SplitKit.cpp revision 77e300e8f0b8db8eec448cae9c87d7c5bfad9757
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "VirtRegMap.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/LiveRangeEdit.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32STATISTIC(NumFinished, "Number of splits finished");
33STATISTIC(NumSimple,   "Number of splits that were simple");
34STATISTIC(NumCopies,   "Number of copies inserted for splitting");
35STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
36STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
37
38//===----------------------------------------------------------------------===//
39//                                 Split Analysis
40//===----------------------------------------------------------------------===//
41
42SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43                             const LiveIntervals &lis,
44                             const MachineLoopInfo &mli)
45  : MF(vrm.getMachineFunction()),
46    VRM(vrm),
47    LIS(lis),
48    Loops(mli),
49    TII(*MF.getTarget().getInstrInfo()),
50    CurLI(0),
51    LastSplitPoint(MF.getNumBlockIDs()) {}
52
53void SplitAnalysis::clear() {
54  UseSlots.clear();
55  UseBlocks.clear();
56  ThroughBlocks.clear();
57  CurLI = 0;
58  DidRepairRange = false;
59}
60
61SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65  SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67  // Compute split points on the first call. The pair is independent of the
68  // current live interval.
69  if (!LSP.first.isValid()) {
70    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71    if (FirstTerm == MBB->end())
72      LSP.first = MBBEnd;
73    else
74      LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76    // If there is a landing pad successor, also find the call instruction.
77    if (!LPad)
78      return LSP.first;
79    // There may not be a call instruction (?) in which case we ignore LPad.
80    LSP.second = LSP.first;
81    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82         I != E;) {
83      --I;
84      if (I->isCall()) {
85        LSP.second = LIS.getInstructionIndex(I);
86        break;
87      }
88    }
89  }
90
91  // If CurLI is live into a landing pad successor, move the last split point
92  // back to the call that may throw.
93  if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94    return LSP.first;
95
96  // Find the value leaving MBB.
97  const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98  if (!VNI)
99    return LSP.first;
100
101  // If the value leaving MBB was defined after the call in MBB, it can't
102  // really be live-in to the landing pad.  This can happen if the landing pad
103  // has a PHI, and this register is undef on the exceptional edge.
104  // <rdar://problem/10664933>
105  if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106    return LSP.first;
107
108  // Value is properly live-in to the landing pad.
109  // Only allow splits before the call.
110  return LSP.second;
111}
112
113MachineBasicBlock::iterator
114SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115  SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116  if (LSP == LIS.getMBBEndIdx(MBB))
117    return MBB->end();
118  return LIS.getInstructionFromIndex(LSP);
119}
120
121/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122void SplitAnalysis::analyzeUses() {
123  assert(UseSlots.empty() && "Call clear first");
124
125  // First get all the defs from the interval values. This provides the correct
126  // slots for early clobbers.
127  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128       E = CurLI->vni_end(); I != E; ++I)
129    if (!(*I)->isPHIDef() && !(*I)->isUnused())
130      UseSlots.push_back((*I)->def);
131
132  // Get use slots form the use-def chain.
133  const MachineRegisterInfo &MRI = MF.getRegInfo();
134  for (MachineRegisterInfo::use_nodbg_iterator
135       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136       ++I)
137    if (!I.getOperand().isUndef())
138      UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140  array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142  // Remove duplicates, keeping the smaller slot for each instruction.
143  // That is what we want for early clobbers.
144  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145                             SlotIndex::isSameInstr),
146                 UseSlots.end());
147
148  // Compute per-live block info.
149  if (!calcLiveBlockInfo()) {
150    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151    // I am looking at you, RegisterCoalescer!
152    DidRepairRange = true;
153    ++NumRepairs;
154    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155    const_cast<LiveIntervals&>(LIS)
156      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157    UseBlocks.clear();
158    ThroughBlocks.clear();
159    bool fixed = calcLiveBlockInfo();
160    (void)fixed;
161    assert(fixed && "Couldn't fix broken live interval");
162  }
163
164  DEBUG(dbgs() << "Analyze counted "
165               << UseSlots.size() << " instrs in "
166               << UseBlocks.size() << " blocks, through "
167               << NumThroughBlocks << " blocks.\n");
168}
169
170/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171/// where CurLI is live.
172bool SplitAnalysis::calcLiveBlockInfo() {
173  ThroughBlocks.resize(MF.getNumBlockIDs());
174  NumThroughBlocks = NumGapBlocks = 0;
175  if (CurLI->empty())
176    return true;
177
178  LiveInterval::const_iterator LVI = CurLI->begin();
179  LiveInterval::const_iterator LVE = CurLI->end();
180
181  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182  UseI = UseSlots.begin();
183  UseE = UseSlots.end();
184
185  // Loop over basic blocks where CurLI is live.
186  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187  for (;;) {
188    BlockInfo BI;
189    BI.MBB = MFI;
190    SlotIndex Start, Stop;
191    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193    // If the block contains no uses, the range must be live through. At one
194    // point, RegisterCoalescer could create dangling ranges that ended
195    // mid-block.
196    if (UseI == UseE || *UseI >= Stop) {
197      ++NumThroughBlocks;
198      ThroughBlocks.set(BI.MBB->getNumber());
199      // The range shouldn't end mid-block if there are no uses. This shouldn't
200      // happen.
201      if (LVI->end < Stop)
202        return false;
203    } else {
204      // This block has uses. Find the first and last uses in the block.
