStop;
162        BI.Def = LVI->start;
163      }
164    }
165
166    // Don't set LiveThrough when the block has a gap.
167    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
168    LiveBlocks.push_back(BI);
169
170    // FIXME: This should never happen. The live range stops or starts without a
171    // corresponding use. An earlier pass did something wrong.
172    if (!BI.LiveThrough && !BI.Uses)
173      return false;
174
175    // LVI is now at LVE or LVI->end >= Stop.
176    if (LVI == LVE)
177      break;
178
179    // Live segment ends exactly at Stop. Move to the next segment.
180    if (LVI->end == BI.Stop && ++LVI == LVE)
181      break;
182
183    // Pick the next basic block.
184    if (LVI->start < BI.Stop)
185      ++MFI;
186    else
187      MFI = LIS.getMBBFromIndex(LVI->start);
188  }
189  return true;
190}
191
192bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
193  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
194  const LiveInterval &Orig = LIS.getInterval(OrigReg);
195  assert(!Orig.empty() && "Splitting empty interval?");
196  LiveInterval::const_iterator I = Orig.find(Idx);
197
198  // Range containing Idx should begin at Idx.
199  if (I != Orig.end() && I->start <= Idx)
200    return I->start == Idx;
201
202  // Range does not contain Idx, previous must end at Idx.
203  return I != Orig.begin() && (--I)->end == Idx;
204}
205
206void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
207  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
208    unsigned count = UsingBlocks.lookup(*I);
209    OS << " BB#" << (*I)->getNumber();
210    if (count)
211      OS << '(' << count << ')';
212  }
213}
214
215void SplitAnalysis::analyze(const LiveInterval *li) {
216  clear();
217  CurLI = li;
218  analyzeUses();
219}
220
221
222//===----------------------------------------------------------------------===//
223//                               Split Editor
224//===----------------------------------------------------------------------===//
225
226/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
227SplitEditor::SplitEditor(SplitAnalysis &sa,
228                         LiveIntervals &lis,
229                         VirtRegMap &vrm,
230                         MachineDominatorTree &mdt)
231  : SA(sa), LIS(lis), VRM(vrm),
232    MRI(vrm.getMachineFunction().getRegInfo()),
233    MDT(mdt),
234    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
235    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
236    Edit(0),
237    OpenIdx(0),
238    RegAssign(Allocator)
239{}
240
241void SplitEditor::reset(LiveRangeEdit &lre) {
242  Edit = &lre;
243  OpenIdx = 0;
244  RegAssign.clear();
245  Values.clear();
246
247  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
248  LiveOutSeen.clear();
249
250  // We don't need an AliasAnalysis since we will only be performing
251  // cheap-as-a-copy remats anyway.
252  Edit->anyRematerializable(LIS, TII, 0);
253}
254
255void SplitEditor::dump() const {
256  if (RegAssign.empty()) {
257    dbgs() << " empty\n";
258    return;
259  }
260
261  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
262    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
263  dbgs() << '\n';
264}
265
266VNInfo *SplitEditor::defValue(unsigned RegIdx,
267                              const VNInfo *ParentVNI,
268                              SlotIndex Idx) {
269  assert(ParentVNI && "Mapping  NULL value");
270  assert(Idx.isValid() && "Invalid SlotIndex");
271  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
272  LiveInterval *LI = Edit->get(RegIdx);
273
274  // Create a new value.
275  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
276
277  // Use insert for lookup, so we can add missing values with a second lookup.
278  std::pair<ValueMap::iterator, bool> InsP =
279    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
280
281  // This was the first time (RegIdx, ParentVNI) was mapped.
282  // Keep it as a simple def without any liveness.
283  if (InsP.second)
284    return VNI;
285
286  // If the previous value was a simple mapping, add liveness for it now.
287  if (VNInfo *OldVNI = InsP.first->second) {
288    SlotIndex Def = OldVNI->def;
289    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
290    // No longer a simple mapping.
