SplitKit.cpp revision 708d06f7fb5dfd9c8559aea07b042a88c65645f8
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(vrm.getMachineFunction()),
45    VRM(vrm),
46    LIS(lis),
47    Loops(mli),
48    TII(*MF.getTarget().getInstrInfo()),
49    CurLI(0),
50    LastSplitPoint(MF.getNumBlockIDs()) {}
51
52void SplitAnalysis::clear() {
53  UseSlots.clear();
54  UseBlocks.clear();
55  ThroughBlocks.clear();
56  CurLI = 0;
57  DidRepairRange = false;
58}
59
60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65  // Compute split points on the first call. The pair is independent of the
66  // current live interval.
67  if (!LSP.first.isValid()) {
68    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69    if (FirstTerm == MBB->end())
70      LSP.first = LIS.getMBBEndIdx(MBB);
71    else
72      LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74    // If there is a landing pad successor, also find the call instruction.
75    if (!LPad)
76      return LSP.first;
77    // There may not be a call instruction (?) in which case we ignore LPad.
78    LSP.second = LSP.first;
79    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80         I != E;) {
81      --I;
82      if (I->getDesc().isCall()) {
83        LSP.second = LIS.getInstructionIndex(I);
84        break;
85      }
86    }
87  }
88
89  // If CurLI is live into a landing pad successor, move the last split point
90  // back to the call that may throw.
91  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92    return LSP.second;
93  else
94    return LSP.first;
95}
96
97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98void SplitAnalysis::analyzeUses() {
99  assert(UseSlots.empty() && "Call clear first");
100
101  // First get all the defs from the interval values. This provides the correct
102  // slots for early clobbers.
103  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104       E = CurLI->vni_end(); I != E; ++I)
105    if (!(*I)->isPHIDef() && !(*I)->isUnused())
106      UseSlots.push_back((*I)->def);
107
108  // Get use slots form the use-def chain.
109  const MachineRegisterInfo &MRI = MF.getRegInfo();
110  for (MachineRegisterInfo::use_nodbg_iterator
111       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112       ++I)
113    if (!I.getOperand().isUndef())
114      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116  array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118  // Remove duplicates, keeping the smaller slot for each instruction.
119  // That is what we want for early clobbers.
120  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                             SlotIndex::isSameInstr),
122                 UseSlots.end());
123
124  // Compute per-live block info.
125  if (!calcLiveBlockInfo()) {
126    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127    // I am looking at you, RegisterCoalescer!
128    DidRepairRange = true;
129    ++NumRepairs;
130    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131    const_cast<LiveIntervals&>(LIS)
132      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133    UseBlocks.clear();
134    ThroughBlocks.clear();
135    bool fixed = calcLiveBlockInfo();
136    (void)fixed;
137    assert(fixed && "Couldn't fix broken live interval");
138  }
139
140  DEBUG(dbgs() << "Analyze counted "
141               << UseSlots.size() << " instrs in "
142               << UseBlocks.size() << " blocks, through "
143               << NumThroughBlocks << " blocks.\n");
144}
145
146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147/// where CurLI is live.
148bool SplitAnalysis::calcLiveBlockInfo() {
149  ThroughBlocks.resize(MF.getNumBlockIDs());
150  NumThroughBlocks = NumGapBlocks = 0;
151  if (CurLI->empty())
152    return true;
153
154  LiveInterval::const_iterator LVI = CurLI->begin();
155  LiveInterval::const_iterator LVE = CurLI->end();
156
157  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158  UseI = UseSlots.begin();
159  UseE = UseSlots.end();
160
161  // Loop over basic blocks where CurLI is live.
162  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163  for (;;) {
164    BlockInfo BI;
165    BI.MBB = MFI;
166    SlotIndex Start, Stop;
167    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169    // If the block contains no uses, the range must be live through. At one
170    // point, RegisterCoalescer could create dangling ranges that ended
171    // mid-block.
172    if (UseI == UseE || *UseI >= Stop) {
173      ++NumThroughBlocks;
174      ThroughBlocks.set(BI.MBB->getNumber());
175      // The range shouldn't end mid-block if there are no uses. This shouldn't
176      // happen.
177      if (LVI->end < Stop)
178        return false;
179    } else {
180      // This block has uses. Find the first and last uses in the block.
181      BI.FirstInstr = *UseI;
182      assert(BI.FirstInstr >= Start);
183      do ++UseI;
184      while (UseI != UseE && *UseI < Stop);
185      BI.LastInstr = UseI[-1];
186      assert(BI.LastInstr < Stop);
187
188      // LVI is the first live segment overlapping MBB.
189      BI.LiveIn = LVI->start <= Start;
190
191      // When not live in, the first use should be a def.
192      if (!BI.LiveIn) {
193        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
194        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
195        BI.FirstDef = BI.FirstInstr;
196      }
197
198      // Look for gaps in the live range.
199      BI.LiveOut = true;
200      while (LVI->end < Stop) {
201        SlotIndex LastStop = LVI->end;
202        if (++LVI == LVE || LVI->start >= Stop) {
203          BI.LiveOut = false;
204          BI.LastInstr = LastStop;
205          break;
206        }
207
208        if (LastStop < LVI->start) {
209          // There is a gap in the live range. Create duplicate entries for the
210          // live-in snippet and the live-out snippet.