205      BI.FirstInstr = *UseI;
206      assert(BI.FirstInstr >= Start);
207      do ++UseI;
208      while (UseI != UseE && *UseI < Stop);
209      BI.LastInstr = UseI[-1];
210      assert(BI.LastInstr < Stop);
211
212      // LVI is the first live segment overlapping MBB.
213      BI.LiveIn = LVI->start <= Start;
214
215      // When not live in, the first use should be a def.
216      if (!BI.LiveIn) {
217        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219        BI.FirstDef = BI.FirstInstr;
220      }
221
222      // Look for gaps in the live range.
223      BI.LiveOut = true;
224      while (LVI->end < Stop) {
225        SlotIndex LastStop = LVI->end;
226        if (++LVI == LVE || LVI->start >= Stop) {
227          BI.LiveOut = false;
228          BI.LastInstr = LastStop;
229          break;
230        }
231
232        if (LastStop < LVI->start) {
233          // There is a gap in the live range. Create duplicate entries for the
234          // live-in snippet and the live-out snippet.
235          ++NumGapBlocks;
236
237          // Push the Live-in part.
238          BI.LiveOut = false;
239          UseBlocks.push_back(BI);
240          UseBlocks.back().LastInstr = LastStop;
241
242          // Set up BI for the live-out part.
243          BI.LiveIn = false;
244          BI.LiveOut = true;
245          BI.FirstInstr = BI.FirstDef = LVI->start;
246        }
247
248        // A LiveRange that starts in the middle of the block must be a def.
249        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250        if (!BI.FirstDef)
251          BI.FirstDef = LVI->start;
252      }
253
254      UseBlocks.push_back(BI);
255
256      // LVI is now at LVE or LVI->end >= Stop.
257      if (LVI == LVE)
258        break;
259    }
260
261    // Live segment ends exactly at Stop. Move to the next segment.
262    if (LVI->end == Stop && ++LVI == LVE)
263      break;
264
265    // Pick the next basic block.
266    if (LVI->start < Stop)
267      ++MFI;
268    else
269      MFI = LIS.getMBBFromIndex(LVI->start);
270  }
271
272  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273  return true;
274}
275
276unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277  if (cli->empty())
278    return 0;
279  LiveInterval *li = const_cast<LiveInterval*>(cli);
280  LiveInterval::iterator LVI = li->begin();
281  LiveInterval::iterator LVE = li->end();
282  unsigned Count = 0;
283
284  // Loop over basic blocks where li is live.
285  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287  for (;;) {
288    ++Count;
289    LVI = li->advanceTo(LVI, Stop);
290    if (LVI == LVE)
291      return Count;
292    do {
293      ++MFI;
294      Stop = LIS.getMBBEndIdx(MFI);
295    } while (Stop <= LVI->start);
296  }
297}
298
299bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301  const LiveInterval &Orig = LIS.getInterval(OrigReg);
302  assert(!Orig.empty() && "Splitting empty interval?");
303  LiveInterval::const_iterator I = Orig.find(Idx);
304
305  // Range containing Idx should begin at Idx.
306  if (I != Orig.end() && I->start <= Idx)
307    return I->start == Idx;
308
309  // Range does not contain Idx, previous must end at Idx.
310  return I != Orig.begin() && (--I)->end == Idx;
311}
312
313void SplitAnalysis::analyze(const LiveInterval *li) {
314  clear();
315  CurLI = li;
316  analyzeUses();
317}
318
319
320//===----------------------------------------------------------------------===//
321//                               Split Editor
322//===----------------------------------------------------------------------===//
323
324/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
325SplitEditor::SplitEditor(SplitAnalysis &sa,
326                         LiveIntervals &lis,
327                         VirtRegMap &vrm,
328                         MachineDominatorTree &mdt)
329  : SA(sa), LIS(lis), VRM(vrm),
330    MRI(vrm.getMachineFunction().getRegInfo()),
331    MDT(mdt),
332    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
333    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
334    Edit(0),
335    OpenIdx(0),
336    SpillMode(SM_Partition),
337    RegAssign(Allocator)
338{}
339
340void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
341  Edit = &LRE;
342  SpillMode = SM;
343  OpenIdx = 0;
344  RegAssign.clear();
345  Values.clear();
346
347  // Reset the LiveRangeCalc instances needed for this spill mode.
348  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
349                  &LIS.getVNInfoAllocator());
350  if (SpillMode)
351    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
352                    &LIS.getVNInfoAllocator());
353
354  // We don't need an AliasAnalysis since we will only be performing
355  // cheap-as-a-copy remats anyway.
356  Edit->anyRematerializable(0);
357}
358
359#ifndef NDEBUG
360void SplitEditor::dump() const {
361  if (RegAssign.empty()) {
362    dbgs() << " empty\n";
363    return;
364  }
365
366  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
367    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
368  dbgs() << '\n';
369}
370#endif
371
372VNInfo *SplitEditor::defValue(unsigned RegIdx,
373                              const VNInfo *ParentVNI,
374                              SlotIndex Idx) {
375  assert(ParentVNI && "Mapping  NULL value");
376  assert(Idx.isValid() && "Invalid SlotIndex");
377  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
378  LiveInterval *LI = Edit->get(RegIdx);
379
380  // Create a new value.
381  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
382
383  // Use insert for lookup, so we can add missing values with a second lookup.
384  std::pair<ValueMap::iterator, bool> InsP =
385    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
386                                 ValueForcePair(VNI, false)));
387
388  // This was the first time (RegIdx, ParentVNI) was mapped.