291    InsP.first->second = 0;
292  }
293
294  // This is a complex mapping, add liveness for VNI
295  SlotIndex Def = VNI->def;
296  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
297
298  return VNI;
299}
300
301void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
302  assert(ParentVNI && "Mapping  NULL value");
303  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
304
305  // ParentVNI was either unmapped or already complex mapped. Either way.
306  if (!VNI)
307    return;
308
309  // This was previously a single mapping. Make sure the old def is represented
310  // by a trivial live range.
311  SlotIndex Def = VNI->def;
312  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
313  VNI = 0;
314}
315
316// extendRange - Extend the live range to reach Idx.
317// Potentially create phi-def values.
318void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
319  assert(Idx.isValid() && "Invalid SlotIndex");
320  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
321  assert(IdxMBB && "No MBB at Idx");
322  LiveInterval *LI = Edit->get(RegIdx);
323
324  // Is there a def in the same MBB we can extend?
325  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
326    return;
327
328  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
329  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
330  // Perform a search for all predecessor blocks where we know the dominating
331  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
332
333  // Initialize the live-out cache the first time it is needed.
334  if (LiveOutSeen.empty()) {
335    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
336    LiveOutSeen.resize(N);
337    LiveOutCache.resize(N);
338  }
339
340  // Blocks where LI should be live-in.
341  SmallVector<MachineDomTreeNode*, 16> LiveIn;
342  LiveIn.push_back(MDT[IdxMBB]);
343
344  // Remember if we have seen more than one value.
345  bool UniqueVNI = true;
346  VNInfo *IdxVNI = 0;
347
348  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
349  for (unsigned i = 0; i != LiveIn.size(); ++i) {
350    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
351    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
352           PE = MBB->pred_end(); PI != PE; ++PI) {
353       MachineBasicBlock *Pred = *PI;
354       LiveOutPair &LOP = LiveOutCache[Pred];
355
356       // Is this a known live-out block?
357       if (LiveOutSeen.test(Pred->getNumber())) {
358         if (VNInfo *VNI = LOP.first) {
359           if (IdxVNI && IdxVNI != VNI)
360             UniqueVNI = false;
361           IdxVNI = VNI;
362         }
363         continue;
364       }
365
366       // First time. LOP is garbage and must be cleared below.
367       LiveOutSeen.set(Pred->getNumber());
368
369       // Does Pred provide a live-out value?
370       SlotIndex Start, Last;
371       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
372       Last = Last.getPrevSlot();
373       VNInfo *VNI = LI->extendInBlock(Start, Last);
374       LOP.first = VNI;
375       if (VNI) {
376         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
377         if (IdxVNI && IdxVNI != VNI)
378           UniqueVNI = false;
379         IdxVNI = VNI;
380         continue;
381       }
382       LOP.second = 0;
383
384       // No, we need a live-in value for Pred as well
385       if (Pred != IdxMBB)
386         LiveIn.push_back(MDT[Pred]);
387       else
388         UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
389    }
390  }
391
392  // We may need to add phi-def values to preserve the SSA form.
393  if (UniqueVNI) {
394    LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
395    // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
396    for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
397      LiveOutCache[LiveIn[i]->getBlock()] = LOP;
398  } else
399    IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
400
401  // Since we went through the trouble of a full BFS visiting all reaching defs,
402  // the values in LiveIn are now accurate. No more phi-defs are needed
403  // for these blocks, so we can color the live ranges.
404  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
405    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
406    SlotIndex Start = LIS.getMBBStartIdx(MBB);
407    VNInfo *VNI = LiveOutCache[MBB].first;
408
409    // Anything in LiveIn other than IdxMBB is live-through.
410    // In IdxMBB, we should stop at Idx unless the same value is live-out.
411    if (MBB == IdxMBB && IdxVNI != VNI)
412      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
413    else
414      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
415  }
416}
417
418VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
419                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
420                               SlotIndex Idx,
421                               const MachineBasicBlock *IdxMBB) {
422  // This is essentially the same iterative algorithm that SSAUpdater uses,
423  // except we already have a dominator tree, so we don't have to recompute it.