211          ++NumGapBlocks;
212
213          // Push the Live-in part.
214          BI.LiveOut = false;
215          UseBlocks.push_back(BI);
216          UseBlocks.back().LastInstr = LastStop;
217
218          // Set up BI for the live-out part.
219          BI.LiveIn = false;
220          BI.LiveOut = true;
221          BI.FirstInstr = BI.FirstDef = LVI->start;
222        }
223
224        // A LiveRange that starts in the middle of the block must be a def.
225        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
226        if (!BI.FirstDef)
227          BI.FirstDef = LVI->start;
228      }
229
230      UseBlocks.push_back(BI);
231
232      // LVI is now at LVE or LVI->end >= Stop.
233      if (LVI == LVE)
234        break;
235    }
236
237    // Live segment ends exactly at Stop. Move to the next segment.
238    if (LVI->end == Stop && ++LVI == LVE)
239      break;
240
241    // Pick the next basic block.
242    if (LVI->start < Stop)
243      ++MFI;
244    else
245      MFI = LIS.getMBBFromIndex(LVI->start);
246  }
247
248  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
249  return true;
250}
251
252unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
253  if (cli->empty())
254    return 0;
255  LiveInterval *li = const_cast<LiveInterval*>(cli);
256  LiveInterval::iterator LVI = li->begin();
257  LiveInterval::iterator LVE = li->end();
258  unsigned Count = 0;
259
260  // Loop over basic blocks where li is live.
261  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
262  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
263  for (;;) {
264    ++Count;
265    LVI = li->advanceTo(LVI, Stop);
266    if (LVI == LVE)
267      return Count;
268    do {
269      ++MFI;
270      Stop = LIS.getMBBEndIdx(MFI);
271    } while (Stop <= LVI->start);
272  }
273}
274
275bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
276  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
277  const LiveInterval &Orig = LIS.getInterval(OrigReg);
278  assert(!Orig.empty() && "Splitting empty interval?");
279  LiveInterval::const_iterator I = Orig.find(Idx);
280
281  // Range containing Idx should begin at Idx.
282  if (I != Orig.end() && I->start <= Idx)
283    return I->start == Idx;
284
285  // Range does not contain Idx, previous must end at Idx.
286  return I != Orig.begin() && (--I)->end == Idx;
287}
288
289void SplitAnalysis::analyze(const LiveInterval *li) {
290  clear();
291  CurLI = li;
292  analyzeUses();
293}
294
295
296//===----------------------------------------------------------------------===//
297//                               Split Editor
298//===----------------------------------------------------------------------===//
299
300/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
301SplitEditor::SplitEditor(SplitAnalysis &sa,
302                         LiveIntervals &lis,
303                         VirtRegMap &vrm,
304                         MachineDominatorTree &mdt)
305  : SA(sa), LIS(lis), VRM(vrm),
306    MRI(vrm.getMachineFunction().getRegInfo()),
307    MDT(mdt),
308    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
309    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
310    Edit(0),
311    OpenIdx(0),
312    SpillMode(SM_Partition),
313    RegAssign(Allocator)
314{}
315
316void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
317  Edit = &LRE;
318  SpillMode = SM;
319  OpenIdx = 0;
320  RegAssign.clear();
321  Values.clear();
322
323  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
324  LiveOutSeen.clear();
325
326  // We don't need an AliasAnalysis since we will only be performing
327  // cheap-as-a-copy remats anyway.
328  Edit->anyRematerializable(LIS, TII, 0);
329}
330
331void SplitEditor::dump() const {
332  if (RegAssign.empty()) {
333    dbgs() << " empty\n";
334    return;
335  }
336
337  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
338    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
339  dbgs() << '\n';
340}
341
342VNInfo *SplitEditor::defValue(unsigned RegIdx,
343                              const VNInfo *ParentVNI,
344                              SlotIndex Idx) {
345  assert(ParentVNI && "Mapping  NULL value");
346  assert(Idx.isValid() && "Invalid SlotIndex");
347  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
348  LiveInterval *LI = Edit->get(RegIdx);
349
350  // Create a new value.
351  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
352
353  // Use insert for lookup, so we can add missing values with a second lookup.
354  std::pair<ValueMap::iterator, bool> InsP =
355    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
356
357  // This was the first time (RegIdx, ParentVNI) was mapped.
358  // Keep it as a simple def without any liveness.
359  if (InsP.second)
360    return VNI;
361
362  // If the previous value was a simple mapping, add liveness for it now.
363  if (VNInfo *OldVNI = InsP.first->second) {
364    SlotIndex Def = OldVNI->def;
365    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
366    // No longer a simple mapping.
367    InsP.first->second = 0;
368  }
369
370  // This is a complex mapping, add liveness for VNI
371  SlotIndex Def = VNI->def;
372  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
373
374  return VNI;
375}
376
377void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
378  assert(ParentVNI && "Mapping  NULL value");
379  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
380
381  // ParentVNI was either unmapped or already complex mapped. Either way.
382  if (!VNI)
383    return;
384
385  // This was previously a single mapping. Make sure the old def is represented
386  // by a trivial live range.
387  SlotIndex Def = VNI->def;
388  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
389  VNI = 0;
390}
391
392// extendRange - Extend the live range to reach Idx.