389  // Keep it as a simple def without any liveness.
390  if (InsP.second)
391    return VNI;
392
393  // If the previous value was a simple mapping, add liveness for it now.
394  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
395    SlotIndex Def = OldVNI->def;
396    LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
397    // No longer a simple mapping.  Switch to a complex, non-forced mapping.
398    InsP.first->second = ValueForcePair();
399  }
400
401  // This is a complex mapping, add liveness for VNI
402  SlotIndex Def = VNI->def;
403  LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
404
405  return VNI;
406}
407
408void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
409  assert(ParentVNI && "Mapping  NULL value");
410  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
411  VNInfo *VNI = VFP.getPointer();
412
413  // ParentVNI was either unmapped or already complex mapped. Either way, just
414  // set the force bit.
415  if (!VNI) {
416    VFP.setInt(true);
417    return;
418  }
419
420  // This was previously a single mapping. Make sure the old def is represented
421  // by a trivial live range.
422  SlotIndex Def = VNI->def;
423  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
424  // Mark as complex mapped, forced.
425  VFP = ValueForcePair(0, true);
426}
427
428VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
429                                   VNInfo *ParentVNI,
430                                   SlotIndex UseIdx,
431                                   MachineBasicBlock &MBB,
432                                   MachineBasicBlock::iterator I) {
433  MachineInstr *CopyMI = 0;
434  SlotIndex Def;
435  LiveInterval *LI = Edit->get(RegIdx);
436
437  // We may be trying to avoid interference that ends at a deleted instruction,
438  // so always begin RegIdx 0 early and all others late.
439  bool Late = RegIdx != 0;
440
441  // Attempt cheap-as-a-copy rematerialization.
442  LiveRangeEdit::Remat RM(ParentVNI);
443  if (Edit->canRematerializeAt(RM, UseIdx, true)) {
444    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
445    ++NumRemats;
446  } else {
447    // Can't remat, just insert a copy from parent.
448    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
449               .addReg(Edit->getReg());
450    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
451            .getRegSlot();
452    ++NumCopies;
453  }
454
455  // Define the value in Reg.
456  return defValue(RegIdx, ParentVNI, Def);
457}
458
459/// Create a new virtual register and live interval.
460unsigned SplitEditor::openIntv() {
461  // Create the complement as index 0.
462  if (Edit->empty())
463    Edit->create();
464
465  // Create the open interval.
466  OpenIdx = Edit->size();
467  Edit->create();
468  return OpenIdx;
469}
470
471void SplitEditor::selectIntv(unsigned Idx) {
472  assert(Idx != 0 && "Cannot select the complement interval");
473  assert(Idx < Edit->size() && "Can only select previously opened interval");
474  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
475  OpenIdx = Idx;
476}
477
478SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
479  assert(OpenIdx && "openIntv not called before enterIntvBefore");
480  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
481  Idx = Idx.getBaseIndex();
482  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
483  if (!ParentVNI) {
484    DEBUG(dbgs() << ": not live\n");
485    return Idx;
486  }
487  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
488  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
489  assert(MI && "enterIntvBefore called with invalid index");
490
491  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
492  return VNI->def;
493}
494
495SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
496  assert(OpenIdx && "openIntv not called before enterIntvAfter");
497  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
498  Idx = Idx.getBoundaryIndex();
499  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
500  if (!ParentVNI) {
501    DEBUG(dbgs() << ": not live\n");
502    return Idx;
503  }
504  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
505  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
506  assert(MI && "enterIntvAfter called with invalid index");
507
508  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
509                              llvm::next(MachineBasicBlock::iterator(MI)));
510  return VNI->def;
511}
512
513SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
514  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
515  SlotIndex End = LIS.getMBBEndIdx(&MBB);
516  SlotIndex Last = End.getPrevSlot();
517  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
518  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
519  if (!ParentVNI) {
520    DEBUG(dbgs() << ": not live\n");
521    return End;
522  }
523  DEBUG(dbgs() << ": valno " << ParentVNI->id);
524  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
525                              SA.getLastSplitPointIter(&MBB));
526  RegAssign.insert(VNI->def, End, OpenIdx);
527  DEBUG(dump());
528  return VNI->def;
529}
530
531/// useIntv - indicate that all instructions in MBB should use OpenLI.
532void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
533  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
534}
535
536void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
537  assert(OpenIdx && "openIntv not called before useIntv");
538  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
539  RegAssign.insert(Start, End, OpenIdx);
540  DEBUG(dump());
541}
542
543SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
544  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
545  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
546
547  // The interval must be live beyond the instruction at Idx.
548  SlotIndex Boundary = Idx.getBoundaryIndex();
549  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
550  if (!ParentVNI) {
551    DEBUG(dbgs() << ": not live\n");
552    return Boundary.getNextSlot();
553  }
554  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
555  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
556  assert(MI && "No instruction at index");
557
558  // In spill mode, make live ranges as short as possible by inserting the copy
559  // before MI.  This is only possible if that instruction doesn't redefine the
560  // value.  The inserted COPY is not a kill, and we don't need to recompute
561  // the source live range.  The spiller also won't try to hoist this copy.
562  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
563      MI->readsVirtualRegister(Edit->getReg())) {
564    forceRecompute(0, ParentVNI);
565    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
566    return Idx;
567  }
568
569  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
570                              llvm::next(MachineBasicBlock::iterator(MI)));
571  return VNI->def;
572}
573
574SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
575  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
576  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
577
578  // The interval must be live into the instruction at Idx.