424  LiveInterval *LI = Edit->get(RegIdx);
425  VNInfo *IdxVNI = 0;
426  unsigned Changes;
427  do {
428    Changes = 0;
429    // Propagate live-out values down the dominator tree, inserting phi-defs
430    // when necessary. Since LiveIn was created by a BFS, going backwards makes
431    // it more likely for us to visit immediate dominators before their
432    // children.
433    for (unsigned i = LiveIn.size(); i; --i) {
434      MachineDomTreeNode *Node = LiveIn[i-1];
435      MachineBasicBlock *MBB = Node->getBlock();
436      MachineDomTreeNode *IDom = Node->getIDom();
437      LiveOutPair IDomValue;
438
439      // We need a live-in value to a block with no immediate dominator?
440      // This is probably an unreachable block that has survived somehow.
441      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
442
443      // IDom dominates all of our predecessors, but it may not be the immediate
444      // dominator. Check if any of them have live-out values that are properly
445      // dominated by IDom. If so, we need a phi-def here.
446      if (!needPHI) {
447        IDomValue = LiveOutCache[IDom->getBlock()];
448        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
449               PE = MBB->pred_end(); PI != PE; ++PI) {
450          LiveOutPair Value = LiveOutCache[*PI];
451          if (!Value.first || Value.first == IDomValue.first)
452            continue;
453          // This predecessor is carrying something other than IDomValue.
454          // It could be because IDomValue hasn't propagated yet, or it could be
455          // because MBB is in the dominance frontier of that value.
456          if (MDT.dominates(IDom, Value.second)) {
457            needPHI = true;
458            break;
459          }
460        }
461      }
462
463      // Create a phi-def if required.
464      if (needPHI) {
465        ++Changes;
466        SlotIndex Start = LIS.getMBBStartIdx(MBB);
467        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
468        VNI->setIsPHIDef(true);
469        // We no longer need LI to be live-in.
470        LiveIn.erase(LiveIn.begin()+(i-1));
471        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
472        if (MBB == IdxMBB)
473          IdxVNI = VNI;
474        // Check if we need to update live-out info.
475        LiveOutPair &LOP = LiveOutCache[MBB];
476        if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) {
477          // We already have a live-out defined in MBB, so this must be IdxMBB.
478          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
479          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
480        } else {
481          // This phi-def is also live-out, so color the whole block.
482          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
483          LOP = LiveOutPair(VNI, Node);
484        }
485      } else if (IDomValue.first) {
486        // No phi-def here. Remember incoming value for IdxMBB.
487        if (MBB == IdxMBB) {
488          IdxVNI = IDomValue.first;
489          // IdxMBB need not be live-out.
490          if (!LiveOutSeen.test(MBB->getNumber()))
491            continue;
492        }
493        assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block");
494        // Propagate IDomValue if needed:
495        // MBB is live-out and doesn't define its own value.
496        LiveOutPair &LOP = LiveOutCache[MBB];
497        if (LOP.second != Node && LOP.first != IDomValue.first) {
498          ++Changes;
499          LOP = IDomValue;
500        }
501      }
502    }
503  } while (Changes);
504
505  assert(IdxVNI && "Didn't find value for Idx");
506  return IdxVNI;
507}
508
509VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
510                                   VNInfo *ParentVNI,
511                                   SlotIndex UseIdx,
512                                   MachineBasicBlock &MBB,
513                                   MachineBasicBlock::iterator I) {
514  MachineInstr *CopyMI = 0;
515  SlotIndex Def;
516  LiveInterval *LI = Edit->get(RegIdx);
517
518  // Attempt cheap-as-a-copy rematerialization.
519  LiveRangeEdit::Remat RM(ParentVNI);
520  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
521    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
522  } else {
523    // Can't remat, just insert a copy from parent.
524    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
525               .addReg(Edit->getReg());
526    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
527  }
528
529  // Define the value in Reg.