393// Potentially create phi-def values.
394void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
395  assert(Idx.isValid() && "Invalid SlotIndex");
396  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
397  assert(IdxMBB && "No MBB at Idx");
398  LiveInterval *LI = Edit->get(RegIdx);
399
400  // Is there a def in the same MBB we can extend?
401  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
402    return;
403
404  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
405  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
406  // Perform a search for all predecessor blocks where we know the dominating
407  // VNInfo.
408  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
409
410  // When there were multiple different values, we may need new PHIs.
411  if (!VNI)
412    return updateSSA();
413
414  // Poor man's SSA update for the single-value case.
415  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
416  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
417         E = LiveInBlocks.end(); I != E; ++I) {
418    MachineBasicBlock *MBB = I->DomNode->getBlock();
419    SlotIndex Start = LIS.getMBBStartIdx(MBB);
420    if (I->Kill.isValid())
421      LI->addRange(LiveRange(Start, I->Kill, VNI));
422    else {
423      LiveOutCache[MBB] = LOP;
424      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
425    }
426  }
427}
428
429/// findReachingDefs - Search the CFG for known live-out values.
430/// Add required live-in blocks to LiveInBlocks.
431VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
432                                      MachineBasicBlock *KillMBB,
433                                      SlotIndex Kill) {
434  // Initialize the live-out cache the first time it is needed.
435  if (LiveOutSeen.empty()) {
436    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
437    LiveOutSeen.resize(N);
438    LiveOutCache.resize(N);
439  }
440
441  // Blocks where LI should be live-in.
442  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
443
444  // Remember if we have seen more than one value.
445  bool UniqueVNI = true;
446  VNInfo *TheVNI = 0;
447
448  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
449  for (unsigned i = 0; i != WorkList.size(); ++i) {
450    MachineBasicBlock *MBB = WorkList[i];
451    assert(!MBB->pred_empty() && "Value live-in to entry block?");
452    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
453           PE = MBB->pred_end(); PI != PE; ++PI) {
454       MachineBasicBlock *Pred = *PI;
455       LiveOutPair &LOP = LiveOutCache[Pred];
456
457       // Is this a known live-out block?
458       if (LiveOutSeen.test(Pred->getNumber())) {
459         if (VNInfo *VNI = LOP.first) {
460           if (TheVNI && TheVNI != VNI)
461             UniqueVNI = false;
462           TheVNI = VNI;
463         }
464         continue;
465       }
466
467       // First time. LOP is garbage and must be cleared below.
468       LiveOutSeen.set(Pred->getNumber());
469
470       // Does Pred provide a live-out value?
471       SlotIndex Start, Last;
472       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
473       Last = Last.getPrevSlot();
474       VNInfo *VNI = LI->extendInBlock(Start, Last);
475       LOP.first = VNI;
476       if (VNI) {
477         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
478         if (TheVNI && TheVNI != VNI)
479           UniqueVNI = false;
480         TheVNI = VNI;
481         continue;
482       }
483       LOP.second = 0;
484
485       // No, we need a live-in value for Pred as well
486       if (Pred != KillMBB)
487          WorkList.push_back(Pred);
488       else
489          // Loopback to KillMBB, so value is really live through.
490         Kill = SlotIndex();
491    }
492  }
493
494  // Transfer WorkList to LiveInBlocks in reverse order.
495  // This ordering works best with updateSSA().
496  LiveInBlocks.clear();
497  LiveInBlocks.reserve(WorkList.size());
498  while(!WorkList.empty())
499    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
500
501  // The kill block may not be live-through.
502  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
503  LiveInBlocks.back().Kill = Kill;
504
505  return UniqueVNI ? TheVNI : 0;
506}
507
508void SplitEditor::updateSSA() {
509  // This is essentially the same iterative algorithm that SSAUpdater uses,
510  // except we already have a dominator tree, so we don't have to recompute it.
511  unsigned Changes;
512  do {
513    Changes = 0;
514    // Propagate live-out values down the dominator tree, inserting phi-defs
515    // when necessary.
516    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
517           E = LiveInBlocks.end(); I != E; ++I) {
518      MachineDomTreeNode *Node = I->DomNode;
519      // Skip block if the live-in value has already been determined.
520      if (!Node)
521        continue;
522      MachineBasicBlock *MBB = Node->getBlock();
523      MachineDomTreeNode *IDom = Node->getIDom();
524      LiveOutPair IDomValue;
525
526      // We need a live-in value to a block with no immediate dominator?
527      // This is probably an unreachable block that has survived somehow.
528      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
529
530      // IDom dominates all of our predecessors, but it may not be their
531      // immediate dominator. Check if any of them have live-out values that are
532      // properly dominated by IDom. If so, we need a phi-def here.
533      if (!needPHI) {
534        IDomValue = LiveOutCache[IDom->getBlock()];
535        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
536               PE = MBB->pred_end(); PI != PE; ++PI) {
537          LiveOutPair Value = LiveOutCache[*PI];
538          if (!Value.first || Value.first == IDomValue.first)
539            continue;
540          // This predecessor is carrying something other than IDomValue.
541          // It could be because IDomValue hasn't propagated yet, or it could be
542          // because MBB is in the dominance frontier of that value.