579  Idx = Idx.getBaseIndex();
580  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
581  if (!ParentVNI) {
582    DEBUG(dbgs() << ": not live\n");
583    return Idx.getNextSlot();
584  }
585  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
586
587  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
588  assert(MI && "No instruction at index");
589  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
590  return VNI->def;
591}
592
593SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
594  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
595  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
596  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
597
598  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
599  if (!ParentVNI) {
600    DEBUG(dbgs() << ": not live\n");
601    return Start;
602  }
603
604  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
605                              MBB.SkipPHIsAndLabels(MBB.begin()));
606  RegAssign.insert(Start, VNI->def, OpenIdx);
607  DEBUG(dump());
608  return VNI->def;
609}
610
611void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
612  assert(OpenIdx && "openIntv not called before overlapIntv");
613  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
614  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
615         "Parent changes value in extended range");
616  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
617         "Range cannot span basic blocks");
618
619  // The complement interval will be extended as needed by LRCalc.extend().
620  if (ParentVNI)
621    forceRecompute(0, ParentVNI);
622  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
623  RegAssign.insert(Start, End, OpenIdx);
624  DEBUG(dump());
625}
626
627//===----------------------------------------------------------------------===//
628//                                  Spill modes
629//===----------------------------------------------------------------------===//
630
631void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
632  LiveInterval *LI = Edit->get(0);
633  DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
634  RegAssignMap::iterator AssignI;
635  AssignI.setMap(RegAssign);
636
637  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
638    VNInfo *VNI = Copies[i];
639    SlotIndex Def = VNI->def;
640    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
641    assert(MI && "No instruction for back-copy");
642
643    MachineBasicBlock *MBB = MI->getParent();
644    MachineBasicBlock::iterator MBBI(MI);
645    bool AtBegin;
646    do AtBegin = MBBI == MBB->begin();
647    while (!AtBegin && (--MBBI)->isDebugValue());
648
649    DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
650    LI->removeValNo(VNI);
651    LIS.RemoveMachineInstrFromMaps(MI);
652    MI->eraseFromParent();
653
654    // Adjust RegAssign if a register assignment is killed at VNI->def.  We
655    // want to avoid calculating the live range of the source register if
656    // possible.
657    AssignI.find(Def.getPrevSlot());
658    if (!AssignI.valid() || AssignI.start() >= Def)
659      continue;
660    // If MI doesn't kill the assigned register, just leave it.
661    if (AssignI.stop() != Def)
662      continue;
663    unsigned RegIdx = AssignI.value();
664    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
665      DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
666      forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
667    } else {
668      SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
669      DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
670      AssignI.setStop(Kill);
671    }
672  }
673}
674
675MachineBasicBlock*
676SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
677                                  MachineBasicBlock *DefMBB) {
678  if (MBB == DefMBB)
679    return MBB;
680  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
681
682  const MachineLoopInfo &Loops = SA.Loops;
683  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
684  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
685
686  // Best candidate so far.
687  MachineBasicBlock *BestMBB = MBB;
688  unsigned BestDepth = UINT_MAX;
689
690  for (;;) {
691    const MachineLoop *Loop = Loops.getLoopFor(MBB);
692
693    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
694    // higher frequency by definition.
695    if (!Loop) {
696      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
697                   << MBB->getNumber() << " at depth 0\n");
698      return MBB;
699    }
700
701    // We'll never be able to exit the DefLoop.
702    if (Loop == DefLoop) {
703      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
704                   << MBB->getNumber() << " in the same loop\n");
705      return MBB;
706    }
707
708    // Least busy dominator seen so far.
709    unsigned Depth = Loop->getLoopDepth();
710    if (Depth < BestDepth) {
711      BestMBB = MBB;
712      BestDepth = Depth;
713      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
714                   << MBB->getNumber() << " at depth " << Depth << '\n');
715    }
716
717    // Leave loop by going to the immediate dominator of the loop header.
718    // This is a bigger stride than simply walking up the dominator tree.
719    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
720
721    // Too far up the dominator tree?
722    if (!IDom || !MDT.dominates(DefDomNode, IDom))
723      return BestMBB;
724
725    MBB = IDom->getBlock();
726  }
727}
728
729void SplitEditor::hoistCopiesForSize() {
730  // Get the complement interval, always RegIdx 0.
731  LiveInterval *LI = Edit->get(0);
732  LiveInterval *Parent = &Edit->getParent();
733
734  // Track the nearest common dominator for all back-copies for each ParentVNI,
735  // indexed by ParentVNI->id.
736  typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
737  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
738
739  // Find the nearest common dominator for parent values with multiple
740  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
741  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
742       VI != VE; ++VI) {
743    VNInfo *VNI = *VI;
744    if (VNI->isUnused())
745      continue;
746    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
747    assert(ParentVNI && "Parent not live at complement def");
748
749    // Don't hoist remats.  The complement is probably going to disappear
750    // completely anyway.
751    if (Edit->didRematerialize(ParentVNI))
752      continue;
753
754    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
755    DomPair &Dom = NearestDom[ParentVNI->id];
756
757    // Keep directly defined parent values.  This is either a PHI or an
758    // instruction in the complement range.  All other copies of ParentVNI
759    // should be eliminated.
760    if (VNI->def == ParentVNI->def) {
761      DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
762      Dom = DomPair(ValMBB, VNI->def);
763      continue;
764    }
765    // Skip the singly mapped values.  There is nothing to gain from hoisting a
766    // single back-copy.