530  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
531  VNI->setCopy(CopyMI);
532  return VNI;
533}
534
535/// Create a new virtual register and live interval.
536void SplitEditor::openIntv() {
537  assert(!OpenIdx && "Previous LI not closed before openIntv");
538
539  // Create the complement as index 0.
540  if (Edit->empty())
541    Edit->create(LIS, VRM);
542
543  // Create the open interval.
544  OpenIdx = Edit->size();
545  Edit->create(LIS, VRM);
546}
547
548SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
549  assert(OpenIdx && "openIntv not called before enterIntvBefore");
550  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
551  Idx = Idx.getBaseIndex();
552  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
553  if (!ParentVNI) {
554    DEBUG(dbgs() << ": not live\n");
555    return Idx;
556  }
557  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
558  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
559  assert(MI && "enterIntvBefore called with invalid index");
560
561  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
562  return VNI->def;
563}
564
565SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
566  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
567  SlotIndex End = LIS.getMBBEndIdx(&MBB);
568  SlotIndex Last = End.getPrevSlot();
569  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
570  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
571  if (!ParentVNI) {
572    DEBUG(dbgs() << ": not live\n");
573    return End;
574  }
575  DEBUG(dbgs() << ": valno " << ParentVNI->id);
576  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
577                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
578  RegAssign.insert(VNI->def, End, OpenIdx);
579  DEBUG(dump());
580  return VNI->def;
581}
582
583/// useIntv - indicate that all instructions in MBB should use OpenLI.
584void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
585  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
586}
587
588void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
589  assert(OpenIdx && "openIntv not called before useIntv");
590  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
591  RegAssign.insert(Start, End, OpenIdx);
592  DEBUG(dump());
593}
594
595SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
596  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
597  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
598
599  // The interval must be live beyond the instruction at Idx.
600  Idx = Idx.getBoundaryIndex();
601  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
602  if (!ParentVNI) {
603    DEBUG(dbgs() << ": not live\n");
604    return Idx.getNextSlot();
605  }
606  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
607
608  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
609  assert(MI && "No instruction at index");
610  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
611                              llvm::next(MachineBasicBlock::iterator(MI)));
612  return VNI->def;
613}
614
615SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
616  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
617  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
618
619  // The interval must be live into the instruction at Idx.
620  Idx = Idx.getBoundaryIndex();
621  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
622  if (!ParentVNI) {
623    DEBUG(dbgs() << ": not live\n");
624    return Idx.getNextSlot();
625  }
626  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
627
628  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
629  assert(MI && "No instruction at index");
630  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
631  return VNI->def;
632}
633
634SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
635  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
636  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
637  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
638
639  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
640  if (!ParentVNI) {
641    DEBUG(dbgs() << ": not live\n");
642    return Start;
643  }
644
645  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
646                              MBB.SkipPHIsAndLabels(MBB.begin()));
647  RegAssign.insert(Start, VNI->def, OpenIdx);
648  DEBUG(dump());
649  return VNI->def;
650}
651
652void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
653  assert(OpenIdx && "openIntv not called before overlapIntv");
654  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
655  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
656         "Parent changes value in extended range");
657  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
658         "Range cannot span basic blocks");
659
660  // The complement interval will be extended as needed by extendRange().
661  markComplexMapped(0, ParentVNI);
662  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
663  RegAssign.insert(Start, End, OpenIdx);
664  DEBUG(dump());
665}
666
667/// closeIntv - Indicate that we are done editing the currently open
668/// LiveInterval, and ranges can be trimmed.
669void SplitEditor::closeIntv() {
670  assert(OpenIdx && "openIntv not called before closeIntv");
671  OpenIdx = 0;
672}
673
674/// transferSimpleValues - Transfer all simply defined values to the new live
675/// ranges.
676/// Values that were rematerialized or that have multiple defs are left alone.