543          if (MDT.dominates(IDom, Value.second)) {
544            needPHI = true;
545            break;
546          }
547        }
548      }
549
550      // The value may be live-through even if Kill is set, as can happen when
551      // we are called from extendRange. In that case LiveOutSeen is true, and
552      // LiveOutCache indicates a foreign or missing value.
553      LiveOutPair &LOP = LiveOutCache[MBB];
554
555      // Create a phi-def if required.
556      if (needPHI) {
557        ++Changes;
558        SlotIndex Start = LIS.getMBBStartIdx(MBB);
559        unsigned RegIdx = RegAssign.lookup(Start);
560        LiveInterval *LI = Edit->get(RegIdx);
561        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
562        VNI->setIsPHIDef(true);
563        I->Value = VNI;
564        // This block is done, we know the final value.
565        I->DomNode = 0;
566        if (I->Kill.isValid())
567          LI->addRange(LiveRange(Start, I->Kill, VNI));
568        else {
569          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
570          LOP = LiveOutPair(VNI, Node);
571        }
572      } else if (IDomValue.first) {
573        // No phi-def here. Remember incoming value.
574        I->Value = IDomValue.first;
575        if (I->Kill.isValid())
576          continue;
577        // Propagate IDomValue if needed:
578        // MBB is live-out and doesn't define its own value.
579        if (LOP.second != Node && LOP.first != IDomValue.first) {
580          ++Changes;
581          LOP = IDomValue;
582        }
583      }
584    }
585  } while (Changes);
586
587  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
588  // for these blocks, so we can color the live ranges.
589  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
590         E = LiveInBlocks.end(); I != E; ++I) {
591    if (!I->DomNode)
592      continue;
593    assert(I->Value && "No live-in value found");
594    MachineBasicBlock *MBB = I->DomNode->getBlock();
595    SlotIndex Start = LIS.getMBBStartIdx(MBB);
596    unsigned RegIdx = RegAssign.lookup(Start);
597    LiveInterval *LI = Edit->get(RegIdx);
598    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
599                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
600  }
601}
602
603VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
604                                   VNInfo *ParentVNI,
605                                   SlotIndex UseIdx,
606                                   MachineBasicBlock &MBB,
607                                   MachineBasicBlock::iterator I) {
608  MachineInstr *CopyMI = 0;
609  SlotIndex Def;
610  LiveInterval *LI = Edit->get(RegIdx);
611
612  // We may be trying to avoid interference that ends at a deleted instruction,
613  // so always begin RegIdx 0 early and all others late.
614  bool Late = RegIdx != 0;
615
616  // Attempt cheap-as-a-copy rematerialization.
617  LiveRangeEdit::Remat RM(ParentVNI);
618  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
619    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
620    ++NumRemats;
621  } else {
622    // Can't remat, just insert a copy from parent.
623    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
624               .addReg(Edit->getReg());
625    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
626            .getDefIndex();
627    ++NumCopies;
628  }
629
630  // Define the value in Reg.
631  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
632  VNI->setCopy(CopyMI);
633  return VNI;
634}
635
636/// Create a new virtual register and live interval.
637unsigned SplitEditor::openIntv() {
638  // Create the complement as index 0.
639  if (Edit->empty())
640    Edit->create(LIS, VRM);
641
642  // Create the open interval.
643  OpenIdx = Edit->size();
644  Edit->create(LIS, VRM);
645  return OpenIdx;
646}
647
648void SplitEditor::selectIntv(unsigned Idx) {
649  assert(Idx != 0 && "Cannot select the complement interval");
650  assert(Idx < Edit->size() && "Can only select previously opened interval");
651  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
652  OpenIdx = Idx;
653}
654
655SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
656  assert(OpenIdx && "openIntv not called before enterIntvBefore");
657  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
658  Idx = Idx.getBaseIndex();
659  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
660  if (!ParentVNI) {
661    DEBUG(dbgs() << ": not live\n");
662    return Idx;
663  }
664  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
665  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
666  assert(MI && "enterIntvBefore called with invalid index");
667
668  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
669  return VNI->def;
670}
671
672SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
673  assert(OpenIdx && "openIntv not called before enterIntvAfter");
674  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
675  Idx = Idx.getBoundaryIndex();
676  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
677  if (!ParentVNI) {
678    DEBUG(dbgs() << ": not live\n");
679    return Idx;
680  }
681  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
682  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
683  assert(MI && "enterIntvAfter called with invalid index");
684
685  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
686                              llvm::next(MachineBasicBlock::iterator(MI)));
687  return VNI->def;
688}
689
690SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
691  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
692  SlotIndex End = LIS.getMBBEndIdx(&MBB);
693  SlotIndex Last = End.getPrevSlot();
694  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
695  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
696  if (!ParentVNI) {
697    DEBUG(dbgs() << ": not live\n");
698    return End;
699  }
700  DEBUG(dbgs() << ": valno " << ParentVNI->id);
701  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
702                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
703  RegAssign.insert(VNI->def, End, OpenIdx);
704  DEBUG(dump());
705  return VNI->def;
706}
707
708/// useIntv - indicate that all instructions in MBB should use OpenLI.
709void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
710  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
711}
712
713void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
714  assert(OpenIdx && "openIntv not called before useIntv");
715  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
716  RegAssign.insert(Start, End, OpenIdx);
717  DEBUG(dump());
718}
719
720SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
721  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
722  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
723
724  // The interval must be live beyond the instruction at Idx.