767    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
768      DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
769      continue;
770    }
771
772    if (!Dom.first) {
773      // First time we see ParentVNI.  VNI dominates itself.
774      Dom = DomPair(ValMBB, VNI->def);
775    } else if (Dom.first == ValMBB) {
776      // Two defs in the same block.  Pick the earlier def.
777      if (!Dom.second.isValid() || VNI->def < Dom.second)
778        Dom.second = VNI->def;
779    } else {
780      // Different basic blocks. Check if one dominates.
781      MachineBasicBlock *Near =
782        MDT.findNearestCommonDominator(Dom.first, ValMBB);
783      if (Near == ValMBB)
784        // Def ValMBB dominates.
785        Dom = DomPair(ValMBB, VNI->def);
786      else if (Near != Dom.first)
787        // None dominate. Hoist to common dominator, need new def.
788        Dom = DomPair(Near, SlotIndex());
789    }
790
791    DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
792                 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
793                 << " hoist to BB#" << Dom.first->getNumber() << ' '
794                 << Dom.second << '\n');
795  }
796
797  // Insert the hoisted copies.
798  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
799    DomPair &Dom = NearestDom[i];
800    if (!Dom.first || Dom.second.isValid())
801      continue;
802    // This value needs a hoisted copy inserted at the end of Dom.first.
803    VNInfo *ParentVNI = Parent->getValNumInfo(i);
804    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
805    // Get a less loopy dominator than Dom.first.
806    Dom.first = findShallowDominator(Dom.first, DefMBB);
807    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
808    Dom.second =
809      defFromParent(0, ParentVNI, Last, *Dom.first,
810                    SA.getLastSplitPointIter(Dom.first))->def;
811  }
812
813  // Remove redundant back-copies that are now known to be dominated by another
814  // def with the same value.
815  SmallVector<VNInfo*, 8> BackCopies;
816  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
817       VI != VE; ++VI) {
818    VNInfo *VNI = *VI;
819    if (VNI->isUnused())
820      continue;
821    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
822    const DomPair &Dom = NearestDom[ParentVNI->id];
823    if (!Dom.first || Dom.second == VNI->def)
824      continue;
825    BackCopies.push_back(VNI);
826    forceRecompute(0, ParentVNI);
827  }
828  removeBackCopies(BackCopies);
829}
830
831
832/// transferValues - Transfer all possible values to the new live ranges.
833/// Values that were rematerialized are left alone, they need LRCalc.extend().
834bool SplitEditor::transferValues() {
835  bool Skipped = false;
836  RegAssignMap::const_iterator AssignI = RegAssign.begin();
837  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
838         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
839    DEBUG(dbgs() << "  blit " << *ParentI << ':');
840    VNInfo *ParentVNI = ParentI->valno;
841    // RegAssign has holes where RegIdx 0 should be used.
842    SlotIndex Start = ParentI->start;
843    AssignI.advanceTo(Start);
844    do {
845      unsigned RegIdx;
846      SlotIndex End = ParentI->end;
847      if (!AssignI.valid()) {
848        RegIdx = 0;
849      } else if (AssignI.start() <= Start) {
850        RegIdx = AssignI.value();
851        if (AssignI.stop() < End) {
852          End = AssignI.stop();
853          ++AssignI;
854        }
855      } else {
856        RegIdx = 0;
857        End = std::min(End, AssignI.start());
858      }
859
860      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
861      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
862      LiveInterval *LI = Edit->get(RegIdx);
863
864      // Check for a simply defined value that can be blitted directly.
865      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
866      if (VNInfo *VNI = VFP.getPointer()) {
867        DEBUG(dbgs() << ':' << VNI->id);
868        LI->addRange(LiveRange(Start, End, VNI));
869        Start = End;
870        continue;
871      }
872
873      // Skip values with forced recomputation.
874      if (VFP.getInt()) {
875        DEBUG(dbgs() << "(recalc)");
876        Skipped = true;
877        Start = End;
878        continue;
879      }
880
881      LiveRangeCalc &LRC = getLRCalc(RegIdx);
882
883      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
884      // so the live range is accurate. Add live-in blocks in [Start;End) to the
885      // LiveInBlocks.
886      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
887      SlotIndex BlockStart, BlockEnd;
888      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
889
890      // The first block may be live-in, or it may have its own def.
891      if (Start != BlockStart) {
892        VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
893        assert(VNI && "Missing def for complex mapped value");
894        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
895        // MBB has its own def. Is it also live-out?
896        if (BlockEnd <= End)
897          LRC.setLiveOutValue(MBB, VNI);
898
899        // Skip to the next block for live-in.
900        ++MBB;
901        BlockStart = BlockEnd;
902      }
903
904      // Handle the live-in blocks covered by [Start;End).
905      assert(Start <= BlockStart && "Expected live-in block");
906      while (BlockStart < End) {
907        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
908        BlockEnd = LIS.getMBBEndIdx(MBB);
909        if (BlockStart == ParentVNI->def) {
910          // This block has the def of a parent PHI, so it isn't live-in.
911          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
912          VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
913          assert(VNI && "Missing def for complex mapped parent PHI");
914          if (End >= BlockEnd)
915            LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
916        } else {
917          // This block needs a live-in value.  The last block covered may not
918          // be live-out.
919          if (End < BlockEnd)
920            LRC.addLiveInBlock(LI, MDT[MBB], End);
921          else {
922            // Live-through, and we don't know the value.