677bool SplitEditor::transferSimpleValues() {
678  bool Skipped = false;
679  RegAssignMap::const_iterator AssignI = RegAssign.begin();
680  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
681         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
682    DEBUG(dbgs() << "  blit " << *ParentI << ':');
683    VNInfo *ParentVNI = ParentI->valno;
684    // RegAssign has holes where RegIdx 0 should be used.
685    SlotIndex Start = ParentI->start;
686    AssignI.advanceTo(Start);
687    do {
688      unsigned RegIdx;
689      SlotIndex End = ParentI->end;
690      if (!AssignI.valid()) {
691        RegIdx = 0;
692      } else if (AssignI.start() <= Start) {
693        RegIdx = AssignI.value();
694        if (AssignI.stop() < End) {
695          End = AssignI.stop();
696          ++AssignI;
697        }
698      } else {
699        RegIdx = 0;
700        End = std::min(End, AssignI.start());
701      }
702      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
703      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
704        DEBUG(dbgs() << ':' << VNI->id);
705        Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
706      } else
707        Skipped = true;
708      Start = End;
709    } while (Start != ParentI->end);
710    DEBUG(dbgs() << '\n');
711  }
712  return Skipped;
713}
714
715void SplitEditor::extendPHIKillRanges() {
716    // Extend live ranges to be live-out for successor PHI values.
717  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
718       E = Edit->getParent().vni_end(); I != E; ++I) {
719    const VNInfo *PHIVNI = *I;
720    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
721      continue;
722    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
723    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
724    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
725         PE = MBB->pred_end(); PI != PE; ++PI) {
726      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
727      // The predecessor may not have a live-out value. That is OK, like an
728      // undef PHI operand.
729      if (Edit->getParent().liveAt(End)) {
730        assert(RegAssign.lookup(End) == RegIdx &&
731               "Different register assignment in phi predecessor");
732        extendRange(RegIdx, End);
733      }
734    }
735  }
736}
737
738/// rewriteAssigned - Rewrite all uses of Edit->getReg().
739void SplitEditor::rewriteAssigned(bool ExtendRanges) {
740  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
741       RE = MRI.reg_end(); RI != RE;) {
742    MachineOperand &MO = RI.getOperand();
743    MachineInstr *MI = MO.getParent();
744    ++RI;
745    // LiveDebugVariables should have handled all DBG_VALUE instructions.
746    if (MI->isDebugValue()) {
747      DEBUG(dbgs() << "Zapping " << *MI);
748      MO.setReg(0);
749      continue;
750    }
751
752    // <undef> operands don't really read the register, so just assign them to
753    // the complement.
754    if (MO.isUse() && MO.isUndef()) {
755      MO.setReg(Edit->get(0)->reg);
756      continue;
757    }
758
759    SlotIndex Idx = LIS.getInstructionIndex(MI);
760    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
761
762    // Rewrite to the mapped register at Idx.
763    unsigned RegIdx = RegAssign.lookup(Idx);
764    MO.setReg(Edit->get(RegIdx)->reg);
765    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
766                 << Idx << ':' << RegIdx << '\t' << *MI);
767
768    // Extend liveness to Idx.
769    if (ExtendRanges)
770      extendRange(RegIdx, Idx);
771  }
772}
773
774void SplitEditor::deleteRematVictims() {
775  SmallVector<MachineInstr*, 8> Dead;
776  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
777         E = Edit->getParent().vni_end(); I != E; ++I) {
778    const VNInfo *VNI = *I;
779    // Was VNI rematted anywhere?
780    if (VNI->isUnused() || VNI->isPHIDef() || !Edit->didRematerialize(VNI))
781      continue;
782    unsigned RegIdx = RegAssign.lookup(VNI->def);
783    LiveInterval *LI = Edit->get(RegIdx);
784    LiveInterval::const_iterator LII = LI->FindLiveRangeContaining(VNI->def);
785    assert(LII != LI->end() && "Missing live range for rematted def");
786
787    // Is this a dead def?