725  Idx = Idx.getBoundaryIndex();
726  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
727  if (!ParentVNI) {
728    DEBUG(dbgs() << ": not live\n");
729    return Idx.getNextSlot();
730  }
731  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
732
733  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
734  assert(MI && "No instruction at index");
735  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
736                              llvm::next(MachineBasicBlock::iterator(MI)));
737  return VNI->def;
738}
739
740SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
741  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
742  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
743
744  // The interval must be live into the instruction at Idx.
745  Idx = Idx.getBaseIndex();
746  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
747  if (!ParentVNI) {
748    DEBUG(dbgs() << ": not live\n");
749    return Idx.getNextSlot();
750  }
751  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
752
753  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
754  assert(MI && "No instruction at index");
755  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
756  return VNI->def;
757}
758
759SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
760  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
761  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
762  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
763
764  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
765  if (!ParentVNI) {
766    DEBUG(dbgs() << ": not live\n");
767    return Start;
768  }
769
770  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
771                              MBB.SkipPHIsAndLabels(MBB.begin()));
772  RegAssign.insert(Start, VNI->def, OpenIdx);
773  DEBUG(dump());
774  return VNI->def;
775}
776
777void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
778  assert(OpenIdx && "openIntv not called before overlapIntv");
779  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
780  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
781         "Parent changes value in extended range");
782  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
783         "Range cannot span basic blocks");
784
785  // The complement interval will be extended as needed by extendRange().
786  if (ParentVNI)
787    markComplexMapped(0, ParentVNI);
788  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
789  RegAssign.insert(Start, End, OpenIdx);
790  DEBUG(dump());
791}
792
793/// transferValues - Transfer all possible values to the new live ranges.
794/// Values that were rematerialized are left alone, they need extendRange().
795bool SplitEditor::transferValues() {
796  bool Skipped = false;
797  LiveInBlocks.clear();
798  RegAssignMap::const_iterator AssignI = RegAssign.begin();
799  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
800         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
801    DEBUG(dbgs() << "  blit " << *ParentI << ':');
802    VNInfo *ParentVNI = ParentI->valno;
803    // RegAssign has holes where RegIdx 0 should be used.
804    SlotIndex Start = ParentI->start;
805    AssignI.advanceTo(Start);
806    do {
807      unsigned RegIdx;
808      SlotIndex End = ParentI->end;
809      if (!AssignI.valid()) {
810        RegIdx = 0;
811      } else if (AssignI.start() <= Start) {
812        RegIdx = AssignI.value();
813        if (AssignI.stop() < End) {
814          End = AssignI.stop();
815          ++AssignI;
816        }
817      } else {
818        RegIdx = 0;
819        End = std::min(End, AssignI.start());
820      }
821
822      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
823      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
824      LiveInterval *LI = Edit->get(RegIdx);
825
826      // Check for a simply defined value that can be blitted directly.
827      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
828        DEBUG(dbgs() << ':' << VNI->id);
829        LI->addRange(LiveRange(Start, End, VNI));
830        Start = End;
831        continue;
832      }
833
834      // Skip rematerialized values, we need to use extendRange() and
835      // extendPHIKillRanges() to completely recompute the live ranges.
836      if (Edit->didRematerialize(ParentVNI)) {
837        DEBUG(dbgs() << "(remat)");
838        Skipped = true;
839        Start = End;
840        continue;
841      }
842
843      // Initialize the live-out cache the first time it is needed.
844      if (LiveOutSeen.empty()) {
845        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
846        LiveOutSeen.resize(N);
847        LiveOutCache.resize(N);
848      }
849
850      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
851      // so the live range is accurate. Add live-in blocks in [Start;End) to the
852      // LiveInBlocks.
853      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
854      SlotIndex BlockStart, BlockEnd;
855      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
856
857      // The first block may be live-in, or it may have its own def.
858      if (Start != BlockStart) {
859        VNInfo *VNI = LI->extendInBlock(BlockStart,
860                                        std::min(BlockEnd, End).getPrevSlot());
861        assert(VNI && "Missing def for complex mapped value");
862        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
863        // MBB has its own def. Is it also live-out?
864        if (BlockEnd <= End) {
865          LiveOutSeen.set(MBB->getNumber());
866          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
867        }
868        // Skip to the next block for live-in.
869        ++MBB;
870        BlockStart = BlockEnd;
871      }
872
873      // Handle the live-in blocks covered by [Start;End).
874      assert(Start <= BlockStart && "Expected live-in block");
875      while (BlockStart < End) {
876        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
877        BlockEnd = LIS.getMBBEndIdx(MBB);
878        if (BlockStart == ParentVNI->def) {
879          // This block has the def of a parent PHI, so it isn't live-in.
880          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
881          VNInfo *VNI = LI->extendInBlock(BlockStart,
882                                         std::min(BlockEnd, End).getPrevSlot());
883          assert(VNI && "Missing def for complex mapped parent PHI");
884          if (End >= BlockEnd) {
885            // Live-out as well.
886            LiveOutSeen.set(MBB->getNumber());
887            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
888          }
889        } else {
890          // This block needs a live-in value.
891          LiveInBlocks.push_back(MDT[MBB]);
892          // The last block covered may not be live-out.