923            LRC.addLiveInBlock(LI, MDT[MBB]);
924            LRC.setLiveOutValue(MBB, 0);
925          }
926        }
927        BlockStart = BlockEnd;
928        ++MBB;
929      }
930      Start = End;
931    } while (Start != ParentI->end);
932    DEBUG(dbgs() << '\n');
933  }
934
935  LRCalc[0].calculateValues();
936  if (SpillMode)
937    LRCalc[1].calculateValues();
938
939  return Skipped;
940}
941
942void SplitEditor::extendPHIKillRanges() {
943    // Extend live ranges to be live-out for successor PHI values.
944  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
945       E = Edit->getParent().vni_end(); I != E; ++I) {
946    const VNInfo *PHIVNI = *I;
947    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
948      continue;
949    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
950    LiveInterval *LI = Edit->get(RegIdx);
951    LiveRangeCalc &LRC = getLRCalc(RegIdx);
952    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
953    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
954         PE = MBB->pred_end(); PI != PE; ++PI) {
955      SlotIndex End = LIS.getMBBEndIdx(*PI);
956      SlotIndex LastUse = End.getPrevSlot();
957      // The predecessor may not have a live-out value. That is OK, like an
958      // undef PHI operand.
959      if (Edit->getParent().liveAt(LastUse)) {
960        assert(RegAssign.lookup(LastUse) == RegIdx &&
961               "Different register assignment in phi predecessor");
962        LRC.extend(LI, End);
963      }
964    }
965  }
966}
967
968/// rewriteAssigned - Rewrite all uses of Edit->getReg().
969void SplitEditor::rewriteAssigned(bool ExtendRanges) {
970  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
971       RE = MRI.reg_end(); RI != RE;) {
972    MachineOperand &MO = RI.getOperand();
973    MachineInstr *MI = MO.getParent();
974    ++RI;
975    // LiveDebugVariables should have handled all DBG_VALUE instructions.
976    if (MI->isDebugValue()) {
977      DEBUG(dbgs() << "Zapping " << *MI);
978      MO.setReg(0);
979      continue;
980    }
981
982    // <undef> operands don't really read the register, so it doesn't matter
983    // which register we choose.  When the use operand is tied to a def, we must
984    // use the same register as the def, so just do that always.
985    SlotIndex Idx = LIS.getInstructionIndex(MI);
986    if (MO.isDef() || MO.isUndef())
987      Idx = Idx.getRegSlot(MO.isEarlyClobber());
988
989    // Rewrite to the mapped register at Idx.
990    unsigned RegIdx = RegAssign.lookup(Idx);
991    LiveInterval *LI = Edit->get(RegIdx);
992    MO.setReg(LI->reg);
993    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
994                 << Idx << ':' << RegIdx << '\t' << *MI);
995
996    // Extend liveness to Idx if the instruction reads reg.
997    if (!ExtendRanges || MO.isUndef())
998      continue;
999
1000    // Skip instructions that don't read Reg.
1001    if (MO.isDef()) {
1002      if (!MO.getSubReg() && !MO.isEarlyClobber())
1003        continue;
1004      // We may wan't to extend a live range for a partial redef, or for a use
1005      // tied to an early clobber.
1006      Idx = Idx.getPrevSlot();
1007      if (!Edit->getParent().liveAt(Idx))
1008        continue;
1009    } else
1010      Idx = Idx.getRegSlot(true);
1011
1012    getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
1013  }
1014}
1015
1016void SplitEditor::deleteRematVictims() {
1017  SmallVector<MachineInstr*, 8> Dead;
1018  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1019    LiveInterval *LI = *I;
1020    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1021           LII != LIE; ++LII) {
1022      // Dead defs end at the dead slot.
1023      if (LII->end != LII->valno->def.getDeadSlot())
1024        continue;
1025      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1026      assert(MI && "Missing instruction for dead def");
1027      MI->addRegisterDead(LI->reg, &TRI);
1028
1029      if (!MI->allDefsAreDead())
1030        continue;
1031
1032      DEBUG(dbgs() << "All defs dead: " << *MI);
1033      Dead.push_back(MI);
1034    }
1035  }
1036
1037  if (Dead.empty())
1038    return;
1039
1040  Edit->eliminateDeadDefs(Dead);
1041}
1042
1043void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1044  ++NumFinished;
1045
1046  // At this point, the live intervals in Edit contain VNInfos corresponding to
1047  // the inserted copies.
1048
1049  // Add the original defs from the parent interval.
1050  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1051         E = Edit->getParent().vni_end(); I != E; ++I) {
1052    const VNInfo *ParentVNI = *I;
1053    if (ParentVNI->isUnused())
1054      continue;
1055    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1056    defValue(RegIdx, ParentVNI, ParentVNI->def);
1057
1058    // Force rematted values to be recomputed everywhere.
1059    // The new live ranges may be truncated.
1060    if (Edit->didRematerialize(ParentVNI))
1061      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1062        forceRecompute(i, ParentVNI);
1063  }
1064
1065  // Hoist back-copies to the complement interval when in spill mode.
1066  switch (SpillMode) {
1067  case SM_Partition:
1068    // Leave all back-copies as is.
1069    break;
1070  case SM_Size:
1071    hoistCopiesForSize();
1072    break;
1073  case SM_Speed:
1074    llvm_unreachable("Spill mode 'speed' not implemented yet");
1075  }
1076
1077  // Transfer the simply mapped values, check if any are skipped.