788    if (LII->end != VNI->def.getNextSlot())
789      continue;
790
791    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
792    assert(MI && "Missing instruction for dead def");
793    MI->addRegisterDead(LI->reg, &TRI);
794
795    if (!MI->allDefsAreDead())
796      continue;
797
798    DEBUG(dbgs() << "All defs dead: " << *MI);
799    Dead.push_back(MI);
800  }
801
802  if (Dead.empty())
803    return;
804
805  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
806}
807
808void SplitEditor::finish() {
809  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
810  ++NumFinished;
811
812  // At this point, the live intervals in Edit contain VNInfos corresponding to
813  // the inserted copies.
814
815  // Add the original defs from the parent interval.
816  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
817         E = Edit->getParent().vni_end(); I != E; ++I) {
818    const VNInfo *ParentVNI = *I;
819    if (ParentVNI->isUnused())
820      continue;
821    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
822    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
823    VNI->setIsPHIDef(ParentVNI->isPHIDef());
824    VNI->setCopy(ParentVNI->getCopy());
825
826    // Mark rematted values as complex everywhere to force liveness computation.
827    // The new live ranges may be truncated.
828    if (Edit->didRematerialize(ParentVNI))
829      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
830        markComplexMapped(i, ParentVNI);
831  }
832
833#ifndef NDEBUG
834  // Every new interval must have a def by now, otherwise the split is bogus.
835  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
836    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
837#endif
838
839  // Transfer the simply mapped values, check if any are complex.
840  bool Complex = transferSimpleValues();
841  if (Complex)
842    extendPHIKillRanges();
843  else
844    ++NumSimple;
845
846  // Rewrite virtual registers, possibly extending ranges.
847  rewriteAssigned(Complex);
848
849  // Delete defs that were rematted everywhere.
850  if (Complex)
851    deleteRematVictims();
852
853  // Get rid of unused values and set phi-kill flags.
854  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
855    (*I)->RenumberValues(LIS);
856
857  // Now check if any registers were separated into multiple components.
858  ConnectedVNInfoEqClasses ConEQ(LIS);
859  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
860    // Don't use iterators, they are invalidated by create() below.
861    LiveInterval *li = Edit->get(i);
862    unsigned NumComp = ConEQ.Classify(li);
863    if (NumComp <= 1)
864      continue;
865    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
866    SmallVector<LiveInterval*, 8> dups;
867    dups.push_back(li);
868    for (unsigned i = 1; i != NumComp; ++i)
869      dups.push_back(&Edit->create(LIS, VRM));
870    ConEQ.Distribute(&dups[0], MRI);
871  }
872
873  // Calculate spill weight and allocation hints for new intervals.
874  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
875  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
876    LiveInterval &li = **I;
877    vrai.CalculateRegClass(li.reg);
878    vrai.CalculateWeightAndHint(li);
879    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
880                 << ":" << li << '\n');
881  }
882}
883
884
885//===----------------------------------------------------------------------===//
886//                            Single Block Splitting
887//===----------------------------------------------------------------------===//
888
889/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
890/// may be an advantage to split CurLI for the duration of the block.
891bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
892  // If CurLI is local to one block, there is no point to splitting it.
893  if (LiveBlocks.size() <= 1)
894    return false;
895  // Add blocks with multiple uses.
896  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
897    const BlockInfo &BI = LiveBlocks[i];
898    if (!BI.Uses)
899      continue;
900    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
901    if (Instrs <= 1)
902      continue;
903    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
904      continue;
905    Blocks.insert(BI.MBB);
906  }
907  return !Blocks.empty();
908}
909
910/// splitSingleBlocks - Split CurLI into a separate live interval inside each
911/// basic block in Blocks.
912void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
913  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
914
915  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
916    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
917    if (!BI.Uses || !Blocks.count(BI.MBB))
918      continue;
919
920    openIntv();
921    SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
922    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
923      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
924    } else {
925      // The last use is after the last valid split point.
926      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
927      useIntv(SegStart, SegStop);
928      overlapIntv(SegStop, BI.LastUse);
929    }
930    closeIntv();
931  }
932  finish();
933}
934