893          if (End < BlockEnd)
894            LiveInBlocks.back().Kill = End;
895          else {
896            // Live-out, but we need updateSSA to tell us the value.
897            LiveOutSeen.set(MBB->getNumber());
898            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
899                                            (MachineDomTreeNode*)0);
900          }
901        }
902        BlockStart = BlockEnd;
903        ++MBB;
904      }
905      Start = End;
906    } while (Start != ParentI->end);
907    DEBUG(dbgs() << '\n');
908  }
909
910  if (!LiveInBlocks.empty())
911    updateSSA();
912
913  return Skipped;
914}
915
916void SplitEditor::extendPHIKillRanges() {
917    // Extend live ranges to be live-out for successor PHI values.
918  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
919       E = Edit->getParent().vni_end(); I != E; ++I) {
920    const VNInfo *PHIVNI = *I;
921    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
922      continue;
923    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
924    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
925    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
926         PE = MBB->pred_end(); PI != PE; ++PI) {
927      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
928      // The predecessor may not have a live-out value. That is OK, like an
929      // undef PHI operand.
930      if (Edit->getParent().liveAt(End)) {
931        assert(RegAssign.lookup(End) == RegIdx &&
932               "Different register assignment in phi predecessor");
933        extendRange(RegIdx, End);
934      }
935    }
936  }
937}
938
939/// rewriteAssigned - Rewrite all uses of Edit->getReg().
940void SplitEditor::rewriteAssigned(bool ExtendRanges) {
941  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
942       RE = MRI.reg_end(); RI != RE;) {
943    MachineOperand &MO = RI.getOperand();
944    MachineInstr *MI = MO.getParent();
945    ++RI;
946    // LiveDebugVariables should have handled all DBG_VALUE instructions.
947    if (MI->isDebugValue()) {
948      DEBUG(dbgs() << "Zapping " << *MI);
949      MO.setReg(0);
950      continue;
951    }
952
953    // <undef> operands don't really read the register, so it doesn't matter
954    // which register we choose.  When the use operand is tied to a def, we must
955    // use the same register as the def, so just do that always.
956    SlotIndex Idx = LIS.getInstructionIndex(MI);
957    if (MO.isDef() || MO.isUndef())
958      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
959
960    // Rewrite to the mapped register at Idx.
961    unsigned RegIdx = RegAssign.lookup(Idx);
962    MO.setReg(Edit->get(RegIdx)->reg);
963    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
964                 << Idx << ':' << RegIdx << '\t' << *MI);
965
966    // Extend liveness to Idx if the instruction reads reg.
967    if (!ExtendRanges || MO.isUndef())
968      continue;
969
970    // Skip instructions that don't read Reg.
971    if (MO.isDef()) {
972      if (!MO.getSubReg() && !MO.isEarlyClobber())
973        continue;
974      // We may wan't to extend a live range for a partial redef, or for a use
975      // tied to an early clobber.
976      Idx = Idx.getPrevSlot();
977      if (!Edit->getParent().liveAt(Idx))
978        continue;
979    } else
980      Idx = Idx.getUseIndex();
981
982    extendRange(RegIdx, Idx);
983  }
984}
985
986void SplitEditor::deleteRematVictims() {
987  SmallVector<MachineInstr*, 8> Dead;
988  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
989    LiveInterval *LI = *I;
990    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
991           LII != LIE; ++LII) {
992      // Dead defs end at the store slot.
993      if (LII->end != LII->valno->def.getNextSlot())
994        continue;
995      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
996      assert(MI && "Missing instruction for dead def");
997      MI->addRegisterDead(LI->reg, &TRI);
998
999      if (!MI->allDefsAreDead())
1000        continue;
1001
1002      DEBUG(dbgs() << "All defs dead: " << *MI);
1003      Dead.push_back(MI);
1004    }
1005  }
1006
1007  if (Dead.empty())
1008    return;
1009
1010  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
1011}
1012
1013void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1014  ++NumFinished;
1015
1016  // At this point, the live intervals in Edit contain VNInfos corresponding to
1017  // the inserted copies.
1018
1019  // Add the original defs from the parent interval.
1020  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1021         E = Edit->getParent().vni_end(); I != E; ++I) {
1022    const VNInfo *ParentVNI = *I;
1023    if (ParentVNI->isUnused())
1024      continue;
1025    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1026    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1027    VNI->setIsPHIDef(ParentVNI->isPHIDef());
1028    VNI->setCopy(ParentVNI->getCopy());
1029
1030    // Mark rematted values as complex everywhere to force liveness computation.
1031    // The new live ranges may be truncated.
1032    if (Edit->didRematerialize(ParentVNI))
1033      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1034        markComplexMapped(i, ParentVNI);
1035  }
1036
1037  // Transfer the simply mapped values, check if any are skipped.
1038  bool Skipped = transferValues();
1039  if (Skipped)
1040    extendPHIKillRanges();
1041  else
1042    ++NumSimple;
1043
1044  // Rewrite virtual registers, possibly extending ranges.
1045  rewriteAssigned(Skipped);
1046
1047  // Delete defs that were rematted everywhere.
1048  if (Skipped)
1049    deleteRematVictims();
1050
1051  // Get rid of unused values and set phi-kill flags.