1078  bool Skipped = transferValues();
1079  if (Skipped)
1080    extendPHIKillRanges();
1081  else
1082    ++NumSimple;
1083
1084  // Rewrite virtual registers, possibly extending ranges.
1085  rewriteAssigned(Skipped);
1086
1087  // Delete defs that were rematted everywhere.
1088  if (Skipped)
1089    deleteRematVictims();
1090
1091  // Get rid of unused values and set phi-kill flags.
1092  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1093    (*I)->RenumberValues(LIS);
1094
1095  // Provide a reverse mapping from original indices to Edit ranges.
1096  if (LRMap) {
1097    LRMap->clear();
1098    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1099      LRMap->push_back(i);
1100  }
1101
1102  // Now check if any registers were separated into multiple components.
1103  ConnectedVNInfoEqClasses ConEQ(LIS);
1104  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1105    // Don't use iterators, they are invalidated by create() below.
1106    LiveInterval *li = Edit->get(i);
1107    unsigned NumComp = ConEQ.Classify(li);
1108    if (NumComp <= 1)
1109      continue;
1110    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1111    SmallVector<LiveInterval*, 8> dups;
1112    dups.push_back(li);
1113    for (unsigned j = 1; j != NumComp; ++j)
1114      dups.push_back(&Edit->create());
1115    ConEQ.Distribute(&dups[0], MRI);
1116    // The new intervals all map back to i.
1117    if (LRMap)
1118      LRMap->resize(Edit->size(), i);
1119  }
1120
1121  // Calculate spill weight and allocation hints for new intervals.
1122  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops);
1123
1124  assert(!LRMap || LRMap->size() == Edit->size());
1125}
1126
1127
1128//===----------------------------------------------------------------------===//
1129//                            Single Block Splitting
1130//===----------------------------------------------------------------------===//
1131
1132bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1133                                           bool SingleInstrs) const {
1134  // Always split for multiple instructions.
1135  if (!BI.isOneInstr())
1136    return true;
1137  // Don't split for single instructions unless explicitly requested.
1138  if (!SingleInstrs)
1139    return false;
1140  // Splitting a live-through range always makes progress.
1141  if (BI.LiveIn && BI.LiveOut)
1142    return true;
1143  // No point in isolating a copy. It has no register class constraints.
1144  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1145    return false;
1146  // Finally, don't isolate an end point that was created by earlier splits.
1147  return isOriginalEndpoint(BI.FirstInstr);
1148}
1149
1150void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1151  openIntv();
1152  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1153  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1154    LastSplitPoint));
1155  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1156    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1157  } else {
1158      // The last use is after the last valid split point.
1159    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1160    useIntv(SegStart, SegStop);
1161    overlapIntv(SegStop, BI.LastInstr);
1162  }
1163}
1164
1165
1166//===----------------------------------------------------------------------===//
1167//                    Global Live Range Splitting Support
1168//===----------------------------------------------------------------------===//
1169
1170// These methods support a method of global live range splitting that uses a
1171// global algorithm to decide intervals for CFG edges. They will insert split
1172// points and color intervals in basic blocks while avoiding interference.
1173//
1174// Note that splitSingleBlock is also useful for blocks where both CFG edges
1175// are on the stack.
1176
1177void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1178                                        unsigned IntvIn, SlotIndex LeaveBefore,
1179                                        unsigned IntvOut, SlotIndex EnterAfter){
1180  SlotIndex Start, Stop;
1181  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1182
1183  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1184               << ") intf " << LeaveBefore << '-' << EnterAfter
1185               << ", live-through " << IntvIn << " -> " << IntvOut);
1186
1187  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1188
1189  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1190  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1191  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1192
1193  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1194
1195  if (!IntvOut) {
1196    DEBUG(dbgs() << ", spill on entry.\n");
1197    //
1198    //        <<<<<<<<<    Possible LeaveBefore interference.
1199    //    |-----------|    Live through.
1200    //    -____________    Spill on entry.
1201    //
1202    selectIntv(IntvIn);
1203    SlotIndex Idx = leaveIntvAtTop(*MBB);
1204    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1205    (void)Idx;
1206    return;
1207  }
1208
1209  if (!IntvIn) {
1210    DEBUG(dbgs() << ", reload on exit.\n");
1211    //
1212    //    >>>>>>>          Possible EnterAfter interference.
1213    //    |-----------|    Live through.
1214    //    ___________--    Reload on exit.
1215    //
1216    selectIntv(IntvOut);
1217    SlotIndex Idx = enterIntvAtEnd(*MBB);
1218    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1219    (void)Idx;
1220    return;
1221  }
1222
1223  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1224    DEBUG(dbgs() << ", straight through.\n");
1225    //
1226    //    |-----------|    Live through.
1227    //    -------------    Straight through, same intv, no interference.
1228    //
1229    selectIntv(IntvOut);
1230    useIntv(Start, Stop);
1231    return;
1232  }
1233
1234  // We cannot legally insert splits after LSP.
1235  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1236  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1237
1238  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1239                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1240    DEBUG(dbgs() << ", switch avoiding interference.\n");
1241    //
1242    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1243    //    |-----------|    Live through.
1244    //    ------=======    Switch intervals between interference.
1245    //
1246    selectIntv(IntvOut);
1247    SlotIndex Idx;
1248    if (LeaveBefore && LeaveBefore < LSP) {
1249      Idx = enterIntvBefore(LeaveBefore);
1250      useIntv(Idx, Stop);
1251    } else {
1252      Idx = enterIntvAtEnd(*MBB);
1253    }
1254    selectIntv(IntvIn);
1255    useIntv(Start, Idx);
1256    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1257    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1258    return;
1259  }
1260
1261  DEBUG(dbgs() << ", create local intv for interference.\n");
1262  //
1263  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1264  //    |-----------|    Live through.