1052  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1053    (*I)->RenumberValues(LIS);
1054
1055  // Provide a reverse mapping from original indices to Edit ranges.
1056  if (LRMap) {
1057    LRMap->clear();
1058    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1059      LRMap->push_back(i);
1060  }
1061
1062  // Now check if any registers were separated into multiple components.
1063  ConnectedVNInfoEqClasses ConEQ(LIS);
1064  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1065    // Don't use iterators, they are invalidated by create() below.
1066    LiveInterval *li = Edit->get(i);
1067    unsigned NumComp = ConEQ.Classify(li);
1068    if (NumComp <= 1)
1069      continue;
1070    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1071    SmallVector<LiveInterval*, 8> dups;
1072    dups.push_back(li);
1073    for (unsigned j = 1; j != NumComp; ++j)
1074      dups.push_back(&Edit->create(LIS, VRM));
1075    ConEQ.Distribute(&dups[0], MRI);
1076    // The new intervals all map back to i.
1077    if (LRMap)
1078      LRMap->resize(Edit->size(), i);
1079  }
1080
1081  // Calculate spill weight and allocation hints for new intervals.
1082  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1083
1084  assert(!LRMap || LRMap->size() == Edit->size());
1085}
1086
1087
1088//===----------------------------------------------------------------------===//
1089//                            Single Block Splitting
1090//===----------------------------------------------------------------------===//
1091
1092bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1093                                           bool SingleInstrs) const {
1094  // Always split for multiple instructions.
1095  if (!BI.isOneInstr())
1096    return true;
1097  // Don't split for single instructions unless explicitly requested.
1098  if (!SingleInstrs)
1099    return false;
1100  // Splitting a live-through range always makes progress.
1101  if (BI.LiveIn && BI.LiveOut)
1102    return true;
1103  // No point in isolating a copy. It has no register class constraints.
1104  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1105    return false;
1106  // Finally, don't isolate an end point that was created by earlier splits.
1107  return isOriginalEndpoint(BI.FirstInstr);
1108}
1109
1110void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1111  openIntv();
1112  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1113  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1114    LastSplitPoint));
1115  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1116    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1117  } else {
1118      // The last use is after the last valid split point.
1119    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1120    useIntv(SegStart, SegStop);
1121    overlapIntv(SegStop, BI.LastInstr);
1122  }
1123}
1124
1125
1126//===----------------------------------------------------------------------===//
1127//                    Global Live Range Splitting Support
1128//===----------------------------------------------------------------------===//
1129
1130// These methods support a method of global live range splitting that uses a
1131// global algorithm to decide intervals for CFG edges. They will insert split
1132// points and color intervals in basic blocks while avoiding interference.
1133//
1134// Note that splitSingleBlock is also useful for blocks where both CFG edges
1135// are on the stack.
1136
1137void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1138                                        unsigned IntvIn, SlotIndex LeaveBefore,
1139                                        unsigned IntvOut, SlotIndex EnterAfter){
1140  SlotIndex Start, Stop;
1141  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1142
1143  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1144               << ") intf " << LeaveBefore << '-' << EnterAfter
1145               << ", live-through " << IntvIn << " -> " << IntvOut);
1146
1147  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1148
1149  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1150  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1151  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1152
1153  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1154
1155  if (!IntvOut) {
1156    DEBUG(dbgs() << ", spill on entry.\n");
1157    //
1158    //        <<<<<<<<<    Possible LeaveBefore interference.
1159    //    |-----------|    Live through.
1160    //    -____________    Spill on entry.
1161    //
1162    selectIntv(IntvIn);
1163    SlotIndex Idx = leaveIntvAtTop(*MBB);
1164    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1165    (void)Idx;
1166    return;
1167  }
1168
1169  if (!IntvIn) {
1170    DEBUG(dbgs() << ", reload on exit.\n");
1171    //
1172    //    >>>>>>>          Possible EnterAfter interference.
1173    //    |-----------|    Live through.
1174    //    ___________--    Reload on exit.
1175    //
1176    selectIntv(IntvOut);
1177    SlotIndex Idx = enterIntvAtEnd(*MBB);
1178    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1179    (void)Idx;
1180    return;
1181  }
1182
1183  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1184    DEBUG(dbgs() << ", straight through.\n");
1185    //
1186    //    |-----------|    Live through.
1187    //    -------------    Straight through, same intv, no interference.
1188    //
1189    selectIntv(IntvOut);
1190    useIntv(Start, Stop);
1191    return;
1192  }
1193
1194  // We cannot legally insert splits after LSP.
1195  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1196  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1197
1198  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1199                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1200    DEBUG(dbgs() << ", switch avoiding interference.\n");
1201    //
1202    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1203    //    |-----------|    Live through.
1204    //    ------=======    Switch intervals between interference.
1205    //
1206    selectIntv(IntvOut);
1207    SlotIndex Idx;
1208    if (LeaveBefore && LeaveBefore < LSP) {
1209      Idx = enterIntvBefore(LeaveBefore);
1210      useIntv(Idx, Stop);
1211    } else {
1212      Idx = enterIntvAtEnd(*MBB);
1213    }
1214    selectIntv(IntvIn);
1215    useIntv(Start, Idx);
1216    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1217    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1218    return;
1219  }
1220
1221  DEBUG(dbgs() << ", create local intv for interference.\n");
1222  //
1223  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1224  //    |-----------|    Live through.
1225  //    ==---------==    Switch intervals before/after interference.
1226  //
1227  assert(LeaveBefore <= EnterAfter && "Missed case");
1228
1229  selectIntv(IntvOut);
1230  SlotIndex Idx = enterIntvAfter(EnterAfter);
1231  useIntv(Idx, Stop);
1232  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1233
1234  selectIntv(IntvIn);
1235  Idx = leaveIntvBefore(LeaveBefore);
1236  useIntv(Start, Idx);
1237  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1238}
1239
1240
1241void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1242                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1243  SlotIndex Start, Stop;
1244  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1245
1246  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1247               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1248               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1249               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1250
1251  assert(IntvIn && "Must have register in");
1252  assert(BI.LiveIn && "Must be live-in");
1253  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1254
1255  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1256    DEBUG(dbgs() << " before interference.\n");
1257    //
1258    //               <<<    Interference after kill.
1259    //     |---o---x   |    Killed in block.
1260    //     =========        Use IntvIn everywhere.
1261    //
1262    selectIntv(IntvIn);
1263    useIntv(Start, BI.LastInstr);
1264    return;
1265  }
1266
1267  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1268
1269  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1270    //
1271    //               <<<    Possible interference after last use.
1272    //     |---o---o---|    Live-out on stack.
1273    //     =========____    Leave IntvIn after last use.
1274    //
1275    //                 <    Interference after last use.
1276    //     |---o---o--o|    Live-out on stack, late last use.
1277    //     ============     Copy to stack after LSP, overlap IntvIn.
1278    //            \_____    Stack interval is live-out.
1279    //
1280    if (BI.LastInstr < LSP) {
1281      DEBUG(dbgs() << ", spill after last use before interference.\n");
1282      selectIntv(IntvIn);
1283      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1284      useIntv(Start, Idx);
1285      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1286    } else {
1287      DEBUG(dbgs() << ", spill before last split point.\n");
1288      selectIntv(IntvIn);
1289      SlotIndex Idx = leaveIntvBefore(LSP);
1290      overlapIntv(Idx, BI.LastInstr);
1291      useIntv(Start, Idx);
1292      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1293    }
1294    return;
1295  }
1296
1297  // The interference is overlapping somewhere we wanted to use IntvIn. That
1298  // means we need to create a local interval that can be allocated a
1299  // different register.
1300  unsigned LocalIntv = openIntv();
1301  (void)LocalIntv;
1302  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1303
1304  if (!BI.LiveOut || BI.LastInstr < LSP) {
1305    //
1306    //           <<<<<<<    Interference overlapping uses.
1307    //     |---o---o---|    Live-out on stack.
1308    //     =====----____    Leave IntvIn before interference, then spill.
1309    //
1310    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1311    SlotIndex From = enterIntvBefore(LeaveBefore);
1312    useIntv(From, To);
1313    selectIntv(IntvIn);
1314    useIntv(Start, From);
1315    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1316    return;
1317  }
1318
1319  //           <<<<<<<    Interference overlapping uses.
1320  //     |---o---o--o|    Live-out on stack, late last use.
1321  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1322  //            \_____    Stack interval is live-out.
1323  //
1324  SlotIndex To = leaveIntvBefore(LSP);
1325  overlapIntv(To, BI.LastInstr);
1326  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1327  useIntv(From, To);
1328  selectIntv(IntvIn);
1329  useIntv(Start, From);
1330  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1331}
1332
1333void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1334                                   unsigned IntvOut, SlotIndex EnterAfter) {
1335  SlotIndex Start, Stop;
1336  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1337
1338  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1339               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1340               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1341               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1342
1343  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1344
1345  assert(IntvOut && "Must have register out");
1346  assert(BI.LiveOut && "Must be live-out");
1347  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1348
1349  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1350    DEBUG(dbgs() << " after interference.\n");
1351    //
1352    //    >>>>             Interference before def.
1353    //    |   o---o---|    Defined in block.
1354    //        =========    Use IntvOut everywhere.
1355    //
1356    selectIntv(IntvOut);
1357    useIntv(BI.FirstInstr, Stop);
1358    return;
1359  }
1360
1361  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1362    DEBUG(dbgs() << ", reload after interference.\n");
1363    //
1364    //    >>>>             Interference before def.
1365    //    |---o---o---|    Live-through, stack-in.
1366    //    ____=========    Enter IntvOut before first use.
1367    //
1368    selectIntv(IntvOut);
1369    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1370    useIntv(Idx, Stop);
1371    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1372    return;
1373  }
1374
1375  // The interference is overlapping somewhere we wanted to use IntvOut. That
1376  // means we need to create a local interval that can be allocated a
1377  // different register.
1378  DEBUG(dbgs() << ", interference overlaps uses.\n");
1379  //
1380  //    >>>>>>>          Interference overlapping uses.
1381  //    |---o---o---|    Live-through, stack-in.
1382  //    ____---======    Create local interval for interference range.
1383  //
1384  selectIntv(IntvOut);
1385  SlotIndex Idx = enterIntvAfter(EnterAfter);
1386  useIntv(Idx, Stop);
1387  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1388
1389  openIntv();
1390  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1391  useIntv(From, Idx);
1392}
1393