1265  //    ==---------==    Switch intervals before/after interference.
1266  //
1267  assert(LeaveBefore <= EnterAfter && "Missed case");
1268
1269  selectIntv(IntvOut);
1270  SlotIndex Idx = enterIntvAfter(EnterAfter);
1271  useIntv(Idx, Stop);
1272  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1273
1274  selectIntv(IntvIn);
1275  Idx = leaveIntvBefore(LeaveBefore);
1276  useIntv(Start, Idx);
1277  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1278}
1279
1280
1281void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1282                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1283  SlotIndex Start, Stop;
1284  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1285
1286  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1287               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1288               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1289               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1290
1291  assert(IntvIn && "Must have register in");
1292  assert(BI.LiveIn && "Must be live-in");
1293  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1294
1295  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1296    DEBUG(dbgs() << " before interference.\n");
1297    //
1298    //               <<<    Interference after kill.
1299    //     |---o---x   |    Killed in block.
1300    //     =========        Use IntvIn everywhere.
1301    //
1302    selectIntv(IntvIn);
1303    useIntv(Start, BI.LastInstr);
1304    return;
1305  }
1306
1307  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1308
1309  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1310    //
1311    //               <<<    Possible interference after last use.
1312    //     |---o---o---|    Live-out on stack.
1313    //     =========____    Leave IntvIn after last use.
1314    //
1315    //                 <    Interference after last use.
1316    //     |---o---o--o|    Live-out on stack, late last use.
1317    //     ============     Copy to stack after LSP, overlap IntvIn.
1318    //            \_____    Stack interval is live-out.
1319    //
1320    if (BI.LastInstr < LSP) {
1321      DEBUG(dbgs() << ", spill after last use before interference.\n");
1322      selectIntv(IntvIn);
1323      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1324      useIntv(Start, Idx);
1325      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1326    } else {
1327      DEBUG(dbgs() << ", spill before last split point.\n");
1328      selectIntv(IntvIn);
1329      SlotIndex Idx = leaveIntvBefore(LSP);
1330      overlapIntv(Idx, BI.LastInstr);
1331      useIntv(Start, Idx);
1332      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1333    }
1334    return;
1335  }
1336
1337  // The interference is overlapping somewhere we wanted to use IntvIn. That
1338  // means we need to create a local interval that can be allocated a
1339  // different register.
1340  unsigned LocalIntv = openIntv();
1341  (void)LocalIntv;
1342  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1343
1344  if (!BI.LiveOut || BI.LastInstr < LSP) {
1345    //
1346    //           <<<<<<<    Interference overlapping uses.
1347    //     |---o---o---|    Live-out on stack.
1348    //     =====----____    Leave IntvIn before interference, then spill.
1349    //
1350    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1351    SlotIndex From = enterIntvBefore(LeaveBefore);
1352    useIntv(From, To);
1353    selectIntv(IntvIn);
1354    useIntv(Start, From);
1355    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1356    return;
1357  }
1358
1359  //           <<<<<<<    Interference overlapping uses.
1360  //     |---o---o--o|    Live-out on stack, late last use.
1361  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1362  //            \_____    Stack interval is live-out.
1363  //
1364  SlotIndex To = leaveIntvBefore(LSP);
1365  overlapIntv(To, BI.LastInstr);
1366  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1367  useIntv(From, To);
1368  selectIntv(IntvIn);
1369  useIntv(Start, From);
1370  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1371}
1372
1373void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1374                                   unsigned IntvOut, SlotIndex EnterAfter) {
1375  SlotIndex Start, Stop;
1376  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1377
1378  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1379               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1380               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1381               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1382
1383  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1384
1385  assert(IntvOut && "Must have register out");
1386  assert(BI.LiveOut && "Must be live-out");
1387  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1388
1389  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1390    DEBUG(dbgs() << " after interference.\n");
1391    //
1392    //    >>>>             Interference before def.
1393    //    |   o---o---|    Defined in block.
1394    //        =========    Use IntvOut everywhere.
1395    //
1396    selectIntv(IntvOut);
1397    useIntv(BI.FirstInstr, Stop);
1398    return;
1399  }
1400
1401  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1402    DEBUG(dbgs() << ", reload after interference.\n");
1403    //
1404    //    >>>>             Interference before def.
1405    //    |---o---o---|    Live-through, stack-in.
1406    //    ____=========    Enter IntvOut before first use.
1407    //
1408    selectIntv(IntvOut);
1409    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1410    useIntv(Idx, Stop);
1411    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1412    return;
1413  }
1414
1415  // The interference is overlapping somewhere we wanted to use IntvOut. That
1416  // means we need to create a local interval that can be allocated a
1417  // different register.
1418  DEBUG(dbgs() << ", interference overlaps uses.\n");
1419  //
1420  //    >>>>>>>          Interference overlapping uses.
1421  //    |---o---o---|    Live-through, stack-in.
1422  //    ____---======    Create local interval for interference range.
1423  //
1424  selectIntv(IntvOut);
1425  SlotIndex Idx = enterIntvAfter(EnterAfter);
1426  useIntv(Idx, Stop);
1427  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1428
1429  openIntv();
1430  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1431  useIntv(From, Idx);
1432}
1433